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Finite Element Analysis of a 20 physical model of a human head 

Summary 

It is widely accepted that deformations of the brain mass, as a result of an impact to the head 
or as a result of inertial loading, lead to brain injury. That is why the biomechanical response 
of the brain is to be determined under extreme loading conditions. Because of the absence of 
measuring data from human models, physical or numerical models are used. 
In this report a two-dimensional F.E. model of a mid-sagittal cross-section of the human head 
is presented. This model is a simplified version of the physical model described in the report by 
Pape (1994). It consists of a circular mesh with plane strain, second order, isoparametric, 
distorted quadrilateral elements that represent the brain tissue. The angular displacements of 
the outer nodes of this mesh are prescribed using a polynomial approximation of the angular 
displacement of the physical model. The radial displacements of these nodes are zero. This 
means that they rotate around the centre of the mesh as if they were part of a rigid body. For 
this reason no skull is modelled. The brain tissue is modelled as a homogeneous isotropic 
linear elastic material. 
When looking at contour plots of the displacements in x and y direction a strange irregular 
shape appears. To investigate this the spatial and temporal discretization of the model is 
investigated to see if this phenomenon is a result of wave propagation. Therefore some wave 
propagation properties are determined. Also an assumption about the shape of the waves has 
been made. It is investigated if these properties and the assumed shapes of the wave fronts 
really appear in the model. From this investigation it seems that there occurs an oscillation in 
the tangential nodal displacements that cannot be explained using wave propagation theory. 
Some properties of this oscillation will be determined and some suggestions will be done for 
future investigations including one that is a possible explanation for this phenomenon. 
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Introduction Finite Element Analysis of a 20 physical model of a human head 

1. Introduction 

The project described in this report was conducted in the field of head injury research. It is 
widely accepted that deformations of the brain mass, as a result of an impact to the head or as 
a result of inertial loading, lead to brain injury. For this reason it is necessary to know what the 
biomechanical response of the brain (that is the mechanical behaviour as a result of a 
mechanical load) is under extreme loading conditions. For the determination of this 
biomechanical response one can use numerical methods as well as experimental methods 

A problem for the determination of this response is the absence of experimental data with real 
human beings. Therefore physical models are being used as a substitute. These usually have a 
simplified geometry and represent a coronal or sagittal cross-section of the human head. Often 
the model consists of a cylindrical shell representing the skull which is filled with a silicone gel 
that represents the brain tissue. The model is subjected to an angular and/or linear acceleration 
and the deformation of the gel is measured. To model relative motion between skull and brain, 
skull-brain decoupling can be applied by putting, for instance, a layer of Teflon between the 
shell and the gel as is reported by Pape (1994). 

Another way to analyse the response of the human head to an extreme loading condition is by 
making use of mathematical models. In this project the Finite Element Method is used to 
create a mathematical model. Other possibilities are lumped parameter models and continuum 
models [Sauren and Claessens (1993)l. The model used here is a two-dimensional plane strain 
representation of the mid-sagittal cross-section of the human head. As a first approach this 
cross-section was assumed to be circular. The model consists of a 2-D mesh with quadratic 
quadrilateral elements that represent the brain tissue. The elements have linear elastic material 
properties. The angular acceleration will be forced upon this model by prescribing the motion 
in every node at the boundary of the mesh. As a result the boundary of the mesh behaves like a 
rigid shell with a thickness of one node. This is the reason why no skull is modelled, it would 
just behave like a rigid body. 

The numerical model is based on a physical model as described in a report by Pape (1994). In 
that report a cylindrical physical model was subjected to a rotational acceleration around a 
rotational axis in the centre of the cylinder. This physical model consisted of a cylindrical 

anatomic configuration of a mid-sagittal cross-section of a human head. In the cylinder a gel 
represented the brain tissue. 

In this report first the numerical model and its boundary conditions will be introduced in 
chapter 2. Chapter 3 deals with the effects of spatial discretization. From the displacements 
calculated to investigate the effects of mesh refinement it seems that there is a possibility of 
longitudinal and/or transverse wave propagation in the model. Therefore some basic wave 

container with m inner geometry that re.emb!es a two dimensional representation of the red 
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propagation theory will also be given in this chapter. Chapter 4 contains an investigation of the 
effects of temporal discretization, in relation with wave propagation. Chapter 5 gives some 
conclusions and hints for future projects in a summary of this project and a discussion. 
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2. The Finite Element Model 

In this chapter the numerical model will be presented.First the geometry of the mesh and material 
properties are given, then the boundary conditions that define the motion of the mesh will be 
discussed. Also there will be a short review about the integration method used. The calculations are 
performed with the finite element package MARC version k6.1. 

2.1 Introduction 

The numerical model is based on a physical model as described by Pape (1994). This 
cylindrical physical model was subjected to a rotational acceleration around a rotational axis in 
the centre of the cylinder. The physical model consisted of a cylindrical container with an inner 
geometry that resembles a two dimensional representation of the real anatomic configuration 
of a mid-sagittal cross-section of a human head. In the cylinder the brain tissue is represented 
by a gel. The deformations of the gel as a result of the rotational acceleration were measured 
using high-speed cinematography recordings of markers that were placed in the gel. The 
stiffness of the cylinder and its inner geometry is such that it can be considared rigid. The 
height of the container is such that it may be assumed that the material in the plane of interest 
behaves as if the cylinder was of infinite height. The influence of slip and non-slip boundary 
conditions at the skull-brain interface were also considered in the report by Pape. 

2.2 Mesh geometry and material properties 

The model used in this report is a simplified version of the physical model used by Pape, 
because no inner geometry was modelled. This was done to keep the numerical costs low and 
to get a better understanding of the phenomena that occur in this model. The numerical model 
is a representation of a cross-section of a cylinder of infinite height so plane strain theory may 
be applied. This means that no motion is allowed perpendicular to this cross-section. The 
model used represents a two-dimensional circular flat surface with a radius of 98 mm. The 
element distribution in this mesh is the same as used by Kessels and Peerlings (1993) and is 
shown in Fig 2.1. There is one difference. In the model by Kessels and Peerlings the outer 
element ring of the mesh was used for modelling the skull. Now the whole mesh is used for 

been done for two reasons. 
The first reason is that, as mentioned in section 2.1, the cylindrical container of the physical 
model behaves like a rigid body. This container will show almost no deformations in 
comparison with the gel and is therefore not of interest. 
The second reason is that in the numerical model is assumed that there is no relative motion 
between the gel and the cylinder. In the real human head relative motion between the brains 

mdv!!ing tkv kr2h 2nd no elements ure L l s d  f9r modr!!ing the cy!ir?d~cu! ccntuinrr. This h a  
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i28 

The second reason is that in the numerical model is assumed that there is no relative motion 
between the gel and the cylinder. In the real human head relative motion between the brains 
and the skull is possible. This motion could be modelled with contact algorithms in a Finite 
Element package but there are no reliable contact algorithms for transient dynamic analysis in 
the Finite Element package MARC. The modelling of a rigid cylinder to use these algorithms 
is therefore not necessary. 

i7 i8 i9 

i# i5 i6 n4 

Figure 2.1: Mesh shape of unrefined mesh. 

The mesh is located in the plane defined by the x-axis and the y-axis of an orthogonal 
coordinate system. The z-axis’ direction is perpendicular to this plane. The origin of the 
coordinate system lies in the centre of the mesh. 
The elements used are plane strain, second order, isoparametric, distorted quadrilateral 
elements (element number 27 in MARC). This element type has eight nodes and nine 
integrationpoints. Their configuration is given in Fig. 2.2. Four noded linear elements have 
also been considered and tested but they did not give results that were accurate enough. 

n4 n7 n3 

Figure 2.2: Element numbei- 27, n denotes node numbers, i denotes integration point numbers. 
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Young’s modulus : E = I ,  0 .  I O5 [x2] 
Poison’s ratio : v = 0.48 used by Ruan (1991) 
Density : p = 1000 [k7$] commonly used 

used by Lee (1 990) 

2.3 Kinematic boundary conditions 

As mentioned before the model is of the plane strain type so no displacements in z-direction 
are allowed. The nodes have no constrains for displacements in the x,y-plane except those 
situated at the mesh boundary. These nodes move according to prescribed displacements. 
Because the cylindrical container of the physical mode! behaves like a rigid body, 2nd while no 
relative motion is allowed between the container and the gel, the nodes at the border of the 
mesh have all the same tangential displacements. These nodes have no displacements in radial 
direction. This means that the only displacement that has to be prescribed is an angular one. 
The angular displacement is represented in Fig. 2.3 by angle a. 

Figure 2.3: Definition of direction of prescribed angle a. 

To get a realistic prescribed displacement, the data of the angular displacement of the 
cylindrical container in experiment Mlo, as described by Pape (1994), has been used for the 
displacement of the numerical model. 
A problem with this displacement data is that it contains a finite number of data points. 
Another problem is that the only source of data is a graph in which the angular displacement 
against time is plotted. Lf this angular displacement is to be prescribed with very small time 
steps it is necessary to know the displacement at all these points in time. Therefore it is useful 
to have a function that can describe the angular displacement for every moment in time. 
To get to know this function first some displacements and their points in time are measured 
from the graph. Then a least square approximation is performed using MATLAB, to get a 
polynomial that describes the measured points as a function of time. 
Another problem is that the angular displacement reported by Pape starts at -0,3 rad and ends 
at zero rad. This leads to numerical problems at the beginning of the experiment. The 
displacement used in this report starts at zero rad and ends at 0,3 rad. This is done by giving 
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the first polynomial coefficient the value zero instead of the value of -0,3. The polynomial 
approximation and the data measured from the graph are displayed in Fig. 2.4. 

Figure 2.4: Polynomial approximation of degree 9 for angular displacement of vessel in experiment M I 0  in 
Pape (1994). 

The Finite Element package MARC offers the possibility of making a user subroutine, f0rcdt.A 
in which nodal displacements as a function of time can be defined. The MARC program calls 
this routine each time step for a selected number of nodes, and forces the defined incremental 
displacements on the selected nodes. The user subroutine used here is based on a routine 
programmed by B. Michielsen. This routine is capable of calculating the angular displacement, 
at any moment in time, using the polynomial coefficients of the polynomial approximation. It 
then calculates for every desired node the incremental displacements during one time step out 
of the difference of the calculated angles at the beginning and the end of the increment, and 
out of the initial coordinates of that node. This subroutine was altered in such way that it now 
also offers the possibility of prescribing a rotation with an non-central positioned rotation axis. 
This may be useful in future research. For more information about this subroutine the reader is 
referred to Appendix A. 

2.4 The integration method 

The analysis that is to be performed is a dynamic transient analysis. This means that instead of 
only a spatial - discretization also a temporal discretization is necessary. These discretizations 
can be described independently. 

With linear elastic materials and small displacements, the system of equations resulting from 
spatial discretization becomes: 

- M.i+K.ZJ = - f ( t )  (2.1) 
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These are the equations of motion in which the columns and - f contain the nodal 

displacements and the nodal external forces, respectively. @ is the kinematically consistent 
mass matrix and K the stiffness matrix. These matrices are independent of and its time 

derivatives because of the assumption that the problem is linear. 
Temporal discretization can be applied next. The system of differential equations in time, 
eq.(2.1), can be solved by using direct time integration schemes. These calculate the relevant 
quantities such as displacements, velocities and accelerations at a number of equally spaced 
discrete points in time. The integration scheme used in this report is the Newmark-P method. 
It consists of the following equations: 

Here the following abbreviations are used; u, = u(tn), en = &(tn) and in = i(&). The time 

step in one increment is At = tn+, - tn . With these abbreviations the equation of motion at 
time tn+l is 

M . i n + l  + K . ~ n + l  = -n+l f (2.4) 

The eq. (2.2) and (2.3) only hold for O 5 p I + and O I y I 1. If p = 3 and y = -$ this method 
is also known as the (Constant) average acceleration method or trapezoidal method. The 
method then is implicit, unconditionally stable and it introduces no numerical damping [Hoof, 
van (1994)l. This means that large time steps can be used, although smaller time steps lead to 
more accurate solutions. A drawback of an implicit integration method is that because it solves 
the system of equations for every increment it is a numerically expensive method. An explicit 
integration method uses extrapolation and is therefore numerically cheaper. 
Applying the values p = 4 and y = -$ in eqs. (2.2) and (2.3) and using the equation of motion 
(2.4), at time tn yields: 

In which the following holds, Au = 

especially when At has a constant value. 
in the first increment fhe right hand side of eq. (2.5) contains initid veiocities and 
accelerations. Usually only initial velocities and initial displacements can be defined in a Finite 
Element package. Therefore the initial accelerations are calculated with the following 
algorithm. 

- 4, and A f  = f - f . This system is easy solvable - -n+l -n 

- M * & , + K . g ,  =Lo (2.6) 
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Summarising, when the stiffness and mass matrices are known from the spatial discretization 
and the initial velocities and displacements of the nodes in the mesh are also known, it is 
possible to calculate the initial accelerations from eq. (2.6) and solve eq. (2.5) for every next 
time step. This will be done using the MARC default solver that uses direct back-substitution. 
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3. The effects of spatial discretization 

To analyse the effects of the spatial discretization on the results the same simulation has been 
performed with three different meshes. The first mesh is a coarse mesh. The second mesh is a version 
that has been refined once. The third mesh is a refined version of the second one. The way in which 
this refinement is performed is treated first. Next two simulations are described. The first one is 
performed with a time step of 0,6 ms and serves mainly to get a qualitative indication of the quality of 
the mesh used in a numerical cheap manner. The results obtained from this first experiment are 
examined more closely by performing a second simulation in which nodal displacements in the 
different meshes are compared with each other using a smaller time step of 0,2 ms. In the last section 
of this chapter the results of the two simulations are discussed. For this some wave propagation 
properties will be determined. 

3.1 Mesh refinement 

To get a mesh refinement all the elements of the coarse mesh that is shown in Fig. 2.1, are 
divided into four new elements. This is done by dividing the sides of the elements into two 
parts of equal length. By connecting the points that divide the 
shown in Fig 3.1 four new elements are generated. 

element sides in the way as 

coarse element refined element 
Figure 3.1: Manner in which mesh refinement has been performed on one element. 

The second mesh is obtained by applying this refinement once on the original coarse mesh. 
The third mesh is a refined version of the second one obtained in the same way. 

3.2 First simulation with Parge time step 

The main objective of this run is to get a first impression of the quality of the meshes used with 
low numerical costs. This means that the number of calculations has to be as low as possible. 
An important criterion for the quality of the mesh is the rotational symmetry. Because of the 
motion forced upon each of the meshes is a rotation around the centre of the mesh, as 
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discussed in chapter 2 and the model itself is ai-symmetric, this means that the displacements 
in the mesh have to satisfy rotational symmetry around this point too. 

3.2.1 Description of numerical experiments 

Factors that determine the numerical costs are among others the choice of the integration 
method, the element size in the mesh, the number of time increments and the number of 
quantities that have to be calculated (for instance strains, pressures, forces, displacements, and 
so on). Not all these factors can be chosen in the numerically cheapest way because the choice 
of some of them is gouverned by other criteria. The choice of the factors that determine the 
numerical costs will be discussed below. 

The integration method; This is chosen to be the Newmark-P method, because it is always 
unconditionally stable no matter what time step size or element size is chosen. 
The element size in the mesh; Larger elements will result in lower costs but also in a lower 
accuracy. The element size cannot be chosen in the numerically cheapest way, because this 
factor is to be varied to see what happens to the accuracy. 
The number of time increments; If the number of increments is small the number of times 
that the solution of the equations of motion has to be solved is small. A drawback is that if 
a relatively large time period has to be described a large time step is needed. This leads to a 
lower accuracy of the integration method. Nevertheless a small number of increments with 
a large time steps is used. 
The number of quantities calculated; The displacements are the primary variables 
calculated by the Finite Element method; all other output quantities are derived from them. 
To keep numerical costs low the output of this simulation contains only displacements in 
global x- and y-direction. 

For the reasons mentioned above a run of 25 time increments of 0.6 ms each is chosen for 
each mesh. The prescribed motion in each run is the one that is explained in section 2.3. The 
results of these runs contain only displacements in x- and y-direction. In appendix B a MARC 
input file and the user subroutine used are given for one mesh. 

3.2.2 Results 

The output is plotted in contour plots for certain moments in time. The plots for the 
displacements in x- or y-direction of the three meshes for several moments in time have been 
compared with each other. Fig. 3.2 contains contour plots of the displacement in x-direction 
after the eighteenth time increment for each mesh. 
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First mesh Second mesh n 
2.327-O2 

1.551e-02 

7.757e-03 

O.OOOe+OO 

-7.757e-03 

-1.55ie-02 

-2.327e-02 

Third mesh 
Figure 3.2: Displacements in x-direction on time = 10.8 ms (= 18'h increment) for the three meshes. The grey 
scales have the same values for  all pictures in this figure. 

When comparing the meshes one notices that for all meshes the shape of the contours in the 

displacements. The displacements in the upper part of the meshes have opposite signs as the 
displacements in the lower part of the mesh. This means that the displacements in x-direction 
satisfy rotational symmetry. 
The contour plots of the displacements in the inner area of the three meshes do not have the 
same shape. The line on which the displacement in x-direction equals zero has a very different 
shape for the different meshes. In the finest mesh it has a very smooth shape while in the two 

mter area of the mesh alre the saune, Also it cam he seen that there is a symmetry in the 
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coarser meshes it has an irregular shape. But this irregular shape also satisfies rotational 
symmetry. Because the large numerical costs involved no further mesh refinement is 
performed but a second series of experiments with a smaller time step to investigate the 
appearance of this irregular shape and to see if it is the result of numerical inaccuracies. 

3.3 Second simulation with small time step 

The results of the simulations mentioned above are probably not very accurate because of the 
large time step taken. This is the reason why a new series of simulations has been performed 
with a smaller time step. As mentioned in chapter 2 the Newmark-P method becomes more 
accurate for smaller time steps. 

3.33 Description of numerical experiments 

This simulation consists of 100 increments of 0.2 ms each for the second and third mesh. The 
total simulation time then becomes 20 ms which is longer than in the first series (the total 
simulation time there was 15 ms). For the first mesh the simulation consists of 50 increments 
(the total simulation time is then 10 ms). The displacement forced upon the geometry is the 
same as used in the first experiment and is discussed in chapter 2.  Again the output only 

consists of the displacements. 

3.3.2 Results 

From the contour plots of the different meshes it can be concluded again that the 
displacements in x- and y-direction satisfy rotational symmetry. But the irregular shape is still 
there and appears now also in the third mesh. 
To see more of the effects of mesh refinement the displacements per node are plotted against 
time for every mesh. This is done for eight nodes all situated on a line between the centre of 
the mesh and the border of the mesh in y-direction. These nodes are shown in Fig. 3.3 for the 
first mesh and are marked with a big dot. In the other meshes nodes with the same initial 
coordinates are used. 
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Figure 3.3: First mesh to illustrate the positions of the observed nodes. 

The node marked with a cross will be used as an example. The observations made for this 
node hold also for the other nodes marked in Fig 3.3. 
First will be looked upon the displacement in x-direction. This displacement will be called u in 
the remainder of this report. Fig 3.4a contains the displacements u of the three meshes for the 
time interval from O to 20 ms (O to I O  ms for the first mesh). 

Figure a Figure b 
Figure 3.4: Displacement in x-direction in m, forfirst (. . .),second( - . -1 and third mesh (A for the node 
denoted with a cross in fig 3.3. 

a: time interval is O to 20 ms 
b: time interval is O to 6 ms 

It can be seen that the displacements differ a lot until approximately t = 6 ms. To get a better 
look at the displacements before t = 6 ms, a graph, in which only the first 6 ms are plotted, is 
shown in Fig 3.4b. In this figure an oscillation in the displacements is visible. This oscillation 
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lasts up to about 4 ms for the coarse mesh and up to about 4,5 ms for the third mesh. The 
oscillations have different shapes for each mesh and it is not obvious that they converge to a 
certain unique solution. After t = 6 ms the difference between the displacements of a node in 
two meshes with successive fineness is of the order 
thus the change as a result of mesh refinement is in both cases about 1 %. 

The plots for the displacement in y-direction, which will be called v, are shown in Fig 3.5. 

The displacement u then is about 

o,5x 

-3.5' o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 I 
TIME IN [SI 

Figure a 

Î 

Figure b 

Figure 3.5: 
node denoted with a cross in f i g  3.3. 

a: Displacement in y-direction for coarse (. . .), middle (- . -) andfinest mesh(-) for  the 

b: Differences in displacements in y-direction. vfirst - vseC,,d (. . .) and Vsecond - Vthird (-) 

Figure 3.5a contains the displacements v for each mesh in a time interval from O to I O  ms for 
the coarse mesh and from O to 20 ms for the two more refined meshes. There is hardly any 
difference visible for the displacement v of the node in the different meshes. 
This is the reason why in Fig 3.5b the differences between the displacements versus the time 
are shown. This figure contains respectively Vflrst-Vsecond and Vsecond-vthjrd. Vfirst is the displacement 
in y-direction of the node in the coarse mesh. Vsecond is the displacement of the node in the mesh 
that is refined once, and vthird the one of the node in the mesh refined twice. 
The difference vfirst-vsecond has order m. The 
displacements v have order This means roughly that the largest improvement because of 
mesh refinement is about 0,í % for displacements in y-direction. 

m. The difference Vsecond-Vthird has order 

3.4 Discussion of the results 

When only looking at the change of the displacements in y-direction as a result of mesh 
refinement it seems that no mesh refinement is necessary. The changes are about 0,l % of the 
displacements when replacing the coarse mesh with the second mesh. When replacing the 
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latter mesh with the one that has been refined twice the change has order 
0,Ol % of the displacements. 
The displacement in x-direction shows for all the examined nodes first an oscillation that seems 
to disappear after a certain moment in time. The displacement then becomes negative. This 
oscillation in the displacement in x-direction of the nodes could be the result of wave 
propagation in the mesh. To check if this is true, some wave propagation properties of this 
mesh will be determined. Also it will be made clear which shape the waves are likely to have in 
the model. 

rn, that is about 

3.4.1 Determination of wave propagation properties. 

All the equations and mathematical theory used in the determination of the wave propagation 
properties are taken from the report by van Hoof (1994). The theory presented here holds for 
an unbounded elastic medium. In such a medium only two types of waves can propagate, 
dilatational waves and rotational waves. 
In a dilatational wave the material particles of the medium move in the same direction as the 
wave it self, this means in a direction perpendicular to the wave front. This wave is also called 
longitudinal or compressive wave. The latter because the velocity of this wave is also the 
velocity of the propagation of a change in volume in the medium. 
In a rotational wave the particles in the medium move in a direction perpendicular to the 
direction of the wave propagation, i.e. in a direction parallel to the wave front. This wave type 
is also called shear, distortional or transverse wave. 
The longitudinal disturbance in an unbounded elastic material will propagate at the velocity 

cl = liL P 

Transverse waves propagate with velocity 

ct =d- 
P 

(3.1) 

In these two equations p and h are the Lamé constants. The mass per unit volume of the 
material is p. The Lamé constants are defined as 

Now it is possible to determine the wave propagation velocities in the material that is modelled 
in the mesh. Substitution of the material parameters E = 1,0. IO5 [x2], v = 0,48 and 

p = 1000 [kA3] in eq. (3.3) and substituting this in eqs. (3.1) and (3.2) leads to the velocities 

cl = 29,637 [ %] and c, = 5,8124 [ %] . 
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To determine the shapes of the wave fronts in the model used in this report a simplified 
geometry is considered first. This geometry consists of a piece of a flat surface of infinite size 
that contains one node. It is plotted in Fig 3.6. 
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Figure 3.6: The wave propagation in ajlat surface caused by one node. 

The assumption is made that motion is only possible in the plane defined by the x- and the y -  
axis (plane strain theory). The waves then also propagate in this plane only. If the node that is 
situated at the border of this surface is excited two waves will propagate in radial direction 
away from that node. The direction of the propagation is the same for both wave types. As 
seen before the velocity of the longitudinal wave is higher than the velocity of the transverse 
wave. Therefore two wave fronts will appear in this geometry. 
The model used in this report has the shape of a flat circle that is excited at certain points at its 
border. The wave propagation in the model is caused by several nodes at the border of the 
model and can be approximated by super-positioning the shapes of the waves in the flat 
surface with one node. This is illustrated in Fig 3.7. 
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I 

Figure 3.7: Approximation of the geometry of the model by super positioning of the shape of the wave fronts 
caused by each node. 

If there are any waves they should propagate in the plane defined by the x-axis and the y-axis 
because of the assumed plane strain theory. The nodes move as being fixed on a rigid, circular 
outer geometry. This means that every node will be excited with the same radial displacement 
at the same moment in time. As can be seen in Fig. 3.7, interference between the waves 
originating from different nodes occurs as a result of the spatial discretization used. Here a 
discretization of only eight nodes is used but in the real numerical model the number of nodes 
is much larger and therefore more interference will occur. This interference is of no 
importance because in this report the wave fronts are used only to determine the wave 
propagation properties. The wave fronts originating from each node individually will be called 
nodal wave fronts from now on. The shape of the wave fronts in the model is determined by 
the shape of the nodal wave fronts. By connecting the nodal wave fronts of one type of wave, 
the wave front for the entire wave propagating from all the nodes at the border of the mesh is 
obtained. This is illustrated for the longitudinal wave front in Fig. 3.7 by a bold drawn line. 
This front is star shaped because only eight nodes are used in the spatial discretization of this 
figure. If more nodes will be used the shape of the wave front will converge to the circular 
shape that is to be expzcted t~ appear in the rmdd when the border as a- whole is excited, In 
that case it is expected that the wave fronts will start propagating at the border and move 
towards the centre of the model in radial direction. Because the velocity of one type of wave is 
the same in every direction the wave fronts will have the shape of a circle. Both type of waves 
have different velocities. This means that two wave fronts can be seen, one of the longitudinal 
wave with nodes moving in radial direction and one of the transverse wave with nodes moving 
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in tangential direction. These idealised wave front shapes will be assumed to be the shapes of 
the wave fronts that propagate in the model in the rest of this report. 
The shape of the wave fronts in the model as derived above yields until the wave fronts of the 
longitudinal wave reach the centre of the geometry. What happens there after cannot be 
predicted in this quallitative manner. 

3.4.2 Interpretation of experimental results 

In the previous section is explained that the wave fronts are assumed to propagate from the 
border of the model in radial direction towards the centre. As a result of the longitudinal wave 
the nodes are expected to move in radial direction. Because the longitudinal waves move with 
a higher velocity than the transverse waves the longitudinal wave front will arrive before the 
transverse wave front arrives at a certain node. This means that the radial direction will 
coincide with the y-direction for the considered nodes in Fig. 3.3, until the transverse wave 
arrives. As a result of the transverse wave the nodes will move in tangential direction, which is 
the global x-direction at the beginning of the experiment. 
The fact that there is wave propagation means also that no motion can be found until at least 
the longitudinal wave has arrived. 
When looking at the displacements in y-direction in Fig 3.5 it can be seen that this 
displacement stays zero until a certain moment in time. Whether this moment in time is the 
same as the moment in time when the longitudinal wave arrives at the node considered, is 
determined in the next chapter. The displacements in x-direction do not have such a clear 
shape as can be seen in Fig 3.4. The considered node oscillates immediately when the 
experiment starts except maybe in the third mesh. Also Fig 3.4b shows that the period time of 
an oscillation in the coarse mesh is about twice as long as the period time in the second mesh. 
The period time of the third mesh is again about half the period time of the second mesh. This 
indicates that the period time of the oscillation depends on a mesh property like the distance 
between the nodes or the distance between the integration points. Because the values of these 
properties are also approximately divided by two for every mesh refinement. The fact that 
these period times do depent of a mesh property proves that the observed oscillation cannot be 
a physical phenomenon. 
Summarising; The contour plots of the displacements in the mesh show an irregularity on the 
contour level zero. A closer look at certain nodes shows that when looking in x-direction an 
oscillation appears. This could be the result of wave propagation in the mesh. If this is the case 
then displacements in x-direction are likely to be the result of transverse waves and 
displacements in y-direction could be the result of longitudinal waves. Iî there is wave 
propagation the displacements of a node that is not situated at the border of the mesh should 
be zero until a wave has arrived. This seems to be true for displacements v in y-direction but 
not for the displacements u in x-direction. Also it can be seen that the period times of these 
oscillations are mesh dependent. From this it can be concluded that the oscillation cannot exist 
in the physical model. The oscillation could be the result of the finite numerical accuracy of the 
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integration method used. To investigate this oscillation and to see if it has anything to do with 
numerical inaccuracies, the effects of temporal discretization will be treated in chapter 4. Also 
the wave propagation velocities in the model will be determined under the assumption of 
section 3.4. I to see if the assumed shape of the waves is correct. 
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4. The effects of tempora1 discretization 

In this chapter an effort will be made to get more information about the wave propagation in the 
model and especially about the oscillations that occur in the displacements in x-direction. This is done 
by varying the time step size. The mesh used to investigate the effect of temporal discretization is the 
mesh that has been refined once. The prescribed angular displacement of the nodes at the border of 
the mesh is the one described in section 2.3. The simulation time is 20 ms. First the time steps used 
will be determined, then the numerical results will be presented and the differences of the nodal 
displacements as a result of different time step sizes will be discussed. Finally the wave velocities will 
be determined by combining the numerical results of several nodes under the assumption that the 
waves propagate as seen in section 3.4.1. This is also a check if this assumption applies for the model 
used here. 

4.1 Determination of time step sizes 

To investigate the wave propagation it is necessary to use a small time step size. The criterion 
used here for the choice of the time step size is taken from van Hoof (1994). This criterion is 
based on wave propagation theory in which the rise time and duration of the load do not 
exceed several traversal times of the wave across the body of interest. He states that the 
maximum allowable time step size to maintain the wave front is bounded by the wave speed in 
such a way that 

dt,, I K- G i n  

‘ma, 
(4.1) 

were K is a generic constant depending on the kind of element type and integration scheme 
used. cm, is the maximum wave speed in the system and L:in is the smallest distance between 

any two of the nodes that lie in the direction of the wave propagation. 
In the model in this report the duration and rise of the load does exceed several traversal times 
of the wave across the model. Therefore the time step value from eq. (4.1) will be smaller than 
necessary. This means that the values entered for K and Lmin do not have to be determined 

exactly. The values entered in eq. (4.1) are, 

Cm, = C I  = 29,637 % and 
K = 1,0 
The value for K is arbitrarily chosen and Le is the average distance between two nodes in y- 

direction. With these values dt will be the time necessary for a longitudinal wave to propagate 
across the average distance between two nodes. The value for the maximum time step size is 
then dt,,,,, = 0,21 ms. 
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To investigate the influence of the temporal discretization three time step sizes are chosen. 
The first one, dt = 0,6 ms, lies above the maximum time step from eq. (4.1). If there is any 
wave propagation it should not be visible with this time step. The second time step dt = 0,2 ms 
is just a fraction smaller than dt,-. Wave propagation should now be visible. The simulation 
with the third and smallest time step dt = 0,l ms is performed to see if the results of the 
second run converge to the results of this one. 

4.2 Numerical results 

As in chapter 3 again the nodes situated on the line between the centre of the mesh and the 
border of the mesh in y-direction are considered (see Fig 3.3). The effects of taking smaller 
time steps are illustrated with the same node as in chapter 3. 
First the displacements in x-direction are considered. 

Figure 4.1 a: Displacement u in x-direction Figure 4.1 b: Displacement u in x-direction close-up 

Figure 4.1 c: u(dt = 0,6) - u(dt = 0,2) 

- 
E - 
E 6- - 7 
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Figure 4.1 d: u(dt = 0,2) - u(dt = 0, l )  
Figure 4.1:a and b: Displacements of one node for dt=0,6(- . -), dt=0,2(-) and dt=O,l rns (. . .) 

c and d: Differences between displacements calculated with different time step sizes, dt. 
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From the Figs 4.la and 4.lb one can conclude that the oscillation disappears after a certain 
point in time. To investigate this in Fig 4.lc the difference between the displacements u, 
calculated with dt = 0,6 ms and with dt = 0,2 ms, is shown. For the time steps when the 
oscillation is visible in figure a and b, the difference u(dt = 0,6) - u(& = 0,2) has order m. 
After that the difference decreases but still stays of order m. Differences that did not 
decrease have also been found at other nodes investigated. The difference is the result of the 
inaccuracy of the result with the large time step compared to the result with the smaller time 
step. As can be seen in Fig. 4.lc, the difference for points in time beyond then 8 ms also seems 
to fluctuate around the value u = O in a relatively smooth manner. Because the result with the 
large time step size does not describe the oscillations very well and because in the result with 
the smaller time step the oscillations are clearly visible it can be concluded that when in the 
difference of these results a fluctuation is found it will be caused by the oscillation in the result 
with the smaller time step size. This means that there also has to be an oscillation in the 
displacement calculated with the small time step after û,4 ms when the oscillation seems to 
have disappeared in the figures 4.1 a and b. 
The displacements for dt = 0,2 ms and dt = 0,l ms, which are shown in Fig 4. l a  and 4. lb, do 
not differ much. The differences u(dt=0,2) - u(dt=O,l) in Fig 4.ld, are of order m and 
have a random shape. This means that the accuracy of the calculated displacements is 
independent of the oscillations that occur in the calculated displacements. The time step dt = 
0,2 ms then is suitable to describe the oscillations. 
The fact that dt = 0,6 ms doesn’t describe the oscillation properly and dt = 0,2 ms does, 
indicates that the oscillations behave as if they were the result of wave propagation because 
dt,, = û,21 ms. 
Fig 4.lb shows clearly that the displacement u converges to a certain solution that contains the 
oscillation when smaller time step sizes are used. This means that the oscillation in the graph is 
not a result of the finite accuracy of the integration method because then it would be expected 
that the oscillations wouId become less. The period times of the oscillations decrease for 
smaller time steps. This is to be expected because of the used Newmark-P integration method. 
In the report of van Hoof (1994) is explained that the trapezoidal method (y  = 3, p = 3) 
introduces only period elongation and no amplitude decay. This means while for smaller time 
steps the result becomes more accurate, the period elongation as a result of the integration 
method becomes smaller. 
Next the displacements in y-direction are considered. These are plotted in Fig 4.2. 
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Figure 4.2a Figure 4.2b 
Figure 4.2a: Displacements v in y-direction for dt = 0,l (. . .), dt = 0,2 (-) and dt = 0,6 ms (- . -) 

b: Differences [v(dt = 0,6 ms) - v(dt = 0,2 ms)] (- . -) and [v(dt = 0,2 ms) - v(dt = 0,l ms)] (-) 

Fig 4.2a shows the displacements v in y-direction calculated with different time step sizes. 
Almost no differences between the displacements can be seen from this figure. That is why in 
Fig 4.2b the differences between the displacements is plotted. This figure shows that, as a 
result of taking dt = 0,2 instead of dt = 0,6, the displacements differ in a constant range of lQ5 
m. The difference between the displacements calculated with dt = 0,2 ms and those calculated 
with dt = O, I rns is of order There is no influence visible of the oscillations that occur in 
the displacements u. 

Resuming, one can say that the oscillations in the displacement u of the nodes is not the result 
of the finite numerical accuracy of the integration method. The oscillations start right after the 
experiment starts and do not seem to stop in the period of time simulated and can therefore 
not be the result of wave propagation in the actual model. The fact that these oscillations can 
only be properly described when dt I dt,,,indicates that they behave like being the result of 

wave propagation. 
The displacements v do not oscillate and the improvements as a result of taking a smaller time 
step size are of constant order for the simulated period in time which was to be expected. 
An exception of the behaviour of the displacements u and v as mentioned above are the 
displacements of the nodes at the border of the mesh. Neither the displacements u or v of 
these nodes show oscillations. 
Until now the displacements in both x- and y-directions have been considered for one node. 
In section 4.3 the results of several nodes are combined to make an effort to determine the 
wave velocities occurring during the simulation in the model. 
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4.3 Determination of wave velocities out of the numerical results 

In this section an effort will be made to determine the velocities of wave propagation in the 
model. This will be done with the prescribed displacement described in chapter 2 with time 
step dt=0,2. The mesh used is the one that has been refined once. The nodes considered here 
are located on the line between the centre and the border of the mesh parallel with the y-axis 
and are displayed in Fig 4.3. 

Figure 4.3: The nodes used to determine the velocis. of wave propagation. 

The basic thought of the approach used to determine the wave velocities is that a node cannot 
have any displacements until a wave has arrived there. This means that when a certain node 
starts to move, a wave has arrived at that node. If it is known where the wave propagation 
starts, it is possible to determine the distance the wave has travelled. This distance divided by 
the time necessary for the wave to arrive at that node, is the average wave propagation 
velocity with which the wave propagates until it reaches that node. 
To apply the approach mentioned above the shape of the wave fronts and the way they travel 
through the model has to be known. That is why the assumption is made that the waves 
propagate as explained in section 3.4.1. 
The determination of the wave velocities in the model is the same procedure for both types of 
wave. The waves move in radial direction from the border towards the centre of the model. 
This meam that the distance the wave has to travel through the material to a certain node 
equals the radius minus the distance between that node and the centre. By dividing this 
distance by the time necessary for the wave to propagate towards the node, the average wave 
propagation velocity can be calculated. Written as a formula this becomes 
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in which F is the average velocity, Y represents the radius, xo and yo are the initial coordinates 
of the node considered on t = O ms, and tsturt is the point in time when the observed node starts 
to move. 
As can be concluded from the second part of section 3.4.1, if one wants to determine the 
average velocity of the longitudinal wave, tsturr has to be the moment in time when a 
displacement in y-direction starts at the observed node. The average velocity of the transverse 
wave can be determined by defining tstart to be the moment in time when displacements in x- 
direction occur at the node of interest. 
First the velocity of the longitudinal wave is determined for each considered node. This is done 
by determining tstart from plots in which the displacements in y-direction versus the time for 
each node considered are printed. A difficulty that had to be solved is that there is no clear 
point in time when the displacement starts to differ from zero. This is why tstarr is chosen as the 
moment in time when the absolute value of the displacement reaches 5 -  10-7m. The velocities 
then were calculated using eq. (4.2). The calculated average velocity F for the nodes 
considered and the theoretica1 longitudinal wave propagation velocity CZ are plotted in Fig 4.4a 
versus their y-coordinate. 
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Figure a 

Figure 4.4: 
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Figure b 

a: Calculated longitudinal wave velocity (-X-) and theoretical value (-) 
b: Calculated transverse wave velocity (-X-) and theoretical value (-) 

As can be seen the graphs do not start at y = 0.0 m because the displacements of the node in 
the centre of the mesh are that small that no reliable velocity could be determined. 
The calculated values for the velocity of the longitudinal wave are all higher than the 
theoretical value of 29,637 %. The average difference between the calculated values and the 
theoretical value for the velocity is 9,s %. 
To calculate the velocity of the transverse wave propagation tstan is to be determined from the 
moment in time when the node considered gets a displacement in x-direction that doesn’t 
equal zero. This is when the oscillation in the displacement u starts. The oscillation starts at 
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tsrart = O rns as can be seen in Fig 4.lb of section 4.2. This is theoretically impossible so the 
oscillation cannot be the result of wave propagation as is discussed in chapter 3. 
The approach to determine tsrart for the transverse wave, used in this report, is based on the 
reasoning that in theory there cannot be any displacement at a node until a wave has arrived at 
that node. As mentioned before the oscillations are not the result of wave propagation so it is 
assumed that the ‘real’ displacement equals zero during the time that the oscillation occurs. 
When the transverse wave arrives at a node the displacement in x-direction is expected to get a 
negative value because of the prescribed counter-clock wise angular displacement at the 
border of the mesh. The intersection of the line u = O and the line of the displacements when 
the last oscillation is over, is assumed to be the arrival time of the transverse wave at the node. 
This is illustrated in Fig 4.5. The velocities calculated in this way are shown in fig 4.4b. 

1 o-4 

Figure 4.5: Displacement in x direction of the fourth node considered, counted from the border of the mesh 
and the displacement used to find tstarr from this data. 

The calculated velocities of transverse wave propagation are higher than the theoretical value 
of 5,8124 %. The average difference between the calculated and the theoretical velocities is 
6,3 %. 
An explanation for the higher values found for the wave velocities for both the longitudinal 
and transverse wave is given by van Hoof (1994). He states that the velocity in the numerical 
results is always greater than the actual velocity when a consistent mass matrix is used. In 
section 2.4 it is noticed that the integration method used for this numerical experiment, makes 
use of a consistent mass matrix. An other explanation could be that it can be concluded from 
eq. (3.1) and (3.2) that the wave velocities are proportional to a, which is the square root of 
the stiffness. When a mesh is modelled to coarse the numerical stiffness of the mesh will be too 
large and thus the wave velocities will be overestimated [Hoof, van (1994)l. This effect can be 
seen in the previous chapter in Fig. 3.4b. 
From the results in this section it can be concluded that there is strong evidence that wave 
propagation in the model occurs as assumed but the oscillations in the displacement in x- 
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direction are definitely not the result of wave propagation. The waves involved are 
longitudinal waves and transverse waves. At first they both propagate in radial direction from 
the border of the mesh towards the centre. What happens after that has not been investigated. 
The longitudinal waves travel faster than the transverse waves. The velocities of wave 
propagation found are about 10 % greater than the theoretical value for the longitudinal waves 
and about 6 % larger for the transverse waves. 
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5. Conclusions and discussion 

In this report a two-dimensional plane strain Finite Element Model of a simplified physical 
model of the mid-sagittal cross-section of the human head is considered. In the calculated 
tangential displacements, as a result of a rotational acceleration, oscillations occur. These 
oscillations are not present in the prescribed displacement of the nodes at the border of the 
mesh. To investigate if these oscillations could be the result of wave propagation in the model, 
the shape of the wave fronts that could propagate through the model had to be assumed and 
the wave velocities had to be calculated using wave propagation theory. It is explained that 
because the nodes investigated in this report are lying on the global y-axis the tangential 
direction can be approximated with the displacement u in global x-direction and the radial 
displacement can be approximated with the displacement v in global y-direction. 
After investigation of the spatial discretization of the model the next observations can be 
made: 

The period times of the oscillations, occurring in the displacement u, are not the same for 
different meshes, they seem to be proportional to a property of the mesh, like for example 
the distance between two nodes or the distance between the integration points. 
The oscillation starts at t = O ms, that is at the same time when the nodes at the border of 
the mesh start their prescribed displacements. From wave propagation theory it can be 
concluded that this is impossible for nodes not situated directly on the border of the model 
where the displacement is prescribed. 
When a more refined mesh is used it can be seen that the amplitude of the oscillation 
decreases but there is still an oscillation present. 

From these observations it can be concluded that the oscillation in the radial direction cannot 
be a physical phenomenon that can occur in the real physical model. 
To investigate if the oscillation could be a result of the numerical inaccuracy of the Newmark- 
p integration method used, the influence of temporal discretization on the calculated 
displacements has been investigated. The maximum allowable time step size with which it is 
possible to maintain the wave front is determined. The three time steps used to investigate the 
numerical accuracy of the integration method are chosen in such a way that the largest time 
step size is larger thm the m.mimum dlowab!e time step. The two other time step sizes are 
smaiier than this rnaxirnwn allowable t i r~e  step. 
When comparing the displacements per node calculated with the three time steps one can see 
the following results, 

The oscillation in the results with the largest time step is hardly visible. When using the 
second time step size that is smaller than the maximum allowable time step, the oscillation 
occurs clearly. This indicates that the oscillation is a result of wave propagation. 
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It is also seen that the oscillation starts when the simulation starts and doesn’t disappear 
after a certain moment in time although it seems so when looking at the displacements u 

The curves for the three time step sizes in decreasing order, converge to a solution in which 
the oscillation is present. From this it can be concluded that the oscillation cannot be the 
result of the finite numerical accuracy of the Newmark-P integration method used, because 
this method becomes more accurate when smaller time step sizes are used. 
The calculated period times of the oscillation get shorter when calculated with smaller time 
step sizes. This is because the period elongation introduced by the integration method 
becomes smaller as a result of the increasing accuracy. 

A property of the oscillation that occurs for every time step size is that the period times which 
occur are not of equal size. The period times seem to become longer when the simulation time 
proceeds. This indicates that that oscillation is not an eigenmode of the mesh used because 
then the frequency in the oscillation had to be an eigenfrequency occurring in the mesh. Also a 
growth of the amplitude of the oscillation can be seen for every time step size. 
These two properties cannot be explained and need further investigation. 

The radial displacements which coincide with the displacements v in y direction as is explained 
in section 3.4.1 do not show any oscillation at all. The changes in calculated displacements as 
a result of mesh refinement behave as can be expected. The improvement of the accuracy by 
using the mesh that was refined once instead of the coarse one is about m. The 
improvement as a result of the second mesh refinement is about rn. This indicates that no 
mesh refinement is necessary. 
The changes as a result of a smaller time step size are also as can be expected. The difference 
between the results of the smallest time step sizes are about m. The difference between the 
results of the largest and the second time step are about m. 

To check if the assumed shape of the wave fronts is correct the wave propagation velocities of 
the transverse and the longitudinal wave propagation have been determined from the 
calculated displacements. The calculated values for the speed of the longitudinal wave are 
determined from the radial nodal displacements and are about 9,s % higher then the 
theoretical value. The transverse wave velocities are calculated from the tangential nodal 
displacements, with the assumption that when the oscillation occurs the ‘real’ displacement 
equals zero, and are about 6,3 % higher than the theoretical value. 
The first tvre expl,!-?nations app!yiEg for the differences of both Calculated velocities are taken 
from van Hoof (1994). They are: 

The numerical values for the velocities of wave propagation are always higher than the 
actual velocity when a consistent mass matrix is used. Also the use of an explicit integration 
method will have the same effect. Fortunately the used Newmark-P integration method is 
an implicit method and should compensate for the influence of the consistent mass matrix 
used. 
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The wave velocities are proportional to a, which is the square root of the stiffness. When 
a mesh is modelled to coarse the numerical stiffness of the mesh will be too large and as a 
result of eq. (3.1) and eq. (3.2) the wave velocities will be overestimated. 
Also the moment in time when a wave reaches the considered node is rather arbitrarily 
chosen. 

Concluding one can say that waves seem to propagate in the model as assumed. This means 
that both longitudinal and transverse waves propagate in radial direction from the border of 
the mesh towards the centre with velocities that can be determined within the 10 % range. 
What happens after the waves reach the centre of the model is not investigated. 
The accuracy of the calculated wave propagation velocities in the model can be improved by 
using mesh refinement. A drawback of this method is that numerical expenses will increase. 
The use of smaller time steps doesn’t seem to give any obvious improved results but is always 
recommended because of the higher accuracy of the Newmark-P integration method. 
Although the calculated wave propagation velocities in this model seem to correspond with 
the assumed shape and travel-direction of the wave fronts as shown in section 3.4.1 nothing 
really proves that this assumption is right. When longitudinal waves depart from nodes not 
lying on the radial axis considered, they could cause displacements at the observed nodes that 
will be explained as being a result of a transverse wave departing from the outer node on the 
radial line considered. This could be further investigated by considering for example the plane 
strain beam. The mesh of this model should contain the same elements with the same element 
properties as used in the model in this report. The nodes of one side of the beam have to 
follow a prescribed displacement parallel to this side in lets call it the y-direction. Theoretically 
only a transverse wave should be propagating in the mesh in x-direction. A second experiment 
could be to prescribe the same tangential displacement as used in this report for the nodes at 
the left edge of the beam and look if there are any agreements with the wave propagation 
found here. 
Because the model used has a circular shape and its boundary is tangentially exited around the 
centre of the model, it would be easy if the displacements could be presented in cylinder 
coordinates. Especially when using the assumed shapes of the wave fronts. This advantage 
disappears when the model will be rotated around an excentrical positioned axis of rotation 
which will be necessary in future projects because it describes the movement of the head in a 
more realistic way. 
Until now no explanation for the oscillation occurring in the tangential displacements in the 
mode! is found. A possible explanation could be found in the report of van Hoof (1 994). In 
that report is shown that in the calculated values of a strain also an oscillation occurs before 
the actual wave front. This oscillation disappears when mesh refinement is used. There are 
several differences with the model in this report. First van Hoof uses a mesh with elements of 
equal size with a constant angle of propagation. A result of that is that the numerical 
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dispersion' as a result of spatial discretization is minimal. Second the elements used by van 
Hoof are linear axi-symmetric quadrilaterals while the elements used here are plane strain 
isoparametric distorted quadrilateral elements. And third the model of van Hoof is exposed to 
a force on one edge during a very short period of time. This will result in a one-dimensional 
wave while the loading applied here takes much longer and introduces longitudinal and 
transverse waves. In spite of these differences a mesh refinement is something that can be very 
useful to investigate especially because the amplitude of the oscillation decreases when a more 
refined mesh is used. 
There is no obvious explanation for the oscillation that occurs in tangential direction during 
the simulation described in this report. One of the reasons why no explanation was not found 
is the absence of data from physical experiments. It is strongly advised to model future 
numerical models closer to a physical model of which data is available so that comparison with 
experimental results is possible. 

Numerical dispersion is when not every mode (or frequency component) of a wave propagates with the same 1 

velocity as a result of temporal or spatial discretization. 
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Appendix A: A user subroutine for describing a rotation around 
an non-central p~s i t i~ned  rotation axis 

The F.E.M package MARC offers the possibility of forcing displacements on selected nodes by using 
the user subroutine f0rcdt.f. This routine will be called on every increment during a transient analysis 
for each selected node. It then calculates the incremental displacements of that node. 
The user subroutine used in this report is based on a user subroutine written by Bas Michielsen. It 
offers the possibility to prescribe angular displacements on selected nodes in a 2-dimensional 
geometry defined in the FEM program MARC. The angular displacement in the user subroutine is 
prescribed for every node in such way that the selected nodes rotate as if they were part of a rigid 
body that rotates around an axis that is not positioned in the centre of the geometry. In this section 
first a mathematical explanation about how the program works will be given and then a listing of the 
FORTRAN code will be shown. 

A.l Mathematical explanation of the user subroutine 

In figure A. 1 the geometry of the model is represented by a circle. The nodes with prescribed 
displacements in this report are also positioned on a circular border but that is not necessary 
for this routine to work. 

Figure A.1: Definition of the coordinate systems and angles used in the user subroutine. 
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The model rotates around point R with a prescribed angle cp(t). This point lies always 
underneath the point O at the start of a simulation while cp(t = O) = O rad. The point O 
represents the centroid of the geometry and coincides with the origin of the coordinate system 
used by MARC. The position of the origin of this coordinate system, denoted with xgl-ygl, is 
now attached to the model. The direction of the coordinate axes stays the same during a 
simulation and coincides with the direction of the coordinate system x-y that has origin R. 
The distance between O and R is the variable YY. The value of this variable is user defined of it 
has value O the prescribed rotation will be around O. 
The joint between the line R-C and the model is defined to be rigid this means that the model 
rotates around O with angle cp(t). 
The user subroutine calculates incremental displacements. This means that the absolute 
coordinates are not of interest. Because the directions of respectively the x and the y axis in 
both coordinate systems are the same it is allowed to use the values of the displacements 
calculated in the user defined coordinate system, x-y, and use them in the coordinate system 
x,l-y,l used by MARC. 
The way in which the user subroutine uses this information to calculate the displacements in x 
and y direction is explained next. 
The routine is called for every node with prescribed displacements for every time increment 
First the routine calculates the difference between the node considered, and origin O of the 
coordinate system used by MARC. Because in this case the nodes with prescribed 
displacements are positioned in a circle around O this difference represents the radius of this 
circle. Radius Y can be calculated as follows from the coordinates used by MARC at t = O, 

r = J x t  + yo2 

Then the angle ao(xo, yo) is calculated. This is the angle between the positive x-axis of the 
coordinate system xgl-ygl and the line between O and the node considered, on t = O. It is 
independent of the moment in time. 

The prescribed angle cp(t) is fully determined by the time and independent of the coordinates of 
the selected node. It can be inserted in the user subroutine as a polynomial of degree n and will 
be calculated for the considered moment in time. 
q( t )  = co + c1 . t + c* . t2 + . . . + c, . tn (A.3) 

The polynomial coefficients can have any real value. There is one exception, co has to be equal 
to zero because on t = O the value of angle cp(t) has to equal zero. In the user subroutine the 
coefficients of this polynomial are read from a file called rot.dat. 
From eq.(A.2) and eq.(A.3) angle a(t, xo , yo) can be determined using: 
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This is the angle of an observed node with original coordinates (xo , yo) at a moment in time t, 
with the positive global x-axis of the global coordinate system used by MARC as shown if Fig. 
A. 1. 
After this the user subroutine calculates the coordinates relative to the coordinate system x-y 
for every specified node at a moment in time. For these coordinates yields 

x ( t )  = s.cos(a(t, xo,yo))-YY-”in(q(t)) 

y ( t )  = Y . sin( a( t, x,, y,)) + YY . cos( q( t ) )  

The incremental displacements that MARC uses then are calculated in both x and y direction 
using 
du = x( t  + dt)  - x ( t )  

dv = ~ ( t  + dt)  - y( t )  

and returned to the mean program. 

A.2 Listing of the user subroutine 

This section contains a listing of the user subroutine. The comment typed with bold characters 
is additional comment and refers to the equations used in section A. 1. The italic characters 
represent the basic changes that have been performed to the original program necessary to 
implement the rotation around a non central positioned rotation-axis. 

c* * *dbrot.f. This program will allow you to prescribe an excentrical 
c rotation on a body which will behave as a rigid body. 
c needed: input file containing polynomial coefficients for rotation angle 
C rot.dat 
c N.B. in deze versie wordt ervan uit gegaan dat het draaipunt op t=O 
c op de y-as beneden het middelpunt van het model ligt (y=O,x=- ...) 
C* * * * * * 

subroutine forcdt(u,v,a,dp,du,time,dtime,ndeg,node, 
1 ug,xord,ncrd,iacflg,inc,ipass) 

discribes a polynomical translation and rotation. 
C* * * * * * 

c 
c chaiiged veisioii. 

c 
c conditions. 

c u total displacements at a node 
c v velocity at a node 
c a  acceleration at a node 
c dp load increments at a node 
c du displacement increments at a node 

C 

input of time dependent forcing functions and boundary 

C 

c time 
c dtime 
c ndeg 
c node 

c ug 
c xord 
c ncrd 
c iacflg 
c inc 

C* * * * * * 
C 

time 
time increment 
number of degrees of freedom per node 
node number 

total displacements at node in global system 
original coordinates 
number of coordinates 
acceleration flag - set to 1 if accelerations given 
increment number 

dn implicit :ez!*9 <a-h,o-z) -r 
dimension u(ndeg),v(ndeg),a(ndeg),dp(ndeg),du(ndeg) 
dimension ug(l),xord(ndeg), uittrans(2), uitdraai(2) 

C 

C 

open (unit=42, file=’node3.dat‘) 

pi=4*atan(l .OO) 
c definitie standaardvariabele 

C 

C 
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cccccccccccccccccccc 
C 

r=sqrt(xord(l)*xord(l)+xord(2)~xord(2)+xord(3)*xord(3)) c Eq. A.1 

call rotatie(du,time,dtime,ndeg,xord,inc,node,uitdraai) 

du( l)=uitdraai( 1) c du from Eq. A.6 
du(2)=uitdraai(2) c dvfrom Eq. A.6 

return 
end 

C 

C 

C 

subroutine rotatie(du,time,dtime,ndeg,xord,inc,node, 
1 uitdraai) 

dimension du(ndeg), xord(ndeg), uitdraai(2) 
implicit real*8 (a-h,o-z) dP 

C 

c definitie standaardvariabelen ren alfa0 
c r = f(xord(l,2,3) en alfa0 = f(xord(l,2)) 
C 

pi=4*atan(l .OO) 
r=sqrt(xord(l)*xord(l)+xord(2)*xord(2)+xord(3)*xord(3)) 

C Eq. A.l 
c definitie van beginhoek van knooppunt (alfao), ofwel de hoek v.d. 
c ligging v.h. knooppunt. Eq. A.2 
c 1 e kwadrant 

if ((xord(l).gt.O).and.(xord(2).ge.O)) then 

end if 
c 2ekwadrant 

if ((xord(l).Ie.O).and.(xord(2).ge.O)) then 
alfaO=pi-atan(abs(xord(2)/xord(l))) 

end if 
c 3e kwadrant 

if ((xord(l).lt.O).and.(xord(2).lt.O)) then 

end if 
c 4e kwadrant 

if ((xord(l).ge.O).and.(xord(2).It.O)) then 
alfa0=2*pi-atan(abs(xord(2)/xord(l))) 

end if 

alfaO=atan(xord(2)/xord(l)) 

alfaO=pi+atan(xord(2)/xord( 1)) 

C 

c berekening van huidige hoek en hoek in vorige increment 
c phi is de hoek van het hele model, alfa die v.e. knooppunt. 
C 

phiZ=hoek(time+dtime) c <p(t + dt) Eq.A.3 
phi1 =hoek(time) c<p(ît) Eq.A.3 
alfaZ=phi2+alfaO c a(t + dt) Eq. A.4 
alfa l=phil+alfaO c aft) Eq.A.4 

C 

c berekening van de benodigde verplaatsingen 
c ...... !! rr ZELF INVULLEN !!!!! ....... 

rr = 0.05 
xeen=r*cos(alfa 1)-rr*sin(phil) c x(t+dt) Eq. A.5 
xtwee=r*cos(aIfa2)-rr*sin(phiZ) c x(t) Eq. A.5 
yeen=r*sin (alfa l)+rr*cos(phi 1) c y(t+dt) Eq. A.5 
ytwee=r*sin(alfa2)+rr*cos(phi2) c y(t) Eq. A.5 
uitdraai(l)=xtwee-xeen c du Eq.A.6 

uitdraai(2)=ytwee-yeen c dv Eq.A.6 
C 

if (node.eq.3) then C output 
of some 

end if 
write(42,lOOO) time+dtime,phi2 c variables 

1000 format(2e13.5) 
C 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ***** COEFF(graad+l) ZELF INVULLEN !!!!! ***** 

function hoek(time) 

dimension coeff (1 O) 
integer graad 
open(unit=8,file='rot.dat',status='old') 

c calculates <p(time) using Eq.A.4 

implicit real*8 (a-h,o-z) dP 

C 

c ***** GRAADZELF AANPASSEN !!!!! ***** 
C 

graad=9 C degree n 
do 12 i=l ,graad+l 

12 read (unit=8,*) coeff(i) 

hoek=0.00 
do 15 i=l ,graad+l 
hoek=hoek+coeff(i)*time**(graad+l -i) 

15 continue 
close(8) 
return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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Appendix B: The input file and its user subroutines. 

B.l  The MARC input file. 

This is an input file for the coarse mesh. It is given to show the options used, and therefore are not all of 
the nodal coordinates are given. Also the connectivity block is shortened. 

$ grove mesh 25 incr dt = 0.6 ms 9de graads polyn. 
title ngeom grof 
sizing 1000000 72 245 490 
elements 27 
dynamic 2 O O O 
all points 
dist loads 1 72 
setname 2 
end 
$. .............................................................................. 
solver 

O 0 0  
optimize 9 
connectivity 

1 27 78 72 3 5 116 117 4 118 
2 27 7 77 78 5 119 120 118 6 
3 27 77 73 72 78 121 122 116 120 

. etc. 

71 27 105 106 92 93 237 244 215 245 
72 27 62 105 93 61 240 245 217 185 

coordinates 
3 245 
I 9.80000-2 O.OOOOO+O O.OOOOO+O 
2 9.73856-2 1.09354-2 O.OOOOO+O 

. etc. 

68 1.70304-8 7.1 1563-2 O.OOOOO+O 

244-9.881 89-3-4.64201 -2 O.OOOOO+O 
245-9.86495-3-2.30386-2 O.OOOOO+O 

define node set rand-nodes 

isotropic 
i to 56 

1 
1.00000+5 4.80000-1 1.00000+3 O.OOOOO+O O.OOOOO+O 

o.ooooo+o 

fixed disp 
1 to 72 

o.ooooo+o o.ooooo+o 

1 2  
rand-nodes 
no print 
post 

O 1 6 1 7  O O 1 9 2 0  O 1 O 6 
udump 

forcdt 
rand-nodes 
end option 
control 
99999,l 0,0,0,0,1,0,0,1 ,o 
0.1 ,o.o,o.o,o.o,o.o 

, , ,  

$. .............................................................................. 
$....stari of loadcase r0t.f met 9de graads polynoom 25 incr, 
$ dt =0.6 ms 
dynamic change 
6.0e-4,l .5e-2,25,0,0,0,0.5,0.25 
continue 
$....end of loadcase 
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B.2 The user subroutines. 

Two user subroutines are used. The first one is f0rcdt.f to prescribe the incremental 
displacements for the desired nodes at the border of the mesh. In the MARC input file these 
are the nodes called 'rund-nodes'. In this file the original version of B. Michielsen is taken 
(only some comment is altered and a unused part of the routine to prescribe translations is 
removed). This version does only allow rotations around the origin of the coordinate system 
used by MARC. The coefficients of the polynomial are read from a file called rot.dut. The 
second one is impd$ It is called in the main MARC program using the command udump. This 
routine offers the possibility print coordinates, incremental displacements, total displacements 
etc. in a file. This file can be used in for instance MATLAB to perform some post processing. 
They are put together in one file. 

C 

c this file contains both r0t.f and impd.f. 
C 

subroutine forcdt(u,v,a,dp,du,time,dtime,ndeg,node, 
1 ug,xord,ncrd,iacflg,inc,ipass) 

discribes a polynomical translation and rotation. 
C* * * * * * 
c 
c by B. Michielsen. 

c 
c conditions. 

C 

input of time dependent forcing functions and boundaty 

C 

C U  

c v  
c a  

c dP 
c du 
c time 
c dtime 
c ndeg 
c node 

c ug 
c xord 
c ncrd 
c iacflg 
given 
c inc 

C* * * * * * 

C 

total displacements at a node 
velocity at a node 
acceleration at a node 
load increments at a node 
displacement increments at a node 
time 
time increment 
number of degrees of freedom per node 
node number 

total displacements at node in global system 
original coordinates 
number of coordinates 
acceleration flag - set to 1 if accelerations 

increment number 

implicit real*8 (a-h,o-z) dP 
dimemion ü(r,deg);~(nde5:,2:nueg:,dp(ndec),du(nd~~ 
dimension ug(l),xord(ndeg), uiîîrans(2), uitdraai(2) 

C 

C 

open (unit=45, file='nodelS.dat') 

pi=4*atan(l .OO) 
c definitie standaardvarjabele 

C 

cccccccccccccccccccc 
r=sqrt(xord( l)*xord(l)+xord(2)*xord(2)+xord(3)*xord(3)) 

call rotatie(du,time,dtime,ndeg,xord,inc,node,uitdraai) 

du(l)=uitVans(l)+uitdraai(l) 
du(2)=uittrans(2)+uitdraai(2) 

return 
end 

subroutine rotatie(du,time,dtime,ndeg,xord,inc,node, 
1 uitdraai) 

dimension du(ndeg), xord(ndeg), uitdraai(2) 
implicit real*8 (a-h,o-z) dP 

c definitie standaardvariabelen 
pi=4*atan(l .OO) 
r=sqrt(xord(i )*xord( 1 )+xord(2)*xord(2)+xord(3)*xord(3)) 

C 

c definitie van beginhoek van knooppunt 
c l e  kwadrant 

if ((xord( l).gt.O).and.(xord(2).ge.O)) then 

end if 
c 2e kwadrant 

if ((xord(l).le.O).and.(xord(2).ge.O)) then 
aIfaO=pi-atan(abs(xord(2)/xord( 1))) 

end if 
c 3ekwadrant 

if ((xord(l).lt.O).and.(xord(2).It.O)) then 

end if 
c 4e kwadrant 

if ((xord(l).ge.O).and.(xord(2).lt.O)) then 
alfa0=2*pi-atan(abs(xord(2)/xord( 1))) 

end if 

alfaO=atan(xord(2)/xord( 1)) 

alfaO=pi+atan (xord (2)/xord (1 )) 

C 

c berekening van huidige hoek en hoek in vorige increment 
alfa2=hoek(time+dtime,inc,node)+alfaO 
alfa1 =hoek(time,inc-1 ,node)+alfaO 

C 
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c berekening van de benodigde verplaatsingen 
uitdraai( l)=r*cos(alfa2)-r*cos(alfal) 
uitdraai(2)=r*sin(alfa2)-r*sin(alfal) 

if (node.eq.15) then 

end if 

C 

write(45,lOOO) phi2,alfa2,uitdraai(l),uitdraai(2) 

1000 format(4el6.8) 
C 

return 
end 

cccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccc 

function sgn(x) 
implicit real*8 (a-h,o-z) 
if (x.eq.O.00) then 

else 

end if 
return 
end 

sgn=0.00 

sgn=x/abs(x) 

cccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccc 
c ***** COEFF(graad+l) ZELF INVULLEN !!!!! ***** 

function hoek(time,inc,node) 

dimension coeff( 1 O) 
integer graad 
open(unit=8,file='rot.dat',status='old') 

implicit real*8 (a-h,o-z) dP 

C 

c ***** GRAAD ZELF AANPASSEN !!!!! ***** 
C 

graad=9 
do 12 i=l ,graad+l 

12 read (unit=&*) coeff(i) 

hoek=0.00 
do 15 i=l ,graad+l 
hoek=hoek+coeff(i)*time**(graad+l -i) 

15 continue 
close(8) 
return 
end 

cccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccc 

subroutine irnpd(n,dd,td,xord,f,v,a,ndeg,ncrd) 

user subroutine for output of displacements. 
C* * * * * * 
c 
c n  node number 

c dd array of incremental displacements of this 
node 
c td (ndeg,numnp) array of total displacements of this 
node 
c xord (ncrd,numnp) array of coordinates of this node 
c ndeg number of degrees of freedom per node 

C'* * * * * 
C 

implicit realB (a-h,o-z) dP 
dimension dd(ndeg),td(ndeg),xord(ncrd) 
1 ,f(ndeg),v(l),a(l) 
open (unit=46, filednarcnod61 .dat') 
open (unit=47, file='marcnodl49,dat') 
open (unit=48, file='marcnod68.dat') 
open (unit=49, file='marcnod145,dat') 
open (unit=50, file='marcnodl51 .dat') 
open (unit=51, file='marcnod66.dat') 
open (unit=52, file='rnarcnodl47,dat') 
open (unit=53, file='marcnod15.dat') 
if (n.eq.61) then 

write(46,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.149) then 

write(47,2000) n, xord(l), xord(2), td(l), td(2),dd(l), 

dd(2) 
end if 
if (n.eq.68) then 

write(48,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.145) then 

write(49,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.151) then 

write(50,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.66) then 

write(51,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.147) then 

write(52.2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 
if (n.eq.15) then 

write(53,2000) n, xord(l), xord(2), td(l), td(2), dd(l), 

dd(2) 
end if 

return 
end 

2000 format(i3,6el6.8) 
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The input file rot.dat containing the polynomial coefficients (co is the lowest value) of the gfh 
degree polynomial used here is shown next. 

-1.3806248e+011 
7.9010989e+010 
-1.8963205e+010 
2.4677976e+009 
-1.8730325e+008 
8.21 75458e+006 
-1.8660178e+005 
1.240681 9e+003 
2.2268127e+001 
0.0000000e+000 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 
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