

Control of an industrial robot

Citation for published version (APA):
Bosch, van den, M. J., Bukkems, B. H. M., Teerhuis, A. P., Ee Cheng Tien, N. V., Ng, P., & Leong, J. (2000).
Control of an industrial robot. (DCT rapporten; Vol. 2000.031). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/1cd41401-9126-47cb-aad9-d8cef9bd7069

Technical University of Eindhoven technische universiteit eindhaven

Department of Mechanical Engineering e iaculteit wemuigbouwkunde

National University of Singapore
Department of Electrical Engineering

Control of an Industrial Robot

Tutor: Dr. Ir. M.J.G. v.d. Molengraft

M.J. v.d. Bosch 44 1983
B.H.M. Bukkems 428 1 19
A.P. Teerhuis 443879

EindhoverdSingapore, August 25 2000

Ee Cheng Tien
Paul Ng

James Leong

INDEX

.. INTRODUCTION 4

CHAPTER 1 : THE ROBOT .. 5

.. 1.1 : THE ROBOT 5
1.2. DSPACE .. 5
1.3. PERFORMANCE OF THE ROBOT .. 5

CHAPTER 2: SETPOINT GENERATION ... 6

2.1 : BASIC EQUATIONS ... 6
.. 2.2. EQUALISING THE AXES 7
.. 2.3 : PRACTICAL PROBLEMS 8

2.4. GTHER METXGE ...

CHAPTER 3: CONTROLLER STRUCTURE .. 10

CHAPTER 4: SYSTEM IDENTIFICATION .. 12

CHAPTER 5: FINAL CONTROL OF THE ROBOT ... 15

5.1 : INTRODUCTION ... 1 5
5.2. CONTROLLER BASICS ... 15
5.3 : DETERMINATION OF THE CONTROL PARAMETERS .. 17
5.4. THE CONTROLLER IN PRACTICE ... 18
5.5. QUALITY OF THE CONTROLLER .. 19

CHAPTER 6: HARDWARE INTRODUCTION ... 20

CHAPTER 7: HARDWARE ... 21

7.1 : INTRODUCTION .. 21
7.2. OBJECTIVES ... 21
7.3 : OVERVIEW OF HARDWARE .. 21
7.4. INPUT OF ROBOT POSITION IN VOLTAGE ... 22
7.5. MICROCONTROLLER .. 23
7.6. OUTPUT IN VOLTAGE .. 24
7.7. PC PARALLEL PORT CONNECTION .. 25
7.8. POWER SWPLY .. 25
7.3. DISCUSSION ... 27

... 7.9.1 : OFFSET ERRORS 27
7.9.2. NOISE ... 28
7.10. CONCLUSION ... 28

CHAPTER 8: SOFTWARE FOR MICRO CONTROLLER ... 29

8.1 : ADVANTAGES OF USING ATMEL .. 29
8.2. ATMEL 89C52 ... 29
8.2.1 : PIN CONFIGURATION .. 29
8 2.2. TIMERS AND INTERRUPT ... 30
8.2.3. MEMORY MODEL ... 30
8.3. PROGRAMMING LOGIC AND FLOW CHART OF MICRO CONTROLLER ... 31
8.3.1 : OVERVIEW OF PROGRAMME ... 32
8.3.2. INITIALISATION SEQUENCE ... 32
8.3.3. LOCATION SENSING .. 33

Control of an Industrial Robot

... 8.3.4. OUTPUT TO PC 34
.. 8.3.5. INPUT FROM PC 34

.. 8.3.6. VOLTAGE OUTPUT 35
8.4. FUTURE IMPROVEMENTS ... 36

... CHAPTER 9: SOFTWARE FOR PC 37

.. 9.1 : INTRODUCTION 37
9.2. IRC OBJECTIVES ... 37
9.3. DESCRIPTION ... 37

.. 9.3.1 : CONCEPT OF COMMUNICATION 37
9.3.2. IMPLEMENTATION OF PID CONTROL .. 40
9.3.3 : DESCRIPTION OF IRC FEATURES .. 42

... 9.4. PROGRAM CONSIDERATIONS 48
9.4.1 : COMMUNICATION WITH MICRO-CONTROLLER .. 48
9.4.2. SAMPLING FREQUENCY .. 48

.. 9.4.3. ~OMPATIE~ILITY WITH WINDOWS NT AND -W-INDOWS 2000 48
... 9.5. TESTING PROCEDURE AND OBSERVATIONS 49

9.6. CONCLUSION ... 49

.. CHAPTER 10: ACHIEVEMENTS OF THE CONTROL BOX 50

10.1 : INTRODUCTION .. 50
10.2. THE TESTING PROCEDURE .. 50
1 0.3 : REALITY ... 5 1

... CHAPTER 11 : DISCUSSION 52

.. LITERATURE LIST 54

.. SYMBOLIC LIST 55

... APPENDIX 1: THE CALCULATION OF CONSTANTS 56

.. APPENDIX 2: EQUATIONS NEW TRAJECTORY 57

.. APPENDIX 3: THE TRAJECTORY M-FILES 58

... APPENDIX 4: THE M-FILE TO FIT A TRANSFERFUNCTION 61

APPENDIX 5: AT89C52 CODE ... 62

Control of an Industrial Robot 3

Introduction

This project is conducted by two different disciplines in two different countries: the
department of mechanical engineering at the Technical University of Eindhoven in
The Netherlands (TUE) and the department of electrical engineering at the National
University of Singapore (NUS).

The goal of the project is to design and make a control box for a pick & place robot.
This robot is situated at the TUE and the control box will be manufactured at the
NUS. This means the two universities have to co-operate with each other.

The students 2t the N J S wi!! hi!:! 2 co~~tro! box that cafi cofitro! the robot with giveii
setpoints. The students at the TUE will supply the PID-controller layout and provide
extra information for the NUS students.

This report starts with the description of the robot, after which the setpoint generation
is described. Then the structure of the used controller will be described, followed by
the system identification. Next the final control of the robot is presented after which
the creation of the control box and additional program will be described. Finally, the
performance of the control box with the robot will be elaborated.
Also a discussion will be included, to make comments on and suggestions for this
international co-operation project.

Control of an Industrial Robot 4

Chapter I: The robot

1.1: The robot
The robot (Philips CFT, VRS)

that will be controlled is a so-called
pick and place robot (see figure
1.1). The robot has three axes that
can move separately and
simultaneously.

At the lower end of the z-module,
an electromagnet is situated. This
magnet is used to pick the product.

To control the robot, a computer
is used. This computer uses a
Simulink model that will be
downloaded into a dSPACE
svstem. With the use of that
 SPACE system, the motors are Figure 1.1; The robot with the three axes

controlled via an amplifying unit.
The position of an axis is measured by an encoder, which will deliver a block signal.
This blocksignal is processed by dSPACE and converted to a voltage. This voltage is
linear to the position of the axis.

1.2: dSPACE
As mentioned above, the Simulink model is downloaded into the dSPACE system.

With the use of particular dSPACE software (dSPACE Control Desk), it is possible to
change certain parameters of the model, e.g. turning the robot onloff.

The students at the NUS do not possess a dSPACE system and have to create their
own: 'the contvol box'. The design and creation of the control box will be elaborated in
chapter 6 - 9.

The students of the TUE possess a dSPACE system and will use it to conduct
experiments on the robot, e.g. to determine the controller and feedforward parameters.

1.3: Performance of the robot
A summary of the maximum velocity and acceleration and the movement range of

the three axes [6] will be given in table 1.1. These values have to be taken into
account, when designing a trajectory (see chapter 2).

Table 1.1: Performance o f the three axis o f the robot

I z-axis I 1 16 1 -20 1 -230

x-axis
v-axis

Control of an Industrial Robot 5

1
1

4
6

80
20

690
-370

Chapter 2: Setpoint generation

2. I: Basic equations
To let the robot move from A to B, a route has to be designed. This route has to

comply with a couple of requirements. To ensure smooth movement, sudden steps in
velocity or acceleration are not allowed.

A sloped sinus is chosen as the signal for placement. Via differentiation, the signals
for the velocity and acceleration are calculated [4]:

The variables a, b, c and d are calculated in appendix 1. The results are given here:

n: . vmax dt. vmax 2~ dt= , a = b=-, c=- and d=x, Vmax

amax 4.n dt 2

The time varies between '0' and 'dt'. In this time increment, the velocity builds up to
maximum and then descends to zero. With the restrictions for the maximum velocity
and maximum acceleration, it is not possible to reach every setpoint. For setpoints that
don't need maximum velocity or acceleration, the maximum velocity or acceleration
is corrected. For setpoints that need more than the maximum velocity and
acceleration, a plateau of maximum velocity is inserted (see figure 2.1). Whether the
maximum velocity needs correction or not, the distance that is travelled in time 'dt'
(Axdt) is calculated and compared with the desired distance Ax:

2

Axdt = ~ (d t) - ~ (0) = c - dt =
Vmax . dt -x Vmax -

2 2 . amax

Ax-Ax,,
I t Axdt < Ax 3 The time length of the plateau: tpl =

Vmax

Control of an Industrial Robot 6

2.2: Equalising the axes
The path that takes minimum time

to move from xo to xl can be
calculated for every axis (x, y and 2).

There will always be one axis, which
needs the most time to complete the
movement. This gives two
possibilities for the other axes: they
move as quick as they can, or they go
slower and finish at the same time as
the axis that takes longest.

Leeking & nnrericinn ylVVIUIVII TAl L ,,, it be
Setter if the axes slow down. This is
the option that is chosen for.

That means the maximum velocity
has to change. To calculate the
change in velocity, first the longest
time has to be known and the relation
from a chosen time to a maximum
velocity:

vmaX e n : Ax -Ax ,,
ttotal = dt + tpl = +

a max V ,ax

Figure 2.1: The movement, velocity and acceleration
curves as generated by the setpointprogram. A constant
v e l o c i ~ part is inserted to reach the desired setpoint.

Substituting formula (2.4) into formula (2.5) gives:

Simplifying formula (2.6) gives:

To give an expression for vma, as a function of ttOtal, formula (2.7) is multiplied by vmz
and solved, leading to the following expression for vmax:

If there is no constant velocity plateau, the velocity is first corrected (see paragraph
2.1) and the completion time is calculated by the definition for 'dt':

Control of an Industrial Robot 7

Then a new vmaX equals:

This can be done for every axis (except of course for the one that takes longest). In
this way all the axes finish their movements at the same time.

The setpoints will be inserted by supplying some parameters. The only parameters
that are necessary are the maximum velocity and the maximum acceleration for every
axis, the start and end points, the magnet status and the desired time.

The desired time is used to make a movement longer than is calculated by the
program. For example: if the robot must not move (Ax = Ay = Az = 0) for a certain
time to turn on the magnet and pick up something, the program calculates that Krnove
wiii cost 0.000 jsj and after 0.000 jsj it wiil start calciilating the next move. So if a
desired time is inserted, the program waits for that certain time, before continuing.

2.3: Practical problems
The method mentioned above and the way it is executed has some practical problems.
The first one is the programming of the programs that will compute the trajectory.
Those programs (see appendix 3) will calculate the values of the place, velocity and
acceleration every time increment (e.g. 0.001 [s]). The problem here is to fit the
different phases of the movement together, so that the transition is smooth and all the
axes move the same amount of time.
This problem has been dealt with, by defining a maximum length of the matrix (e.g.
2.3 [s] gives a length of 2300 [-I) and when a matrix is too long, deleting the last
values, when the matrix is too short, adding the last value several times.
The second problem is, by using those programs, every 0.001 [s] several values have
to be send to the robot. That
goal is not reachable, so t ?

another solution has to be
found. That solution is to
approximate the trajectory
as described in 2.2 by simple
equations and only send
certain values for the
movement to the robot.

2.4: Other method I I I

The acceleration, velocity
and position profiles will
now be defined as shown in
figure 2.2.

The steepness of the first
I part of the acceleration is

T, 4 & I I
I I

called the jerk, J [ms-'1. The T,, & I F I equations of the different I T ,

parts are given in appendix
2. To calculate the minimum Figure 2.2: The new acceleration, velocity andplacementprofiles.
time, in which a movement
can take place, the following

Control of an Industrial Robot 8

parameters are required: the distance (dx [m]), the jerk (J [m ~ - ~]) , the maximum
acceleration (ama, [m ~ - ~]) and the maximum velocity (v,,, [ms-'1). With use of
appendix 2 follows:

To make the three axes finish together, every axis uses the maximum T, to
accelerate. Then every axis uses the maximum time with constant velocity and finally
every axis uses the same maximum deceleration time.

When T,,,,,, Tj,Inax and Tt,,,, are known, the jerk, vmax a ~ d a,,, for every axis can be
calculated:

J . =
dx , 2

, = JTj and v,,,, = J(TaTj - Tj) '
(TaT, - T,?)T, +T2Ta - T ~ T ,

J

(with i = x, y or z)

Using this procedure, the only parameters that have to be send to the robot, are Ji ,
arnax,i 7 Vmax,i and dxi.

Because of the relative simplicity, this is the way the movements of the robot are
controlled.

Control of an Industrial Robot 9

Chapter 3: Controller structure

3.1: lnfroducfion
In this case, the primary goal is to control a robot (Philips VRS). The trajectories

(the path which the 'head' of the robot is supposed to follow) must be defined. The
'head' of the robot has to follow the designed path as fast and as accurate as possible.
This fact shows the needs for a good controller. To control the robot, both
feedforward and feedbackward are used. This chapter deals with the common
structure of this controller. Later on, the different parts will be discussed more
detailed in separate chapters.

3.2: Feedfcriiird & Feedbaekiard
To actually make a motor follow a desired path, this motor has to be guided

correctly. One could choose to provide the motor exactly with the current needed to
perform the desired movement. Therefore a detailed model of the process has to be
present. This method is known as feedforward. It is presented schematically in
figure 3.1.

Figure 3.1: Blockdiagram of a feedfonvard system.

In practice, however, this method is almost never usable. A model is never perfect
enough, and disturbances during the process will cause the motor to deviate from the
given path. This is the reason that most systems have a feedback. The state of the
motor (e.g. position) is being measured during the process and compared with the
state it has been told to be at that time. When there is a difference, the PID-controller
causes to steer the process back to the desired state.

This method is presented schematically in figure 3.2.

steersignal (u) System measurement

~ (4
reference (r)

H - I (s)

Figure 3.2: Blockdiagram of a feedback system (no feedforward)

error (e) PID steersignal (u)

Both methods discussed are not optimal. The feedforward method doesn't take into
account any disturbances. If a position error has occurred it can't be recovered,
because you don't measure, so you don't know how big the error is. The feedback
method seems a lot better. It is, but also this method is not as optimal as one would
like. When a strongly varying reference signal is given, the errors will be big all the
time, which means that the PID-controller is always very busy controlling the system.
It is better to use both methods. The feedforward method will be used to estimate a
steering signal, based on the knowledge of the system dynamics. The errors, which
will be present, can then be handled by the PID-controller. This means that a much

Control of an Industrial Robot 10

System

~ (4
measurement (y)

b

simpler PID-controller can be used. Also the feedforward doesn't need a perfect
model. When it does have one, then the PID-controller will hardly be used. But
practice proofs that even with little knowledge of the system dynamics, good results
can be achieved [2]. Figure 3.3 shows the combined methods.

Model

H-' (s)

Figure 3.3: Blockdiagram of a combined feedfonvard-feedbackward system.

3.3: Common feafures of PID-confrollers
The PID-controller is used to control the movements of a dynamic system. Input and

output signals will be compared and a steering signal will be calculated, based on the
difference between the desired reference and the actual (measured) state of the
process.

Mechanical dynamic systems will always have friction in it. Friction corresponds
with low frequencies in the frequency-response diagram. So, if one wants to
compensate for friction, the amplitude gain at those low frequencies must be set high.
In the bode-diagram of the controller, that will be seen as a descending line at low
frequencies. A differential part will also be necessary in the controller structure. This
part takes care of any stability problems. This action can be seen as an ascending line
at high frequencies in the bode plot. When multiplying the differentiated error signal
by a larger numbers for larger frequencies, the noise of the measurement will play a
significant part. One wants to have the influence of any noise to be as low as possible.
Therefore a low-pass filter will be highly advisable to get rid of high frequency noise
signals before the controller comes into action. After all this we want the error in the
input and output to be as low as possible. That means that in between the integral and
the differential frequencies, another, proportional, action has to take place. When
presenting the controller graphically, by means of a bode-plot, it will look like
figure 3.4.

o [rads-'1

Figure 3.4: Bode plot of a controller.

Control of an Industrial Robot 11

Chapter 4: System Identification

4. I : introduction
In order to implement the feedfonvard structure, one has to know some of the most

important properties of the used system. The resonances for example are important to
know. Also the friction could be an important issue. Because a feedfonvard is used in
combination with a feedback loop, the knowledge needed in order to represent the
system can be diminished to only the most important properties.

4.2: Theory
According to Koster [2], most mechanical systems can be thought of as 4th order

models. Friction, then, hasn't been taken into account. Later on, fiction can be
implemented in a modei, which then will be in the form of "different" models for the
different cases (i.e.: static & dynamic friction).

To estimate the parameters for the model used, one (of course) has to measure. In
fact, the measurement solely is based on finding a transfer function of the system. In
other words: an experimental Bode plot is to be found. Using one of the following
methods [I], one can do that:

1) Transient response (using a step or impulse)
2) Frequency response data (using many different sinusoidal inputs)
3) Stochastic steady-state information (using information obtained during

normal working operations)
4) Pseudorandom-noise data (noise has all frequencies)

The third method is not usable is this case, because it only can be used when the
system is already running, and needs improvement by refining (upgrading) the
existing model.

The second method seems a good one, only the time needed to find a good transfer
function is too long when one needs a good model. When little damping is present, a
lot of frequencies around the resonance peek have to be measured.

The first method also seems very easy and simple to perform. But when the
damping is too big, one can get a bad output, and a good model then, is hard to get.

So the one remaining method is the fourth. A lot of experiments involving
frequency-response data use this method. The equipment used in this case is
MatLablSigLab. SigLab is a piece of hardware that can be connected with the robot
on the one side and with a personal computer on the other side. It generates a
white-noise signal that is passed to the robot. Then the output is measured directly by
the same hardware, and the provided software calculates transfer functions
immediately. Once the transfer functions are known, a modei can be fitted.

Control of an Industrial Robot 12

4.3: Used methods
The system can be represented as done in figure 4.1.

Figure 4.1 Block diagram ofthe system, used to obtain a transfer function.

The PID-controller used in the experiments is a simple, far from optimal controller.
It is only used to perform calculations on the system. Those calculations will be
discussed right now.

SigLab produces the noise signal n. The signals s, u and y can be measured. The
reference r will be a straight line in space, to get rid of present (static) friction. The
measurements will be used in order to determine H(s). The following equations can be
helpful in obtaining H(s) [3].

Y
w b

The method presented with equation (4.3) is called sensitivity measurement. To
obtain the H(s) the following equation can be used:

System

~ (4

When performing closed-loop measurements like presented in equation (4.4), the
calculation of H(s) will go like the next formula:

s
b

+ e
b

Control of an Industrial Robot 13

PID

c(4

4.4: Parameter estimates
After the measurements have been done, it is time to estimate the parameters. In

MatLab there are several tools to do so (see: System IdentzJication Toolbox). In
appendix 4, the used MatLab scripts are given. In figure 4.2, the measured bode plot is
fitted with a 1 2 ~ ~ order model. This figure only shows the fit of one axis (the x-axis),
the other axes use the same method.

Magnitude plot of x-axis
40 I , , * -' ' '

- Fit
..-. System

-140~ I 1
10' 1 02 1 o3

Frequency [radls]

Figure 4.2: Magnitude plot of the x-axis. Both the system and the fit are drawn in the plot.

The program F1TTEN.M (appendix 4) produces the fit. This program loads the bode
plot obtained from the measurement and uses FRF1T.M [5] to fit. The output are two
matrixes which possess the numerator and denominator of the fitted transferfunction
(see also figure 4.2).

With this transfer function, the values of the parameters in the PID-controller can
be calculated or found using Diet. More about this is written in chapter 5.

Due to lack of time to implement the found 12~" order model into hardware, a
decision has been made to use a simple mass feedfonvard.

Instead of fitting a order model onto the frequency-response data, we now will
fit the experimental data to the following simple equation:

This method is used for all the three axes. The obtained values for m are nothing
dse t i m represeiitzitioiis of the =ass of each robot axis. The mass for x, y and z are:
0.058 [kg], 0.044 [kg] and 0.023 [kg].

Control of an Industrial Robot 14

Chapter 5: Final control of the robot

5. I : In froduction
The dynamics of the robot are known, so the controller can be designed. Together

with the feedforward loop, the controller forms the basis of the movement of the
robot. First, theoretical calculations of the P, I and D parameters of the three axes are
discussed, followed by the tuning of controller of the VRS-robot and finally the
quality of the controller.

5.2: Controller basics
Stability of a system is an important issue. So the first thing to do is to research

whether the system is stable. A general system can be represented by:

Y (s) = C(s)H(s) 1
1 + C(s) H (s) R(S) + 1 + C(s)H (s)

JQ)

Where R (s) is the reference signal, W(s) the disturbance and Y(s) the output signal.
C(s) is the transfer function of the controller and H(s) the transfer function of the
system.

For minimal placing error, the disturbance must be as low as possible. By making
C(s) very large, the value in front of R(s) will be almost 1, so the desired reference
will be obtained. With this knowledge, a proportional controller will be chosen. But if
the gain P is enlarged, the disturbance at high frequencies (see figure 4.2, above 1000
[rad s"]) is also amplified. That is not desired. A problem of a different kind becomes
clear when looking at figure 5.1.

In figure 5.1, a bode plot of two open loop C(s)H(s)-systems is plotted.

Gain

-1001 I I I
10' 1 o0 10' 1 o2

Frequency [Hz]

Phase

Frequency [Hz]

Figure 5.1: Bode plot of a 2nd order system (I) with a P-controller (2).

Control of an Industrial Robot 15

The P value of the second one is 200 times bigger than the P value of the first one. A
problem arises when the gain equals 1 (= 0 [dB]) and the corresponding phase equals
-180'. Because then, the value of C(s)H(s) equals -1. If this value is inserted in
formula 5.1, the denominator goes to zero and the error goes to infinity! To prevent
this from happening, a couple of rules have been set up. If the phase is smaller than -
135' and the gain must be smaller than 0.5 (gain margin). If the gain is larger than
0.5, the phase must be larger than -135' (phase margin). If the gain andlor phase
exceed these margins, the system becomes unstable. To check whether a system will
be unstable, a Nyquist plot can be made.

So the value of the parameter P cannot be enlarged unlimited. To ensure the P value
can be enlarged at least a bit, another controller has to be chosen.

A PID-ccntroller is chosen, using the example H(s) of figure 5.1, C(s)-H(s) now
ec;uals:

D S ~ + PS+I 1
- -

Ds2 + P s + I
C(s) H (s) =

S s2 +2s+1 s3 +2s2 + s + o

So rewriting equation (5.1) with use of the example, gives:

When looking at low frequencies (s x 0) and a large value for I (D=O), formula
(5.3) changes to:

Frequency [Hz]

Phase
0

Frequency [Hz]

Figure 5.2: A bode plot of the 2nd order systern(1) with a PI-controller(2)

Control of an Industrial Robot 16

Concluding from (5.4), a largest possible value of I is desired to neutralise the error
caused by W(s) for low frequencies. There is a limit to I. Because if I is too large and
the gain of 1 is reached, the phase is more unfavourable (figure 5.2).

To compensate this, a differential action can be implemented in the controller. By
using a D-action, the gain at higher frequencies will increase and also a positive phase
jump will occur (see figure 5.3).

-50 -

l o 2 10' I oO 10' I o2 I o3
Frequency [Hz]

Phase

-2001 ' " """ ' ' " " " ' ' . ' " " " ' ' ' " " " ' ' " " " I
l o 2 10' I oD 10' I o2 I o3

Frequency [Hz]

Figure 5.3: A bode plot of the 2nd order system(1). With a PID-controller(2)

Like all other parameters, the D cannot be increased unlimited, because the high
frequencies are also increased and those frequencies are mostly noise.

5.3: Determination of the control parameters
The optimum feedback controller layout, will be a PID-controller with a lowpass

filter. The block scheme of the controller is drawn in figure 5.4. The error in the
position is fed to the
controller. The signal of
the r,olltro!!er is then
passed trough a lowpass
filter.

The starting frequency of
the low~ass filter is not

Figure 5.4: Blockscheme of the controller.

very hard to determine (see
figure 4.2). Chosen is for a
lowpass filter starting at
1200 [rad s-'1, with a

damping of 0.5[-1. To see the influence of certain changes in the parameters of the
controller, a program, called Diet [5] is used. To determine the other three parameters,
some designer rules are followed [6, ASML]. Those rules assume a second order

Control of an Industrial Robot 17

system is used. Two values have to be known, the bandwidth (fbw [Hz]) and the mass
(m) of the structure, then [5]:

K p = fbw
"W with a =fi and A. =-

a a a
(5.5)

The parameters P, D and I are determined by [5]:

P= KP . ~d KP . + Kp, D=Kp .T, and I=-
1

wlth : T~ =-
I

and -cd =-(5.6)
Ti Ti 2nf d

The only thing to do when dete-illmg the contro! n ~ ~ p t p r s r -' uLwbwL is to detsmine the
frequency at which the magnitude of the system response equals 0 [dB] and the mass
of the system. This will be done for the x-axis, and the results for the y- and z-axis
will be presented. The mass follows hom chapter 4: mx = 0.058 [kg]. A 2nd order
system is described by:

1
=gain 3

1
2

=1 3 co =4.2 [radls] a fbw = 0.66 [Hz]
ms 0.058. co2

This gives: P = 0.42, I = 0.13 and D = 0.24. Using these values for the controller, a
terrible system is generated. So, assumed is an error is present in the formulas. The
control parameters for the y-axis and z-axis are also calculated, but these parameters
also gave terrible results. The error is not clear, so this method will not be used.

5.4: The controller in practice
As mentioned above, the calculated values of P, I and D for the three axes give

terrible results. To tune the controller, first the values of the control-parameters of the
x-axis are to be found, followed by the values of the parameters of the y-axis and z-
axis. These values are found, looking at minimum error and stability. Once these
values are obtained, one can check whether they are suitable for the overall trajectory.

Finding the values of the parameters is done using the trial and error method and
using the knowledge of the influence of the different parameters.

First the x-axis is moved, using the same velocity as used in the final trajectory. It
seemed that the value of P was much to low. The final value of P for this axis is 600.
The value of the D-parameter also was to low. The final value is 4. Finally, the value
of I was much too high, the system became unstable. The final value of I was 0.001.
With these values of the control parameters, the maximum error in the position of the
x-axis is about 5e-4 [m]. This error appeared when the velocity of the axis changed
sign.

The same strategy is used for the y-axis. The final values of the control parameters
are the following: P = 1200, D = 7 and I = 0.005.

The maximum error in position in the beginning of the movement was over 5e-4
[m]. When the axis moved a bit longer, the maximum error was 5e-4 [m]. A possible
explanation for this may be that during the movement the axis is greased better. This
maximum error also appeared when the velocity of the axis changed sign.

The final control parameters of the z-axis are the following: P = 750, D = 2 and I =

0.04. The maximum error in position is about l e-4 [m].

Control of an Industrial Robot 18

Finally, the final trajectory is tested with the values of the parameters just found.
The maximum error in position of the x-axis is 3e-4 [m]. The maximum error in
position in the y-axis is 5e-4 [m] and the maximum error in position of the z-axis is
1e-4 [m].

5.5: Quality of the controller
As mentioned above, the maximum errors of the axes vary from le-4 [m] to 5e-4

[m], measured at the axis. Comparing this to the resolution of the encoders, placed on
the axis (about 5e-6 [m]), it can be said that our PID-controller combined with a
simple mass-feedforward works well. Better results can be obtained using a better
feedforwad, e.g. including the fiction and of cwrse finding better control parameters
f ~ r the

Figure 5.5: A representation of aplacing error. The vertical line left is produced by the fact that the
reference has been calculated, but the robot is still initialising.

Control of an Industrial Robot 19

Chapter 6: Hardware introduction

Planning for the project took a full week as we sourced for the type of micro
controllers and other peripheral chips to employ in the implementation of the control
box. Finally, we settled on using the ATMEL 89C52 as our micro controller, the
AD1674 as a single input channel 12-bit ADC, and the AD667 as a single channel 12-
bit output DAC. Our choice was much limited by the availability of the chips and
their support.

Upon the completion of planning, we moved on to the breadboard implementation
of OW project. Oiice the design is verified to be working on 12-Sit siglificaxx on the
L, uleauuvalu, AL,,,A we proceeded to fzbriczte the PCB. The Windows hterface Programme
was being developed concurrently with the hardware developments.

The final stage of the project involved the interfacing of the micro controller with
the Windows programme running on the PC. The workability of our project is also
validated through the testing of the proportional and integral control.

Workload of the project was evenly split between all 3 members of the NUS team.
Ee Cheng Tien undertook the hardware implementation of the Control Box, Paul Ng
coded the Windows Interface Programme, while James Leong worked on the
programming of the micro controller and the execution of the PID control.

Control of an Industrial Robot 20

Chapter 7: Hardware

7. I: introduction
In many control applications, a hardware section is necessary to serve as an

interface between the machine and the user input stage, which may be a LCD screen
and a keypad, or which may be a personal computer. This section allows for
translation of user intent into machine language that gives the machine instructions to
actualise the intention.

7.2: Objectives
The objectives of the hardware section is as foiiows:

1. Translate physical position of robot arm from a given voltage value into a
numerical value while having 12-bit accuracy

2. Microcontroller onboard receives ideal setpoints from personal computer via
parallel port, compares with physical positions feedback, implements feedforward
control, and determines output voltage using control equations

3. Translate digital output values into voltage at 12-bit accuracy

4. Allow for communications with a personal computer via the parallel port

5. To provide for a stable and reliable power supply for the resulting circuit, taking
into account the mains characteristics at the TUE side.

7.3: Overview of Hardware

CONTROL
LIGHT

BUFFER

Control of an Industrial Robot 2 1

A brief description of the operation (per cycle) is as follows:

1. The microcontroller selects the appropriate input channel, which feeds the
analogue-to-digital converter (ADC) with a particular voltage value.

2. The controller then initiates the conversion, and reads in the 12-bit value given
by the ADC.

3. After implementing the control equations, the next desired voltage value (in
12-bit form) is fed to the digital-to-analogue converter (DAC)

4. Conversion from the 12-bit vailine to an acti~-a1 voltage is initiated by the
controller, which also selects the appropriate charnel to output the voltage.

The detailed description of the different sections is available in the following
chapters.

7.4: Input of Robot Position in Voltage
Figure 7.2 gives the basic schematics of the input stage.

AID Converter

Multiplexer rn

l;/i (Internal)

I From Controller u

Output To
Controller

Fig. 7.2: Schematics of Input Stage

Figure 7.3 provides the detailed setup of the input stage.
1

rSV-
2

& L
4

To controller PI 0 -
5

To controller PI.3 -
6

I

Fig. 7.3: Detailed Setup of Input Stage

To conbalier PI 6

S3a

Inv hput

Balance

-1W-Vee 082 -

lOVin DBO(LSB) -

Vlogo STS

lU8' DBli(MSB)

CS' 0010

AD 089

RIG* 088

The analogue multiplexer (DG509ACJ) allows the controller chip to select the
correct voltage to be converted by the ADC (AD1674). This is done via the address
pins A0 and A1 as shown in Table 7.1 below:

- 28

- 27

- 26

- 25

- 24

23

Control of an Industrial Robot 22

Channel 4 is not in use. DG509ACJ7 being a CMOS multiplexer, is bi-directional.
An operational amplifier, LF351, is used as an input buffer to the circuit. The high

set point frequency and the possible large differences in voltage representations of the
different axes meant that the voltage input to the ADC might be subject to large
swings within short periods of time. The LF35!, as a vokage follower, can
successfid!y serve its purpse, as its slew rate is high (! ~ V / I I S ~ . Y

AD1674 has an accuracy of 12-bits. By setting pin 2 (1218") to low the output of the
ADC is in byte format, thus allowing it to interface with the controller using a byte-
wide data bus. The controller retrieves the desired data output (most significant byte
or least significant nibble) by pulling pin 4 (AO) to high or low.

The voltage range is selected to be from 0 to 1 OV by inputting the voltage at pin 13
(10Vin) whilst leaving pin 14 (20Vin) floating. Conversion is initiated using pin 5
(RIC*). AD1674 has an inbuilt voltage reference, which can be adjusted for maximum
accuracy using external resistors and trimmers as shown in Figure 7.3.

7.5: ~ k ~ Q C Q f ? ~ ~ d k ? ~

The controller used is Atmel's AT89C52. It is an 8-bit controller with 32 I 0 pins,
and the inbuilt FLASH memory removes the need for external EPROM. The chip is
set up as shown in figure 7.4.

c
Figure 7.4: Setup of Atmel's AT89C.52

+5v

o 11.059MHz Multiplexers (Al)
30pF

GND

1
DAC (A1 A2 A3) + ADC (AO-

DAC(A0) 2
3

DAC (CS)-
4

ADC (R/C+

Contt.01 of an Industrial Robot 23

5
ADC (CE)- P I 4

+5V Output Mult~plexer (EM+ P I 5

Input Multiplexer (E+ P I 6
33

P06- D2
9

RESET
10

-P30
31

29

Databus

25
P24- SO

P3 7
24

30pF P23- S4

XTAL2 P2 2-
23

P I 0 VLOGlC

P I 1 PO

PO P I 2

P I 3 PO

40

0- 39

1-
38

2-
37

Port 1 of the chip serves mainly as the "control bus" of the system. It is a bi-
directional I 0 port that can receive input digital values as well as output data. All the
pins used in this "control bus" is pulled up using external 10kQ resistors, as they are
not always able to drive their respective receiving pins, which may be more than one
per output pin.

Ports 2 and 3 are bi-directional like Port 1. Port 3 acts as the "data bus", providing
values for conversion into analogue voltages at the DAC and receiving values for the
outputs from the ADC. 5 I 0 pins of Port 2 communicate with the PC through the
parallel port; they output data.

Port 0, or, the other hand, wher, serving as output pins, enter the high-impedmce
st&. They .re tE,erefgre iLc&!~ tc drive my n u w t withnut the fise ~f extellla! niill-iin

Y"" "Y

resistors. It is for this reason that 5 of them are chosen to receive inputs from the
parallel port.

7.6: Output in Voltage

The overview of the output section is as shown in figure 7.5.
AID Converter

Multiplexer
Vout

Input From
Controller

Outputs
Circuitry

A, A, ENB

From Controller

Figure 7.5: Schematics of Ou$ut Section
u

'igure 7.6 provides the detailed setup of the output stage:

I

Figure 7.6: Detailed Setup of Output Stage

'
20VSpan DBlI(MSB)

28

2 - IOVSpan DBlO

3 - SurnJcl

4

1W 087 -

6

1W 7 AD667 22
Vref In DB5 -

+15V ~ V C C
21

004 -
9

Vout 003 -
20

10 19
-15V - Vee

11
Cmdler (PI 2) - CS+

Contoller (PI 0) A3 DBOCLSB) -
17

The digital-to-analogue converter (DAC) AD667 receives 12 data bits from the
controller in 2 cycles. In the first cycle, A0 is set at logic 0 while Al, A2 and A3 are
at logic 1. This enables the 4 LSBs of to be latched onto the chip. In the next cycle A0
is set to 1, while Al, A2 and A3 are set at 0. The 8 MSBs are then latched.
Conversion is initiated during the second cycle.

cmdler (PI 01 1J

Control of an Industrial Robot 24

i~ Pnr 16 Cnd--------ll,

As an output of rtlOV is required, pins 1 and 9 are connected together, while pins 4
and 6 are connected via a lOOR trim-resistor. The internal voltage reference of the
AD667 is used and is adjusted using the lOOR trim-resistor between pins 6 and 7.

The output multiplexer, like its input counterpart, has 4 channels that are controlled
by the AT89C52. Since the output of an inactive channel is left floating, it will not be
able to sustain the voltage level when it was active. Hence a sort of sample and hold
circuit is required and is provided by the 4 op-amps. When the particular op-amp's
channel is selected, the corresponding capacitor at the non-inverting input of the op-
amp will be charged up to the current voltage. This capacitor serves to "maintain" the
voltage level when the multiplexer switches to other output channels. The setpoint
frequency is sufficiefitly high enough to bring &cut insignificant capacitor discharge
during the times ivhm the charnels are inactive.

The op-amps also serve as output buffers to allow for maximum voltage drop across
the load. They come in the form of TL074, which has a high slew rate as well as low
offset voltage errors.

7.7: PC Parallel Port Connection
A laplink cable is used to connect the control board to the personal computer. Table

7.2 shows the connections between the pins of the micro controller and the parallel
port pins. The pin layouts follow that of the DB-25 standard.

Table 7.2; Microcontroller. Ladink Cable and Parallel Port Connections

/ 6 1 Data Pin 4

P0.4 15 2 Data Pin 0

1 P0.5 1 l3 1 I Data Pin 1

1 P0.6 4 I Data Pin 2

1 P0.7 1 1 Data Pin 3

1 P2.3 1 Status Pin 7

1 P2.4 / 1 15 1 Status Pin 3

1 P2.5 / 1 l3 1 status pin 4

Trials were carried out to determine if the controller and parallel port outputs can
drive the other's inputs directly. Since it was found that there were no problems doing
so there was no need for buffers between the two.

7.8: Power Supply
The power supply was designed with the following considerations:

P2.6

P2.7

Control of an Industrial Robot 2 5

4

5

12

10

Status Pin 5

Status Pin 6

- It must be able to supply the requirements of the circuit
- It must function as intended to at the TUE side
- It does not need to be mobile

The following figure (Fig. 7.7) illustrates the general concept of the power supply:

A.C Mains Transformer Bridge-Rectifier

Regulator Unregulated Filter Capacitors Rectified
D.C Supply

Output Voltage

Figure 7.7: Schematics of Power Supply

Figure 7.8 provides the detailed setup of the power supply:

-

Figure 7.8: Detailed Setup of Power Supply

Using a laboratory's D.C. supply, the following currents were drawn from their
respective sources (Table 7.3):

Table 7.3: Current Drawn From Res~ective Sources

Thus, a rough gauge of the total power required is:

Total Power = 5 x 0.044 + 15 x 0.039 + (-15) x (-0.060)
= 1.705 W

Control of an Industrial Robot 26

The transformer, which has an output of 18-0-18V, 1A, is therefore able to supply
the required power.

The peak voltage values at the output terminals of the bridge rectifier are

Since the maximum input voltage to the regulators 7805 and 7815 is 35V, and the
minimum to 79 15 is -35V, the transformer will not pose a problem.

With the mains supply at 230V, and the output at 18V, the step-down ratio is thus

A mains supply of 220V will therefore result in the output voltage of

The peak voltages are then
= f 17.22 x 42
= f24.34V

The values are sufficiently high enough in magnitude for the 7805, 7815 and 7915
to function properly.

The filtering capacitors serve to smoothen the ripples to a certain extent, which is
required for the regulator chips to function as intended.

The capacitors at the outputs of the regulators reduce the voltage fluctuations due to
the loading effect, thus providing a more stable supply. They also serve to reduce the
noise level that may have been induced by the circuitry.

7.9: Discussion

7.9.1: Offset Errors
It was noted that there were offset errors incurred due to the op-amps not having

perfectly matched input transistors. The errors are of mV magnitude and are within
the specifications provided by the manufacturer. Complete reduction of this offset is
considered but the following points were noted:

1. Offset trimming does not eradicate the problem completely since the offset
drifts with temperature differences.

Control of an Industrial Robot 27

2. An automatic-adjusting circuit will take up more space than the rest of the
circuit, which is impractical.

3. Very high quality CMOS op-amps incur high costs.

7.9.2: Noise
The merging of the analogue and digital +5V supply (i.e. they were not separated at

the main board side) had no negative effects on the system. As such, no provisions
were made for separate supplies. Furthermore, to reduce the level of noise throughout
the system, decouphg capacitors were used near the power supplies to the chigs.

7.7 0: Conclusion
The control board is able to effectively translate the robot arm's position into a

binary value at 12-bit accuracy, and accurately convert 12-bit values into voltages.
However, it was noted that the overall precision of the system would still depend on
the module that provides the input voltages, as well as that which receives and
translates the output voltages into torque of the motors.

The power supply was made with a slightly different mains supply (220V, 50Hz
instead of 23OV, 60Hz) in mind, and was designed to operate at TUE.

Control of an Industrial Robot 2 8

Chapter 8: Software For Micro Controller

8. I: Advantages of using A TMEL
After much thought, our group decided on using the ATMEL 89C52 micro

controller. This is because the 89C52 possess 8K of programmable FLASH. This
allows easy programming of the chip without interfacing it with additional ROM. 8K
of programmable memory is also sufficient for our purpose.

Besides FLASH, the 89C52 micro controller also has built in I 0 ports and timers.
This means that we will not need to interface it with external timers I 0 devices,
resulting in easier hardware implementation.

However, the 89C52 being a 8-bit controiler does have its limitations. As our ADC
and DAC are of a 12-bit nature, it is preferable to have a 16 bit micro controller to
store and manipulate the inputs and outputs to these devices. As a matter of fact, we
need more than 50 instruction cycles to perform a multiplication instruction of two 16
bits number. As a result, we have decided to do adopt a more efficient solution of
solving of the control equations within the PC instead. This will reduce the micro-
controllers computational requirements, thus allowing a much faster sampling rate.

8.2: ATMEL 89C52

8.2. I: Pin Configuration
The ATMEL 89C52 is a micro controller with a total of 32 I10 pins in four I 0

ports(P0-P3). A pin in each port is referenced by its port number followed by its pin
number, i.e. the third I 0 pin of port 3 will be P3.3. Of these 32 pins, we will be using
8 for data transfer to the ADC and DAC, 10 for parallel port and another 10 for
control signals. The pin configuration are as below:

Table 8.1: Pin Configuration
Pins
P0.3 - P0.7

Description
Five input pins to receive data from the parallel port
A0 O ~ D A C and ADC
A1 of DAC
Chip Select of DAC
ReadIConvert of ADC
Clip Enable of ADC
DAC Multiplexer Enable
ADC Multiplexer Enable
Light of Control Box
A1 of multiplexer
A0 of multiplexer
Five output pins to transfer data to parallel port
Data bus for data transfer with ADC and DAC

Control of an Industrial Robot 29

8.2.2: Timers and Interrupt
Similar to other micro controllers, ATMEL 89C52 does possess its own set of

timers and interrupt. It has a total of 7 interrupts as seen below:

Table 8.2: Interrupt Table

Interrupt
System Reset
External 0
Timer 0
External 1
Timer 1
Serial Port
Timer 2

Vector Address
OOOOh
0003h
OOObh
0013h
OOlbh
0023h
002bh

Of these seven, we only use the timer 0 interrupt. This is necessary to keep track of
the amount of time spent keeping the multiplexer open for the voltage to charge up the
required capacitor.

The AT89C52 has a total of 3 timers. All these can be configured to operate as
either timers or event counters. As a timer, the register is incremented every machine
cycle. Thus the register counts machine cycles. As each machine cycle consists of 12
oscillatory periods, the count rate is 1/12 of the oscillatory frequency. As event
counters, a count is incremented in response to a transition from 1-to-0 on a
corresponding external input pin. For our case, we will be using the timers solely as a
timing device.

By configuring the timer to Mode 2, we have configured the timer register as an 8-
bit Counter with automatic reload. This enables the timer to trigger off an interrupt at
a specified period of time determined by the 8 bit number that is reloaded and the
oscillatory frequency. An interrupt is triggered when the reload value has been
incremented to 256. Keeping the multiplexer open for a period of 0.05ms per sample
cycle of frequency 11<Hz,

- 0.05 x
No of machine cycles required - 12 + ~sci~afory~re4uency

Reload value

8.2.3: Memory Model
AT89C52 has a total of 8K FLASH programme memory. This memory is used to

house the programme code for our micro controller. Thus there is no need to interface
any additional ROM to our controller. Besides FLASH, AT89C52 also provides a
256 bytes of RAM for data memory. The memory structure is as below:

Control of an Industvial Robot 3 0

Figure 7. Internal Data Memory
FFH ' -- - - - - - - - -

I -7, FFH
I
I ACCESSIBLE

UPPER I BY INDfRECT
128 1 ADDRESSING

I ONLY

Fig 8.1: Internal RAM diagram

ACCESSIBLE
BY DtRECT

ADDRESSING

LOWER
128

The lower 128 bytes consists of only directly addressable RAM, while the upper
128 bytes consists of both directly addressable and indirectly addressable RAM.
Basically, only the lower 128 bytes and the upper 128 bytes(indirect1y addressable)
are used for data storage. The directly addressable upper 128 bytes generally
constitute the Special Function Registers(SFR) of the micro controller and are used to
control various devices and functions of the AT89C52 itself, i.e. timer, interrupts, etc.

BANK

PSW

ACCESSIBLE
BY DIRECT

AND INDIRECT
ADDRESSING

RESET VALUE OF
STACK POINTER

_ SPECIAL
FUNCTION
REGISTERS 1

SCRATCH PAD
AREA

BIT-ADDRESSABLE SPACE
(BIT ADDRESSES 0-7f)

4 BANKS OF
8 REGISTERS
RO-R7

Fig 8.2: Lower Directly Addressable Memoy Bank(128 bytes)

In our programme, of the lower 128 bytes, the first 8 bytes(00 to 07h) are used for
register bank 0 with registers from RO-R7. These registers are used extensively in the
programme. As there is no further need for additional register banks, the stack pointer
poir,ts to 08h. Pdemory from 081.: to 2fh is speci2Ey reserved fix- the operztion of the
stack. This will ensure that the micro controller knows where to return after function
calls and interrupt requests. Memory from 30h-3bh is used for data storage of output
voltage and the location of the robot. As we need 3 sets of values for both output
voltage and location values(3 axis), a total of 6 variables need to be stored. As each
of these variables have 12-bit significance, each variable will take up 2 bytes. As
such 12 bytes(30h-3bh) are allocated for the storage of such data.

8.3: Programming Logic and Flow Chart of Micro Controller
The programme will be appended as appendix 5 in this report. In this section, we

will be focussing on the explanation of our programme logic in a general fashion
through the use of block diagrams.

Control of an Industrial Robot 3 1

8.3.1; Overview of Programme

1 Setting of Micro ! / Processor interrupt
i and Priority 1 Registers 1

i

Feedback to PC 1 / Receiving from PC Ouput the required
the current location1 ihe required ouiput voitage to the 3 1

of robot voltage channels 1
! communications
I i I i I I
1 I I I I I I

Fig 8.3: Overview of Prpogramme Flowchart

Upon power on, the micro controller jumps to a start up sequence to initialise the
interrupt enable and priority registers of timer 0. This is to ensure proper timing for
the enabling and disabling of the multiplexer.

An initialisation sequence between the controller and PC then takes place. These
sequences ensure that both the PC and micro controller are ready for a new round of
communication. It helps to synchronise the data transfer between the controller and
the PC. This also serves as a place for the micro controller to stall to await for the
next cycle as the PC is keeping the timing of the whole system. The micro controller
will stall in this sequence till the PC decides to initialise it for a new sampling cycle.

The location of the robot is then sensed through the ADC and stored in memory
location 36h - 3bh. These values will be passed via the parallel port to the PC. The
PC upon receiving the positional values will calculate the required output voltage and
output it to the micro controller. The micron controller will store the output voltages
in memory location 30h-35h, before passing these voltage values to the DAC to be
outputted to the 3 channels

8.3.2: lnitialisation Sequence
The lnitialisation sequence generally consists of receiving a sequence of 3 five bit

numbers from the PC, 01010, 10101, and 11111. Upon receipt of the 01010, the
microprocessor replies with a 01 01 0. Upon receipt of 10101, the microprocessor
replies with 101 01. Upon receipt of 1 1 1 1 1, the sequence is complete, and the
microprocessor moves on to do its next stage of sensing the robot's location.

Control of an Industrial Robot 3 2

I
Yes

output: OIOIO + I q !

Input = 10101 e Yes

output: IOlOI

Yes No

Yes

Yes

?l

Fig 8.4: Initialisation Sequence Flowchar1

8.3.3: Location sensing

lnput Required lnput LSB of
location from ADC location from ADC

I
Yes

Process
Terminated

Fig 8.5: ADC Reading of Location Flowchart

Control of an Industrial Robot 33

The input voltage of each channel is sensed individually by controlling the voltage
input into the ADC via the multiplexer. As 8 pins are used for the data transfer, we
need read twice from the ADC for each channel. First reading will take in the 8 most
significant bit, while the second reading will take in the last 4 bits. The locations are
stored in six bytes in memory locations 36h-3bh.

8.3.4: Ossfpssf to PC
Upon sensing the location of the robot, the micro controller will proceed to feedback

these locations to the PC. Output to the PC involves 6 pins. Five output pins and one
i ~ p t stzitus pin. Of the five pins, one pin is used as the output status pin while the
other 4 is used to contain the data. As such, each byte is relayed in the form of 2
nibbles to the PC.

I I outp;m 1-9 yes+ Output 1 YYYY high
Output to PC

No No

Fig 8.6: Output to PC Flowchart

To signal the beginning of a new byte, the output status pin is toggled low, and the
data is put in the other 4 bits(denoted by xxxx in the diagram). The controller will
then poll its input status pin continuously. The PC upon receipt of the data will drive
the input status pin low. This signifies the transmission of one nibble successf~lly.
The controller will then drive its output status pin high and put the second nibble in
the other 4 bits(denoted by yyyy in the diagram). Upon receipt of the second nibble,
the PC will drive the input status pin high. This signifies the complete transmission of
a byte.

This process is repeated a total of six times, as six bytes(c0ntaining the X, Y and Z
positions) need to be transmitted over to the PC before it can calculate the output
voltage required.

8.3.5: Input from PC

,ilpuc atus Pi,,
Take in first nibble 1 1 Awaiti; Input P V Y e s . and status pin output low 1

I

Take in second

.
Terminated

Fig 8.7: Input to PC Flowchart

Control of an Industrial Robot 3 4

The input sequence hom PC takes in the required output voltage and stores it in
memory location 30h-35h. It is similar to the output sequence, involving a total of six
pins. 1 output status pin, 4 input data pins and 1 input status pin.

The controller keeps polling the input status pin. When the input status pin turns
low, the micro controller takes in the first 4 bits as the more significant nibble and
toggles its output status pin low to acknowledge. It will then keep polling the input
status pin. When the input status pin turns high, the micro controller will take in the
next 4 bits as the less significant nibble and then toggle the output status pin high.

This sequence of inputs is repeated six times, as the voltage output is stored in six
bytes.

Voltage to 3
Output MSB of
voltage to DAC . Output LSB of I

voltage to DAC

!

Yes

Yes Yes
I I p Electromagnetic /

Fig 8.8: Output Voltage Flowchart

The voltage is sent out to the DAC in 2 bytes. The most significant 8 bits are sent in
the first byte before the least significant 4 bits in the second byte as seen below. This
process will be repeated 3 times till all three channels are fed with the appropriate
output voltage.

I Data Bits I Control I

Fig 8.9: Byte Arrangement Diagram
11 11 11 11 11 11

Control of an Industrial Robot 3 5

Bits
0001

As the data is only of a 12-bit nature, there remains 4 unused bits in the second
byte(see figure 8 above). These remaining 4 bits are used for the control of the light
in the control box and the electromagnet. Should it be 11 11, both the electromagnet
and the control light will be turned on. Should it be 0001, only the control light will
be turned on. Any other signals will turn off both the magnet and the control light.

Thus the PC through the six bytes of output can control not only the output voltages,
but also the solenoid and the control light.

8.4: Future lmprovements
Upon the completion of the project, it is felt thzt the system could better be

improved had the charnels been worked on separately, one by one. This is so as it
will enable the multiplexer to be opened for a longer time to allow the capacitor to
charge up properly. Currently each channel's capacitor is only allocated a time of
0.05ms to charge.

As all channel are processed simultaneously, the multiplexer cannot be opened
while the controller is in its communication phase with the PC. It can only do so in
the one dedicated phase(high1ighted in yellow) to output the voltage. This means that
we cannot allow the multiplexer to open for too long a time as we have to complete
the whole process in under 1 ms to satisfy the 1kHz frequency requirement.

Setting of Micro
Processor Interrupt

and Priority
Registers

Initialisation
sequence to signal

a new round of
communications

Yes

New Route .

1 Old Route 1

Finished A
Procedure for I

Fig 8.10: Improved overview lowc chart

By processing the channels individually, we can keep the output voltage of the
previous channel open while the controller is communicating with the PC. This
means that while the controller and the PC are communicating, the capacitor is at the
same time being charged up to its required voltage. Only when the communication is
over, do we close the multiplexer and open another new channel. Thus, in this new
method, the multiplexer is kept open almost all the time.

Control of an Industrial Robot 36

Chapter 9: Software For PC

9. I: Introduction
An interface is required to provide a means of interaction between the human user

and the micro-controller. In this control application, the personal computer is the
medium of communication. As such, a program has to be developed to provide a user-
fi-iendly graphical interface for the convenience of the user. As the Microsoft
Windows Operating System is widely used, it has been decided that this program has
to run in Windows. The program was written using Microsoft's Visual C++ Integrated
Development Environment and is aptly named "The Industrial Robot Controller"
(RCj, in view of the objectives for its development.

9.2: IRC Objectives
9.2.1 To provide an event-driven Windows graphical environment for user-

controller interaction.

9.2.2 To implement a 2-way communication process between the personal computer
and the micro-controller.

9.2.3 To implement feed-forward control equations for effective robot control based
on parameters from user input.

9.2.4 To provide setpoint generation based on parameters from user input.

9.2.5 To allow visual inspection of the robot's ideal and actual trajectory
characteristics through the means of graphs.

9.2.6 To provide a means of testing of certain aspects of the hardware, specifically
the analogue-to-digital converter and the digital-to-analogue converter.

9.3: Description
The "Industrial Robot Controller" (IRC) communicates with the micro-controller by

the parallel port of a personal computer. The personal computer is linked to the
control-box via a lap-link cable. Input from the micro-controller is read by the status-
port. For a parallel port, the status port only accepts inputs for the 5 most significant
bits. Output to micro-controller is via the data-port. In this case, only the 5 least
significant bits are used for transmission purposes.

9.3.1: Concept of Communication
It may be noted that the communication sequence consists of 4 main stages. They

are the checking of the presence of the micro-controller, the receiving of the current
location from the controller, the processes of the data via the control equations and
finally the sending of the next predicted set point to the micro-controller.

Figure 9.1 shows the overall functional block diagram of the 2-way communication
process between the personal computer and the micro-controller, as implemented by
IRC .

Control of an Industrial Robot 37

FALSE I (--A)

>=O
- 1

Read Y - m 1 w l t a g e f m m
mim-cca r r rok

f FALSE

TRUE
FALSE

FALSE
/ s m d z m 1 Y o a a e e f m m \ I - w-m

Figure 9.1: Overall Communication Sequence Between PC and Micro-Controller

Below, figure 9.2 describes the initialisation process of the communication
sequence, which is the check for the presence of the micro-controller.

Figure 9.2: Initialisation Sequence

Control of an Industrial Robot 3 8

In the next page, figure 9.3 describes the reading of data from the micro-controller.
Each of the below sequence reads in the position of the robot arm provided in terms of
volts. Each sequence is executed 3 times, as there are 3 axes. For each sequence, a
total of 20 bits is read in sequentially in packets of 5 bits. The first 3 packets describe
the location of the robot arm. The most significant bit of each packet is toggled to
facilitate the communication process. The fourth packet is just to set all the pins of the
data-port high, and serves no purpose in this read sequence. It will be of useful
purpose in the send sequence described in Figure 8.4.

The processing of the data is based on equations provided by the Dutch
counterparts. Its implementation will be described in detail in Section 9.3.2.

Fig. 9.3;

-

1

I
Sequence

Yes

& a d m b p h m i m - c m & m k .
Eyk c ~ m x t 4 b ~ cbmW5

mds b c & i m
I

1 badhlb$e. C ~ L a ~ a n a l
bits dmWs & b c h

For Reading Data

Figure 9.4 describes the sequence for sending the predicted location back to the
micro-controller. Each of the below sequence sends the predicted position of the robot
arm provided in terms of volts. Again, each sequence is executed 3 times, as there are
3 axes. For each sequence, a total of 20 bits is sent sequentially in packets of 5 bits.

Control of an Industrial Robot 39

The first 3 packets describe the location of the robot arm. The most significant bit of
each packet is toggled to facilitate the communication process. The fourth packet is
now used to control the control light of the control-box as well as, the magnet.

Yes -

Fig. 9.4: Sequence For Sending Data

9.3.2: Implementation of PlD Control

9.3.2a: Input of Control Parameters

Figure 9.5 shows the flow-chart for the input of the control parameters.

Control of an Industrial Robot 40

I Take in Control
I Parameters

i i

Controller
Kp = K .

Integral Controller
Ki = Wsampling

(Derivative
Controller

Kd = K*sampling
frequency

Acceleration
Mulitplier

+ 6 t o r e Kp, Ki. K h
\ and M in PC)

Fig. 9.5: Input of Control Parameters

Users are prompted to enter the control parameters via a customised dialog box.
The proportional constant, Kp, and acceleration multiplier constant, M are stored as
variables in the PC memory. For the integral constant, Ki, the constant entered is
divided by the sampling frequency before storage. For the derivative constant, Kd,
the constant entered is multiplied by sampling frequency before storage. This
adjustment will simplify the control equations to K'I and D'd as seen below:

V = K, x I x Period V = K, x D t Period

9.3.2b: Calculation Of Output Voltage

Figure 9.6 shows the flowchart for the calculation of output voltage to the micro-
controller.

The calculated output voltage is a result of the sum of all four components:
proportional controller (Kp), integral controller (Ki), differential controller (Kd) and
the feed forward loop (M).

For the proportional controller, the error is directly multiplied by Kp to generate the
output voltage.

For the integral controller, an integral variable, I, is updated by adding the current
error to it. This integral variable, I, keeps track of the sum of all the errors. This
integral variable will then be multiplied by the integral constant, Ki to generate the
output voltage.

Control of an Industrial Robot 41

For the differential controller, the error is subtracted fi-om the previous error. The
result is then multiplied by Kd to generate the output voltage. It should be noted that
the current error would now be updated to be a previous error for the next round of
calculation.

Lastly, the feed forward loop is implemented by just multiplying the calculated
acceleration required with the acceleration constant, M.

The result of all four components is then summed up to generate the required output
voltage.

Previous Error ,

T

Current 1
Acceleration, A /

Output Voltage I
Fig. 9.6: Calculation of Output Voltage

9.3.3: Descripfion of IRC Feafures
The "Industrial Robot Controller" is an event-driven object-oriented program

written in Microsoft's Visual C++. It provides a Windows tabbed pane graphical

Control of an Industrial Robot 42

interface for the convenience of the user. It consists of 3 panels, namely the Control
Box panel, the Graph Plots panel and the Options panel.

9.3.3a: The Control Box Panel
Below, Figure 9.7 shows a screen-shot taken of the Control Box panel.

Fig. 9.7: The Control Box Panel

The Control Box panel is the main panel, which the user uses to control the robot. It
provides an interface for the following functionalities.

Set-point Generation

IRC allows the user to generate set points based on the parameters provided by the
user. The basic generation of the set points is based on a Mat-Lab algorithm
developed by ow Dutch counterparts, which we converted to C++ code.

IRC permits the user to generate set points whether he is connected to the micro-
controller or not. When connected, IRC will detect the current location of the robot
fkom the microprocessor. It will then prompt the user for the required parameters,
specifically: load pick-up point, load drop-off point, maximum velocity, maximum
acceleration, desired time and sampling frequency. Input is done via a pop-up dialog
box shown in Figure 9.8.

Control of an Industrial Robot 43

Fig. 9.8: Input Dialog

If the user is not linked to the microprocessor, a separate dialog will request the user
to input a starting position for the robot. In this case, the "Generate Set Points" check
box has to be enabled. Set point generation will then proceed based on the 3 points:
start point, pick-up point and drop-off point. These will be displayed in the list box.

During set point generation, other trajectory characteristics like velocity,
acceleration will be concurrently generated. The user may choose to examine these
characteristics by simply double-clicking on the relevant row, which will bring up the
data in a dialog box, as shown in Figure 9.9.

Fig. 9.9: Data Dialog

Control of an Industrial Robot 44

For all inputs, there is error checking to ensure that the parameters entered by the
user is within the practical bounds of the robot, and that there are no complex roots
arising from the algorithm provided. Should such errors occur, pop-up dialog boxes
will warn the user.

Saving and Opening of Text Files

IRC allows the user to save all generated set points and actual trajectories in files for
future uselreference. To save actual trajectories, the "Generate Actual Trajectory File"
checkbox has to be enabled before saving.

For each tmjector.; szved, 2 files zre generated. The set points are saved as *.traj
files, while the other trajectory characteristics are saved as *.dat files. The pick-up
point and drop-off point are marked in the set point file at the beginning of the
relevant row, with a 'p' and a 'd' respectively.

The user is also able to open pre-generated trajectory files for usage. For this
process to occur without errors, both the *.traj file and the *.dat file must be present.

Upon the clicking of the "Run" button to begin the robot motion, IRC will detect the
current position of the robot and generate set points from this position leading up to
the first starting position of the opened file. It will then concatenate the 2 sets of
points together into one trajectory, and commence the motion.

Commencing and Halting Robot Motion

The clicking of the "Run" button will commence the motion of the robot.
It will start a separate periodic thread that will execute the communication sequence

described in 9.3. I), in accordance to the sampling frequency entered.

A multimedia thread is used as it is documented as having the highest precision.
Despite taking up much of the processor's computing resources, it will still allow
other tasks to be executed, while the program is running. This allows for the
termination of the communication sequence prematurely by clicking on the "Stop"
button.

Help File

A help file in HTML format, describing the functionalities and usage of IRC may be
accessed upon clicking the "Help" button. This button is visible in all panels and will
open the help file in Microsoft's Internet Explorer.

Control ofan Industrial Robot 45

9.3.3b: The Graph Plots Panel

Below, Figure 9.10 shows a screen-shot taken of the Graph Plots panel.

Fig. 9.10: The Graphs Plots Panel

The Graph Plots panel allows for visual inspection of both the generated and actual
trajectory data in the form of graphs. The set points, velocities and accelerations of all
3 axes may be plotted out against time and compared with each other.

The actual instantaneous velocity graph for each axis is approximated from the
actual positions, using the below equation:

Where V(t): velocity of a particular axis at time t
P(t): position at time t
ts : sampling period

The actual instantaneous acceleration graph for each axis is approximated from the
actual velocities, using the below equation.

Where A(t): acceleration of a particular axis at time t
V(t): velocity at time t

Control of an Industrial Robot 46

ts : sampling period

The X and Y axis of the graph change dynamically according to the data set plotted.
The intervals displayed on each axis may be adjusted using the slider bars provided.

Fig. 9.11: The Options Panel

The Options Panel carries with it three tools.

Input of Control Parameters

The user is able to input the control parameters required for the feed-forward control
equations. The 9 parameters make up that of a PlD controller for each of the 3 axes.

The Options Panel is serialisable and all previous user inputs are retained.

ADCIDAC Tester

This is a simple tool to test certain portions of the hardware, namely the analogue-
to-digital converter and the digital-to-analogue converter.

Control of an Industrial Robot 47

Upon the clicking of the "Start" button, IRC will constantly read in input from the
micro-controller and display the voltage applied to the 3 input channels via the
analogue-to-digital converter.

IRC will at the same time, output a voltage as specified by the user, to all three
channels of the micro-controller. The micro-controller will in turn provide the
necessary signals for the digital-to-analogue converter to output an analogue signal
via the output channels of the control box.

This voltage may then be verified using a simple voltmeter.

Sampling Frequency Tester

This is a tool to test the personal computer's processing speed, and thus determine
the maximum sampling frequency allowed, before overlapping occurs.

The function, which encapsulates the communication sequence described earlier, is
executed 10000 times, and the mean execution time is displayed. As the sampling
period cannot be smaller than the execution time of the function, the maximum
sampling frequency is calculated and displayed.

9.4: Program Considerations
Throughout the development of IRC, several important issues were considered and

will be highlighted.

9.4. I : Communication With Micro-Controller
There was a need to agree on a protocol by which the micro-controller

communicated with the personal computer via the lap-link cable. Such a protocol had
to be robust and efficient enough for reliable and quick communication between the 2
computers. The protocol agreed upon was described earlier in Section 9.3.1).

9.4.2: Sampling Frequency
It was decided that the timing should be initiated and kept by the personal computer.

In a Windows environment, there are many background processes being carried out
and conventional timers may not be accurate enough for the lkhz sampling frequency
specified by the Dutch.

Finally, a multimedia timer was used. It is a very high priority timer that demands
much system resources. Besides using a reliable timer, the code executed within the
sampling period had to be as short as possible to prevent overlapping, which may
cause instability in the program.

9.4.3: Compatibility with Windows NT and Windows 2000
IRC was developed and tested in a Windows 9.x environment. Later tests revealed

that security features in WinNT and Win2000 did not allow the direct access to the
printer port by IRC.

An IRC version able to be used under WinNT and Win2000 has been developed.
For this version of IRC to run correctly, a driver has to be installed. This driver was

Control of an Industrial Robot 48

obtained fi-om the Internet and provided C++ instructions for accessing the parallel
port.

However, this version of IRC executes much slower than the original and with this
version, a high sampling frequency is not possible. The maximum sampling frequency
may be obtained by running the "Sampling Frequency Tester" in the Options Panel.

9.5: Testing Procedure And Observations
As the actual robot to be controlled is not available, there is no foolproof way to test

the "Industrial Robot Controller" and the control box.

The communication between the control box 2nd the personal conputer was tested
in this mamm-. Vari&!e veltage sqplies were comected tc! the input chanaels of the
control-box to simulate the signals provided by the robot. The output voltages of the
control box were monitored using voltmeters.

The entire sequence was then stepped through using the Integrated Development
Environment's debugging tool. Changing the inputs and monitoring the outputs
verified the control sequence and equations.

Upon verifications of the equations and sequences, the entire process was executed
in real time. Again, manually applied voltages simulated the inputs from the robot, till
the load pick-up point and load drop-off point was reached. The graphs were then
verified for their correctness.

it was observed that for a sampling period of lms, the computer tended to slow down
dramatically and even stall after a short interval. It may have been a result of a new
process overlapping a previous instance, by commencing before the end of the
previous one. This could be a result of other background processes, which may have
slowed down the main process (initiated by the high priority thread), causing it to take
more than lms to execute.

For a sampling period of 2ms, the program executed properly, with the expected
results.

9.6: Conclusion
Using Microsoft Visual C++ for the first time to develop a complex Windows

application, which interfaces with hardware, is a challenging but enriching task.

The "Industrial Robot Controller" was developed to provide a graphical user
interface for the control of an industrial robot in Holland. It communicates with the
control box effectively and implements the feed-forward control equations necessary
to control the robot. It provides functionality for set point generation, visual
inspection of trajectory data via graphs and hardware testing.

However, as it is running in a Windows environment, where there are numerous
background thread processes executing, it was unable to attain the initially specified
sampling fi-equency of lkhz. But it could execute properly at 500hz, which is
sufficient for the objectives of the project, which is the control of a mechanical
system.

Control of an Industrial Robot 49

Chapter 10: Achievements of the control box

10. I: In troduction

This chapter will describe the performance of the control box in reality. The security
box will be mentioned. This is a dSpace system, which will prevent the robot from
damaging itself.

First of all, the AD and DA converters have to be checked. That is very easy
accomplished by using the IRC program. A power supply is connected with the input
of the control box. The program gives the voltage that is delivered by the power
supply. If they match, the AD converter is working well. The program allows letting
the control box deliver a specific voltage, this voltage can be checked with voltage
meter. If they match, the DA converter is also working well.

The inputs of the control box work between 0 [V] and 10 [V]. So, the security box
must also deliver that voltage range. That is not the case, so the Simulink model has to
be changed. Every output of the Simulink model (x, y and z) has to be checked and
changed. For example, the minimum x-axis position is around 0.1 [m], the security
box delivers approximate 1.0 [V], instead of 0 [V]. The maximum x-axis position is
around 0.65 [m], the security box delivers approximate 6.5 [V], instead of 10 [V] .

To adapt the signal to the right one, 1 [V] has to be subtracted of the signal and than
the signal must be multiplied by 1.84. Now 0.10 [m] equals 0 [V] and 0.65 [m] equals
10 [V].

For the y-axis and z-axis the same can be done. Only the security box gives the 10
[V] when the axis is at the minimum (-0.23 [m] for the z-axis) and the IRC program
demands that is 0 [V]. So the values produced by the y-axis and z-axis is subtracted
with 10 [V] and multiplied by -1.

The outputs of the control box (except for the magnet) have to be calculated by the
inverse of the above mentioned calculations.

To check whether the controller of the control box works well, a test can be
performed. The setpoint fhat is inserted in fne security box will be the same as is
inserted in the control box. Both boxes will control the robot. The outputs of the
control box however, are not connected with the robot. So only the security box will
control the robot for real. If the control signals match (within a reasonable margin) the
control box and the Simulink model will be approved, otherwise something is wrong.

Control of an Industrial Robot 5 0

10.3: Reality

Attempts to make the above mentioned method work failed. So the controlbox is
directly connected to the robot. After some alternations in the Simulink model and
adding some tricks, the controlbox is able to control the robot.

To make the controlbox work better, an update of the IRC has been made. This new
program will not check the initial position of the robot and thus will not create new
setpoints when it is activated. Also the program will start the controlsignals, only after
a specific signal is send to the three inputs.

The new progam doesn't work very well, some unspecified errors occur. So the old
IRC program is used instead.

After the robot has finished its initialisation procedure, the control signal will be set
to 0.000 [V]. Then the 'run' button in the IRC program is pressed and the program
begins initialising. When the IRC program gives 'connected to microcontroller' the
user must press a button which will transmit the controlsignal of the controlbox to the
robot.

Also the IRC program must not be quit, because the next time the user starts the
program, it will conclude the robot is at a other position than the first time (maybe
0.01 [mm] off) and will produce new setpoints, which results in a program error.

Running the R C program gives an error that the 'ircdata\parameters.datl cannot be
found. After experimenting the program wants that file in the same directory as the
setpoint files. So now it is possible to use controlparameters defined by the user.

Finally, the controlparameters which are used in the IRC program differ very much
from the ones used in the Simulink / dSpace controller. The output signal of the
controlbox is also multiplied by 0.1 to make the robot move more relaxed.

Now the robot moves relatively smooth form one point to the next.

Control of an Industrial Robot 5 1

Chapter I 1 : Discussion

11 .I : Communication
First of all it must be made clear that this project adds a whole new dimension to the

study. It is, of course, obvious that communication is a major subject in this project. In
order to prepare the students for their future career this communication part that
couldn't be found in earlier projects is very educational. But on the other hand it was
also the most difficult part of the project. Understanding each other turned out to be
very difficult.

Also the fact that the two groups of students came from different faculties was a
somce for soxe minor miscommunication. The hWS-students were stdying or, the
electrical engineering faculty, whereas the TUE-students follow their courses at the
mechanical engineering faculty.

Later on during the project, it became clear that the video conferencing sessions
were not the best source of communication. That role was taken in by letters via E-
mail. On the other hand those video conferencing sessions were certainly not
redundant.

The meetings via the Internet, using NetMeeting, however, were redundant. Due to
low bandwidth on the Internet and the bad sound and video quality, those meetings
didn't add anything constructive during this project.

11.2: Recommendations
The start of the project was the toughest. Both groups of students (NUS & TUE)

wanted to work on it at once. But as the NUS-students were depending on the
information given to them by the TUE-students, the last ones had to do double work.

First, they had to find out what the 'problem' was and how the system worked, and
at the same time they had to provide the NUS-students with all the information they
needed to start with their part of the project. In future similar projects, this can be
avoided by letting the TUE side first find out how everything works. Then, when they
have made a working controller the NUS-students can join. From that point on both
parties can work. The TUE-side can improve their controller and also they can
provide the NUS-side accurately and fast with the information on the system.

Another point which can use improve at TUE side, is the planning of the project.
Now the three students worked most of the time together. Much more productive it
will be, if the students would work parallel to each other. That is not possible all the
time, because every one has to understand certain parts of the project. But the
planning could have been better.

Even when the planning is better, the time for the project is too short. Previous
years, teams of four persons worked on the project. Now, a three-person team works
on the project and also has to maintain communication with the other team.

Due to the lack of familiarity with micro controllers, digital to analog~le and
analogue to digital converters, digital PID control and the Microsoft Visual C++
programming language a lot of time had to be spent in understanding, learning and
experimenting before the controller and its software could be successfully
implemented.

Control of an Industrial Robot 52

Conclusion

The joint project between the Mechanical Engineering department at the Technical
University of Eindhoven and the Electrical Engineering department at the National
University of Singapore is quite successful.

It is very informative and useful to work together with students from another
country and with a different technical background. Good planning and communication
are two very important skills needed to successfully complete this project. Those
skills have certainly improved since the start of the project. Also writing a report in
English is useful.

-4 lne project itself is more conp:icatecl a id costs more time th211 was feresem. After
a couple of months of hard work, it's uplifting to conclude the control Sox does
almost work the way it should. Some errors and minor bugs still exist, but the goal to
make the robot move is achieved.

Control of an Industrial Robot 5 3

Literature list

[I] G.F. Franklin, J.D. Powell & A. Emani, Feedback control of dynamic systems.
3rd Edition, Eddison-Wesley, 1994

[2] M.P. Koster, W.T.C. van Luenen & T.J.A. de Vries, Mechatronica, 5th
Edition, dictaat, Technische Universiteit Twente, 1998

[3] M. Steinbuch & M. Vervoordeldonk, Control System Tuning, Philips
CFTIPRLE, 1996

[4] Dictation Constructieprincipes 1, Bedoeld voor het nauwkeurig bewegen en
positioneren, Eindhoven University of Technology, Mechanical Engineering,
Precisicn Engineering, march 1998

[5] EI. B~tler, Stage Colltro! in PAS5500-based Step & Scan Systems, ASML
Control Course TUE 1999,21-10-1999

[6] R. v.d. Molengraft, Sheets belonging to the project Control of a Industrial
Robot,

Control of an Industrial Robot 5 4

Symbolic List

Time
Position
Velocity
Acceleration

Length
Force
Current
Voliage
Frequency
Freauencv

I second

t
x
v

h j l i t u d e
Phase
Resistance
Power
Jerk

Control of an Industrial Robot 5 5

a

1
F
I
V
f
(I)

Seconds
Meters
Meters per second

H

cP
R
P
J

s
m
ms- '

Meters per squared
second
Meters
Newton
Ampere
Volts
Hertz
Radians per second

m ~ - ~

m
N
A
V
Hz
rads-'

Decibels
Degrees
Ohm
Watt
Meters per 3rd power of

dB
0

C2
W
ms-'

Appendix 1: The calculation of constants

In this section the determination of constants used in chapter 3 is executed. The
formulas (3.1)-(3.3) are repeated here:

x (t) = - a . s i n (b . t) + c - t + d (Al. 1)

a(t) = (a b2) . sin(b . t)

Using formula (A!. I)-(A1.3):

0 r b . t 5 2n with: O l t l dt .so:

A constant term is added to formula (A1.2) to let the velocity walk from '0' to
'vmaxY instead of '-0,5.vmax' to '0,5.vmaX'. This term equals:

c = 0,5 . Vmax

The last term from equation A1 .1 is founded by:

If: t = 0, then x(0) = xo d = xo

Calculating the minimum time to accelerate and decelerate 'dt', equation (A1.2) and
(A1 .3) are used:

(a . b) = 0,5 - v,,, and a . b2 = a,,
Figure A1. I : Course of velocity

gives:

Using the definition for 'b':

Control of an Industrial Robot 56

Appendix 2: Equations new trajectory

Table A2.1: Definition of the dzferent zones used in

Table A2.2: r eqzitrrions belonging r o rhe zones tiset1 in cluipter 2, jigire 2.2
equation

v = JT, T, - JT; = v,,,

Control of an Industrial Robot 57

Appendix 3: The Trajectory M-files
Name: Setp0int.m ~2 y2 ZI I 0;

x4 y4 z l 1 0;

% Clearing all figures and variables
clear all;
close all;

% Defining some global variables
global data; % Used for saving path-
information
global fs; % The sample frequency
global to; % The initial starting time
global total-data; % Total data matrix consist of all
data marixes

global newdatax;
generation
globai newdatay;
generation
global newdataz;
generation
global newdatamag;

fs = 1000;
to = 0;
total-data = 0;

vmax = [I I I 1;
a m a x = [4 6 6] ;

% Used for TUE setpoint

% Use6 for TUE setpoint

% Used for TUE setpoint

% Used for TUE setpoint generation

% Matrixes for TUE setpoint generation
[xO XI vmax amax jerk to] en [onloff to]
newdatax = [I;
newdataxy = [I;
newdataxz = 0;
newdatamag = U;

% Factor to extend time with
a = I;

% Square in xy-plane with z-movement
p = [0.130 0.010 -.030;

0.640 0.01 0 -.220;
0.640 -.360 -.030;
0.1 30 -.360 -.220;
0.130 0.010 -.030];

% Diamand in xy-plane
p = [0.1000 -.I700 -.1000;

0.3850 0.0000 -.1000;
0.6700 -. 7 700 -. 1000;
0.3850 -.3400 -.1000;
0.1000 -.I700 -.1000];

% Diagonaal van min naar max
p = [0.130 0.010 -.030;

0.640 -.360 -.220;
0.1 30 0.01 0 -.030];

% Haasje-over
% ?O is the natural start position
z0 = -.050; z l = -.loo; z2 = -.170; z3 = -.220;
xO = 0.400; XI = 0.640; x2 = 0.490; x3 = 0.340; x4 =
0.190;
YO = -.200; y l = -.190; y2 = -.180; y3 = -.190; y4 =-,180;
w = l ;
% Beweeg van 'row i' naar 'row i+ l ' met de parameters
van 'row i'
p = 1x0 yo zo 0 0;
XI y l z2 0 0;

% Computing the paths -> total-data
for(i= l : l :size(p,l)-I),

axcomp(p(i,l:3), p(i+1,1:3), vmax, amax,p(i,4),p(i,5));
end

% Plottina the data
plot(tota12ata(:, I),
total~data(:,2),'r',total~data(:,l),total~data(:,3),'g',total~da
ta(:,l),total-data(:,4),'b',total-data(:,l),total-data(:,5)110,'
k:');
axis([min(total-data(:,l)) max(tota1-data(:.l))
min(min(tota1-data(:,2:5))-0.10)
max(max(total~data(:,2:5))+0.1 O)]);
title('x:red y:green z:blue magnetstatus:black');
xlabel(7ime [s]');
ylabel('Position [m]');

Control of an Industrial Robot 58

Name: Axc0mp.m

function axcomp(x0,xl ,vmax,amax,magnet,gewlengte)

global data;
global fs;
global to;
global total-data;
global newdatax;
global newdatay;
global newdataz;
global newdatamag;

magnet = magnet;

for(i=l:3!,
% The delta-path
dx(i) = XI (i) - xO(i);
% Total minium time to startup and slow down
dtx(i) = vmax(i)*pi/amax(i);
% The path which has been covered by startingup and

slowing down
x-in-dtx(i) = 0.5*abs(dtx(i))*vmax(i);
% If that path is smaller than the required path, a

constant velocity part is required
if(x-in-dtx(i) <= abs(dx(i))),

t-total(i) = (0.5*vmax(i)*pi)/amax(i) +
abs(dx(i))/vmax(i);

else,
% No constant-velocity-part. This means de vmax

has to be changed:
% dx = 0.5*dt*vmax = (0.5*pi*vmaxA2)/amax
vmax(i) = sqrt(2*abs(dx(i))*amax(i) I pi);
% dt also changes because the total path must be

the same
dtx(i) = vmax(i)*pi/amax(i);
t-total(i) = dtx(i);

end
end

% The maximum minimum-time of the three paths
t-totalmax = max(t-total);

opll = (-b-sqrt(bA2-4*a*c))1(2*a);
op12 = (-b+sqrt(bA2-4*a*c))/(2*a);

vmaxtemp(i,l) = opll;
% No constant velocity part
% dx = 0.5*dt"vmax
vmaxtemp(i,2) = abs(dx(i)) 1 (O.5*t-totalmax);

% total time in case of cons.vel.part
tmaxtemp(i,l) = (0.5*vmaxtemp(i,l)*pi)/amax(i) +

abs(dx(i))/vmaxtemp(i, I);
%total time in case with no cons.vel.part
tmaxtemp(i,2) = (0.5*vrna~temp(i,2)~2*pi)lamax(i);
% trying to find the good solution
if(tmaxtemp(i,l) - t-totalmax < 0.01),

vmax(i) = vmaxtemp(i,l);
elseif(tmaxtemp(i,2) - t-totalmax < 0.01),
vmax(i) = vmaxtemp(i,2);
else,
fprintf('Failure, this program sucks!!!!\nl);

end
% Starting a new matrix for the path-data

lengte = ceil(t-totalmax*fs);
end

end

if(gewlengte*fs > lengte),
lengte = gewlengte*fs;

end

% Computing the paths of the axis
for(i=l:3),

setsen(xO(i), XI (i), amax(i), vmax(i),i,lengte,magnet);

% This part is included to compute the jerk, needed for
TUE setpoint generation

dt2(i) = vmax(i)*pi/amax(i);
delta(i) = -(vmax(i)/amax(i)) + 0.5*dt2(i);
if(delta(i) == 0),

jerk(i) = 0;
else,

jerk(i) = amax(i) 1 delta(i);
end

end

% Updating total-data matrix by placing newest
if(t-totalmax < gewlengte),

t-totalmax = gewlengte;
movement behind it
total-data = [total-data; data];

end % Updating the newest starting time

% If all axes are zero, the length doesn't change
to = totalpdata(size(tota1-data,l), I) + l/fs;

lengte = 0; %fprintF('DONE\nl);

for(i=l:3),
% Calculating new velocities % Needed for TUE setpoint generation

if(dx(i) == 0),
newdatax = [newdatax; xO(1) XI (I) abs(vmax(1))

vmax!i) = 0;
abs(amax(1)) abs(jerk(1)) to];
iieflda:ay = jiiev;ilatay; xn~2\ ", , - I A I (2) ~US,V, h ',,- ,aA, "12\\

else,
% In case with a constant velocity part: abs(amax(2)) abs(jerk(2)) to];

newdataz = [newdataz; xO(3) XI (3) abs(vmax(3))
% vmaxA2*pi/2/amax - t-totalmax*vmax + dx =

abs(amax(3)) abs(jerk(3)) 0
a = pi/2/amax(i); b = -t-totalmax; c = abs(dx(i)); newdatamag = [newdatamag; magnet to];

% Opll seems to deliver the good solution

Control of an Industrial Robot 59

Name: setgen.m

function
[data]=setgen(pO,pl ,MaxA,MaxV,as,lengte,magnet)

global data;
global fs;
global to;
global total-data;
global newdatax;
global newdatay;
global newdataz;
global newdatamag;

% Max. velocity and max. accelaration
vxmax = MaxV;
axmax = MaxA;
%as = as;
%iengie = iengie;
% Start and end positions
x0 = p0;xI = p l ;dx = XI - xO;

if(dx == 0),
O/O The position does not change
t = [to: l/fs:tO+(lengte-l)/fs]';
x = xl*ones(size(t,l), 1);
v = O*ones(size(t,l), 1);
a = O*ones(size(t,l), 1);

% computing the size
size-t = size(t,l);
size-x = size(x,l);

else,
if(dx < 0),

vxmax = -vxmax;
axmax = -axmax;
end
% Computing the minimum time to reach max.

speed with max. acc.
% NOTE: dt = 2 * minimum time
dt = (vxmax*pi)/axmax;
% End time when maximum 'v' has been reached
t l = t0 + 0.5*dt;
%Computing the moved lenght in t:[tO,tl] and

~ ,.
x23 = xO1;
% So the lenght to go 'x12' is the total lenght minus

x01 and x23
~ 1 2 = dx - ~ 0 1 - ~ 2 3 ;
if((dx> 0 &x12>0) I (dx<O&x12<0)),

% The time that takes on top speed:
t12 = x l2 1 vxmax;

else,
vxmax = dxI(t1-to);
t12 = 0;
end
% So:
tO = reaii ceiijiG*k jifs j;
t l = real(ceil((t0 + 0.5"dt)*fs)/fs);
t2 = real(ceil((t1 + tl2)*fs)lfs);
t3 = real(tO+lengte/fs);
t-constant = t12;
t-total = t3 - to;
% Acceleration phase
to1 = [tO:l/fs:tl]';

v0l = - 0.5 * vxmax * cos((2*pi)/dt * (t01-to)) +
0.5*vxmax;

a01 = 0.5 * vxmax * (2*pi)/dt * sin((2*pi)/dt * (t01-

if(t12 -= 0),
% Constant velocity phase
t12 = [tl:I/fs:tZ]';
v l 2 = vxmax.*tl2./tl2;
a12 = O."t12./t12;

x12 = x01(size(x01 ,I)) + vxmax.*(tl2-(tl+l/fs));
else,
v l 2 = [vxmax];

a12 = [O];
x12 = [x01 (size(x01 ,I))];
t12 = [tl];
end

% Deceleration phase
t23 = [t2:l/fs:t3]';
v23 = - 0.5 * vxmax * cos((2*pi)/dt * (t23-t2+0.5*dt)) +

0.5*vxmax;
a23 = 0.5 * vxmax * (2*pi)/dt * sin((2*pi)ldt * (t23-

t2+0.5*dt:);
x23 = (XI 2(size(x12,1)) - x01 (size(x01 , I)) + xO) -

(0.5*vxmax*dt)/(2*pi) * sin((2*pi)/dt * (t23-t2+0.5"dt)) +
0.5*vxmax*(t23-t2+0.5*dt);

% Combining the matrixes
x = [xOl ; XI 2; ~231;
v = [vOl ; v12; ~231;
a = [a01 ; a1 2; a231;
t = [to?; t12; t231;
% computing the size
size-t = size(t,l);
size-x = size(x,l);
% For some weird reason the matrix is sometimes
% smallerilarger than 'lengte'. So this alters
% the matrix by cutting of some info or adding
% some info
t = [tO:l/fs:tO+(lengte-l)/fs]';
size-t = size(t,l);
teller = 0;
while(size-x -= lengte),
if(size-x > lengte),
%fprintf('Axis %d too big. Correcting ... \nt,as);
x(size-x) = u;
size-x = size-x - I ;
end

if(size-x < lengte),
%fprintf('Axis %d too small. Correcting ... \nl,as);

for(i=size-x+l : I :lengte),
x(i) = x(size-x);

end
size-x = size(x,l);
end

end
end

% Filling of the matrix
if(as == I) ,

data = 0;
% Only the first time the time-table is required and the

magnet
data(1 :size-t,l) = t(1:size-t);

data(1 :size-t,5) = magnet*ones(size-t,1);
end
%The path data
data(1:size-t,as+l) = real(x(1:size-t));

Control of an Industrial ~ o b o t 60

Appendix 4: The M-file to fit a transferfunction

Name: Fitten.m

clear all
close all

bepalen = 0;
weergeven = I ;

fb = 10; % Beginfrequentie
fe = 100; % Eindfrequentie

wb = 10; % Begin hoekfrequentie van de plot
[radls]
we = 500; % Eind hoekfrequentie var! de p !d [radls]

if(bepalen == 1),

if(i == 1),
load x-as1

load Hpx-asmid
end
if(i == 2),
load y-as1

load Hpy-asmid
end
if(i == 3),
load z-as1

load Hpz-asmid
end

% Overdrachtsfunctie bepalen
H = mean(Hpt)'; % Gemiddelde van

load x-as1
load Hpx-asmid
load overx2

end
if(i == 2),
load y-as1

load Hpy-asmid
load overy2

end
if(i == 3),
load z-as1

!oad Hpz-asmid
load overz2

end

figure
%sys2 = tf([l 0 650 7676],[1 0 I);

% Het uitrekenen van de waarden van de matrixen
[magl , phasel , w l] = bode(sys,{l ,3l 42));
[mag2, phase2, w2] = bode(sys2,{1,3142));
%[mag2, phase2, w2] = bode(sys*tf([l.6 16.5

30.91,[1 01),{1,3142));
%[mag2, phase2, w2] = bode(sys*tf([0.25

0.42 0.12],[1 0]),{1,3142));
%[mag2, phase2, w2] = bode(sys*tf([lO 650

76761J1 01),{1,3142));

alle responsies
% Stapje in de

% Aanpassen van de matrices, omdat Matlab ze
df = hz(2)-hz(1); hierboven

frequentie % ... in een heel raar formaat wegschrijfi
magl = reshape(mag1 ,size(magl,3),1);

nb = round(fb1df); % Begin increment phasel = reshape(phase1 ,size(phasel,3),1);
ne = round(fe1df); % Eind increment mag2 = reshape(mag2,size(mag2,3),1);

hz = hz(:,[nb:ne])'; % Matrix aanpassen
phase2 = reshape(phase2,size(phase2,3),1);

H = H([nb:ne],:); % Matrix aanpassen phase1 = wrap(phase1);

[num,den] = frfit(H, hz, [14,14,2]); YO
phase2 = wrap(phase2);

Overdracht fitten % Weergeven van de waarden

sys = tf(num,den);
% Systeem opstellen

if(i == 1),
save ovex2.mat den num sys

end
if(i == 2),

save overy2.mat den num sys
end
if(i == 3),

save overz2.mat den num sys
end

end
end

if(weergeven == 1),
for(i = 1 :3),

if(i == 1),

%subpl~(2,1 ,I);
semilogx(w l , 20*log10(magl),'k',w2,

20*log1 O(mag2),'k:');
ylabel('Magnitude [dB]'); xlabel('Frequency [radls]');

title('Magnitude plot of x-axis');
a = axis; axis([wb we -100 01);
legend('Fit','System');
%grid on

%subplot(2,1,2);
%semilogx(w l , phasel , w2, phase2);
%ylabel('Fase [graden]'); xlabel('0mega [radls]');

title('Fase Diagram');
Yoa = axis; axis([wb we a(3) a(4)l);
%grid on

end
end

Control of an Industrial Robot 6 1

Appendix 5: AT89C52 Code

PIN equ PO ;input port from the PC
PINS equ P0.3 ;input status pin
POUT equ P2 ;output port to PC
POUTS equ P2.3 ;output status pin

DATABUS equ P3 idataport to communicate with DAC and ADC
MO equ P2.1 ;multiplexer channel selection pin 1
M I equ P2.0 ;multiplexer channel selection pin 2
A0 eou P I .0 : ADC and DAC A0
A1 equ P1.l ; DAC A1
DAC-CS equ P I .2 ; chip select of DAC
ADC RC eau P I .3 ; readlconvert of ADC
ADC~CE equ P I .4 ; chip enable of ADC
DAC-EN equ P I .5 ; DAC multiplexer enable
ADCEN equ P I .S . A"P .-.. I F 4 , YU Illdlli)llexer eiiable
LIGHT equ P I .7 ; Control box light control pin
TIMER-B equ 2fh.0 ;Timing bit for multiplexer

X-OUT-1 data 30h ;stor for output voltage for x axis
X-OUT-2 data 31 h
Y-OUT-1 data 32h ;stor for output voltage for y axls
Y-OUT-2 data 33h
Z-OUT-1 data 34h ;stor for output voltage for z axis
Z-OUT-2 data 35h

X-POS-1 data 36h ;storage for location for x axis
X-POS2 data 37 h
Y-POS-1 data 38h ;storage for location for y axis
Y-POS-2 data 39h
Z-POS-1 data 3a h ;storage for location for z axis
Z-POS-2 data 3bh

a. Interrupt Vector Table

ors OOOOh ;System reset - jumps to start
J ~ P start
erg OOObh ;Timer 0 interrupt. Intiallsing of
setb TIMER-B
reti

I. lnitialisation of lnterrupt Enable Register

start:
mov IE. #10000010b ;enable T~mer 0
mov TMOD. #00100010b ;setting appropriate modes for Timer 0

mov THO, #Od2h ;Set timer interrupt to 0.2 rns
;Configured for a 11.059Mhz crystal

clr LIGHT

initialisation:

mov
jc
mov
an1
cjne
mov

mov
jnc
mov
setb
an1
cjne
mov

ini-wait:

mov

;initialisation loop to s~gnify new sampling phase

C, PINS
initlalisation
A, PIN
A, MfOh
A, #10100000b, initlallsation
POUT, #10100000b

C, PINS
initiallsation-2
A, PIN
POUTS
A. WfOh
A, #01010000b, initialisation
POUT. #01011000b

A. PIN
an1 A; mf8h
cjne A, # I 11 11000b, ini-wait

.
c. Main Programme Loop

main: call sensor ;to sense the location of robot
call output-pc ;to output to pc the location of robot
call input-pc ;to input from pc the required output voltage
call motor ;to outout the voltage to the appropriate channels

Control of an Industrial Robot 62

jrnp initialisation;

;input-pc : input output voltage from PC

input-pc:
call pann
mov X-OUT-1, RO
call parin
rnov X-OUT-2, RO
call parin
rnov Y-OUT-1, RO
call parin
mov Y-OUT-2, RO
call parin
mov Z-OUT-I, RO
call parin
mov Z-OUT-2. RO

ret

;input x output voltage

;input y output voltage

;input z output voltage

;output-pc : output position to PC

output-pc:

rnov
mov
call
rnov
call
m v
call
rnov
call
mov
call
mov
call

out-wait:
rnov
jnc
rnov

ret

POUT, #00001000b
RO. X-POS-1
parout
RO. X-POS-2
parout
RO. Y-POS-1
parout
RO, Y-POS-2
parout
RO, Z-POS-1
parout
RO, Z-POS-2
parout

C. PINS
out-wait
POUT, #01011000b;

;output x position

;output y position

;output z position

;parout : byte output from PC from RO

parout: rnov
jnc
mov
an1
rnov
clr

powait: mov
JC
mov
an1
rl
rl
rl
rl
mov
setb

ret

C, PINS
parout
A. RO
A: #OfOh
POUT, A
POUTS
C, PINS
powait
A, RO
A, #00fh
A
A
A
A
POUT, A
POUTS

;parin : byte Input from PC into RO

parin: mov
1c
mov
clr
an1
mov

pwait: rnov
jnc
mov
setb
an1
rr
rr
rr
rr
or1
rnov

ret

C, PINS
parin
A, PIN
POUTS
A, #OfOh
RO. A

C. PINS
pwait
A. PIN
POUTS
A, #OfOh
A
A
A
A
A, RO
RO, A

;motor : Outputing Analogue voltages,

motor:

Control of an Industrial Robot 63

mov
mov
clr
clr
call

RO, X-OUT-1
R1, X-OUT-2
MO
M I
dtoa;

;output X voltage to channel 1

;output Y voltage to channel 2 RO. Y-OUT-1
R1. Y-OUT-2
MO
M I
dtoa

mov
mov
setb
clr
call

;output Z voltage to channel 3 RO, Z-OUT-1
R1.Z-OUT-2
MO
M I
dtoa

mov
mov
clr
setb
call

mov
an1
cjne

A, X-OUT-2
A, #Ofh;
A. #Ofh, no-magnet ;check to see ~f magnet is to be on from control ntbble

magnet:

RO, #Om ;magnet on sequence
R1, #OfOh
MO
M1

mov
mov
setb
setb
call dtoa
imp home-magnet

no-magnet:

mov
mov
setb
setb
call dtoa

RO, #080h
R1, #Oh
MO
M I

;magnet off sequence

home-magnet:

mov
an1
cjne

A. Y-OUT-2
A. #Ofh
A. #OOh, lite ;check to see if llght IS on

;light off sequence
no-lite:

clr
imp

LIGHT
home-lite

Ihte:
setb LIGHT ;light on sequence

home-lite:

ret

;dtoa : Digital to Analogue conversion. Outputting RO(MSB) R1 (LSB)

dtoa:

mul-out:

mov
setb
clr
clr
mov
cl r
setb
clr
setb

mov
setb

jnb
cl r
clr
cl r

ret

DATABUS, R1 ;input 4 bit LSB(lefl justified)
A0
A1
DAC-CS
DATABUS. RO
A0
A1
DAC-CS
DAC-EN

A, #Od
TRi

:imolementation of 0.05rns delav

;sensor : Stormg analogue inputs.

sensor:

call atod
rnov X-POS-1. RO
mov X-POS-2. R1

setb MO
clr M I
call atod
mov Y-POS-I, RO

;sensing Y position

Control of an Industrial Robot 64

mov Y-POS-2. R1

clr MO
setb M I
call atod
mov Z-POS-1. RO
mov Z-POS-2, R1

;sensing Z position

ret

* --------.-------------------------------
;atod : Analogue to Digital Conversion. Storing Input in RO(most sig)
;and Rl(1ess sig)

atod:
setb
clr
clr
setb
setb
clr
clr

mov
clr
setb
setb
mov
cl r
clr

mov
setb
setb
setb
mov
clr
clr

ret
end

ADC-EN
A0
ADC-RC
ADC-CE
ADC RC
ADC~CE
ADC-EN

:full 12-bit conversion

DATABK, #Offin
A0 :read~ng 8 most significant bits
ADC-RC
ADC-CE
RO, DATABUS
ADC-CE
ADC-RC

DATABUS, #Om
A0 ;reading 4 least significant bits
ADC RC
ADC~CE
R1, DATABUS
ADC CE

Control of an Industrial Robot 65

	Voorblad
	Index
	Introduction
	1. The robot
	2. Setpoint generation
	3. Controller structure
	4. System Identification
	5. Final control of the robot
	6. Hardware introduction
	7. Hardware
	8. Software for micro controller
	9. Software for PC�
	10. Achievements of the control box
	11. Discussion
	Conclusion
	Literature list
	Symbolic list
	Appendix 1. The calculation of constants
	Appendix 2. Equations new trajectory
	Appendix 3. The trajectory M-files
	Appendix 4. The M-file to fit a transferfunction
	Appendix 5. AT89C52 Code

