

Software cost estimation and control : lessons learned

Citation for published version (APA):
Heemstra, F. J., & Kusters, R. J. (1992). Software cost estimation and control : lessons learned. In European
software cost modelling meeting : proceedings, 27-29 May 1992, Munich, Germany

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/24e28b61-c491-4f85-876c-8275aacd9f5f

SOFTWARE COST ESTIMATION AND CONTROL ; LESSONS

LEARNED

1 Introduction

Dr.ir. Fred J. Heemstra

Dr. Rob J. Kusters

University of Technology

P.O. Box 513

5600 MB Eindhoven

tel: 31 40 472290

The research group "Control and Estimation of Automation Projects" of the
Eindhoven University of Technology has been active in research on software cost
estimation for several years now. This resulted in two Ph.D studies and several
Master Studies. Research projects in industry are also carried out on a regular basis.
After years of research the question that cropped up was: What have we learned
after all ? Is it possible to formulate some general conclusions, Are we able to
indicate the key problems or even the key solutions for software cost estimation
(SCE). Our aim is to give some critical reflections in this paper.

We start with the formulation of five objectives of software cost estimation and
control in section 2 . For each objective several critical remarks, that is to say
shortcomings and advices for improvements, are given in section 3. By confronting
objectives and evaluations our view on the current state of SCE is presented. One
main conclusion is reserved for the last section, namely that SCE required active
involvement by each organization.

2. Objectives of estimation

It is possible to sum up without much difficulty a list of objectives to achieve with
an estimation. We will concentrate on what in our view are the five major goals.

I. Insight in order to forecast.
From this perspective an objective of estimation is obtaining insight in the
development process, in the product to be developed and in the means of
development. This insight informs the developers about the rules in software
development, the influence of cost drivers, the effects of productivity

2

improvement plans, etc. It is an important precondition for predicting the

required development effort and time. Estimation is a simplification of reality.

Because the process of software develotJment is too complicated to decompose

into detailed and predictable routine activities we have to m:JI<:e use of simplified

descriptive models for estimation.

2. A target in order to control.
From this perspective an estimation is regarded as a budgeL An estimation has

an aspect of setting a deadline. This has nothing to do with calculating or

estimating start and end dates. E.g. a software developer will never he satisfied

about his design. For him it is always possible to improve it and he is willing

to do so as long as there is time. Setting deadlines will stop this activity.

3. Commitment in order to accept.
An objective is to acquire shared understanding. Involving developers in the

estimation process will contribute more towards motivating them to realizing

their "own" estimate more than can be expected from estimates that are forced

upon them.

4. Communication in order to open up the discussion.
An estimation is a means of communicating one's ideas. It will as a result be

easier to coordinate activities. Also, an open communication among the members

of the development team and between client and development team leads to

contentedness among client and users and a higher staff morale.

5. Pre-requisite in order to decide go nogo.
An estimation of development effort and duration is one of the inputs for the go

nogo decision of an automation project. Other inputs are estimation of

maintenance and exploitation effort, cost benefit estimations etc. In this paper

we will not concentrate on this objective. At the ISPA conference we presented

a paper on this topic.

We want to emphasize that an estimation is much more than an accurate prediction.

It ha.<.; also to do with a good relati(>n with .:atisfied clients, a satisfied project team,

acquired insight.

•

3

3 Lessons learned

As we stated in the introduction, the lessons we learned from research in the field

of SCE are arranged according the above mentioned objectives. The lessons are

presented as statements. Before elaborating on the statements we want to start with
presenting the complete overview.

a. Objective : Insight in order to forecast

Statements : - SCE is an information problem;

- SCE is impossible without past project data;

- For SCE data collection of the ongoing project is required

- SCE requires what-if analyses;

- An estimation without a risk analysis has limited value;

- An estimation must be based on more than one estimation
technique;

b. Objective : A target in order to control

Statements : - SCE must be a part of the control cycle;

- SCE is an ongoing activity during the development process;

- For SCE holds : measurement enhances knowledge;

- An estimation must not only be focused on effort, time and

resources but also on quality;

- SCE requires clear descriptions of the software requirements;

- Estimations without margins are not estimations;

- Estimating is a matter of clear definitions and agreements;

c. Objective : Commitment in order to accept

Statements : - Involvement in estimating by the developers is a necessity;

- Data collection of past projects must be based on the closed
loop control;

d. Objective : Communication in order to make open to discussion

Statements : - A clear description of definitions, agreements, starting points

and user requirements facilitates communication among
participants;

e. Objective : Pre-requisite in order to decide go nogo

statements Estimation of software development is just one piece of the go

nogo puzzle.

4

3.1 Lessons learned about "insight in order to forecast"

SCE is an information problem.

A prerequisite for estimating is insight in the things one wants to do, the way one

wants to do it and the people, methods and tools one wants to use. Without such

infonnation estimation becomes "guesstimating". The accuracy of the estimation

increases if the infonnation is more complete and more reliable. The required

infonnation can be divided into:

- Product infonnation;

for example users requirements, global design;

- Process information;

for example the way the software will be realized, the development work will

be organized and responsibilities and authorities are divided.

- Development means infonnation;

for example people that are involved in the development process, e.g.

experience and education level.

- Past project and product infonnation;

it concerns facts, knowledge and experience gained during the execution of

projects in the past.

- Progress infonnation of the ongoing project;

this kind of information is important in case of adapting the estimations during

project execution.

The relationship between the different kind of infonnation is visualized in figure I.

SCE is impossible without past project data.

As we said before, past project information is required to estimate. How can we

predict our future if we don't even know our past. It doesn't matter which

estimation technique is used, they all are based on data and experiences of

completed projects.

The consequences for a software development organization/department is collecting

and recording data. A remarkable conclusion of an extensive field study on software

cost control was however that only few organizations collect data on past projects

in a structural way (Siskens and Heemstra, 1989). For another study it took us a lot

of time finding some organization with sufficient and high quality data to

participate in a research on past project data. Even a lot of software houses with

software engineering as their core husiness didn't meet our demands.

~
product I
infonnation

reference
infonnation

PAST PROJECTS

process
infonnation

ESTIMATING

development
means
infonnation

----- _]

progress
infonnation

PROJECT IN PROGRESS

Figure 1 : information required for estimating

Table I : Objects and attributes of Noth's database

PRODUCTS

description and classification rislt estimation and evaluation

size change requests and failures

resource use problem reports

cost reference to persons and functions involved

lead time reference to related products

RESOURCES

• PERSONNEL : -TEAM: -HARDWAR~OFDNARE:

name name name

profile profile members classification

function in project fluctuations function

department absence due to ill ness applicability

problem involvement productivity supplier

productivity product involvement reference to buy decision

absence due to illness problem involvement problem i nvolvemcnt

product involvement

reference to job description

ORGANIZATION

place within organization problem involvement

function experience

product involvement political interest

preferences

5

6

The main question is : what kind of past project information is relevant to collect.

It is difficult to give a closely-reasoned answer and mostly the answer starts with

"it depends". A cost driver like the use of 4GL to'Jis can have much influence on

development effort in organization A but is of no value for organization B

developing software without 4GL tools. The adagium "local for local" is often and

quite rightly used in this connection.

A great deal of the type of information is however organization independent, e.g.

general project information (project name, name customer, lead time, effort). Table

1 shows an example of type of information to collect and record (Noth, 1987).

For SCE data collection of the ongoing project is required

Insight in the development process can be achieved in several ways. One way we

just mentioned, namely collecting and analyzing past project data. Another way is

measuring on ongoing projects. Genuchten et al. (1990) give an example how

measurement at the activity level of software development increased the insight and

improved the control and estimations of future activities. The measuring-instrument

was extremely simple while the achieved advantages were extremely high. Figure

2 shows the measuring-instrument.

The instrument was used for thousands of activities and gave the concerned

development organization insight both in the differences between estimations and

reality and in the reasons for these differences. It turned out to be that maintenance

activities disturbed the development process continuously. The organization was not

aware of the seriousness of this problem. The obtained insight lead to direct control

measures and to estimation improvements.

Table 2 : A measurement-instrument to obtain insight into the development process

Estimation reality differences

Duration

Effort

Starting date

Ending date

I
~

•

7

Collecting data in this way has several advantages. Without much effort -

approximately 15 minutes for an activity of 40 hours- the organization gets insight

into the quality of the estimations. The feedback on estimation is quick and can be

used immediately for re-estimating.

The same as applied to past project data collection holds for measuring on ongoing

projects. Despite the importance of getting insight in the development process by

measuring, only few organizations spend effort on this activity in a structural way.

SCE requires what-if analyses

The estimation quality increases as the information on the product, development

process and development means is more complete and reliable and if the

development organization has sufficient past project and progress information at its

disposal. It often happens however that no clear idea exists of the software to be

realized, of the way it should be realized and of the means required. Sometimes the

lack on information has to do with the specific nature of the project, for example

developing innovative software with unexperienced users and developers unknown

with the application domain. Lack of information usually exists in the early phases

of development in which only the global outlines of the software are known.

Important estimation information is missing which results in uncertainty.

In such circumstances an estimator is not interested in fixed estimations. It is much

more important for estimator and project management to know how sensitive an

estimation is to changing circumstances. For example: what is the effect of two

more analysts on duration; what is the effect of time compression on development

costs; what is the effect of under- or overestimation of software complexity on the

estimation, etc. In dealing thus with the estimation problem, management gets a

better grip on possible solutions and is able to decide well-balanced. Furthermore

there now is a suitable basis for project progress control. If an estimation turns out

to be extremely sensitive for value changes of one or more cost drivers, project

management is warned to pay attention to these cost drivers during project

execution.

In our research we discovered that what-if analyses are rarely used in software cost

estimation in practice. For instance only few software cost models have sufficient

possibilities for what-if analysis.

•.

An estimation without a risk analysis has limited value

Estimating development effort and duration under uncertain circumstances has to

include estimating risks. For a software development organization I department it

is important to recognise possible risk factors, the effect of these factors, how to

handle the risks etc. After answering such questions estimations of effort and

duration can be interpreted better. An estimated effort of 100 man months has a

completely different meaning for a high or low risk project.

SCE Risk estimating consists of:

- Risk-identification

Which factors are have a possible impact on project success. Risk factors can

be identified by using checklist and reviews of completed and comparable

projects.

- Risk-valuation

Define the effect of the risk factors. This effect can be found by combining the

probability of the occurrence with the impact if it occurs.

- Risk-structuring

Ranking the risk factors and defining the mutual dependencies. The existence

of risk A can result in other risks.

- Risk-reduction

Defining the possibilities of reducing the effects of risks.

Existing techniques for risk-analysis can be used especially for risk-identification

and valuation. All such techniques have more or less the same approach. On the

basis of a checklist questions must be answered regarding (see for instance

Rijsenbrij et. al. 1990):

1. Project size.

For example: is the development organization familiar with projects of the

estimated size ?

2. Automation level.

For example: What is the education and experience level of the development

organization with regard to the software to develop '?

3. Technology. II
For example: how familiar is the development team, the user organization and

the software supplier with the technology chosen for the project ?

4. Project organization.

For example: how well is the project organized ?

""'·

,

'

5. Project environment.

For example: under which circumstances is the project executed?

By answering the questions an indication I estimation is made of the project risks.

The combination of effort and duration estimating and risk estimating is not

common property in practice.

An estimation must be based on more than one estimation technique
An estimator can choose from a great number of estimation models. Practically no

model is able to estimate the development reasonably accurate (Abdel-Hamid en

Madnick 1987). This claim is supported by unequivocal test results in literature

(Mohanty, 1981) (Kemerer, 1987) (Rubin, 1985) (Kusters et al. 1991). All

researches give an identical judgment: models are a useful support only if

calibrated, that is to say adapted for the organization in question. A necessary

condition is the availability of an locally collected extensive data set of past

projects. As we mentioned earlier, a lot of organizations are lacking such data.

From that perspective models have limited value in estimating accurate predictions,

the more since a lot of models have no or limited possibilities for calibration. From

that perspective it is sensible for an organization to base an estimation on more than

one estimation technique. A combination of expert judgements, analogy-based and

model estimations springs to mind. The reliability of the estimation is indicated by

the differences between the obtained estimations.

Some concluding remarks on software cost estimation models. Why should

organizations invest in poorly performing estimation models, what benefits can they

expect from these models? The value of a model can be summarized as:

- a model provides management with a set of standards, metrics and directives;

- a model draws one's attention to important cost drivers, sensitiveness of the

software to variations in cost driver's values. In this the model functions as a

kind of checklist;

- a model offers management a quick estimate that can be used as a second

opinion;

- a model is a starting point of an awakening process and is a stimulus to think

seriously on SCE;

- historical estimations from one model within the same organization offer a frame

of reference.

10

3.2 Lessons learned about "Defining a target in order to control"

SCE must be a part of the control cycle

Estimating should not be an isolated activity but a part of a project control strategy.

The role of estimating within project control will be illustrated by the control cycle
(figure 2).

I goal setting 1-l __

I _____)

Figure 2: The control cycle

The goals of the project are the starting point of control. Goals or the project results

are formulated in terms of quality and functionality. Sometimes it is possible to

formulate the results concretely, often however it is not. Software quality in

particular is hard to formulate and is often neglected. Project planning ami

estimating is base_d on the formulated results. The project is divided into phases,

activities and tasks. Execution time, costs and capacities are estimated. It is clear:

the better the project results can he formulated, the better planning and estimating

can be done. Planning and estimation are the basis for execution. An important part

of control is monitoring and evaluation the work. It is examined if the right

software is made or if it has been made the right way. In the previous section a

measurement instrument was presented to obtain insight in the progress of an

ongoing project. Corrections arc necessary in cases of uiflcrcnccs between plan and

reality. Corrections can lead to new and/or adapted targets which have to he

replanned and re-estimated. Adapted plans and estimations in their tum result in

rearrangements in executions that must be evaluated and monitored. And again

corrections are possible. The subsequent activities are closely interrelated and arc

,

ll

perfonned more than once during project execution, starting from vague to exact

and from global to more detailed at each iteration.

SCE is an ongoing activity during the development process

111is statement is a logical result of the previous statement. Like we stated SCE is

not an unique activity during project execution, but an evolving activity. The

control cycle must be gone through more than once during project execution. How

often depends on product characteristics such as size and complexity and on the

degree of uncertainty of the project result. It is not useful to keeps one's finger on

the pulse while constructing simple, well known software. In general however it

applies that one cannot suffice with a unique, static estimation (van Vliet, 1988).

It doesn't fit in with the dynamic characteristics of software development.

Estimation is like aiming for a moving target. A flexible use of a set of estimation

techniques is required. More (reliable) data and details come available during

project execution. As a result the estimation approach must be adapted to the

changing circumstances and the new infonnation. A combination of successively

use of the Wide-Band-Delphi approach, an analogy approach, Function Point

Analysis, Estimacs, and finally COCOMO during the project is an possible option.

As time goes by the insight in the product to be developed increases and makes use

of more formalized estimation techniques possible.

It often happens that software estimation is regarded as an isolated activity of

project control. Estimating, measuring, re-estimating etc. is often done at an ad hoc

basis and not an integrated part of software project management.

For SCE holds : measurement enhances knowledge

In the previous section we emphasised that measuring is a necessary condition for

effective software control. Without data it is hard or even impossible to answer

annoying questions like:

- how reliable are my estimations. What size are over- and underestimations;

- what is the reason for differences between plan and reality;

- what is the productivity of a development team or a spedlic developer:

- what is the effect of a case-tool on development effort and duration;

- what is the effect of reuse on productivity;

- which five cost drivers are the most dominant in my organisation;

- what is the relation between size and effort in my organization;

- etc.

12

Answers to such questions are strictly speaking indispensable for credible

estimating. How can an organization estimate if it is unable to produce the

elementary input. The only way an organization has at its disposal is measuring in

order to produce eventually reference data. From our experience we know that the

previous questions are indeed annoying for most organizations and project

management becomes nervous confronted with such questions. From that

perspective estimation and control are based strongly on intuition in stead of being

based on ratio.

An estimate must be focused on effort, time and resources only, but also on quality

Effort, duration, capacity and quality are important aspects to control and estimate.

'This means continuously balancing between quality on the one hand and effort,

duration and capacity on the other hand. Extra quality means more money and more

time, shortening of development duration can not be done without adverse effect-;.

The effects of time compression are mostly reduced quality and/or an extra increase

in price. In figure 3 the relation is shown.

QUALITY CAPACITY

MONEY TIME

Figure 3:The relation between the control aspects quality, time, costs and capacity.

Clear agreements on time and money are made most of the time. The software must

be delivered at the end of january 1993 and the price is 2 million guilders. It is

equally important to agree on what has to be ready and who has to do what and

when. Without any attention for the these relations, control and estimating has little

value. The project result or the norm to compare the developed software with is

missing or at least open to misinterpretation.

r

•.

13

Successfully estimating means a well-balanced attention for the mentioned control

aspects. A "sound" planning and estimation must be based on certain, unequivocal

and well formulated project results. This however turns out to be an utopia in

practice. Often the estimating emphasis is on time and money first while quality is

neglected.

estimating requires clear descriptions of the software requirements
This statement has been mentioned at different places in the paper. Because it is

one of the most important foundations of estimating, we want to formulate it a.<; an

independent statement. The reliability of an estimation is directly linked to the

clarity of what has to be developed, what capacities are at one's disposal and when

and for how long they are available: it is linked to the clearness of the Target.

Without a clear target control becomes steering a car without a steering wheel.

Clearness is not restricted to a precise description of the software requirements (that

is to say the target) alone, it also means insight in the uncertainties of the

requirements. With this insight a discussion on possible and impossible estimates

can start. Despite the lack of clearness it often happens that (supposedly) clear

estimations are made.

Estimations without margins are not estimations
An estimator has often to do with ill-structured problems, with different and

conflicting goals (cost minimization, quality maximization, minimization of

duration, optimal use of manpower), with many participants (principal, user, project

manager, developers, etc. Exact estimations like "duration is 321 months, effort is

2031 man months, etc" are of little value. Such exact figures are not in accordance

with the nature of the problem.

Software development and estimation is characterized hy uncertainty due to unclear

and ambiguous targets. That is the reason why each estimation must contain an

indication of the level of uncertainty. In figure 4 it is illustrated that several levels

of uncertainties exits. The way management has to deal with controlling and

estimating software projects has to do with such levels. High uncertainty means low

project controllability and high estimation accuracy. Exact estimations don't match

to this situation. Estimations with margins are more appropriated. The higher the

level of uncertainty the larger the margins.

control ability
accuracy

14

\ uncertainty I
\ I
\ I

accuracy of estimation
controlability

high

/I'
·, /

low

\ I
\ I
\ I
", /

"'-, /
'-,,, II

'-, //
' / ' y_

/ --
r-----------~~-----==----/

'minimal' uncertainty

less clear
situation

(-------------~ clearer situation
' /

Figure 4: The relation between clearness and controlability of the project and

accuracy of the estimation

Estimating is a matter of clear definitions and agreements

Condition that have to be fulfilled for successful software cost estimating are the

existence of agreements, clear definitions, standards on the one hand and accepting

and adherence them on the other. Such agreements and directives can refer to:

- How many times has an estimation to be made during project execution.

For example: 5 times for each project with more than 12 man months required

effort;

- In which stage of project execution is estimation required.

For example: ·at the start of the feasibility study and the requirements phase,

after completion of the glohal design etc;

- Who is involved in estimating.

For example: the project manager, the principal, representatives of the

development team;

- What has to be estimated.

For example: all development activities that refer to the phases preliminary

investigation, specification, design etc. or all activities inclusive training,

documentation. conversion etc.

- What are the outcomes of an estimation.

For example: costs in guilders, effort in man months and duration in months.

•.

15

- Which factors can be regarded as the most important cost drivers and must he

the basis for data collection of past projects.

For example the factors size, required reliability, application type, personnel
quality etc.

- Which metrics must be used.

For example: size is expressed in function points which are converted to

number of lines of code (exclusive comment- en blank lines).

The result is a comprehensive enumeration of metrics and standards used during

software development within an organization. It is important that the chosen metrics

are applied consistently. This will result in a consistent set of measured values in

the long run.

Such a list of agreements etc. is seldom used in practice. From that perspective

software engineering has a long way to go towards a full-grown engineering

discipline in which standards, norms and definitions are used as a matter of course.

3.3 Lessons learned: commitment an indispensable prerequisite for successful
cost estimation

Software cost estimation is no problem that can be solved with an algorithm. Like

we mentioned before the goal of estimating is more than a just a prediction of

effort, costs and time expressed in numhers. Estimating requires more than

numerical algorithms. Human I psychological factors have an important impact on

development effort and duration. Examples of these factors are:

experience,

capability I skill,

training-level,

turnover of labour staff,

working environment,

etc.

The importance of these factors is not always recognized in practice. Estimating is

often looked at as a technical problem that demands a technical solution. One has

no eye for a behavioral science approach. The neglect of this aspect can he shown

by the fact that only few estimation models take into account the importance of

human aspect<>. However, several well-known researches clearly show that the effect

In

of such factors, in particular on costs and duration, can not be denied (Boehm 19X I,

Walston en Felix 1977, Mizuco 1983, Jensen 1984 en Jones 19S6).

The human aspects arc reiateci in a complex way. For example: the influence of a

high education level and great experience on work performance is annulled hy

unpleasant work circumstances or by the indifference or even opposition of

colleagues. Rivalry, a hostile sphere, internal political intriguing are fatal for the

success of an software project and its estimation. Jones (Jones 19R6) claims that 10

to 15% of the software projects fail because of these reasons. Matsumoto (llJX7)

claims that an ideal working environment is the most important condition for a

successful software development project. An ideal working environment is created

by paying attention to working space, management style, organizational culture, rate

of pay, career planning, training and education, availability of automated tools and

the presence of a clear development strategy.

This short excursion into the humm aspects of software engineering shows the

complexity of these interacting effects on a software cost estimation and also show

the limited view of estimation models. Estimating is a managerial problem of

creating first of all ideal working conditions and secondly getting grip on the effects

of "soft" cost drivers on work performance e.g. development time and effort.

The way the estimations were achieved are in the end maybe as important as the

estimations themselves. The preliminary discussions, the collection of relevant

information, attention for an ideal working environment etc. encourage a conscious

dealing with the problems of software cost estimation and initiate awakening- and

learning process in an organization.

Involvement in estimating by the developers is a necessity

Commitment of the development team members is an important aspect in

estimating. Involvement in estimating becomes more important as uncertainty and

fuzziness in the software development incrca.'lcs. An organization that develops

software in uncertain circumstances will have to usc professional, high qualilicd

personal. In general professional developers have specific characteristics (Grinwis
1989). For example:

- individualism in the way of performing their professional actjvities is of great
importance;

- a high qualified result is considered important;

- the professional wants involvement by the management in the way of working
and in the required results;

•

17

- professionals don't like any interruption hy management when doing their joh.

They prefer high independence.

From this perspective it is not sensible to confront developers with an estimation

and plan imposed by the management. Plan and estimation must he realized in joint

discussion. Added advantages are that the advice of experts/specialists is taken into

account and the real executors are consulted about the estimation prohlemalic. The

main benefit however is that it results in higher involvement and in the end in a

higher commitment, indispensable for a successful project.

Data collection of past projects must be based on the closed loop control

Another reason why commitment is important is based on the principle of closed

loop control (Bemelmans, 1991). Starting-point of this principle is that the

reliability of data depends in the end on the quality of the input data, that is to say

of the collected and recorded data. To maximize the quality "suppliers" of data have

to know why they have to supply the data, for what purpose the data are used, that

is to say they have to be aware of the interest of their data supply. Awareness alone

is not sufficient for motivation purposes. They also need quick feed-back of the

supplied data as control information. Close loop control fits directly with software

cost estimation. Collecting and recording of project data asks for extra effort of the

developers. They are willing and motivated to spend extra effort, if they receive as

compensation relevant reference information. The reference information must he

directly applicable as input information for estimating and project progress control.

Like we mentioned several times: creating the righl conditions li>r successful

estimating is a management task and is, in our opinion a very relevant part of

software cost estimation.

3.4 Lessons learned : Estimations as a mean for Communication

The importance of measuring has been explained extensively. A final remark with

regard to communication is required. Measuring is of course not a goal in itself.

Our experiences with using the measurement instruments mentioned before were

that the developers themselves started a discussion using the measurements as

starting-point. Discussions were held on facts and not on myths. Insight in the

development process was an important motivation for the developers to start the

discussion.

18

A clear descriptions of definitions, agreements, starting point and user requirements
facilitate the communication among the participants
Discussions are a much easier and have more meaning is they are based on facts

and are understandable because the same language has been used An organization

that has such a set of definitions, metrics, directives at it's disposal has a excellent

point of departure to make estimating successfully. Owning definitions, etc. is not

sufficient. The organization must be willing to use these consistently. Some pressure

by management is required. Also training, information and the availability of

consultation whenever problems arise are necessary. Just like any other engineering

discipline software engineering must learn to work according to standards and

norms.

4. Estimating: you have to do it yourself in the end !

Despite the lessons learned and all the advices mentioned before, despite the

availability of an extensive set of estimation techniques and models, software cost

estimation is for 90% an activity that must be initiated, carried out and done by the

organization itself. It is for example insufficient to buy an estimation model. The

organization itself has to formulate what kind of information it needs, what relevant

data have to be collected and recorded as reference information, which procedures

and definitions it wants to use, how estimating must be imbedded in the current

project control approach, how software developers can be motivated and committed

to estimate according to a prescribed approach and supply project data etc.

Estimation models can only be a additional support in this process.

From our critical remarks at the end of the statements mentioned above the

conclusion is justified that the control of software engineering activities has a long

way to go to become a full-fledged engineering discipline. A lack of history,

reference material and experiences, ill-formulated definitions, agreements and

specifications, working under high pressure without much attention for the

engineering aspect and no or at least little attention for control aspects, an

underestimation of human c.q. managerial aspects, etc- that's all together the state

of the art at this moment

The development of an estimation strategy requires a substantial sacrifice of the

organization. Collecting reference information for example will cost several years.

The benefits will surely exceed the costs in the long run.

19

References

- Abdel-Hamid, T.K., en Madnick, S.E.

"On the portability of quantitative software estimation models." Infonnation

and Management, 13, 1-10, 1987.

- Basili, V.R., Rombach, H.D.

"The Tame Project: towards improvement oriented software environments",

IEEE Trans. Software Eng., Vol. SE-14, no. 6, pp 758-773, 1988.

- Bemelmans, T.

Management Information Systems and Automation, Stenfert Kroese, 1991 (in

dutch).

- Boehm, B.W.

Software Engineering Economics. Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 1981.

- Genuchten, M., Heemstra, F., van Lierop, F., Volkers, R.

"Has someone seen the software already ? (in dutch), In: Informatie (1990)
- Grinwis, P.

"Controling education departments" Lecture Education Centre for Industry

and Government (in dutch), 1989.

- Jensen, R.W.

"A comparison of the Jensen and COCOMO Schedule and Cost Estimation

Models." Proceedings of the sixth ISPA Conference, San Fransisco, 1984.

- Jones, C.

Programming Productivity, McGraw-Hill, 1986.

- Kemerer, C.F.

"An empirical validation of software cost estimation models." Communications

of the ACM, volume 30, nr. 5, mei 1987.

- Kusters, R.J., Van Genuchten, M., Heemstra, F.J.

"Are software cost estimation models accurate ?" Infonnation and Software
technology, Vol. 32, pp. 187-190, April 1990.

- Matsumoto, E. Y.

"Approaching productivity and quality in software production- How to manage

a software factory." Proceedings of the information technology payoff,

managing productivity and risks, Diebold research program-europe, Parijs, mei
1987.

- Mizuno, Y.

"Software quality improvement." IEEE Computer, 1983.
- Mohanty, S.N.

"Software cost estimation: present and future." Software - practice and

20

experience, 1981.

- Noth, T.

"Unterstutzung des softwareprojectmanagements durch eine Erfahrungs

datenhank." Proceedings Compas '87, Erfolgs faktoren der integrierten

lnformationsver.trbeitung, AMK Berlijn, Mei 1987.

- Rijsenhrij, D., Bauer, A., Kouwenhoven, H.

Project diagnosis, Cap gemini Publishing, 1990 (in dutch).
- Rubin, H.A.

"A comparison of cost estimation tools." Proceedings of the 8th international
conference on software engineering, IEEE, 1985.

- Siskens, W.J.A.M., Heemstra, F.J., van der Stelt, H.

"Cost control of automation projects, a field study". Information, Volume 31,
no. 1, (in dutch) 1989.

- Van Vliet, J.C.

Software Engineering, Stcnfert Kroese, 1988.

- Walston, C.E., en Felix, C.P.

"A method of programming measurement and estimating." IBM system journal,
16, 1977.

