

Generation of semi-optimal gait trajectories for a biped robot

Citation for published version (APA):
Peeters, E. A. C. S. (2006). Generation of semi-optimal gait trajectories for a biped robot. (DCT rapporten; Vol.
2006.124). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ec2e21e5-fa6f-45d9-9358-206522638ada

Generation of semi-optimal gait
trajectories for a biped robot

E.A.C.S. Peeters

DCT 2006.124

Traineeship report

Coach(es): Yuichi Tazaki

Supervisor: Prof. Jun-ichi Imura and Prof. Henk Nijmeijer

Technische Universiteit Eindhoven
Department Mechanical Engineering
Dynamics and Control Group

Eindhoven, November, 2006

Abstract

Over the last decennia there has been a wide interest in walking robots. They are potentially more
capable of moving through the human environment and going over rough terrain than wheeled
vehicles. We generate some 2D gaits for an approximately 0.5 [m] tall human like entertainment
robot and we apply these in a very first experiment. The locomotion types we study are: walking
at constant velocity, accelerating and decelerating. Unlike many others, we explicitly consider
minimal energy consumption. Therefore, the approach to generate gait trajectories is the central
part in this work. This work basically continues the work of Tazaki et al. [1].

Keywords: bipedal walking robots, hybrid systems, optimal control.

2

Contents

1 Introduction 4

2 Methodology 6
2.1 Experimental Setup . 7
2.2 Nonlinear Model . 7
2.3 Approximate model . 9
2.4 Optimization constant velocity walking . 10
2.5 Step sequence optimization . 14
2.6 Implementation . 15

3 Experimental Results 17
3.1 The experiments . 17
3.2 Improving the experiments . 18

4 Conclusions and Recommendations 22
4.1 Conclusions . 22
4.2 Recommendations . 22

3

Chapter 1

Introduction

Over the last decennia there has been a wide interest in walking robots. They are potentially more
capable of moving through the human environment and going over rough terrain than wheeled
vehicles. To move through such environments, bipedal robots need to use various motions. Such
motions include walking at constant velocity, accelerating, decelerating, changing walking direc-
tion and so on.

Ways to generate trajectories for robots have been studied by many authors, but only some of
them have attempted to include a kind of optimality, like Tazaki et al. [1], Denk at al. [3] and Hardt
et al. [4]. Tazaki et al. [1] and Denk at al. [3] concentrate on walking at different velocities and pre-
calculate optimal partial trajectories that can be concatenated into a walk from one position and
posture to another. They minimize a measure of the energy consumption of the joint actuators
during the optimization of the partial trajectories as well as during the concatenation. But their
methods to minimize the energy consumption are different in many ways. In contrast to Denk
et al. [3] for example, Tazaki et al. [1] use an explicit solution as a building block, based on energy
minimization of an approximated system.

Tazaki et al. [1] do numerical simulations. However, it is also desirable to show that the method
can effectively be applied to an experimental setup. Therefore, this research focusses on applying
the method to a speecys SPC001 bipedal robot, which is available on the market (see Figure
1.1). To this end, a multi-body model is developed and the numerical experiment is repeated
for the Speecys robot. The calculated trajectories are applied to the robot in a first experiment.
Additionally, some small changes are made to the method in order to improve the possibilities
for step planning.

The report is organized a follows. First, we explain the techniques we use to derive gait trajectories
in the methodology chapter. This is the central part of this report. It begins with the experimen-
tal setup, it then presents the control method and ends with the implementation of the control
method. Next, we present the experimental results. Last, we briefly summarize our main findings
and present some directions for further research in the conclusions and recommendations.

4

Figure 1.1: Speecys SPC001 robot.

5

Chapter 2

Methodology

The purpose of this chapter is to explain our work in such a way that the reader can understand
and repeat it. Let us begin with the general idea of the previously developed method by Tazaki
et al. [1] and the additions that we make. In the subsequent paragraphs the details will become
clear.

To begin, we need a mathematical representation of the robotic system. Moreover, we need to
define a cost function since we want to calculate energy efficient trajectories. It is only useful
to use a representation and cost function for which the optimal trajectories can be calculated
in an efficient way. Also, the representation must capture the dominant dynamics of the robot.
First, we model the robot dynamics by a nonlinear Lagrange model. Such a model can accurately
capture the dynamics of the robot. To take into account optimality, we design a cost function that
represents the control input energy. This cost function must be minimized. It is quadratic in the
input torque.

Because there is no explicit optimal solution available to the optimization problem consisting
of the quadratic cost function combined with the nonlinear Lagrange model, we obtain a linear
model by an input transformation (feedback linearization). This requires full actuation and no
constraints. Doing so, the quadratic cost function becomes nonlinear instead of quadratic, since
we define a new input. The nonlinear cost function must be transformed into a (piecewise de-
fined) quadratic cost function in order to calculate the optimal trajectories explicitly. This is done
by using a piecewise constant approximation of themassmatrixM and gravity/coriolis/centrifucal
vector H. Thus M and H are sampled. The resulting linear model with a piecewise defined
quadratic control input energy cost function has an explicit solution for the optimal trajectories
once the samples have been chosen.

To get a good piecewise constant approximation for M and H, the sample points must be chosen
in an appropriate way. It is not possible to use a dense grid because this would take too much
calculation time. Therefore, a limited set of samples has to be obtained in a more efficient way.
We optimize the sample points by minimizing the total control input energy of all inter-sample
trajectories. The optimization is performed by sequential quadratic programming because no
analytic solution is known. This requires off-line heavy computation.

The resulting trajectories are stored in a database which is used by a step sequence planner.
The step sequence planner combines steps in such a way that the robot walks a specified distance
within a specified time period, using as less input energy as possible. To this end, the step planner
uses a depth-first-search algorithm to search through a search tree. The resulting trajectories are

6

traced online by the micro-controllers in each actuator (situated in the ankles, knees and hips).
These actuators all have their own PID controller.

We use a slightly different method than Tazaki et al. [1]. They use a separate cost function for each
walking velocity. Also, their cost function definition does not enhance the possible to directly
specify a specific walking velocity. This makes it difficult to design a step sequence planner.
This problem is solved by using a constrained optimization technique. The step planner itself is
designed using the directed graphs introduced in the work of Tazaki et al. [1].

2.1 Experimental Setup

The Speecys SPC001 Robot (Figure 1.1) has 21 actuators. Every actuator consists of an electrical
motor and a micro-controller (Futuba servo). The actuators, together with a camera and micro-
phone, can be controlled centrally by a CPU that is attached to the robot. Eight rechargeable
batteries supply the robot with power.

During this research, however, a PC is used to directly control the actuators and an external power
source is used for power delivery. In this way, there is no need to learn about the operating system
that controls the robot’s CPU and there is no need to recharge batteries. A cable with a Serial and
an USB end connects the serial ports of the actuators to the USB port of the PC. Driver software
installed on the PC takes care of the conversion between USB and Serial (Figure 2.2).

Six out of 21 actuators (the ankle, knee and hip of each leg) are commanded to track the specified
trajectories during a walking motion. Six other actuators of the leg are fixed in a certain position
because they are used to perform motions in the direction perpendicular to both the walking
direction and height of the robot. The arms and head are disassembled from the robot. The
resulting system is about the simplest possible to perform 2D walking (Figure 2.1).

s e t t o v a l u e
a c t i v e l y u s e d

5
6

7

1 0
1 1

1 2

Figure 2.1: actuator activity.

9 . 6 V

s p e e c y s

P C

u s b t o s e r i a l

p o w e r s o u r c e

Figure 2.2: setup layout.

2.2 Nonlinear Model

To be able to calculate an optimal trajectory there is a need for a mathematical representation of
the robotic system, if model based optimization is considered. In this research, first, a nonlinear
multi-body model is constructed of which the parameters correspond to measurable physical
parameters of the system. The robot has been disassembled in order to get the masses of all links

7

by using a scale. The lengths of all links have been measured by a ruler and the centers of mass
are estimated. Second, an approximate model is extracted from the multi-body model for which
the optimal trajectory is known. This section considers the multi-body model.

Themulti-bodymodel is derived using a Lagrange approach with relative generalized coordinates.
The model consists of seven links in an open chain structure connected by 6 joints. A seventh
joint connects the structure to the earth. The mass matrix is denoted by M, H denotes the vector
containing the centrifugal / Coriolis / gravity terms and the vector T contains the actuator torques.
The column vector q contains the angles θi, i ∈ {1, 2, 3, ..., 7} (see Figure 2.3) and x = [q q̇]T .

x

z

1

2

3
6

5
4

7

Figure 2.3: speecys SPC001 Robot conventions.

The general equations of motion are:

Mq̈ + H(q, q̇) = T (2.1)

By using F = M−1 and G = −M−1H the equations of motion can also be written as:

q̈ = F(q)T + G(q, q̇) (2.2)

During walking the dynamics of the robot changes, depending on which foot has contact with the
ground. A distinction can be made between left leg stance, right leg stance and both feet ground
contact. The both feet ground contact mode can be further split up into left to right stance leg
change and right to left stance leg change. Doing so four modes I result defined as L, R, LR and
RL respectively. To denote the different modes the index I is added to the equations of motion.

q̈ = FI(q)T + GI(q, q̇) (2.3)

I ∈ {L,R,LR,RL} (2.4)

The motions about the left and right leg can be assumed equal if both legs are the same, only the
numbering of the joints changes because the base flips from one end of the chain to the other
when a next step is made.

8

There are several possible trajectories between an initial and final position and posture, however
the trajectory with least input energy is preferable. To obtain such a trajectory the following cost
function can be minimized:

Jp1(T ;h) =
∫ h

0
T(τ)TRIT(τ)dτ (2.5)

The choice of RI determines which inputs are minimized most during the optimization. We
choose a unity matrix, so that there is no difference between the input weights. The total nonlin-
ear problem can now be stated as follows:

Problem 1 Given initial state x0, final state xf , modes I ∈ {L,R, LR,RL} and weight RI > 0 find an
input T and transition time h > 0 that minimize the cost function:

Jp1(T;h) =
∫ h

0
T(τ)TRIT(τ)dτ (2.6)

subject to:
q̈ = FI(q)T + GI(q, q̇) (2.7)

In general this nonlinear problem cannot be solved explicitly, therefore the problem is trans-
formed into an approximate problem.

2.3 Approximate model

The optimal control input for the full nonlinear model is not known. Therefore, an approximate
model with a known optimal control is extracted from the nonlinear model. The approximate
model structure is a linear system with a piecewise defined quadratic input energy cost function.
To obtain a linear system dynamics an input transformation is performed (also referred to as
feedback linearization):

T = FI(q)−1(v−GI(q, q̇)) (2.8)

The input transformation requires FI to be regular. The resulting system dynamics are:

ẋ = Ax + Bv A =

(
O I
O O

)
B =

(
O
I

)
(2.9)

The dimension of x is 14× 1, the dimension of A is 14× 14, the dimension of B is 14× 7 and the
dimension of v is 7 × 1. Note that the obtained linear dynamics is the same for each mode. The
input transformation, however, can be different for each mode.

Next, a piecewise defined quadratic cost function is required to be able to get an explicit solution
for the optimal trajectory. To this end F(q(τ)) and G(q(τ), q̇(τ)) are evaluated at a finite set of
time instants tk, k ∈ {1, 2, 3, ..., Ns} separated by time intervals hk, k ∈ {1, 2, 3, ..., Ns − 1}.

q(tk) =
qk + qk+1

2
q̇(tk) =

q̇k + q̇k+1

2
(2.10)

Doing so, constant F and G result, F̂ and Ĝ respectively.

To further simplify the problem it is imposed that no mode change may occur between xk and
xk+1, k ∈ {1, 2, 3, ..., Ns − 1}. Thus at every mode change a sample (x) must be placed. This
condition is called the mode invariance condition. A new approximate problem results (2):

9

Problem 2 Given initial state x1, intermediate states xk, k ∈ {2, 3, ..., Ns − 1}, final state xNs ,
modes I ∈ {L,R, LR,RL} and weights RI > 0, find an input T and transition times hk > 0, k ∈
{1, 2, 3, ..., Ns − 1} that minimize the cost function:

Jp2(v;hk) =
∫ hk

0
(v(τ)− ĜI(qk, qk+1))

T F̂I(qk, qk+1)
−TRI F̂I(qk, qk+1)

−1(v(τ)− ĜI(qk, qk+1))dτ

(2.11)
subject to:

ẋ = Ax + Bv A =

(
O I
O O

)
B =

(
O
I

)
(2.12)

The solution of the approximate problem between xk and xk+1 k ∈ {1, 2, 3, ..., Ns − 1} is (taken
from [1],* denotes optimality):

Theorem 1 (solution problem 2)

x∗ =

(
q∗

q̇∗

)
(2.13)

v∗ = q̈∗ (2.14)

q∗ =
(

qk q̇k qk+1 ˙qk+1

)

1 0 − 3
h2

k

2
h3

k

0 1 − 2
hk

1
h2

k

0 0 3
h2

k
− 2

h3
k

0 0 − 1
hk

1
h2

k

1
t
t2

t3

 (2.15)

J∗p2 =
(

qk q̇k qk+1 ˙qk+1 ĜI

)

R̂I
12
h3

k
R̂I

6
h2

k
−R̂I

12
h3

k
R̂I

6
h2

k
0

R̂I
6
h2

k
R̂I

4
hk

−R̂I
6
h2

k
R̂I

2
hk

R̂I

−R̂I
12
h3

k
−R̂I

6
h2

k
R̂I

12
h3

k
−R̂I

6
h2

k
0

R̂I
6
h2

k
R̂I

2
hk

−R̂I
6
h2

k
R̂I

4
hk

−R̂I

0 R̂I 0 −R̂I R̂Ihk

qk

q̇k

qk+1
˙qk+1

ĜI

(2.16)

R̂I ≡ F̂
−T
I RF̂

−1
I (2.17)

This solution requires that xk, k ∈ {1, 2, 3, ..., Ns} and hk, k ∈ {1, 2, 3, ..., Ns−1} are given. Note
that the solution for the optimal acceleration of the approximate problem v∗ = q̈∗ does not depend
on the weight of the cost function. It is an approximate solution because of the piecewise constant
approximation ofM andH. The required torque to approximately realize this acceleration can be
computed. In general the sets hk and xk are not known. Next section considers how to choose
these parameters.

2.4 Optimization constant velocity walking

In chapter 2.3 the semi-optimal trajectory between the samples xk and xk+1, k ∈ {1, 2, 3, ...,Ns −
1} has been derived. At this point freedom remains to choose xk, k ∈ {1, 2, 3, ..., Ns} and hk,
k ∈ {1, 2, 3, ..., Ns−1}. We choose the samples and transition times such that the energy input of

10

the approximated problem is minimal. To this end, the following cost function which represents
the sum of all costs between samples can be minimized (see also Figure 2.4):

Jsum =
Ns−1∑
k=1

J∗p2(xk, xk+1, hk) (2.18)

x 1

x 2

x N s - 1

x N s

J p 2 * (x 1 , x 2) J p 2 * (x 2 , x N s - 1)

J p 2 * (x N s - 1 , x N s)

J s u m = J p 2 * (x 1 , x 2) + J p 2 * (x 2 , x N s - 1) + J p 2 * (x N s - 1 , x N s)

t i m e
h 1 h 2 h N s - 1

Figure 2.4: constant velocity optimization problem.

The number of samples Ns still needs to be chosen. Using more samples brings the approxi-
mation closer to the nonlinear model and results in a smaller Jsum. However, the calculation
time increases enormously when the number of variables increases. One can try to increase the
number of variables until no significant decrease in Jsum can be noticed.

We take a minimum number of samples in order to have a minimal calculation time. There must
be a sample at each mode change. During one walking cycle four modes R→ RL→ L→ LR are
passed. During steady state walking the only difference between to two subsequences R → RL
and L → LR is that a different leg is swinging / standing. Thus, only the numbering of the
actuators needs to be changed. Therefore, in the optimization only one of these two subsequences
needs to be considered. Doing so, two modes are left and because the modes are connected into
a cycle there are only two different boundaries at which a sample must be placed. To prevent
ground scuffing of the swing foot an additional sample point is placed in the swing mode, so
Ns = 3.

In addition to the cost function and accompanying equations of motion, some constraints must
be considered to prevent collisions and falling during walking. Also, constraints can be used to
guarantee some desired properties of a motion, like walking velocity, step length, height of upper
body, etcetera. Last, constraints can reduce the number of variables to be optimized.

Let us begin with the constraints in angle coordinates. The feet must always be parallel to the
ground and the upper-body must always make an inclination angle α to the vertical, more pre-
cisely:

• θ1 = π/2

• θ4 = −θ2 − θ3 − α

• θ7 = π + α− θ5 − θ6

This set of constraints reduces the number of variables to be optimized.

11

Some constraints have a simpler formulation when they are formulated in an alternative coor-
dinate set. Therefore, a coordinate transformation is applied. This coordinate transformation
transforms the angle coordinates into position coordinates. After the transformation a reduced
set of variables Pk = [pk ṗk]T = [px1

k pz1
k px2

k pz2
k ṗk

x1 ṗk
z1 ṗk

x2 ṗk
z2]T (Figure

2.5) is left, where k ∈ {1, 2, 3, ..., Ns} denotes the sample number.

x

z

(0 , 0)

(p x 1 , p z 1)

(p x 2 , p z 2)2

3
6

5
4

7

c o o r d i n a t e t r a n s f o r m a t i o n

i n v e r s e c o o r d i n a t e
t r a n s f o r m a t i o n

1

Figure 2.5: coordinate transformation.

The inverse of this transformation transform position coordinates into angle coordinates. We
need to calculate this inverse many times during the optimization. We calculate it as follows. The
angles of the knees are determined by using the distances between the hip and the two ankles.
When the length of the leg parts are included, some triangles can be formed with known side
lengths. There are two possible triangles, but only one is feasible, because the knee is only allowed
to kink in one direction, like the human knee. The lengths of all sides in this triangle are known,
accordingly all angles can be calculated. A difficulty, however, is that not all combinations of
positions are allowed because of limited link lengths. In the implemented inverse transformation
the angles get imaginary parts when the lengths are infeasible. This imaginary part of the angles
is constrained to be zero during the optimization, so that no infeasible solutions are possible. In
addition to the position transformation, a transformation is necessary that transforms the angular
velocities into translational velocities of the new coordinates.

When three samples are used the set of variables to optimize becomes:
S = [P1T P2T P3T

h1 h2]T . These are already 26 variables. However, as can be seen in
Figure 2.6, the postures at sample 1 and 3 are the same, only the legs are interchanged. This
property can be used to decrease the number of variables by imposing the following constraints:

• px1
3 = −(px2

1 − px1
1)

• pz1
3 = pz1

1

• px2
3 = −px2

1

• pz2
3 = pz2

1 = 0

12

So 21 variables are left S = [px1
1 pz1

1 px2
1 ṗ1T

P2T ṗ3T
h1 h2]T . To prevent ground

scuffing, the swing leg must be above a certain height at the intermediate sample: p2
z2 > 0.

Performing the optimization without imposing an upper and lower bound on the other variables
reveals that there are many local optima, to which one can go by changing the initial guess of the
SQP algorithm. However, most of these optima cannot be implemented, because the obtained
gaits lead to foot collisions or unrealistically high velocities and accelerations. Therefore, bounds
ensure that the algorithm converges to an optimum that can be implemented to the robot. These
bounds also dramatically decrease computation time.

x

z

(0 , 0) (0 , 0) (0 , 0)

(p x 1 1 , p z 1 1)

(p x 2 1 , p z 2 1)

(p x 1 2 , p z 1 2) (p x 1 3 , p z 1 3)

(p x 2 2 , p z 2 2) (p x 2 3 , p z 2 3)

l i f t s w i n g l a n d

Figure 2.6: constant velocity optimization settings.

Until now the constraints are only applied to the samples. During the trajectories between the
samples these constraints can still be violated. There is an explicit solution for these intermediate
trajectories (theorem 1). This information can in principle be used to also apply the constraints
to the intermediate trajectories. However, these expressions are very involved. Applying "hard"
constraints then leads to difficulties finding appropriate initial guesses for the optimization al-
gorithm. To circumvent this difficulty, penalties are added to the cost function. Even if the cost
function is initially penalized, the solution will often converge along the slopes of the penalty
function to a solution with a non-penalized cost function. The penalties are evaluated at five
equally spaced points between all samples, starting at hk/4 and ending at 3hk/4. They include:

• the swing leg must be above the ground

• the swing leg must be below a certain height

• the upper body must be above a certain height

If only these constraints are used, often a solution results in which the swing leg moved back-
wards. This seems quite unnatural. Therefore, θ̇5, the angular velocity of the angle between
the upper-body and the swing leg, is constrained to be positive during the intermediate trajecto-
ries. It is, however, possible to land or takeoff the swing foot in a backward movement because
the beginning and end of the intermediate trajectory is not penalized. In future research it is

13

highly desirable to take dynamically stable walking into consideration, e.g. by constraints on the
zero moment point. In this way, some unnatural constraints, that are necessary now to obtain a
feasible solution, can be removed and stable walking is always guaranteed.

2.5 Step sequence optimization

Suppose the robot is equipped with a vision camera and sees an interesting object ten meters
ahead. It wants to go there to have a better look, but it also has to take care about its limited time
and energy resources. The step sequence and walking velocity must be chosen such that it ends
near the object in an efficient way. The step sequence optimization routine takes care of this task.
It uses knowledge about possible steps and combines these steps such that the objective is met
using as less energy as possible.

In chapter 2.4 constant velocity walking is derived. The new task requires that the robot is also
to be able to start and stop. Moreover, it must be able to switch from one walking velocity to
another. To this end, the optimization as presented in chapter 2.4 is performed for a set of walking
velocities. A set of optimized sample points belongs to each walking velocity. The sample points
of different walking velocities can be connected by optimized inter-sample trajectories which can
also be calculated using theorem 2. However, care should be taken that no mode change occurs
during these switching motions and that no constraints are violated. Also, a reasonable choice
must be made for the transition time. The robot can switch from one speed to another along
these trajectories. The set of allowable trajectories can be visualized in a directed graph as can
be seen in Figure 2.7 (by [1]). In this graph the cyclic nature of motions can be observed. vspk

denotes sample number k out of an optimized sample set belonging to constant walking speed
number s. We select three velocities: standstill, 0.02 [ms−1] and 0.04 [ms−1]. To each velocity,
except standstill, belongs a set of three samples.

v 2 p 1 v 1 p 1
v 2 p 0
v 2 p 2

v 1 p 0
v 1 p 2

v 0 p 0

Figure 2.7: directed graph.

Each inter-sample trajectory has a known cost, distance and duration. A depth-first search al-
gorithm evaluates each possible sample sequence to go to the interesting object. A sequence is
combined until the final distance is met. A sequence is only stored if the elapsed time is less than
the specified time, the final posture equals the desired final posture and the cost is less than the
previously stored cost. The algorithm evaluates all possible sequences that make up the speci-
fied distance in order to obtain the global optimal sample sequence. In Figures 2.8 and 2.9 the
solution of an example problem is visualized by a search tree and an alternative directed graph.

14

v 0 v 1 v 2

L R

R L

R

L

L R

R L

R

L

L R

s t e p

s t e p

s t e p

s t e p

Figure 2.8: alternative directed graph.

v . . . p 0

v . . . p 1

v . . . p 2

v . . . p 0v . . . p 2

v . . . p 1

v . . . p 0v . . . p 2

v . . . p 1

v . . . p 0v . . . p 2

v 0 v 1 v 2 v 0 v 1 v 2

v 0 v 1 v 2

v 0 v 1

v 0

v 1 v 2

v 2

v 0

v 2

v 2

v 2

v . . . p 1

v . . . p 0

s t e p

s t e p

s t e p

s t e p

Figure 2.9: search tree.

2.6 Implementation

The implementation of the proposed method is the most time consuming part because many
details need to be considered. This report sticks to the main issues and some important details.
The main challenge is to keep the calculation time within reasonable limits. There are essentially
three tasks that must be done. First, the optimization for constant velocity walking needs to be
performed to obtain the optimal constant velocity samples. This set of samples is used in the step
sequence optimization. Second, the step sequence optimization must be performed to obtain
the optimal step sequence. Third, the obtained step sequence must be translated into angle
trajectories that can be traced by the robot actuators. Last, the actuator angles must be measured
while the robot is tracing the desired trajectories and these measured angles must be compared
to the desired ones. Figure 2.10 displays the general layout of the implementation.

The implementation is performed in Matlab and C++. Matlab has the advantage that the cod-
ing is relatively easy because many building blocks are available in the Matlab library. However,
the disadvantage is that running the code takes much computation time, since the code needs
to be interpreted while running. In C++, the code is compiled before running so that the code
runs more efficiently. The constant velocity sample optimization is performed in Matlab by con-
strained sequential quadratic programming (SQP). This algorithm is often used for general non-
linear constrained problems and is readily available in the Matlab optimization toolbox. The cost
function and the constraints must be supplied to this algorithm. The cost function contains M
and H. M and H are calculated symbolically, this takes about 3 minutes on a 1400MHz cpu. A
symbolic expression has the advantage thatM andH only have to be calculated once and can then
be evaluated. In this way they do not need to be completely recalculated numerically during each
iteration. However, the expressions are very involved and even evaluation takes a lot of computa-
tion time. To reduce this computation time,M andH are implemented in a Matlab mex function.
A mex function is written in C and is compiled before execution. The optimization of the sam-
ples set belonging to one velocity takes about 40 minutes. In this research an optimization is
performed for 0.02 and 0.04 [ms−1].

15

c o n s t a n t s p e e d w a l k i n g
o p t i m i z a t i o n
(s e c t i o n 2 . 4)

s t e p s e q u e n c e
o p t i m i z a t i o n
(s e c t i o n 2 . 5)

t r a j e c t o r y d a t a
c o n s t r u c t i o n

C + + o n l i n e
t r a j e c t o r y c o m m u n i c a t i o n

a c t u a t o r m i c r o c o n t r o l l e r

d a t a a n a l y z e r

o b j e c t i v e f u n c t i o n
s e c t i o n (2 . 3 - 2 . 4)

c o n s t r a i n t s
(s e c t i o n 2 . 4)

e q u a t i o n s o f m o t i o n
(s e c t i o n 2 . 2)

e q u a t i o n s o f m o t i o n i n
m a t l a b m e x f u n t i o n

Figure 2.10: implementation diagram.

When the samples are available, evaluating the symbolic expression for the trajectories between
the samples takes just a few seconds. These trajectories must be combined by a step sequence
planner in order to fulfill the walking objective. The step sequence algorithm is based on depth-
first-search with unknown depth. This algorithm is written in Matlab. The result of this step
sequence optimization is a series of symbolic expression for the trajectories. These expressions
are evaluated at a number of time instances (discretized). Then the values are translated into
the appropriate values for the actuators and stored in a text file. This text file is red by a C++
programm that sends these values online to the micro controllers of the actuators. At a fixed
interval, the C++ programm asks the micro-controllers to send the present angle of the actuator.
This measurement result is written to a different text file, which can be red by Matlab. Eventually,
the calculated trajectories and the measurements are compared in Matlab.

16

Chapter 3

Experimental Results

Here we present and discuss the experimental results. The objective of the experiments is:
demonstrate the effectiveness of the proposed control method. For this, we want to answer two
questions. (1) Is the optimization scheme able to come up with gait trajectories that let the robot
walk? (2) Are the gait trajectories that we obtain truly optimal? Two experiments are carried out
in order to answer these questions.

First, we want to demonstrate that the robot tracks the trajectories obtained by numerical opti-
mization for both constant velocity walking and the switching motion. To answer question 1, we
want to demonstrate that the robot actually walks. If it walks, we can conclude that the optimiza-
tion routine is able to come up with gait trajectories that let the robot walk. To answer question 2,
we want to demonstrate that the calculated trajectory is truly optimal by showing that the torque
input for the measured motion is less than the torque input for a slightly different trajectory. If
so, that demonstrates that the obtained gait is at least locally optimal.

3.1 The experiments

We use the constant velocity optimization routine to obtain gait trajectories for walking at 0.02
and 0.04 [ms−1]. The robot actuators are commanded to track these trajectories in two separate
experiments. This report discusses the result for 0.04 [ms−1]. Next, we obtain a gait trajectory for
accelerating form standstill, walking and decelerating to standstill over a distance of 0.16 [m] in
less than 4 [s] by using the step sequence optimization routine (see Figures 2.8 and 2.9). The step
sequence optimization uses the sets of waypoints that are obtained by the two constant velocity
walking optimizations. Again, the robot actuators are commanded to track the trajectories in an
experiment.

Figures 3.2 and 3.3 show the results for constant velocity walking and the switching motion re-
spectively. The dashed lines denote the calculated trajectories which the actuators must trace. The
actuators send a series of measurements to the PC, the measurements are connected by lines and
are shown as the solid lines in the figures. Each sub-figure shows the result of one actuator for
one walking cycle, because data communication delays make it impossible to read all data within
one walking cycle. One walking cycle for constant velocity walking consist of one right and one
left leg step. One walking cycle for the switching motion consists of four steps (see Figure 2.8).

What do we observe in Figures 3.2 and 3.3 with respect to the tracking accuracy? We can see
that the maximum tracking error is in the order of 0.1 [rad]. Also, if we look carefully, we can

17

see that the measured curves seem to have discontinuities, because we have connected a rather
limited number of measurement data by straight lines. Further, we can see that the shape of the
measurement curve is approximately the same as the shape of the simulation result curve; the
measurements seem to lag behind the simulation result. This is also what we expect, because
we attempt to track the simulation results. Last, the effects of initial conditions are hardly visible.
That is because most measurements are initiated after a few step series.

What do we observe on the physical robot during the experiments? We here mention what stands
out most when we look at the robot movements. The robot walks without support. It can acceler-
ate, walk and stop. But, the feet never loose contact with the ground while walking. Further, the
robot motions are not smooth, the robot is vibrating. Last, the actual robot movements take more
time than the figures suggest. The time displayed in the figures is thus not real-time.

Can we answer questions (1) and (2) with these results? (1) The optimization method is able to
generate gait trajectories that make the robot walk. But, some measures must be taken to get a
more satisfactory robot gait. (2) At this moment we cannot concretely demonstrate the energy
efficiency of the control method, because the tracking performance is simply not good enough to
show that slightly different trajectories require more energy input.

In conclusion, the robot is able to walk, but this walk is not yet satisfactory. Also, that is not
what we expect from a very first experiment. It is likely that, after a few adjustments to the robot
hardware and software, the tracking performance can be significantly increased. This is necessary
to get reproducible results and to demonstrate the energy efficiency of the control method.

3.2 Improving the experiments

Let us now identify the setup limitations and discuss in detail what we can do to overcome them.
At this moment some hardware limitations make it difficult to obtain more accurate measure-
ments. (1) It is only possible to send a desired position plus settling time to the micro-controllers;
it is not possible to send a desired velocity. (2) The number of desired positions that can be send
to the micro-controllers per second is severely limited by the low data communication rate. (3)
The robot feet do not loose contact with the ground when 2D gait trajectories are applied.

As a result of limitation (1), the micro-controller forces the actuator to stop at each position we
specify. This undesirable result is partly overcome by sending a new desired position to the
micro-controller before the previous desired position is reached. To be more precise, the new
position is sent to the actuator after the desired settling time minus the deceleration time. This
deceleration time can be set for each actuator and can thus be used. This measure, however,
introduces an error, because it distorts the original desired trajectory. Therefore, it is better to use
a micro-controller that allows direct control over velocity or acceleration.

Due to limitation (2), the trajectories that are stored in the micro-controllers are different from
the desired trajectories. Also, the number of measurements we can do per second is limited.
We, therefore, only measure the angles of one actuator each step. Thus, the same step must be
performed six times to obtain the data of all six actuators. If more data per step are required in
order to reduce the interpolation error, multiple sequences of six steps are necessary. Although
it is possible to do measurements in this way, it is not possible to sent more data to the micro-
controllers per step in order to specify the desired trajectories more accurately. Therefore, it is
necessary to install a faster communication system .

18

Limitation (3) makes that, if one foot is lifted, some tilting of the ankle and upper-body in the
third dimension is necessary to keep the robot upright. However, 2D walking does by definition
not include tilting in the third dimension. Thus, a 3D optimization must be performed or other
measures must be taken. We make the robot walk in small steps. In this case both feet remain
in contact with the ground and the robot shuffles forward. Another possibility is to modify the
shape of the shoes, such that the center of gravity always remains above the shoes (see Figure
3.1)(Ravi Gondhalekar).

r o b o t c e n t e r
o f g r a v i t y

Figure 3.1: this robot shoe design keeps the COM above the shoes during 2D walking

19

0.5 1 1.5

−0.8

−0.7

−0.6

−0.5

Right leg angles

h
ip

 [
ra

d
]

6 6.5 7
0.5

0.6

0.7

0.8

Left leg angles

h
ip

 [
ra

d
]

2 2.5 3 3.5

0.3
0.4
0.5
0.6
0.7

kn
ee

 [
ra

d
]

7.5 8 8.5 9

0.9
1

1.1
1.2
1.3

kn
ee

 [
ra

d
]

4 4.5 5 5.5

0.6

0.7

0.8

0.9

an
kl

e
[r

ad
]

time [s]
9.5 10 10.5 11

−0.9

−0.8

−0.7

−0.6

an
kl

e
[r

ad
]

time [s]

Figure 3.2: constant velocity walking 0.04 [ms−1]. The dashed line denotes the calculated
trajectory which the actuators must trace; and the solid line denotes the measured trajectory.
In each plot the robot makes one left and one right leg step respectively. The data of only one
actuator is measured simultaneously.

20

0 1 2 3

−0.9

−0.8

−0.7

−0.6

−0.5

Right leg angles

h
ip

 [
ra

d
]

11 12 13 14
0.5

0.6

0.7

0.8

0.9

Left leg angles

h
ip

 [
ra

d
]

4 5 6 7

0.2

0.4

0.6

kn
ee

 [
ra

d
]

15 16 17
0.8

1

1.2

1.4

kn
ee

 [
ra

d
]

8 9 10

0.6

0.7

0.8

0.9

an
kl

e
[r

ad
]

time [s]
18 19 20 21

−0.9

−0.8

−0.7

−0.6

an
kl

e
[r

ad
]

time [s]

Figure 3.3: start, walk and stop. The robot is commanded to start, walk and stop over a
distance of 0.16 [m] in less than 4 [s]. Each plot displays such a step sequence that consists
of four steps (see Figure 2.8). The dashed line denotes the calculated trajectory which the
actuators must trace; and the solid line denotes the measured trajectory. The data of only
one actuator is measured simultaneously.

21

Chapter 4

Conclusions and Recommendations

4.1 Conclusions

This research has focussed on calculating semi-optimal 2D walking trajectories for a speecys
SPC001-robot and applying them to the robot. Trajectories have been calculated for two walking
velocities and for switching movements among these velocities. These trajectories have been
implemented on the robot in a very first experiment. Two additions have been made to the
method of Tazaki et al. [1]. (1) The possibility to directly specify velocities has been added. (2) The
step sequence optimization has been adjusted such that the desired walking distance and time
can be directly specified.

The robot can walk, tracing the calculated optimal trajectories for both constant velocity and
steady state walking with an error of about 0.1 [rad]. Because of this error it is difficult to draw
well supported conclusions about the effectiveness of the proposed new control method. The
current experimental setup has some limitations that need to be taken away in order to improve
the experiments. The two most important limitations are: (1) the micro-controller structure does
not allow to specify velocities and (2) the maximal communication rate between the actuators
and the PC is too low. These limitations are thus clearly identified and can be resolved. If these
limitations are resolved it is likely that the actuators will trace the trajectories in a reasonable way.
If in addition the shape of the shoes is adapted such that 2D stable walking is possible, than it
can be investigated if the calculated optimal trajectories are indeed the optimal trajectories.

4.2 Recommendations

The calculated optimal trajectories are likely to deviate from the real optimal trajectories because
(1) parameter inaccuracies, (2) not all physical effects are included and (3) approximations are
made during the optimization. However, the objective is to minimize the energy input of the real
system. Therefore, it is most natural to use data from direct online measurements in order to
improve the trajectories online. As a parametrization of the trajectories the same setting as for
the optimization can be used. Thus a set of samples together with known optimal trajectories
between the samples parameterize the problem. The advantage of this parametrization is that it
is based on some kind of optimality.

The set of samples can be re-optimized such that the measured control input energy becomes
minimal. Also, additional sample points can be added. The modelbased optimized set can be

22

used as a starting set. During the life of the robot continuing re-optimization will then improve
the robot’s walking capabilities by improving the motion set. This updated motion set can be
used by the step planning algorithm. To assure that only feasible motions result and to assure that
there is always a feasible step sequence for any reasonable walking goal, some constraints must
be considered during online re-optimization. One possibility is to fix the samples that represent
the two feet ground contact modes (see Figure 4.1). For example, by a sequence ordered by step
length: 0.005, 0.01, 0.02, 0.04, and 0.08 [m]. In this example each distance is covered with a
precision of 0.0025 [m].

v 2 p 1 v 1 p 1
v 2 p 0
v 2 p 2

v 1 p 0
v 1 p 2

v 0 p 0

f i x

r e - o p t i m i z e
o n l i n e

Figure 4.1: online non-model based re-optimization.

Acknowledgements

I am very grateful to Yuichi Tazaki for his valuable assistance. I like to thank Professor Jun-ichi
Imura for welcoming me in his laboratory and professor Henk Nijmeijer for giving me the op-
portunity to do this internship. I like to thank all laboratory members for their warm welcome.
I had a very pleasant time at Tokyo Institute of Technology. Further, I gratefully received the ac-
commodation from TOKODAI, the WTB funding from the Mechanical Engineering Department
and the TU/e funding from Eindhoven University of Technology.

23

Bibliography

[1] Yuichi Tazaki, Jun-ichi Imura (2006). Graph-based Model Predictive Control of a
Planar Bipedal Robot. 17th int. Symposium on Mathematical Theory of Networks
and Systems, Kyoto, Japan, pp. 128-133.

[2] Jun-ichi Imura (2004). Optimal Control of Sampled-data Piecewise Affine Systems.
Automatica, Vol.40, No.40, pp.661-669.

[3] J. Denk, G. Schmidt (2003). Synthesis of Walking Primitive Databases for Biped
Robots in 3D-Environments. Proc. IEEE int. conference on Robotics and Control.

[4] Michael Hardt, Oskar von Stryk, Dirk Wollherr and Martin Buss (2003). Devel-
opment and Control of Autonomous, Biped Locomotion using Efficient Modeling,
Simulation, and Optimization Techniques. Proc. IEEE int. conference on Robotics
and Control, Taipei, Taiwan, pp. 1356-1361.

[5] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kazuhito Yokoi and
Hirohisa Hirukawa (2002). A Realtime Pattern Generator for Biped Walking. Proc.
2002 IEEE int. conference on Robotics and Automation, Washington D.C., U.S.

[6] Roy Featherstone, David Orin (2002). Robot Dynamics: Equations and Algorithms.
Proc. IEEE int. conference Robotics and Automation, San Fransisco, pp. 826-834.

24

Symbols

Symbol Quantity Unit
α angle [rad]
h time [s]
H gravity / centrifugal /

coriolis vector
[Nm]

I modes [-]
I unit matrix [-]
Jp1 cost problem 1 [N2m2s]
Jp2 cost problem 2 [N2m2s]
Jsum summed cost [N2m2s]
M mass matrix [kgm2]
Ns number of samples [-]
p reduced position vector [m]
P reduced position and ve-

locity vector
[m] and [ms−1]

q angle vector [rad]
R weight matrix [-]
t time [s]
T input torque vector [Nm]
θ angle [rad]
v input vector feedback

linearized system
[Nkg−1m−1]

x vector containing angles
and angular velocities

[rad] and [rads−1]

25

	Introduction
	Methodology
	Experimental Setup
	Nonlinear Model
	Approximate model
	Optimization constant velocity walking
	Step sequence optimization
	Implementation

	Experimental Results
	The experiments
	Improving the experiments

	Conclusions and Recommendations
	Conclusions
	Recommendations

