

Interactive visualization of business processes

Citation for published version (APA):
Gupta, N., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2015). Interactive visualization of business processes. [EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c78d1c3a-8b5d-4fc0-845d-85c84b6d7bad

Interactive visualization of

business processes

Eindhoven University of Technology

 Stan Ackermans Institute/ Software Technology

Partners

UWV Eindhoven University of Technology

Steering Group AlbertoVasconcellos

Marcus Dees

Massimiliano de Leoni

Date September 2015

Interactive visualization of

business processes

Eindhoven University of Technology

 Stan Ackermans Institute/ Software Technology

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.097b, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN A catalogue record is available from the Eindhoven University of Technology

Library

ISBN: 978-90-444-1383-0

(Eindverslagen Stan Ackermans Instituut ; 2015/045)

Abstract Today’s Process-Aware Information Systems (PAIS) logs huge amount of data.

The data contains a set of activities that are actual executed with in a business

process. For example place a request for unemployment claim or pay

compensation. This is a starting point for doing the analysis of a business process

using Process Mining techniques. In Process Mining, one technique named

LogOnMapReplay, which is dynamically visualizing the executed business

processes by producing a process movie. This tool is a prototype that’s why it

comes along with various limitations and missing functionalities. This report

describes the steps taken to overcome the limitations of the tool. It also describes

design and implementation of various functionalities developed on

LogOnMapReplay tool. This report also describes an evaluation conducted on

UWV unemployment business process to find the usefulness and intuitiveness of

the tool.

Keywords Process mining, ProM framework, XES standard, Map, LogOnMapReplay plug-

in, XQuery, Petri-net.

Preferred

reference

Neha Gupta, Interactive visualization of business processes.

Eindhoven University of Technology, SAI Technical Report, September, 2015

(ISBN: 978-90-444-1383-0)

Partnership This project was supported by Stan Ackermans School of Design and UWV.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Stan Ackermans

School of Design or UWV. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the Stan Ackermans School of Design

or UWV, and shall not be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Stan Ackermans School of Design makes no

warranty, representation or undertaking whether expressed or implied, nor does it

assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular

endorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2015. Stan Ackermans School of Design. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced,

modified, or redistributed in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the Stan Ackermans School of

Design and UWV.

Foreword
UWV is the governmental institute that executes the social security laws in

the Netherlands. UWV is responsible for handling claims of employees that

become unemployed, become ill or whose labor capacities change due to an

illness or an accident. UWV provides benefits when an employee has an

entitlement and helps with the reintegration of employees into a fitting job.

Customers of UWV are entitled to benefits. They are also obliged to fulfil

certain responsibilities. When a customer is not compliant with the rules, then

a reclamation can occur. A reclamation is the situation where the customer

has received more benefits that he was entitled to.

A change in the number of reclamations was the trigger to form a project

group to investigate what has been causing this change. Next to that the

project should identify and quantify the root causes of the reclamations

themselves.

Finally, when the root causes are identified, a monitoring system should be

created. This system should act as an early warning system when the number

of reclamations starts changing again or when there is a change in the

distribution of the root causes.

The ProM plug-ins presented in this report are the result of these

requirements. With the plug-ins UWV is able to execute the monitoring of

the reclamations and perform high level analysis of the reclamations when

changes are detected. The plug-ins are very generic. This means that they

have a wide application area. The plug-ins represent a valuable extension of

the Process Mining toolbox.

Marcus Dees

September 2015

iii

Preface
This report summarizes the technical report of Interactive visualization of

business process project. The project was carried out by the author as her

final project of the Professional Doctorate in Engineering (PDEng)

program in Software Technology provided by the Eindhoven University

of Technology and the Stan Ackermans Institute.

The target audience of this report is a technical audience and a process

analyst with a basic understanding of the software, business processes and

an interest in Process Mining. Chapter 1 and 2 gives an overview of the

project context and the stakeholders of the project. The core concepts of

the project is described in Chapter 3 and 4. It is recommend for every

reader because it explains the key concepts related to process mining and

highlights the limitations of the existing system. The technical reader

should read chapter 5, 6, 7, and 8 to understand how the system is

designed and implemented. Chapter 9, summarizes of the evaluation of

the system using UWV’s business processes data. Chapter 10, concludes

the project by summarizing the results objected and by identifying the

possible future work. Chapter 11 describes the details related to the

project management process.

Neha Gupta

September 2015

v

Acknowledgements
This project would not have been possible without the support of many

people.

I wish to express my sincere gratitude to my Project Steering Group

members for their guidance and advice during the course of the project. A

special thank you goes to my supervisors AlbertoVasconcellos, Marcus

Dees, and Massimiliano de Leoni. This project was successfully

completed with their continuous support in every step of the project. I

enjoyed our discussions that has always been in an encouraging and

learning atmosphere for me. I would like to thank Marina Sereguina for

the discussion and valuable contribution during the evaluation phase of

the project. A special thanks to Flex Mannhardt for the discussions and

valuable contribution to the project.

I want to thank my colleagues from OOTI generation 2013 for the great

time we spent together. I would especially like to thank Ad Aerts, and

Maggy de Wert for giving me the opportunity to join the OOTI program

and for their guidance and support throughout the whole OOTI period.

No such project can be completed without family support. I am grateful

for the continuous support from my family. Tarun, your unconditional

love, support and unflagging encouragement gives me the strength and

motivated me to move forward in life. No words can express, how lucky I

am to have you in my life. I want to thank my parents, and my parent’s in-

law for their unconditional support and positive energy. My report is

dedicated to my grandfather. He is a truly an inspiration for me.

Neha Gupta

September, 2015

vii

Executive Summary
Today’s information systems store huge amount of data. For example data

logs during the process of buying an airplane ticket or of applying for a

claim. The managers of a company want to know the steps of execution

and potential scope of improvement in the business processes. In the

context of business processes, the analysis of data requires Process Mining

techniques to gather meaningful information.

Process mining allows extraction of knowledge about business processes

from the event logs. In process mining, there is a visualization technique

called “Turning event logs into a process movie”. This technique enables

a process/business analyst to replay and visualize the behavior of executed

events as recorded in the logs. The LogOnMapReplay is a plug-in that

provides this functionality. The plug-in is realized in the Process Mining

open-source framework called ProM framework. UWV is interested in

analyzing the event logs of its customers on LogOnMapReplay

visualization plug-in. However, the plug-in has several constraints, which

limits its usability:

 The plug-in stores processed data in-memory. The plug-in

requires more than 6 GB memory space to process three hundred

thousand events on a laptop equipped with an Intel Core i7

Processor at 2.20GHz.

 Basic functionalities such as filtering data are not available in the

plug-in.

 Main input file called Map file is manually created. Manual

creation requires technical guidance and knowhow.

The focus of this project is to improve the scalability and enhance the

features of the LogOnMapReplay plug-in. The main challenge of the

project was to improve the processing capability of the tool multifold. To

achieve this goal, we analyzed several options and chose a NoSQL

database called MapDB. MapDB stores the data on a local or network

disk. Thus, the limitation of processing number of events moved from in-

memory size to the amount of space available on-disk.

The features such as filtering events and attributes while visualizing a

process movie are introduced. The comparative analysis concept is also

introduced to detect unusual activities and show relativity of an event.

We also present the design and implementation of a new plug-in for

automating the process of generating a map file. We conducted an

evaluation of the plug-ins on UWV reclamation data, to analyze the

usefulness and intuitiveness of both plug-ins. The evaluation conforms to

the expectations of the analysts. We also propose few suggestions that a

process/business analyst should consider while creating an event log and

processing the data using the LogOnMapReplay plug-in.

ix

Table of Contents

Foreword .. i

Preface ... iii

Acknowledgements... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables .. xv

1. Introduction... 1

1.1 Context ... 1

1.2 UWV .. 1

1.3 Research on Reclamations ... 2

1.4 Limitations of existing implementation 3

1.5 Experiments .. 4

1.6 Document outline ... 4

2. Stakeholder Analysis .. 6

2.1 Introduction .. 6

2.2 UWV .. 6

2.3 TU/e.. 7

3. Process mining: State-of-the-Art .. 8

3.1 Process Mining ... 8

3.2 Event log .. 9

3.3 XES standard .. 11

3.4 Petri-net model ... 12

3.5 ProM ... 13

3.6 LogOnMapReplay plug-in ... 14

3.7 Map .. 18

3.7.1. Cartesian map: .. 19

3.7.2. Process map .. 20

3.7.3. Geographical map ... 20

4. Problem and Requirement analysis ... 21

4.1 Problem definition .. 21

4.2 Project goal ... 21

4.3 Limitation of LogOnMapReplay plug-in 22

4.4 Use case scenario ... 25

4.5 Functional requirements ... 26

4.5.1. FR1 – Automatic Map Generator (AMG) 26

4.5.2. FR2 – Quickly process an event log ... 27

4.5.3. FR3 – Create filter .. 27

4.5.4. FR4 – Show/Export data ... 28

4.5.5. FR5 – Show deviation .. 29

4.6 Non-Functional requirements ... 29

4.6.1. NFR 1- Extensibility ... 29

4.6.2. NFR 2- Usability ... 30

4.6.3. NFR 3- Configurability ... 30

4.6.4. NFR 4- Scalability .. 30

4.6.5. NFR 5- Backward compatibility ... 30

4.7 Design criteria .. 30

4.8 Project deliverables .. 31

5. System Architecture .. 32

5.1 System Design .. 32

6. Automatic Map Generator plug-in .. 34

6.1 Plug-in description ... 35

6.2 Cartesian map ... 36

6.2.1. Creation of an image ... 37

6.2.2. Create XQuery .. 38

6.2.3. Process model map ... 40

7. Optimization of LogOnMapReplay plug-in...................................... 44

7.1 Bottlenecks ... 44

7.2 Storing object in-memory ... 44

7.2.1. Approach for choosing database ... 45

7.2.2. MapDB ... 46

7.2.3. NoSQL database structure .. 47

7.2.4. Re-design of LogOnMapReplay plug-in 48

7.3 Multithreading implementation .. 50

7.4 Improvement in a map file XML schema 51

7.5 Code optimization .. 52

7.6 Other factors impact the performance of the plug-in 53

7.7 Results .. 54

8. Features of LogOnMapReplay plug-in ... 55

8.1 Filter of event and attribute .. 55

8.2 Show deviations ... 57

xi

8.2.1. Indexation ... 57

8.2.2. Relative ... 60

8.3 Show details of a valid dot ... 62

8.4 Show configuration panel... 64

8.5 Export sub-log .. 65

8.6 Merge map file plug-in ... 66

9. Conclusions... 68

9.1 Results .. 68

9.2 Future work .. 68

10. Project Management .. 70

10.1 Management process .. 70

10.1.1. Planning and Scheduling .. 70

10.1.2. Communicating with supervisors ... 70

10.1.3. User Acceptance testing ... 71

10.2 Work-Breakdown Structure .. 71

Appendix A New map file schema .. 73

Appendix B Old map file schema .. 74

Glossary .. 75

Bibliography ... 76

About the Authors... 77

xiii

List of Figures

Figure 1: UWV core business chart .. 2

Figure 2: Project organization context .. 3

Figure 3: Three basic type of process mining: Discovery, Conformance,

and Enhancement .. 8

Figure 4: A standard model of an event log .. 9

Figure 5: State diagram for life-cycle of an activity 10

Figure 6: An example of an event log in XES standard 12

Figure 7: An example of a Petri-net model... 13

Figure 8: Overview of the ProM framework ... 14

Figure 9: Overview of the LogOnMapReplay plug-in 15

Figure 10: A screenshot of a process movie produces by

LogOnMapReplay plug-in .. 17

Figure 11: Map file structure .. 18

Figure 12: An example of static and dynamic XQuery 19

Figure 13: An example of a Cartesian map .. 19

Figure 14: An example of a geographical map ... 20

Figure 15: User goa .. 25

Figure 16: Overall system design ... 34

Figure 17: High level design of AMG tool ... 35

Figure 18: The map selection ... 36

Figure 19: Selection coordinate for Cartesian map 37

Figure 20: A continuous Cartesian map image generated by the AMG

plug-in ... 38

Figure 21: An example of dynamic XQuery for a literal attribute 39

Figure 22: Detail design for creating a Cartesian map 40

Figure 23: An example of process model mapping schema 41

Figure 24: The GUI of the process model map .. 42

Figure 25: Detail design of a process model... 43

Figure 26: Problem in the current design.. 44

Figure 27: Re-designed solution for improving the performance using

MapDB ... 47

Figure 28: Database structure for storing movies 48

Figure 29: Detail design diagram after introducing MapDB 49

Figure 30: Re-designed structure for applying parallelism....................... 51

Figure 31: Comparison of XQuery ... 52

Figure 32: Filter before and after .. 55

Figure 33: Screenshot of the filter panel ... 56

Figure 34: Screenshot of the filter panel with selected attributes 57

Figure 35: Screenshot of an index frame .. 59

Figure 36: A screen shot without indexing ... 59

Figure 37 : Screenshot with applied indexation .. 60

Figure 38: Screenshot to show relativity between dots 62

Figure 39: Sequence diagram to show details of a valid dot 63

Figure 40: Screenshot of showing details of a valid dot 64

Figure 41: Screenshot of a map configuration panel 65

Figure 42: Sequence diagram for export sub-log 66

Figure 43: Logical view of Merge map file plug-in 66

Figure 44: The project timeline .. 72

Figure 45: New map file schema .. 73

Figure 46: Old map file schema .. 74

xv

List of Tables
Table 1: UWV stakeholders .. 6

Table 2: An example of an event log .. 11

Table 3: A set of events .. 18

Table 4: Absolute weight .. 24

Table 5: An example of indexation .. 25

Table 6: List of sub-requirements for Automatic Map Generator 26

Table 7: List of sub-requirement of processing an event log.................... 27

Table 8: List of sub-requirements for creating a filter on

LogOnMapReplay plug-in .. 28

Table 9: List of sub-requirements for export /show functionality of

LogOnMapReplay plug-in .. 28

Table 10 : List of sub-requirement for highlighting the problem on

LogOnMapReplay plug-in .. 29

Table 11: The mapping schema for creating position function 41

Table 12: Comparison of key-value databases ... 46

Table 13: Identification of type of dot .. 50

Table 14: Comparison of before and after applying optimization

techniques ... 54

Table 15: Calculate value for index mechanism 58

Table 16: Calculate relative number for each event of a dot 61

Table 17: Relative calculation to find the size of a dot 62

1. Introduction

This report describes the technical details for the “Interactive visualization of

business processes” project performed at Uitvoeringsinstituut

WerknemersVerzekeringen (UWV). This chapter provides an introduction to

the project context and UWV organization structure.

1.1 Context

This project was conducted by Neha Gupta as a part of her Professional

Doctorate in Engineering (PDEng) in Software Technology program at

Eindhoven University of Technology (TU/e). The project is carried out in

collaboration with UWV and Architecture of Information Systems group of

the Mathematics and Computer Science department of TU/e.

Process-Aware Information Systems (PAIS) are increasingly used by

organizations including UWV to support their business processes. Every

PAIS records an execution of process instances in event logs. These logs

capture information about activities performed in an organization, for

example a customer applies for an unemployment benefit. Every event

records the execution of an activity instance by a given resource. It also

records the execution time along with the status of an event such as start,

complete.

Process mining techniques allows extraction of knowledge about business

processes from the PAIS. In process mining, there is a visualization technique

called “Turning event logs into a process movie” with which a process

analyst can visually replay the behavior of executed process instances as

recorded in the event log. With minimum knowledge of process mining,

process analysts can gain insights into potential problems of their business

processes. UWV is interested in analyzing the event logs of its customers on

LogOnMapReplay visualization tool to streamline its own business

processes.

1.2 UWV

UWV is the Social Security Agency of the Netherlands. It is responsible for

the implementation of employee insurance such as unemployment benefits

and sickness benefits in The Netherlands. UWV also fulfills the important

social task of helping people stay employed or find new employment.

As Figure 1 shows, UWV has expertise, knowledge and experience within

five key tasks:

1. Employment: Helping the client remain employed or find employment, in

close cooperation with the municipalities.

2. Social Medical Affairs: Evaluating illness and labor incapacity according to

clear criteria.

3. Benefits: Ensuring that benefits are provided quickly and correctly if work is

not possible or not immediately possible.

4. Client & Service: Ensuring that a customer’s queries are answered quickly,

clearly and with unambiguous answers. They are also the driving force

behind improvements in UWV’s other division services.

5. Data management: Ensuring that the client needs to provide the government

with data on employment and benefits only once.

Figure 1: UWV core business chart

1.3 Research on Reclamations

This project “Interactive visualization of business processes” is a part of the

main project “Research on Reclamations” as shown in Figure 2.

To understand the project context, we are going to use an example. Mr.

Heezik became unemployed. He applies for an unemployment benefit at

UWV. The company will evaluate the current condition of the Mr. Heezik

and decide whether he is eligible for the benefit or not. If he met all the terms

and conditions for receiving an unemployment benefit then UWV starts

paying him.

Suppose, after three month Mr. Heezik found a job but he forgot to inform or

intentionally did not inform UWV about his employment. Later, from internal

or external data sources, UWV found that he got the job but in the meanwhile

UWV has already paid excess benefits. This means he didn’t comply with the

UWV rules and regulations and, hence, he has to pay back the benefits which

he was not entitled to receive. A fine will also be added of at least €150 and

at most 100% of the benefit. Claiming unentitled benefits and fine from

customer is called reclamation.

Since the number of reclamations has significantly increased in the last two

years, the Client and Expertise department of UWV is doing research on

reclamations that usually occur.

In this project, we are enhancing the capability of LogOnMapReplay plug-in,

so that UWV’s process/business analyst can easily find the business

processes and customer’s patterns that happens before reclamations occur.

UWV
(Board)

Employment
Social

Medical
Affairs

Benefits
Client &
Service

Data
Management

Page 3

Figure 2: Project organization context

1.4 Limitations of existing implementation

After various experiments and discussions with stakeholder the following

constraints were observed and listed, which limits its usability the tool:

 The capability of handling the processing of the big data. UWV’s

system produces and stores a huge amount of data, roughly three

million events per month. This triggers to have an improved version

of this tool which has capabilities to handle big data. The plug-in

stores processed data in-memory. Due to memory limitations, the

plug-in cannot process more than three hundred thousand events on a

laptop equipped with an Intel Core i7 Processor at 2.20GHz.

 The basic features such as filter data, comparative analysis are not

available in the tool. Due to these missing features the process

analyst is unable to do the effective analysis of an event log.

Unemployement
departement

Research on
Reclamation project

Interactive
visualization of

business processes

 The main input file called Map file is manually created. Manual

creation requires technical guidance and knowhow. It takes

significant amount of time to create one map.

To overcome the limitations of the tool became the primary goal of

the project. The secondary goal is to provide the insights on how this

tool can be used to analyses the UWV’s business processes.

1.5 Experiments

Various experiments were conducted with UWV’s business analyst to

evaluate the usefulness, effectiveness, and intuitiveness of the

LogOnMapReplay tool. We also evaluate whether a business analyst can gain

the insights and analysis patterns from an event log. We use reclamation and

unemployment business processes data from year 2013 and 2014 for analysis.

During experiments, we identify patterns in the unemployment business

process. We also identify the correlation between various attributes available

in an event log.

1.6 Document outline

This section provides an overview of the chapters as follows:

Chapter 2 introduces the stakeholders and explains their interest and

influence on the project.

Chapter 3 provides the necessary domain knowledge. It includes process

mining concepts, event logs, petri-net model and an overview about

“LogOnMapReplay” tool. This chapter helps reader to build an understanding

for the later chapters.

Chapter 4 gives an overview of the problem analysis including the problem

definition, the goal of the project, and also the problem of the existing plug-in

“LogOnMapReplay” in the ProM framework and how the requirements has

been derived from its limitations. This chapter also describes the functional

and non-functional requirements of the project and the list of project

deliverables.

Chapter 5 describes the system architecture.

Chapter 6 describes the details of the design and implementation of

Automatic Map Generator (AMG) plug-in.

Chapter 7 describes the existing bottlenecks of the LogOnMapReplay plug-

in. This chapter also focus on how the system is re-designed and

implemented to improve the scalability of the plug-in.

Chapter 8 describes the new features that are designed and implemented of

the LogOnMapReplay and MergeMapFile plug-ins.

Chapter 9 illustrates how the LogOnMapReplay and AMG plug-ins helped in

proving the insights that the business analyst had discovered during the

Research on Reclamation project about the UWV business processes and

customer’s profile.

Page 5

Chapter 10 provides a summary of the project results, the conclusion and

suggestion that were derived from the results and recommendation for future

work.

Chapter 11 presents an overview of the project management process followed

to achieve the desired results on time,

2. Stakeholder Analysis

2.1 Introduction
This chapter introduces the stakeholders for this project. The stakeholders are

distinguished based on their interests and Table 1 presents an overview. The

participation and support from all stakeholders was crucial to the project’s

success.

2.2 UWV
The Research on Reclamation project, which is mentioned earlier is of the

Client and Services department of UWV. The project team is interested in a

visualization tool. UWV’s stakeholders, listed in Table 1, are people who will

be the first users of the visualization tool.

Table 1: UWV stakeholders

Stakeholder

Name

Role Description Interest

Mr.

AlbertoVasconcel

los

Project Manager He is intermediator

between the project

team and UWV

management. He

helps in identifying

the requirements

and defining the

problem of the

project. He

evaluates the

performance and

progress on

monthly’s basis.

He is interested

in the value

addition to the

business

processes as a

result of the data

analysis

performed using

the visualization

tool.

Mr. Marcus Dees Liaison He is the

connection between

the software

engineering and

business analyst

teams. He provides

the knowledge of

UWV’s business

processes. He helps

in defining the

requirements and

business rules of the

project. He also

monitors and

evaluates the

performance on a

weekly basis.

He is interested

in a full-featured

visualization

tool with big

data processing

capabilities. He

is also interested

in a document

that highlights

the features and

improvements in

the visualization

tool.

Miss Marchella

Maria

Business analyst She helps to define

requirements for the

visualization tool.

She is interested

in features that

allow quick data

Page 7

2.3 TU/e
TU/e is responsible for the educational aspect of this project.

The primary stakeholder from the TU/e is Dr. Massimiliano de Leoni,

Assistant Professor, who has the role of university supervisor and technical

advisor. He provides the guidance concerning the design and implementation

and also evaluates whether the proposed documentation meets the standards

of a PDEng project. Meetings with the university supervisor took place every

week in order to share and discuss the design and implementation of the

project. He also has the role of helping with the academic aspects of the

project.

Another TU/e stakeholder is Dr. Ad Aerts, the Program Director of the

Software Technology PDEng program. His role is to ensure that the project

meets the quality requirements of the PDEng program.

She also helps in

creating the dataset

with Marcus and

Marina for the

analysis of the

dashboard.

analysis. Some

process

overviews

require several

computations

steps, an explicit

representation of

the results is her

key interest.

Mrs. Marina

Sereguina

Business analyst She helps in

defining the

requirements for the

visualization tool.

She shares the

same interests as

Marchella.

Mr. Henry Anijs Business analyst He works in the

enforcement

department. He

identifies the

benefits which are

not possible to give

to the customer. He

is the point of

contact for any

enforcement related

query from their

department.

He is primarily

interested in the

features of the

visualization

tool. He wants

to know the

capabilities of

the visualization

tool and how it

can contribute to

the process

analysis.

3. Process mining: State-of-the-Art

This chapter elaborates the Process Mining domain that is relevant to the

project. In this chapter we provide the necessary information of this domain

in order to help the reader for better understanding the architecture, design,

and implementation.

3.1 Process Mining

Process mining (van der Aalst, 2011) is a process management technique that

allows for the analysis of business processes based on event logs. The basic

idea is to extract knowledge from event logs recorded by an information

system. Process mining aims at improving this by providing techniques and

tools for discovering process, control, data, organizational, and social

structures from event logs. Figure 3 shows that process mining establishes

links between the actual processes and their data on the one hand and process

models on the other hand.

software

system

(process)

model

event

logs

models

analyzes

discovery

records

events, e.g.,

messages,

transactions,

etc.

specifies

configures

implements

analyzes

supports/

controls

enhancement

conformance

“world”

people machines

organizations

components

business

processes

Figure 3: Three basic type of process mining: Discovery, Conformance, and

Enhancement

Process mining is used when user wants to bridge the gap between data

mining and business processes. In the context of reclamation analysis, UWV

handles various customers’ requests on daily basis i.e. the real world shown

in Figure 3. UWV has a system that records all the customers’ requests and

transactions in various databases. For analysis, we extract reclamation data

from the data bases and the process analyst can apply various process mining

techniques such as conformance checking or bottle-neck analysis.

There are three basic type of process mining techniques: discovery,

conformance, and enhancement.

Discovery, deals with the creation models from event logs without any a

priori models. An example of this technique is applied in alpha miner

algorithm (van der Aalst et al. 2004), which creates a Petri-net model

describing the behavior observed in the event log.

http://en.wikipedia.org/wiki/Process_management
http://en.wikipedia.org/wiki/Business_process

Page 9

Conformance, deals with the comparison of an a priori model with event

logs. The aim is to detect the deviation and inconsistencies between an event

log and process model. For example, there is a process model indicating that

purchase orders of more than one million Euro require two checks. The

analysis of the process model and event log will show whether this check is

followed or not.

Enhancement, aims to extend or to improve the existing business process

model from an event log. There is a-priori model. This model is extended

with a new aspect or perspective. An example is the extension of a process

model with performance data, i.e., some a-prior process model is used to

project the bottlenecks of the business processes.

3.2 Event log

An event log is the main enabler to apply process mining techniques. It is

extracted from different data sources for example databases, transaction logs.

It assumes that it is possible to record an activity such that each activity refer

to a trace and an activity. An event log is the main enabler for the

LogOnMapReplay plug-in.

Figure 4 shows the standard model of an event log. It consists of several

entities: a log, a trace and an activity

Figure 4: A standard model of an event log

class Ev entLog

Activ ities

State

- assign :byte

- complete :byte

- schedule :byte

- start :byte

- suspend :byte

TimeStamp

- eventTime :Date
Attributes

- age_category :String

- amount :int

Traces

Log

+event *

1..5

1..*

+trace *

1. Log: The logs contains sequences of events or task, which refers to

the execution of certain business processes such as unemployment

business process. These events are listed in chronological order. A

log contains a set of traces. For example, UWV’s unemployment

business process, has an arbitrary number of customers who ask for

unemployment benefits.

2. Trace: A trace consists of several events such that each event

instance is related to exactly one case. Here a customer represents

one case. A customer can have multiple traces. For instance, a

customer has the following set of events in a trace:

a. Customer applies for an unemployment claim.

b. UWV evaluates the customer present situation.

c. UWV accepts or rejects the claim application.

3. Activity: An activity or task that was executed for a particular case.

Figure 5 shows the life-cycle of an activity. An activity must have at

least one of the following States :

 Schedule: An activity was created but was not yet assigned to a

resource.

 Assign: An activity was assigned to a resource but not yet

started.

 Start: An activity had commenced.

 Suspend: An activity was temporarily halted with the possibility

of continuing the execution later.

 Complete: An activity was completed.

Figure 5: State diagram for life-cycle of an activity

Each activity is associated with the timestamp when they occurred in the

information system. An activity life-span is determine when an activity has at

least start/assign/schedule state and a complete state. The duration between

these states defines the life-span of an activity in the LogOnMapReplay plug-

in. In a trace, events are sorted based on timestamp. An activity can also

contains attributes of a trace or an attribute such as age, amount, and office

location. Table 2 shows an example of an event log that can be possibly

produced by Process-Aware Information System.

stm Ev ent

Schedule Assign

Executing

Suspend

Complete

Initial

Final

assign

auto-skip

start

manual-skip

suspended

complete

resume

Page 11

Table 2 shows a fragment of an event log corresponding to the handling

claim request. Each row represents one activity that has occurred at specific

time. The activities are grouped per customer. The Table 2 has two traces

Customer 1 and 2. Customer 1 has ten associated activities. The first two

activities for Customer 1 are the execution of a Claim activity which has

started on 6
th
 April, 2014 and completed on 7

th
 April 2014. An activity may

or not have an attribute value for example Claim event name does not have

amount but Payment and Start reclamation has amount.

Table 2: An example of an event log

Customer ID Event name Time stamp State Age Amount

1 Claim 06-04-2014 Start 20 -

 Claim 07-04-2014 Complete 20 -

Claim decision 07-04-2014 Start 20 -

Claim decision 10-04-2014 Complete 20 -

Payment 10-04-2014 Start 20 2000

Payment 10-04-2014 Complete 20 2000

Payment 10-05-2014 Start 20 2000

Payment 10-05-2014 Complete 20 2000

Start reclamation 11-06-2014 Start 20 2500

Start reclamation 11-06-2014 Complete 20 2500

2 Claim 07-04-2014 Start 45 -

Claim 07-04-2014 Complete 45 -

Claim decision 08-04-2014 Start 45 -

Claim decision 09-04-2014 Complete 45 -

Payment 10-04-2014 Start 45 1000

Payment 10-04-2014 Complete 45 1000

Start reclamation 10-05-2014 Start 45 1300

Start reclamation 10-05-2014 Complete 45 1300

3.3 XES standard

Extensible Event Stream (XES) (Christian W. Günther, 2014) standard was

chosen for representing an event log. This standard was adopted as a standard

by the IEEE Task Force on Process mining. XES is a generic XML-based

standard for event logs. This standard is widely used in various process

mining techniques such as LogOnMapReplay, and Alpha miner. The format

is supported by various tools such as ProM framework, Disco.

Figure 6 shows an example of an event log in XES standard. An XES file

contains an event log, which consists of any number of traces. Each trace has

a sequential list of events. The traces, events can have any number of

attributes. XES does not have a fixed set of mandatory attributes for each

element (trace and event). However, to provide semantics for such attributes,

the log refers to extension. An extension defines the semantics for attribute.

For example, the time:timestamp extension defines a timestamp attribute of

dateTime.

The following is a subset of standard attributes defined by the extension of

XES standard (Christian W. Günther, 2014) are used in this project.

 The concept:name extension defines the name attribute for traces and

events. For traces, the attribute represents a unique identifier for a

case. This extension is mandatory for traces. For events, the attribute

represents an event name.

 The lifecycle:transition extension defines the State of an event. The

possible values of this attribute are Start, Complete, Schedule,

Assign, and Suspend.

 The time:timestamp extension defines the timestamp attribute of an

event.

Figure 6 shows a fragment of the XES XML file of an event log of mentioned

in the Table 2. In this example, three extensions are declared concept, time,

and lifecycle. These three extensions are the mandatory for the

LogOnMapReplay tool. The usefulness of an event is discussed in Section

3.5.

Figure 6: An example of an event log in XES standard

3.4 Petri-net model

Petri-net (van der Aalst, 2011)is a formalism which is used to define the

control-flow semantics of process models. The petri-net models are the

optional input for the LogOnMapReplay tool (see section 3.5.2). Figure 7 is

an example a process model represented in a Petri-net model. Figure 7 model

describes the handling request of a claim business process within UWV. A

customer may request for claim for various reasons such as unemployment or

sickness.

Page 13

Figure 7: An example of a Petri-net model

A petri-net is a bipartite graph consisting of transitions, places, and arcs. A

transition is represented by a square. A place is represented by a circle.

Transitions are connected through places. An arcs run from a place to a

transition or vice-versa; never between places or between transitions. A token

is the enabler for the transitions. In Figure 7 a [start] place has a token. The

behaviour of a petri-net is defined by the firing rule, tokens can flow through

the model. The firing rule for a transition is characterises by subtracting the

number of token present at an input place equal to the number of arcs

connected to a transition and adding the number of token already available at

the transition output.

A transition is enabled i.e., the corresponding transition can occur, if all input

places hold a token. This means the business process starts with Claim

request only. An enabled transition can fire thereby consuming one token

from each input place and producing one token for each output place. Hence,

transition [a] is enabled at place [start]. Firing a results at the place [c1]. Note

that one token is consumed by the Claim request transition and one token is

also produced at place [c1]. Now, the transition [b] become enabled and place

[start] is no longer enabled. Similarly firing rules are followed for other

places such as c2 and c3.

3.5 ProM

ProM
1
 is a generic Open Source framework for applying process mining

algorithms. It is most common and popular tool for applying process mining

techniques. It follows a plug-in based architecture. This frameworks allows

developers to add new process mining techniques by adding new plug-ins.

The ProM framework has over 300 plug-ins for process mining, analysis,

1
 http://www.promtools.org

monitoring, and conversion. Figure 8 shows an overview of the ProM

framework.

Figure 8: Overview of the ProM framework

Each component depicts different plug-ins that are available in the ProM

framework. The import plug-in, allows to import petri-net model, log, and

visualization data into ProM framework. The log plug-in, allows the user to

filter events from an event log. It reads data file in the XML format. The

miner plug-in, allows the user to extract petri-net model using an event log.

Various techniques such as alpha miner and inductive miner are available in

the ProM framework, which allows the user to extract petri-net models from

an event log.

3.6 LogOnMapReplay plug-in

LogOnMapReplay plug-in (Massimiliano de Leoni, 2014) allows event logs

to be visualized and replayed on maps. The plug-in processes an event log to

produce a time-based process movie. The main goal of this plug-in is to

visualize the execution of activities as recorded in an event log. The visual

analytics techniques is the basis for developing the framework of this plug-in.

it is an approach which combines automated analysis techniques with

interactive visualisations for an effective understanding, reasoning, and

decision making on the basis of very large and complex data sets. (Thomas,

2005)

The tool combines the visual analytics techniques to visualize the incomplete

process instances of an event log. This visualization technique helps the

process analyst in gaining insights on potential problems or useful insights

their business processes. The result can later be confirmed or refute by the

analyst. The process analyst may also use other process mining techniques for

instance bottleneck analysis or conformance checking to verify the results of

the visualization plug-in. The plug-in is realized in the ProM framework.

As shown in Figure 9, an event log and a map file are the mandatory input

files for this plug-in. A map encodes a different viewpoint on the execution of

an event for example a Cartesian map, a geographical map, and a process

map. A map file contains an arbitrary number of maps. In Section 3.5.2, we

will further discuss about maps and introduces interesting examples.

cmp ProM

ProM

Log
Import

Mining

petri-net models, event

logs

Alpha miner

Inductive minerXML Log

«use» «use»

Page 15

The plug-in produces a process movie for each map. The executed data can

be analyzed from different point of view. Each movie enables a process

analyst to gain insights and do further analysis based on the preselected

criteria. As discussed in Section 3.2, an activity have different states. Each

activity is presented as a dot, which is projected on a map at a meaningful

position. If one or more activities are at the same coordinates then the

framework merges the dots and present as a pie-chart. A merged dot shows

one or more activities of the same type that belongs to the same or different

traces. To project a dot, an activity must have at least start/assign/schedule

state because the tool visualize the life-span of an activity.

Event log

ReplayOnMapLogData ware house

Maps

Process
movie

Figure 9: Overview of the LogOnMapReplay plug-in

In order to define how states can be represented on a map, a process analyst

needs to choose an image for a map and define the positions for activities as

pie charts on that image. For example a process analyst wants to create a

process movie for a process model map. The plug-in projects an executed

activities such as Claim, Claim decision, which are available in an event log.

An activity is positioned on the transitions of a process model corresponding

to the executed event.

The occurrence of an activity makes the system enter a particular state.

Hence, by replaying all activities of the event log in chronological order, it is

possible to rebuild a process history, i.e. the sequence of states the system

went through.

Such an annotated map can be seen as a photograph, and thus, a process

history can be visualised as a sequence of photographs, played together to

form a movie. A process movie is a sequence of photographs. A photograph

is composed of three type of dots; valid, invalid, and hidden.

 Valid: It has a valid and meaningful position for a map. The valid dot

will be projected onto a map.

 Invalid: It has an invalid position (means x and y axis values are

negative) for a map. The plug-in will list the event name and trace id

on the Invalid sidebar of GUI.

 Hidden: A map file does not contains an encoded viewpoint for an

event. The plug-in will list the event name and trace id on the hidden

sidebar of GUI.

Each activity is represented as a set of pie charts projected onto a map. Each

pie-chart captures one or more activities of the same type belonging to

different process instances. The diameter of a dot depends of the number of

activity instance that need to project on the map at a particular time. The dot

size can increase or decrease depending on number of activity instances that

are active at same time.

The LogOnMapReplay plug-in has a Graphical User Interface (GUI) for

visualizing a process movie. The set of movies produced, one per map, is

visualized and played using GUI (note that movies has to produces first

before they can be played, i.e. they are not generated on the fly). The

interface has various functionalities such as play, pause, and speed. Figure 10

shows a screenshot of the GUI and a process movie produced by

LogOnMapReplay plug-in. The user can press the play button to see the

visualizing of the executed activities of an event log. The activities are sorted

in a chronological order and are subsequently played in the same order. By

playing a movie for each map, the user can gain different insights on the

execution of activities. By pressing the play button the user can see the

continuous behaviour of the activities. The user can go back and forth in the

movie by applying different speed or choosing the timeframe from the

timeline.

When multiple activities are projected on a process model map as dot at the

same coordinates then all dots are aggregated and creates a pie-chart with

slices. Each slice is coloured based on the chosen colour scheme. The plug-in

has three types of the colour schemes, which are as follows:

1. State schema: An activity is coloured based on the current State of

an event.

2. Age schema: An activity is coloured based on the age of an activity

which means the moment that activity occurred in the movie and the

current time of the movie. If the activity has just started then the

colour of the dot is projected white and as longer it remain on the

visualization panel, it starts progressing toward black colour.

3. Attribute value schema: An activity is coloured based on the end-

user selected attribute and a value of an event.

Each slice of a pie-chart is coloured based on the chosen colour scheme.

Figure 10 screenshot shows the active activities on 29 January 2014:

12:22:30. The screenshot shows a photograph of a movie which is of a

geographical nature. At UWV, the reclamations are occurring at various

geographical work location of UWV. Here, each activity is projected on the

map of The Netherlands as a pie-chart. The position to project a dot or a pie-

chart is chosen based on the e geographical work locations of UWV. At any

given point in time, the size of the pie-charts are associated with a particular

office location of UWV. It represents the number of activities that refer to the

reclamations of the office location for example Eindhoven, Amsterdam, and

Alkmaar.

Page 17

Figure 10: A screenshot of a process movie produces by LogOnMapReplay

plug-in

The activities has different attributes for example age, or reclamation amount.

Therefore, the pie-charts can be sliced according to the percentage of

activities with given attribute. Each attribute value is assigned with a different

colour. Here, the pie-charts are sliced according to age. By clicking the play

button, the user starts visualizing the process movie. Alternatively, the user

can click anywhere on the time line to view the corresponding photograph of

the movie.

The plug-in determines the life-span of an activity when an activity has at

least start/assign/schedule state and a complete state. As shown in Table 3,

Activity A started on 8 June 2014 and completed on 11 June 2014. The life-

span on Activity A is three days. This tool will visualize an Activity A for

three days and the process analyst can observe how an activity has progressed

with time. Activity B has a complete state so the tool does not visualize it

because it does not have a start state.

Table 3: A set of events

Activity State Time stamp

A Started 2014-06-08T04:00:12.007+02:00

B Complete 2014-06-08T04:00:12.007+02:00

A Complete 2014-06-11T04:00:12.007+02:00

3.7 Map

A map (Massimiliano de Leoni, 2014) encodes a different viewpoint for the

executed activities. Each activity is recorded in event logs can be projected

on a map as a dot at the specified meaningful position. A map file has an

XML-based standard. A map can be of five types namely: Cartesian, process

(petri-net model), Timeline, Geographical, or Organization chart map. A

process analyst can choose or handcraft an image of a map.

Figure 11: Map file structure

Figure 11 depicts the concept of a map file. Each map contains a set of events

and each event contains an XQuery. An XQuery
2
 calculates the meaningful

position for a background image. An XQuery (W3C, 2014)is a query and

functional programming language that queries and transforms collections of

structured and unstructured data, usually in the form of XML, text and with

vendor-specific extensions for other data formats (binary).

There are two type of XQuery: Static and Dynamic XQuery and they are as

follows:

1. Static: A static XQuery is one whose x, y and z are coordinates are

defined.

2. Dynamic: A dynamic XQuery expression has a position function

and the coordinates are determined by given attribute values.

Figure 12 is an example of both static and dynamic XQueries

2
 http://www.w3.org/TR/xquery/

class maps

Map file

Map

- mapName :String

- URL :String

Ev ents

Xquery

+map 1..*

+event

0..*

+query 1

Page 19

Figure 12: An example of static and dynamic XQuery

3.7.1. Cartesian map:

An inspiration for a Cartesian map is taken from two- dimensional Cartesian

coordinate system. The x and y axis of a Cartesian map is represented by the

attribute values for an event log such as amount and age. Figure 13 shows an

example of a Cartesian map. This map helps in finding out the co-correlation

between two attribute values. Based on the position defined for the x and y

coordinates, the visualization tool can visualize a dot at that pixel point of a

map.

Figure 13: An example of a Cartesian map

Dynamic

XQuery

Static XQuery

3.7.2. Process map

An inspiration of a process map is taken from a petri-net model. This map

helps in analyzing the correlations between activities with-in a business

process. An example of a process map is shown in Figure 7. An activity is

projected where the transition name of a petri-net model and activity name

from an event log has the same name.

3.7.3. Geographical map

An inspiration of this map is taken from a country map. Figure 14 shows the

example of The Netherlands map. This map has been modified and colored

based on UWV office locations. This map is useful for analyzing events

based on the office location. The LogOnMapReplay plug-in projects dots

based on the work distribution of a company.

Figure 14: An example of a geographical map

Page 21

4. Problem and Requirement analysis

This chapter describes the problem definition and requirements of the project.

The limitations of the LogOnMapReplay plug-in is the main requirement in

this project. The chapter continues explaining the most important functional

and non-functional requirements of the project.

4.1 Problem definition

UWV is committed to continuously improving their business processes for

the customers. With a growing number of reclamations, UWV has to make a

lot of effort to recover the money from customers and not all the money is

recovered. The company does not have control over the inflow of new

reclamations insights. They do not have insight into the causes of these

reclamations.

They have identified reclamation data by connecting different data sources.

An event log is available but there are no operational support for business

analysts and managers. It is difficult to analyse an event log and find answers

for the following questions:

 How the reclamations events have progressed with time?

 Is there a specific category/cluster of customers, who often create

reclamation?

 Is there any co-relation between reclamation, specific group of

In process mining various techniques are available such as conformance

checking, and bottleneck analysis. But these techniques are less effective if

process/ business analyst don’t know which aspects of the data are worthy to

analysis. The tool called LogOnMapReplay plug-in, dynamically shows

behavior of process instances. To use this plug-in, a process analyst does not

require guidance.

In Chapter 3, we have briefly discussed the functionalities of the

LogOnMapReplay plug-in. This plug-in is a prototype, it shows the flow and

timeline of events as they are recorded in execution. The first challenge of

this project is to enhance the features of this plug-in. Another challenge is to

quickly process huge event logs. Currently, the plug-in supports the

processing of two hundred thousand events on a laptop equipped with an Intel

Core i7 Processor at 2.20GHz. The processing of a process movie takes more

than 7 hours and it used 5 GB of memory. The details of these limitations are

discussed in Section 4.3. To overcome these limitations, we need a solution

that offers an optimized way of processing an event log.

4.2 Project goal

The stakeholders require an enriched monitoring tool for analyzing their

reclamation data. The primary goal of this project is to enhance the features

and improve the scalability of the LogOnMapReplay plug-in. The plug-in

must be capable of quickly processing at least five hundred thousand events

in less than eight hours. The secondary goal is to provide first insights for the

following questions.

 How to identify patterns in the UWV reclamation data?

 How to identify any specific cluster of customers, who often creates

reclamation?

4.3 Limitation of LogOnMapReplay plug-in

At the beginning of the project, various experiments were conducted with

UWV process/business analysts to find out the limitations and missing

features of the plug-in. The following use case scenarios and corresponding

maps were created to show the existing features of the plug-in

 Show business processes on process model map.

 Show reclamation on the geographical map.

 Show co-relation between age and reclamation amount on the

Cartesian map.

During experiments, the following limitations were identified in the plug-in.

1. Manual map file creation: A map file is the main input file for the

LogOnMapReplay plug-in. As we have discussed in Chapter 3, the

user can create various types of maps (for example a Cartesian map,

or process model map). Currently, the user has to manually create

these map files and it includes:

 Choose or create an image: User has to either hand-craft or

choose a background image for a map. For example, to

create a Cartesian image, the user must be aware of attribute

name and their corresponding unique value from an

attribute. The manual file creation is a time consuming and

tedious process.

 Create an XQuery: To create an XQuery requires technical

expertise or need assistance from IT personnel. The user

must know and pays attention to events that would be

worthy of analysis.

The main user of LogOnMapReplay plug-in is process/business analyst and

they would like to avoid this tedious process of creating a map. Due to these

reasons, they are interested in a tool that will automatically create a map file

which includes an image and specified event XQueries. A process analyst

selects their area of interest events and attributes from an event log and the

tool creates a map file.

2. Quickly process an event log: Every month UWV handles 1.5

million customer requests and approximately 500 thousand

customers have reclamations. This means the tool must be capable of

quickly processing at least 1/3 size of an event log.

In the current implementation, it takes more than seven hours and it

used five GB of memory to process two hundred thousand events on

a laptop equipped with an Intel Core i7 Processor at 2.20GHz. Due to

the following reason the processing events are slow in the plug-in.

 Storing objects in-memory: The reason for using large

amount of memory is because each processed photograph

object (related to movies) is kept in-memory. There is a

Page 23

linear dependency between numbers of active activities vs

number of photographs.

 XQuery expression computation: Another reason for the

slow computation is the processing of an XQuery

expressions of the fly. The LogOnMapReplay plug-in takes

significant amount of time to compute the meaningful

positions of an activity on a map. This expression runs all

maps available in a map file and all activities that are present

in an event log.

 Sequential processing of an event log: The existing

implementation is single threaded. As such, it unable to take

advantages of system equipped with multiple CPU or a

single CPU with multiple core.

3. Prototype: The plug-in has basic functionalities with which a

process analyst can get insights. The following missing

functionalities were identified:

a. Filter of events and attributes: Once a process movie is

produced, the user does not have freedom to filter point-of-

interest events and attributes. For instance, while watching a

process movie if the user would like to choose the

visualization of dots only for two events such as Claim,

payment, and in addition those event must have age between

30 to 40 years then the plug-in does not have an option or an

alternative to filter those values. That’s why there is a strong

need to add filter functionality in the plug-in.

b. Export/show data: The plug-in does not allow the user to

export the sub event log of a dot, which is projected on the

visualization panel of the plug-in. This feature allows a

process analyst to narrow down the scope of analysing an

event log.

c. Show pie-chart details: The plug-in does not allow the user

to see details of the pie-charts. Suppose when the user saw

some usual flow of events in a process movie then the user

might be interested to see the details of those pie-chart. This

feature might help the process analyst in identifying and

narrow down the scope of potential problematic area in their

business processes.

d. Highlight the problem: In the current implementation, while

plotting dots onto the map, each dot has an equal weight of

one. In a process movie, it is difficult to detect events when

something is not ordinary.

Table 4 shows an example to calculate the weight of the dots

for the number of dots that are plotted on a geographical map

at a certain time. Currently, five, ten, and fifty dots are

plotting at Amsterdam, Groningen, and Eindhoven office

location respectively. Amsterdam population is five, one

hundred at Groningen, and two hundred customers at

Eindhoven. The weight is determined by below formula

𝑊 = 𝐷/𝐴

Where D is number of dots of any location onto a map, A is

selected attribute value, and W is the weight.

If a region has dense population then it is expected to have

more customers within a Claim business process. When this

situation is vice-versa then something unusual is happening

in an event log. That’s why it would be interesting to

visualize relative corresponding to the point-of-interest

attributes. As shown in Table 4, the entire population of

Amsterdam is active for certain business process. And ¼ the

population of Eindhoven is active. Based on this calculation,

a process analyst can conclude that need to focus more on

their Amsterdam office then Groningen and Eindhoven

office.

Table 4: Absolute weight

Office Number of dots

(D)

Population

(A)

Weight

(W)

Amsterdam 5 5 1.00

Groningen 10 100 0.10

Eindhoven 50 200 .25

e. Indexation: To determine if events has drifted means

(increase, decreased, and same) from a certain point in time.

It would useful for a process analyst to be able to select a

point in time and show the difference between the selected

timeframe and rest timeframes of a process movie. The

following types cases are considered :

- Increase: The number of events are increasing

from the selected time frame. This is projected

with black colour.

- Decrease: The number of events are decreasing

from the selected time frame. This is projected

with yellow colour

- Same: There is no change. The number of events

are same on both timeframes

The table 5 shows the calculations that is expected from the

LogOnMapReplay plug-in. In Table 5, the T1 timeframe is

chosen to calculating indexation for the T2, and T3

timeframe. The result expected for each coordinate of the T2

and T3 timeframes is also shown in Table 5.

Page 25

Table 5: An example of indexation

Coordinates T1 T2 T3

100,100 10 12-10 =2 9-10 =-1

100,200 12 1-12 =-11 9-12=-3

100,300 0 12-0 =12 9-0 =9

4.4 Use case scenario

The following use case scenarios are identified, based on the meetings with

the stakeholders and experiments conducted on the tool.

1. Create map file

2. Quickly process an event log

3. Create filter

4. Show/Export data of pie-charts

5. Show relative

6. Show drift

Figure 15: User goa

uc User goal

Analyst

Create map

Create Filter

Export data

Quickly process data

Create Carteian

Create petri-net

Show details of

pie-chart

«include»

«include»

«include»

4.5 Functional requirements

Based on the meetings with the stakeholders and experiments, a list of

functional requirements was created.

4.5.1. FR1 – Automatic Map Generator (AMG)

One of the requirements is to design and implement a new plug-in with

Graphical User Interface (GUI) which will automatically generate maps.

Irrespective of the map type, a user must specify the events for which the

map must be generated. Each map consists of an image and XQuery related

to the selected events. A process analyst can create a map file for visualizing

the event log. For this project, we are focusing on two types of maps namely

Cartesian map and Petri-net map.

This requirement was subdivided into three smaller requirements based on

their functional aspects. Requirement FR1.1 focuses on the graphical

representation of the user interface. Requirements FR1.2 and FR1.3 focus on

generating Cartesian and Petri-net map respectively. Details of the sub-

requirements are presented in Table 6.

Table 6: List of sub-requirements for Automatic Map Generator

Requirement

ID

Requirement

name

Description

FR1.1 Create GUI Design and implement a GUI in ProM

framework for a map file creation.

FR1.2 Create a

Cartesian map

User selects x-axis, y -axis attributes for

example, Age and Gender from an event log

file. There can be four type of Cartesian map:

 Literal - x and y axis attributes have

String/ Boolean values

 Continuous – x and y axis attributes

have integer or float values

 XLiteral – x axis has a string value

attribute and y axis has an integer or

float value attribute

 YLiteral – x axis has an integer or float

value attribute and y axis has a string

value attribute.

FR1.3 Create a petri-

net map

An event log and petri-net models are the input

files for the AMG plug-in. The GUI must have

the following functionalities:

 Give the most appropriate name match

between an event of an event log file

and transition of the petri-net model.

 Support one-to-many mapping between

events and the petri-net model

transitions, for example (Claim, Change

form out1, and Change form2) should

be allowed to map with Claim

transition.

Page 27

FR1.4 Merge map

file

A tool which allows user to merge two or more

map files

4.5.2. FR2 – Quickly process an event log

UWV’s system has a huge number of events that are logged on a daily basis.

Another requirement, important for all stakeholders of the project, is

scalability in terms of processing these event logs. The visualization of the

event logs is generated by a plug-in called the LogOnMapReplay plug-in.

The LogOnMapReplay plugin uses the map file and the event logs to

generate the visualization as intended by the user. The plugin must be capable

of processing at least five hundred thousand events. Table 7 lists the sub-

requirements that have been derived from this requirement.

Table 7: List of sub-requirement of processing an event log

Requirement

ID

Requirement name Description

FR2.1 Faster computation
of events

The tool must be capable of processing
500 thousand events in maximum 8 hours

FR2.2 Less memory
consumption

The tool must be memory efficient to

support processing of at least 500

thousand events at a time.

4.5.3. FR3 – Create filter

In LogOnMapReplay plug-in, while playing a process movie, the user must

be able to choose which events and attributes with its corresponding values.

The plug-in will visualize only selected events and attribute values.

Based on the functional aspect, this requirement is divided into three sub-

requirements. FR3.1 and FR 3.2 focus on different filter levels and FR3.3

focus on the GUI of the filter functionality. Details of the sub-requirements

are shown in Table 8.

Table 8: List of sub-requirements for creating a filter on LogOnMapReplay

plug-in

Requirement

ID

Requirement

name

Description

FR3.1 Event-based

filter

User can select any number of events for

example, ten events are available in an event

log and user would like to visualize only three

events such as Claim, Start reclamation,

Payment.

FR3.2 Attribute-based

filter

User can select any number of attributes and

their corresponding values. For example, show

only female whose age is between 40 to 60

years from the event logs

FR3.3 Create GUI Design and implement a filter panel for

selected activity instance and attributes in

LogOnMapReplay plug-in.

There is an AND relationship between both event-based and attribute-based

filter. For example, if user has selected Claim, payment events, and Female

from gender attribute then LogOnMapReplay plug-in will visualize dots

corresponding to claim and payment which has female only.

4.5.4. FR4 – Show/Export data

While playing a process movie, user must be able to see the detail of selected

pie charts data in a table. A user should have flexibility to have different chart

representations of the same selected pie chart, for example bar chart. Details

of requirements are shown in Table 9.

Table 9: List of sub-requirements for export /show functionality of

LogOnMapReplay plug-in

Requirement

ID

Requirement

name

Description

FR4.1 Export data Export a sub event log file for a selected a pie-

chart on the visualization panel of a

LogOnMapReplay

FR4.2 Export image Export image of a visualization panel or

selected pie-chart.

FR4.3.1 Show data Show detail of selected pie chart in a table

form

FR 4.3.2 Show a

configuration

panel

Show a configuration panel which lists all the

maps for a map file. The user can select the

maps and the LogOnMapReplay plug-in will

produce a process movie only for the selected

maps.

Page 29

4.5.5. FR5 – Show deviation

The objective of this requirement is to detect events in the process that are

different from what is expected. The plug-in detects incidents, trends, and

concept drifts from playing a process movie. The plug-in must be capable of

detecting if some value is out of the ordinary. Table 10 lists the sub-

requirements that have been derived from this requirement.

Table 10 : List of sub-requirement for highlighting the problem on

LogOnMapReplay plug-in

Requirement

ID

Requirement

name

Description

FR5.1 Show relative

The user can select attribute for which weight

of the dots needs to be calculated. Before

plotting dots, the plug-in will calculate the

combined weight. The new diameter of a dot is

decided based on the calculated combined

weight for all dots that are present at same

coordinate of a map.

FR5.2 Show drift

The user can select a specific time from a

process movie. The plug-in will visualize the

difference between from the selected point in

time and all other points in time. The dot size

is calculated based on the difference between

those two time frames. The difference can be

positive, negative, and equal.

Positive: The number of dots are increasing

from the selected point on time. The dot will

plotted with black colour.

Negative: The number of dots are decreasing

from the selected point on time. The dot will

be plotted with yellow colour.

Equal: if the number of dots from the selected

point on time and any other time are equal then

nothing is no dot visualization.

4.6 Non-Functional requirements

We identified the following non-functional requirements, as relevant to the

project. The criteria can be used to assess the quality of the proposed

solution.

4.6.1. NFR 1- Extensibility

The design and implementation of the AMG plug-in must consider future

growth for creating other maps such as timeline, geographical map.

4.6.2. NFR 2- Usability

This is one of the major concerns of the UWV stakeholders. The main user of

this visualization tool is a process analyst. Both AMG and

LogOnMapReplay plug-ins should be intuitive and a process analyst should

quickly be able to understand and analyses expected/unexpected behavior of

events. Both plug-ins should be easy to learn. UWV’s process analyst should

not spend more than a day to get familiar with both plug-ins features and

functionalities.

4.6.3. NFR 3- Configurability

Both plug-ins can be used by any organization to do the analysis for their

business processes. That’s why design and implementation of all features

should not have any external source dependency.

4.6.4. NFR 4- Scalability

UWV wants to process at least five hundred thousand events on the

LogOnMapReplay plug-in. The current implementation does not support the

processing of these many events. There is strong need to enhance the

scalability of the tool.

4.6.5. NFR 5- Backward compatibility

All new features and performance enhancements done on LogOnMapReplay

plug-in must be backward compatible with the existing implementation of the

plug-in.

4.7 Design criteria

After the requirements were identified the following design criteria were

chosen to be used in the design and implementation phase of the project.

These criteria helped in evaluating the functional and non-functional

requirements of the project.

 Ease of use: This is the main concern for the stakeholders. The end-

user of the tool are business/ process analysts of the UWV. The tool

should features which helps in the quick analyse of the data from the

tool.

 Performance: UWV wants to process at least five hundred thousand

events on the LogOnMapReplay plug-in. The current implementation

does not support the processing of these many events. There is strong

need to improve the memory and computation capabilities of the tool.

Page 31

4.8 Project deliverables

The main deliverable excepted as an outcome of this project are:

1. An implementation for next version of the “LogOnMapReplay” plug-

in based on the requirements.

2. A design and implementation of two new plug-ins named Automatic

Map Generator (AMG) and MergeMapFile based on the company’s

requirements.

3. A project report that explains the project goal, scope, requirements

and design decision to fulfil those requirements, and the results of the

project.

4. Evaluation (as a part of the report) to show the capabilities of the

plug-ins

5. A presentation that summarizes the project achievements.

5. System Architecture

This chapter describes the proposed architecture to meet the functional and

non-functional requirements described in Chapter 4.

5.1 System Design

Since the ProM framework is easily extensible and enforces a plug-in based

architecture we decided to implement two new plug-ins named AMG and

MergeMapFile for creating and merging map files respectively. Figure 16

shows the system architecture that has been designed for this project. In the

ProM framework, the data stores in-memory. This allows the user to import

data once into the framework and later the same data can be used to apply

various process mining techniques to do the further analysis with an event

log.

Both AMG and LogOnMapReplay should use the same event log. The reason

of using same file is, the AMG plug-in generates XQueries for a map based

on the event names that are available in an event log. The LogOnMapReplay

plug-in processes an event log based on the available XQueries in a map file.

This reduces the risk of losing the events projection on the visualization panel

of the LogOnMapReplay plug-in. The following section provides an

overview of all plug-ins that are designed, implemented and used in this

project.

 Automatic Map Generator (AMG): It is a new plug-in design and

implemented in ProM framework. It aims for an automatic maps

creation to support LogOnMapReplay plug-in. The AMG plug-in

satisfies functional requirement FR1.1, FR1.2, and FR 1.3

requirement and also satisfies non-functional requirement NFR1 and

NFR 2. The interface of this plugin requires an event log and

optionally petri-net models which can be created or discovered using

miner algorithms. The AMG plug-in supports PNML standard format

petri-net models.

 MergeMapFile: This is a new plug-in which has been design and

implemented into ProM framework. It allows the user to merge two

or more map files. This plug-in satisfies functional requirement

FR1.4. The interface of this plug-in requires minimum two and

maximum five map files.

 LogOnMapReplay: This is an existing plug-in in the ProM

framework. The plug-in design has been modified to improve the

performance and scalability. This design change satisfies functional

requirement FR 2 and non-functional requirement NFR 3, 4. The

new features have been implemented to satisfy functional

requirement FR 3, 4, 5 and non-functional requirement NFR1, 2.

 Map file: It contains maps such as Cartesian, Process map created by

AMG plug-in or merged by MergeMapFile plug-ins. A map file is

the main input file for LogOnMapReplay and MergeMapFile plug-

ins.

 Log: The user can visualization and filter events/traces with various

existing plug-in in ProM framework such as Extraction Sample of

Traces plug-in. An event log supports various formats which as XES,

MXML formats. The AMG and LogOnMapReplay plug-ins support

XES format. There is one plug-in called XESLite which supports

Page 33

XES format. We are using XESLite
3
 plug-in because, it allows user

to import more than three million event log in the ProM framework.

 Miners: Various miners’ algorithms such as inductive miner and

alpha miner are available in the ProM framework. Using these

miner’s techniques, the user can discovery a petri-net model from an

event log.

3
 https://svn.win.tue.nl/trac/prom/browser/Documentation/Meetings/XESLite.pdf

Figure 16: Overall system design

6. Automatic Map Generator plug-in

This chapter describes the Automatic Map Generator (AMG) plug-in

requirements. This chapter also focus on the development process,

description, and results of the plug-in. The main criterion for designing AMG

plug-in is to generate a map configuration file and background images.

Page 35

6.1 Plug-in description

The AMG plug-in generates a XML map file. A map file can have arbitrary

number of maps. Each map contains the location of the generated image and

XQueries which contains meaningful position function for their

corresponding event. The GUI editor has been designed and developed for

this plug-in. It allows the user to make the selection for the types of maps

he/she would like to generate. A map file is one of the main input file for the

LogOnMapReplay plug-in. The plug-in satisfies FR1requirement and its sub-

requirements which are listed in the Table 7 and the NFR2 non-functional

requirement. It will also satisfies the NFR2 non-functional requirement.

The high-level design of an AMG plug-in is shown in Figure 17. The plug-in

takes an event log and petri-net models as input files. An event log is a

mandatory input and petri-net models are only required when the user wants

to generate a process model map. The plug-in allows the user make a

selection for the number of Cartesian and process model map that needs to be

generated. The selection of the process model maps depends on the number

of petri-net models that are imported into the ProM framework. The plug-in

supports the creation of nine process model maps and fifteen Cartesian maps

in one go. Each map is generating an image and XQueries.

Figure 17: High level design of AMG tool

An image is a background image for a process movie. The XQueries are used

while preprocessing an event log on the LogOnMapReplay plug-in to

produce a process movie. The XQuery has the following tasks:

 It helps in identifying the type of dot such as valid, invalid, and

hidden.

 It helps in defining the position (x and y coordinates) where the dot

will be projected.

The requirements for designing the GUI and a generating a map file are

different for both maps. That’s why the design and implementation for both

maps has been treated differently. For example, the creation of a Cartesian

image is based on selecting x and y axis attributes and the creation of a

process model map is based on the given petri-net model. The plug-in

provides the mapping between the events of an event log and given petri-net

model. Figure 18 shows the initial screen of the map selection. Here the user

can choose the number of maps he/she wants to generate and the directory

location where the plug-in saves the generated images.

Figure 18: The map selection

6.2 Cartesian map

As mentioned before, a Cartesian map is inspired on the Cartesian coordinate

system. It has x and y axis coordinates. An axis can be of a literal,

continuous, or datetime type. For this project, we have focused on the literal

(which is of a String or Boolean type) and continuous (which is an Integer or

Float type).

Therefore, the plug-in allows the user to create four types of Cartesian maps

namely Literal, Continuous, XLiteral, YLiteral. The definition for each map

has been described in Section 4.5.1. Based on the selected x and y attributes,

the plug-in decides the type of map, its needs to generate.

Figure 19 shows the initial screen for the Cartesian map, which is designed

for the making attributes and events selection. The X and Y attributes

combobox are populated based on the attributes available in an event log. The

events list is also populated based on the unique events present in an event

log. The user can also define the desired width and height for an image. The

X and Y boundaries and their divisions are active when the user has selected

a continuous attribute. For example age is a continuous attribute and office

location such as Eindhoven, Amsterdam values is a literal attribute.

Page 37

Figure 19: Selection coordinate for Cartesian map

6.2.1. Creation of an image

There are two factors need to be considered while creating an image: a line

and a label.

1. Line: The number of lines needed to draw depends on the range

specified for both x and y axis. The lines for a literal attribute are

decided based on the unique values present in an event log for a

chosen attribute. The lines for continuous map is based on the value

specified by the user. The default value for number of division for a

continuous attribute is five.

2. Label: The value for each line differs respective to its attribute type.

The label for literal attributes is decided according to identified

unique values for a selected attribute. For example, the user chooses

a gender attribute which has two values such as Man, Women. The

plug-in generates two labels for these respective lines.

The label for continuous attributes is calculated based on the defined

range (minimum and maximum values) such as [0, 1000] and the

given number of divisions. Let 𝑥𝑀𝑖𝑛, 𝑥𝑀𝑎𝑥 defines the minimum

and maximum value of an attribute, 𝑥𝐷𝑖𝑣 the number of divisions,

and lNum defines the line number. This is the formula to calculate

the value for a label.

𝐿𝑎𝑏𝑒𝑙 = 𝑥𝑀𝑖𝑛 + (𝑙𝑁𝑢𝑚 − 1) ∗ ((𝑥𝑀𝑎𝑥 – 𝑥𝑀𝑖𝑛) / 𝑥𝐷𝑖𝑣)

For example, suppose the user chooses age attribute with 𝑥𝑀𝑖𝑛 =0,
𝑥𝑀𝑎𝑥 =100, 𝑥𝐷𝑖𝑣 =5 and 𝑙𝑁𝑢𝑚 =2.The plug-in thus specifics

 𝐿𝑎𝑏𝑒𝑙 = 0 + 1 * ((100 – 0) / 5) =20

Figure 20 shows a continuous Cartesian map which is generated by

the AMG plug-in.

Figure 20: A continuous Cartesian map image generated by the AMG plug-in

6.2.2. Create XQuery

The selected attribute triggers the decision for generating either static or

dynamic type of XQuery for an event. The user selects events for a map for

which the plug-in should generates an XQuery. The plug-in identifies the

type of query for an event based on the selected attribute type for x and y

coordinates of a map. The attribute can be of a literal and continuous type.

Literal: The intersection points of all line of both axis are calculated because

each intersection point has a specific values for x and y coordinates. The

plug-in creates if-else based query. While processing data in the

LogOnMapReplay identifies the exact x and y coordinates based on the

attribute values present for an event and XQuery generated by AMG plug-in.

Figure 21 depicts an example of dynamic XQuery generated by the AMG

plug-in. Here Age_Category_WW attribute is chosen for y axis. The attribute

has five unique values in an event log. For each unique value a static y

coordinate has been decided.

Page 39

Figure 21: An example of dynamic XQuery for a literal attribute

Continuous: The continuous attribute has a range of values for example an

amount has a range of 0 to1000. Due to this reason, the plug-in generates a

generic dynamic XQuery. The LogOnMapReplay plug-in runs a query

processor which takes an event attribute value and a dynamic XQuery as

input and the processor process the query and returns x and y coordinate.

Based on the coordinate’s values, the LogOnMapReplay plug-in decides the

type of a dot

Consider px and py as the x and y axis coordinates, xrow and ycol are

the number of rows and columns, lx and ly are the first labels of x and y

axis which are generated while drawing an image, xVal, yVal are the

event attribute value for each axis and w and h are an image width and

height. These are the formulas to calculate the x and y axis position.

𝑝𝑥 = (𝑤 / (𝑥𝑟𝑜𝑤 + 2)) + (𝑥𝑉𝑎𝑙 /𝑙𝑥) ∗ (𝑤 / (𝑥𝑟𝑜𝑤 + 2))
𝑝𝑦 = ℎ − (ℎ / (𝑦𝑐𝑜𝑙 + 2) + (𝑦𝑉𝑎𝑙 / 𝑙𝑦)) ∗ ℎ/ (𝑦𝑐𝑜𝑙 + 2))

For example, suppose the image size is (1800 x 1200) pixel (w= 1800 and h

=1200). The amount and age attributes as xVal and yVal. Let’s consider

xVal = 200 and yVal =30 and label values are lx = 20 and ly = 20. And map

has xrow=10 and ycol=5.

px = (1800/(10+2)) + (200/20) * (1800/(10+2)) = 1650
py = 1200 – (1200/(5+2) + (30/20) * 1200/(5+2))= 771

Figure 22 shows the detail design for creating a Cartesian map. Since the type

of Cartesian map creation decision was on the fly that’s a factory pattern is

applied. The factory pattern
4
 is a creational pattern which uses factory

methods to deal with the problem of creating objects without specifying the

exact class of object that will be created.

By applying this design pattern, we solved the creation problem for the

Cartesian map and it also allows future extensibility for adding the

4
 http://www.oodesign.com/factory-pattern.html

functionalities to create more Cartesian maps such as datetime Cartesian map.

This design helps in satisfying NFR1 non-functional requirement. The

CartesianFactory class decides the type of map. The Cartesian class has four

types of Cartesian maps. Each child class is responsible to create an image

and its XQueries.

Figure 22: Detail design for creating a Cartesian map

6.2.3. Process model map

As mentioned earlier, the process model map visualizes the events onto the

corresponding transition in the given model. In order to activate the plug-in

for the creating a process model map, the user has to provide the Petri-net

formalism and an event log. In this project, we focused only on the Petri-net

formalism, but we believe that it is relatively easy to extend the

implementation to support other process modelling formalisms. There was a

different set of requirements for designing the GUI for process model map as

compare to the Cartesian map. The main requirements of GUI are as follows:

 Allow user to map an event with any transition of a petri-net model.

 Provide suggestions for the most suitable match between process

instances and transitions of a petri-net model.

 Preview screen of petri-net model.

 Allow user to map a transition of a petri-net model to one, many or

no mapping corresponding to an events of an event log.

The mapping schema is designed to satisfy the FR 1.3 functional

requirement. The plug-in should be allowed to do three types of mappings

which are one-to-one, one-to-Many and no mapping and the plug-in should

not be allowed to do many-to-many mapping . The Table 11 defines the

mapping schema in detail. Based on the select mapping, the plug-in will be

generating a position function which is the XQuery.

class AMG

Cartesian
CartesianWizard

+ createQuery() :String

+ getCartesianImage() :RenderedImage

+ getEventNames() :Collection<?>

+ initComponent(XLog) :void

+ mapSelection() :RenderedImage

CartesianFactory

+ getMap() :Cartesian

+ getQuery() :Cartesian

Cartesian

+ createMap() :void

+ createMapImage() :RenderedImage

+ drawBasicCartesianImage() :RenderedImage

+ paintComponent(Graphics) :void

Literal

+ createMapImage() :RenderedImage

+ createMapQuery() :StringBuffer

Continous

+ createMapImage() :RenderedImage

+ createMapQuery() :StringBuffer

XLiteral

+ createMapImage() :RenderedImage

+ createMapQuery() :StringBuffer

YLiteral

+ createMapImage() :RenderedImage

+ createMapQuery() :StringBuffer

«create»

1

Page 41

Table 11: The mapping schema for creating position function

Mapping scheme Possibility Description

No Mapping Yes No position function

One-to-one Yes One transition of petri-net model is

mapped with one event. It will not

share the position function.

One-to-Many Yes One transition has multiple events.

The events which are selected to be

visualize onto the same transition

will be sharing the position function.

Many-to-Many No It is not possible to have a mapping

of one event to multiple transition.

Because an event such as Claim,

payment can have only one active

process instance for a customer. For

example Customer A can only have

one active Claim for a certain

duration

Figure 23 shows, an example of the mapping schema that has been designed

for creating a position function. An event log has five unique events and a

petri-net model has three transition. The Claim and Change form out events

are mapped to the Claim transition. The Payment event is only mapped with

Payment1 transition. And there is no mapping for a start reclamation event.

Figure 23: An example of process model mapping schema

Figure 24 shows the GUI that has been designed for creating a process model

map. On the left side, the plug-in list unique events that are available in an

event log. The transitions of the petri-net model are shown on the right side

of the GUI panel. Based on the mapping schema, each event has a list of all

the transitions of a petri-net model. Based on the given input files, the GUI

has to find the best match between an event and a transition. The best match

means give either same name or the closest name. The Levenshtein distance

algorithm is used to calculate the best match .If GUI found a match of both

then the combo box of transition will be of grey color otherwise show the

closest match but with yellow color. The different colors on the combo boxes

helps the user in identifying events which are matched or not matched with

the provided petri-net model. The GUI provides suggestions only, but the

user is allowed to mapping an event with any transition of the petri-net

model.

To satisfy the no mapping requirement, a NO MAPPING string has been

added to the petri-net list. The user can choose to put all events on no

mapping which do not have a match by select a default NO MAPPING check

box. Based on the user selection, the plug-in will generate a static XQuery for

all events except those events that have s no mapping option selected.

Figure 24: The GUI of the process model map

Figure 25 shows the detail design for creating a process model map. The

PetrinetGraph and ProMJGraph API are used to read and render the

coordinates of all the transitions that are available in a given petri-net model.

XLog API is used to read an event log. The petriNetWizard class is handling

the GUI design, which includes showing event that are available in an event

log and also find and display the best match for the event. Since for this

project, we have considered only petri-net models that why no pattern has

been applied. But we believe that it is relatively easy to extend the design and

implementation to support other process modelling formalisms.

Page 43

Figure 25: Detail design of a process model

class Petri-net

History

- activityNames :TreeSet<String> = new TreeSet<Str...

getEventList(XLog) :SortedSet<String>

+ getActivityNames() :SortedSet<String>

String

Transition

PetriGraphMapping

~ comboBoxes :Map<String, ProMComboBox> = new HashMap<Str...

+ PetriGraphMapping(String, Collection<Transition>)

- getBestMatch(String, Set<Object>) :Object[]

+ getMapping(boolean) :Map<String, Transition>

+ addComboValues(Map<String, ProMComboBox>) :void

JFrame

PetriNetVisualizer

- net :PetrinetGraph

- layoutConnection :GraphLayoutConnection

~ panel :ProMJGraphPanel

- zoomPanel :ZoomInteractionPanel

~ graph :ProMJGraph

- petriFrame :JFrame

+ PetriNetVisualizer(PetrinetGraph, String)

+ getGraph() :ProMJGraph

+ getLayoutConnection() :GraphLayoutConnection

+ setLayoutConnection(GraphLayoutConnection) :void

JPanel

PetriNetWizard

- mappingPanel :PetriGraphMapping<String, Transition>

- net :PetrinetGraph

~ layout :GraphLayoutConnection

- petriNetPanel :JPanel

~ comboBoxes :Map<String, ProMComboBox> = new HashMap<Str...

- initComponent(XLog) :void

+ getXQueries() :HashMap<String, String>

ProMJGraphPetrinetGraph

XLog

AMG Wizard

-visualizer

-history

< String->String, Transition-> Transition >

-mappingPanel

+steps[]

+log

+panel+net

7. Optimization of LogOnMapReplay plug-in

This chapter describes the limitations of the existing design of the

LogOnMapReplay plug-in. then we focus on how the system is re-designed

and implemented to improve the scalability of the plug-in.

7.1 Bottlenecks

After code analysis and several debugging rounds with various event log

files, we identified the following limitations of the plug-in:

 Storing objects in-memory: In the existing implementation, the

movie was stored in the heap memory.

 Sequential process: An event log was processed for each movie in a

sequential order.

 Generic XQuery processing for maps: The processing of an XQuery

takes significant amount of time.

 Code optimization: Identified the scope of doing general code

optimization.

Further in this chapter, we discuss how we handled each of the

limitation to improve the processing capacity of the plug-in.

7.2 Storing object in-memory

One of biggest bottlenecks for processing a big event log is that the plug-in

stores the processed movie object data in-memory. As the number of events

grows, the plug-in requires more memory space. At certain point-in-time, the

plug-in goes out-of-memory and it stops processing the data. Figure 26

depicts this problem of the plug-in.

Figure 26: Problem in the current design

The memory consumption mainly depends on two factors. First, the number

of active events and their life span (which is defined by the duration of an

event). Second, the numbers of active events stored in each photograph. A

photograph is composed of three sets, which respectively, include pie-chart

with valid, invalid, and hidden. The photographs data is stored in a Map. A

map is an interface that maps records key value pair. In our case, key is a

timeframe and value is a list of active events. The list is stored in a serialized

manner. Serialization is the process of turning a Java object into byte array

and then back into object again with its preserved state. It is useful for

various things such as sending objects over network or caching things to disk.

Page 45

Since the RAM memory is limited on any system, to the processed objects

and save them in-memory, a solution is needed which can save the serialized

map objects on a disk. To support the processing of big data, a NoSQL

database is needed. Because it is useful, when an application needs to access

and analyze huge amount of unstructured data. There are various type of

NoSQL databases such as Key-value Store, and Column-Oriented Store. A

key-value store, allows the user to store data in a similar way as stored in a

Map data structure. The Key-value stores are designed to store and scale up

to millions or billions of key-value records. A Column-Oriented Store, allows

to process and disturbed stores huge amount of data on different machines.

The LogOnMapReplay plug-in stores serialized object in map on a single

machine. Due to this reason, a Key-value Store NoSQL database was chosen

to overcome the limitation of the plug-in. The main criteria for selection of a

NoSQL database is following:

A. It should be written in Java because the LogOnMapReplay plug-in is

written in Java. We wanted to minimize the overhead reading and

writing the data into the database.

B. It should not add any dependencies in the existing plug-in. This is

also one of the non-functional requirement (Configurability) of the

project.

C. It should allow to write data on-disk.

D. It should allow to concurrent read/write the data.

E. It should be open-source.

7.2.1. Approach for choosing database

The approach followed during the NoSQL database selection process is as

follows:

1. A list of available key-value databases on the market was created. An

initial evaluation resulting in a short list of key-value java databases

was performed.

2. An evaluation of the short list of key-value database was carried out.

It resulted in the below comparison table of the key-value tools of the

short list.

A list of available databases was created by searching online and discussions

with peers.

Table 12: Comparison of key-value databases

 MapDB BananaDB Berkeley DB

Write in-disk space Yes Yes Yes

Allow concurrently

read/write

Yes Yes Yes

Good documentation Yes No Yes

Ease of use Yes Unknown Unknown

Active community Yes No No

Licence Open-

source

Open-

source

Commercial

After evaluating the available NoSQL database. The MapDB database is

chosen for this project. The following are the reasons for choosing MapDB:

 It meets all the requirements that are mentioned above

 In ProM framework there is one plug-in called XESLite plug-in,

which has already used MapDB database to read and write more

than three million events of an event log and stored in-disk. This

way, we minimized the risk of hitting the database selection

boundaries at a later stage of the project.

7.2.2. MapDB

MapDB (kotek, 2015) is a java based database engine. It supports various

storage modes, one of them is off-heap memory. It also supports hash based

key-value pair stores on disk. The following features of MapDB that helped

improve the scalability of the plug-in:

 Low disk-space usage: It serializes the objects and stores them on-

disk, in a compressed binary format.

 Concurrent: It has record level locking and a concurrent engine. Its

performance scales nearly linearly with the number of CPU cores.

Therefore, data can be written by multiple parallel threads.

 Fast: The read and write of objects on-disk is fast. It can

approximately write 1.7 billion objects in 30 minutes.

 Flexible: It can be used everywhere from in-memory cache to multi-

terabyte database. This makes easy to configure MapDB to exactly fit

the needs of the project.

Figure 27 shows the re-designed solution for enhancing the scalability of the

plug-in. In the new design, the plug-in stores the sequence of photographs

objects into the MapDB. When the plug-in starts processing an event log, it

creates a new MapDB database file at the user-specified location.

Page 47

Figure 27: Re-designed solution for improving the performance using

MapDB

7.2.3. NoSQL database structure

The structure of the database for storing the movies was derived from the

existing schema of storing a process movie. The database structure created

for the movies is shown in Figure 28. The Maps table is related to the type of

maps available in the map file. Each map of the map file is described with a

Map name and queries. An ActivityKey table describes the trace_id and

event_name from an event log. An AbstractWorkItem table defines the type

dots such as valid, invalid, and hidden. For each AbstractWorkItem table, the

database stores its ActivityKey, creation time, state, x and y coordinate. A

movie is generated for each map, and each map can be identified by its

unique name. The Movies table, contains data corresponding to each movie.

Each movie contains a Map which has timeframes and a list of

AbstractWorkItem created for generating a process movie.

Figure 28: Database structure for storing movies

7.2.4. Re-design of LogOnMapReplay plug-in

Figure 29 is the class diagram that shows the details of the design structure

after introducing MapDB into the plug-in.

Page 49

Figure 29: Detail design diagram after introducing MapDB

The MapDBDataBase class creates the MapDB database file on-disk. It has

two main concepts:

1. DBMaker: It is a builder style factory for configuring and opening a

database.

2. DB: It represents storage and it has interfaces for accessing Maps and

other java collections.

A Serializer is implemented to store the list of AbstractWorkItemDot objects

for each timeframe. A builder pattern is used, to create different type of

AbstractWorkItemDot step-by-step The AbstractWorkItemDotSerializer class

takes care of the serialization and deserialization of objects which are created

for a process movie. It is important to write a Serializer because this leads to

better memory and computation performance because MapDB does not have

to analyses the Map structure. The Serializer also helps in writing the data in

a compatible format with standard Java serialization. To identify the type of

dot, the following identifiers are created:

1. INVALID_WORK_ITEM refers to the invalid dot.

2. WORKITEM_WORK_ITEM refers to the valid dot.

3. HIDDEN_WORK_ITEM refers to the hidden dot.

The ReplaytTask class is a thread class that helps in concurrently processing

events for each map. The class is responsible for running the XQueries for

each event. The result after running an XQuery helps in identifying the type

of dot. Table 13 shows the basis at which the framework identifies the type of

dot. Here, the common factors are image height and image width which are h

and w respectively and X and Y are values received after running XQuery.

Table 13: Identification of type of dot

X Y Type of dot

> =0 and < =w > =0 and <= h Valid

< 0 < 0 Invalid

> w > h Hidden

The History class, contains the references of movies produced by the plug-in.

This is main class holds the implementation of building the process for

producing movies.

By introducing MapDB we have removed the limitation of processing limited

number of activities to produce a process movie. Using MapDB, we have

partially satisfied FR2 functional requirement and NFR 3 and 4 non-

functional requirement of the project. Since, the movie related objects are

stored in-disk, the limitation of processing number of events has moved from

available heap memory size to the amount of space available the on-disk.

7.3 Multithreading implementation

UWV is planning to run the LogOnMapReplay plug-in on a server, it is of

CPU 16 cores processor. This leads us to explore the opportunity for applying

parallelism in the plug-in. Multithreading is the ability of the CPU to execute

multiple threads or processes concurrently. The aim to increase the resource

utilization of a system. The system resources are shared among threads and

processes.

After code analysis, we have evaluated that the movie of each map is built

regardless of the other movies. Each movie produces a list of objects based

on the available XQueries for a corresponding map. This gives us an

Page 51

opportunity to apply multithreading for processing the data for each map of a

map file.

Thread (Map-1)

Thread (Map-2)

Thread (Map-3)

MapDB

Threads for each
map

Store movies
data

Events

Figure 30: Re-designed structure for applying parallelism

Figure 30 depicts the re-design structure of the plug-in to apply parallelism.

Each map has a list of events that are available in an event log. Each map is

run on a separate thread, it is running on a separate core of the system. Each

map is concurrently accessing MapDB to store the processed and produced

data into the database.

The ThreadPool
5
 design pattern is introduced in the plug-in. Now each movie

runs on a separate thread which is submitted to the thread pool. A thread will

be terminated when all the events are processed for a map. The data

processing of a LogOnMapReplay plug-in will be completed, when all

threads in a thread pool has competed it processing. A thread is concurrently

writing data into the MapDB database. This helps in improving the

computation time of the plug-in because the processing dependency between

the maps is removed.

7.4 Improvement in a map file XML schema

Various experiments were conducted using the YourKit java profiling tool to

find the methods that take signification amount of CPU time. The profiling

tool indicated that the XQuery processor takes significant amount of time to

run XQueries on the fly. After code analysis, we identified that if the plug-in

is aware of the x and y coordinates for an event then the processing of

XQuery step can be skipped. Map evaluation was conducted to identify the

maps which for the plug-in can find x and y coordinates beforehand. After

evaluation of all maps created by the AMG plug-in, we identified that a

Cartesian Literal and a process model map are the ones for which plug-in is

aware of their x and y coordinates beforehand.

5
 https://en.wikipedia.org/wiki/Thread_pool_pattern

Figure 31 shows an example of both static and dynamic XQuery. Here, a

Letter Reclamation event has static XQuery. In this query, the plug-in is

already aware of the exact x and y coordinate for an event. The plug-in can

skip the XQuery processing step and the x and y position can be directly used

to identify the type of dot.

The Letter Reintegration during sickness event has a dynamic XQuery. Here,

the plug-in gets the value of age attribute at run-time and then it will find out

the axis coordinates. That’s why, the plug-in still requires to run a dynamic

XQuery to find coordinates.

Figure 31: Comparison of XQuery

To create static XQueries a Cartesian Literal, the map file schema has been

modified. The new schema is shown in Appendix B. Now, all maps generated

by AMG plug-in have been adapted to the new schema. To maintain the

backward compatibility, the LogOnMapReplay plug-in supports processing

with the old schema of the maps as well. Both schema are shown in

Appendix A and B.

7.5 Code optimization

After code evaluation, we identified the opportunity for the code

optimization. One of the code optimization is the search process for finding

an AbstractWorkItem from previous timeframe. In existing algorithm, linear

search was used to find an AbstractWorkItem from the previous timeframe. A

trace id, event name, state, and creation time attributes of an activity defines

whether it is a new activity or an existing activity. The algorithm scans and

compares all objects in the loop, until it finds the same match between the

attributes values of a new activity and existing AbstractWorkItem from the

previous timeframe. The worst case computation time taken by this algorithm

is: O(n) because the algorithm is linearly comparing the objects.

A HashMap is introduced to a look-up map storing the results of the previous

time frame of the movie. Here key is the combination of a trace id and

activity name and value is an AbstractWorkItem. The HashMap

implementation provides constant-time performance for the basic operations

such as get and put. The hashcode for the key value are written for faster

retrieval of the objects from a map. The worst case computation time taken

by this algorithm is: 𝑂(1)

Page 53

This code optimization helps in reducing the computation time of the plug-in

because the previous timeframe data cached. Such code optimization

techniques are applied at various places in the code to reduce the overall

computation time of the plug-in.

7.6 Other factors impact the performance of the plug-in

The following external factors are listed, which also impacts overall the

performance the plug-in.

1. Import of an event log: The XESLite plug-in provides two types of

import options: Naive and MapDB disk buffered.

a. Naïve: This options stores events in-memory. The advantage

of this option is, the processing of read and write events is

fast. The limitation of this option is, based on the available

memory size, the number of events can be imported into the

ProM framework.

b. MapDB disk buffered: This will stores the event data into

local or network disk. Using this option, the user can import

more than three million events. The drawback of this option

is that, the MapDB takes significant amount of time to read

and write events.

2. Location of reading/write data: MapDB writes data into disk space

and writing data on disk is a costly operation. The user can choose to

let MapDB read and write data from local disk or network drive. The

performance plug-in will be slow while reading and writing data over

network drive as compare to local disk. One of the reason is

write/read data over network adds the network latency. That’s why it

is important for the user to choose the appropriate location.

3. System configuration: The performance of plug-in is also dependent

on the system configuration. The system should have at least 6 GB

RAM size to process an event log otherwise the plug-in has to

perform garage collection operations, which is an expensive

operation in-terms of computations.

4. General granularity of log: If an event has multiple occurrences at

the same timeframe with the same attribute values, then this event is

not unique. It is an advice to filter these kind of events from an event

log because it reduces the size of the log hence the computation and

memory performance of the plug-in will be improved. Since the

information is lost but this can be compensated by adding an attribute

with the number of occurrences of the unique event. This attribute

should be used to sum the events in a movie.

7.7 Results

An experiment was conducted using three event log to evaluate the

performance of LogOnMapReplay plug-in after applying all optimization

techniques. To process data, we used a laptop equipped with an Intel Core i7

Processor of 2.20GHz. For each experiment a different log was as described

in Table 14. The Table 14 shows the results of before and applying the

optimization techniques. It also reflects the total time gain achieved after

improving the performance of the plug-in. With these results, we believe that

now plug-in is capable of processing more than five hundred thousand events.

Table 14: Comparison of before and after applying optimization techniques

Run

ID

Dataset

(number

of

activities)

Map

number

Computation

time (ms)

Computation

time (ms)

Gain time

(ms)

Gain

time

(%)

 Before

optimization

After optimization

1 188797 3 2551462 136892 2414570 94.63

2 247468 1 16955623 2457597 14498026 85.50

3 495566 1 Out-of-

memory

6848658 6848658 Cannot

compare

Page 55

8. Features of LogOnMapReplay plug-in

This chapter describes the new features that are designed and implemented of

the LogOnMapReplay plug-in and MergeMapFile plug-in.

8.1 Filter of event and attribute

We introduced a filter mechanism which helps in narrowing down the scope

of analyzing and deriving conclusion from the projecting dots on the map. It

allows a process analyst to view only those events and attribute values which

are of their interest. This mechanism will filter all type of dots such as valid,

invalid and hidden dots. The dots that meet criteria will be projected on the

visualization panel and rest of the dots will discarded. The user can filter

events and attributes at any point in time while watching the visualizing of a

process movie. This mechanism is satisfying FR 3 functional requirement

including both sub-requirements.

As mentioned before, each dot contains a trace id, an event name. With this

combination our framework can identify the uniqueness of the dot. The pie-

charts dots and both sidebar lists will be populated based on the selected

events and attributes. Each dot contains a trace id and its event name. The

user can apply filter in three ways: Only events, only attributes, and both

events and attributes.

 Only events: The user selects their area-of-interest only events. The

framework checks whether the dot has selected event name or not. If

the dot event name and selected event name match then visualization

panel will project the dot onto the map otherwise it will discard that

dot. Based on the selection of events, the diameter of a pie-charts will

also changes. There is OR relationship between events. Figure 36, is

a screenshot of filter panel which has listed all the events available in

an event log.

Figure 32: Filter before and after

Figure 32 shows how the dots are projected before and after applying

filter mechanism For example, suppose a merged dot of a particular

coordinates which consist of five claim, five payment, and five start

reclamation events at a certain point in time. The diameter of this

merged dot is fifteen.

The user wants to filter on claim event only. The framework will

check whether all dots of a merged dot is of a claim event or not.

Here the framework will project only claim event and now the dot

diameter is five.

 Only attributes: The user selects their area-of-interest attributes.

The framework checks the type of attribute: literal and continuous for

the selected attributes.

o If an attribute is of a continuous type, then the user has to

specify the range then the framework evaluates whether the

dot is in mentioned range or not. If the dot is the specified

range then the framework will project the dot otherwise the

framework will discard the dot.

o If an attribute is of a literal type, then the framework checks

whether the selected attribute value and an event value are

same or not. If selected attribute value existing on the event

then the framework will project the dot on the map otherwise

the framework will discard the dot.

There is AND relationship with other selected attributes, and OR

relationship with in the same attribute. Figure 37, show the

different attribute which are selected, the literal attribute has a

combo box and a continuous attribute with text boxes.

 Both events and attributes: The user will select both events and

attributes of their area-of-interest. There is an AND relationship

between events and attributes. A dot must be from a selected events

list and a dot should also have the selected values for the chosen

attributes.

Figure 33 is a screenshot of a filter panel which is created for filtering

events and attributes. After clicking the Select attribute button, the list of

attribute available in an event log is shown. The end-user can chose all

attributes of their interest.

Figure 33: Screenshot of the filter panel

Figure 34 shows the screenshot of a filter panel with selected attributes.

Few attribute such as Age category WW, Gender has combobox because

these attributes are literal and they have pre-defined unique values. The

attribute such as NumberOf Customer, ReclamationAmount are of

continuous type. Their minimum and maximum values that is available in

Page 57

the dataset are shown in textboxes. Here the user can define the range for

which they are interested in applying filtration on the visualization panel.

Figure 34: Screenshot of the filter panel with selected attributes

8.2 Show deviations

We introduced a comparative mechanism for detecting, when something

unusually happens in an event log. We introduced two ways for analysing the

deviation in an event log: indexing and relative. This mechanism is satisfying

FR 5 functional requirement including both sub-requirements

8.2.1. Indexation

Indexation means whether the number of events has increased or decreased

from a certain point-in-time. Instead of showing the number of running

events, the process movie shows the difference in the number of running

events

The visualization panel is projecting different events at different coordinates

at a particular time. If number of events has increased from a selected

timeframe then the plug-in will paint dots with black color. When the number

of event has decreased from a certain time then the plug-in will paint dots

with yellow color. The framework can encounter three type of following

situations:

1. If the coordinates are available on both list (selected time and new

time) then the framework will calculate the difference between the

numbers of dots that are available on both timeframe. The framework

will project the difference only. If the difference is positive then the

framework will project the difference in black colour otherwise it

will project in yellow colour. For example the coordinates (200,100)

is available in both t1 and t2 timeframes as mentioned below. The

framework calculates the difference (which is18 shown in index) and

the diameter of dot will the difference value and the framework will

painting the difference at same coordinate.

2. If selected timeframe does not have dots at certain coordinate but the

next or previous timeframe has dots at that coordinate. This means

the number of events are increasing and the framework calculates the

difference and it will paint the dots with black colour.

3. If selected timeframe does have dots at certain coordinates but the

next or previous timeframe does not have dots at that coordinates.

This means the number of events are decreasing and the framework

calculates the difference and it will paint the dots with yellow colour.

The two timeframes T1 and T2 with their the number of events at are

available specified coordinates are as follows:

T1 ={

(200,100) 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 20 𝑒𝑣𝑒𝑛𝑡𝑠
(200,300)𝑝𝑟𝑜𝑗𝑒𝑐𝑡 10 𝑒𝑣𝑒𝑛𝑡𝑠

(150,150)𝑝𝑟𝑜𝑗𝑒𝑐𝑡 50 𝑒𝑣𝑒𝑛𝑡𝑠

T2 ={

(200,100) 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 2 𝑒𝑣𝑒𝑛𝑡𝑠
(150,150)𝑝𝑟𝑜𝑗𝑒𝑐𝑡 10 𝑒𝑣𝑒𝑛𝑡𝑠
(300,300)𝑝𝑟𝑜𝑗𝑒𝑐𝑡 10 𝑒𝑣𝑒𝑛𝑡𝑠

Table 15 shows the difference that has calculated for above T1 and

T2 timeframe and the number of events that are available for each

coordinate.

Table 15: Calculate value for index mechanism

Coordinate T1 T2 Index

200,100 20 2 18

200,300 10 0 -10

150,150 50 10 -40

300,300 0 10 10

Figure 35, shows the screenshot of a Cartesian map. Here, at Jan 14,

2014 at 11:31:21 was chosen as the indexing reference point.

Figure 36, shows a screen shot of the actual visualization without

applying indexing. A random time frame was chosen different from

the selected time from where the indexing has been applied on the

visualization panel.

Page 59

Figure 35: Screenshot of an index frame

Figure 36: A screen shot without indexing

Figure 37. This timeframe compares the dots at each coordinates. Based on

the algorithm that is discussed above. The plug-in projects dots in black and

yellow color. This helps a process analyst, whether the number of business

processes activity have increased or decreased from a certain time.

Figure 37 : Screenshot with applied indexation

8.2.2. Relative

In current implementation, the pie-chart size is determined by formula 𝑛.04 ,

where n is the number of events that are joined and merged at the same x and

y coordinates. In new approach, the end-user will select a numeric attribute

for which the drifts in the events needs to be detected and visualized. The

drift corresponding to a particular attribute will be shown by changing

(increasing or decreasing) the size of the pie-chart.

Page 61

The algorithm to find the new size of a dot

The formula for calculating the diameter of a dot is replaced with D = S .04

formula, where s is the new combined size of a merged dot. Now the

diameter of a dot is calculated with the newdotsize value. The angle for each

dot is calculated by this formula:

 𝑎𝑛𝑔𝑙𝑒 = 360 ∗
𝐷𝑜𝑡𝑆𝑖𝑧𝑒

S

Table 16 shows an example with the calculation for finding the relative

number of each dot corresponding to the chosen attribute. Suppose, at

random x and y coordinate there are five events and each event has a

population attribute. The end-user chooses population corresponding to

which relatively will be shown on the visualization panel.

Table 16: Calculate relative number for each event of a dot

Trace

ID

Event name Office

location

Population Relative

number

1 Payment Eindhoven 20 .05

2 Payment Amsterdam 200 .005

3 Start reclamation Eindhoven 20 .05

4 Payment Eindhoven 20 .05

5 Start reclamation Breda 10 .1

For each dot of any time frame

Calculate Relative number using R =
1

𝐷
 where R is the new relative

number and D is the value of selected attribute.

Save the value of R in a relative list

Find minimum relative number from the list. 𝑅𝑚𝑖𝑛 = min (list)

For each dot of created list

Get R from the relative list and find the new dot size using

𝐷𝑜𝑡𝑆𝑖𝑧𝑒 = 𝑅/𝑅𝑚𝑖𝑛 , where 𝐷𝑜𝑡𝑆𝑖𝑧𝑒 is the new size for a dot

Get total size of a dot using S = S +𝐷𝑜𝑡𝑆𝑖𝑧𝑒, where S is the new

combined size of a merged dot.

Form above table 𝑅𝑚𝑖𝑛 =.005, which is of Trace ID 2 This value is chosen

to find out the new dot size for each dot. Table 17 shows the calculation done

to find the relative dot size for each dot. After summing the newdotsize for

each dot, it is 41 whereas the original diameter of the dot is 5.

Table 17: Relative calculation to find the size of a dot

Trace ID Relative number 𝐷𝑜𝑡𝑆𝑖𝑧𝑒 newdotsize

1 .05 .05/.005 10

2 .005 .005/.005 1

3 .05 .05/.005 10

4 .05 .05/.005 10

5 .1 .1/.005 20

Figure 38, shows a screenshot of Cartesian map where relativity between the

dots is applied. All dots which has two events are highlighted with red box.

As we can see, there is the difference in the size of the dots. One dot which is

at the interaction point of Rotterdam and 36-45 jaar has a bigger dot size as

compared to the rest of the two or three events dots.

Figure 38: Screenshot to show relativity between dots

8.3 Show details of a valid dot

A visualization panel has projected valid dots at several x and y coordinates.

When an end-user wants to see the details of the selected pie-chart. The

Page 63

framework, identifies x and y coordinates and creates a list of dots that are

present at those axis. It displays a panel, it includes a table, contains a list of

events that are available at selected axis and chart which can be of two type’s

representation: a bar chart and a pie-chart. The end-user can choose any type

of chart but by default the framework shows a pie-chart. The colour scheme

of a chart is based on three type of colour scheme that is supported by the

framework. The colour schemes are as follows:

1. State schema: An event is coloured based on the current State of an

event.

2. Age schema: An event is coloured based on the age of an event

which means the moment that event occurred in the movie and the

current time of the movie. If the event has just started then the colour

of the dot is projected white and as longer it remain on the

visualization panel, it starts progressing toward black colour.

3. Attribute value schema: An event is coloured based on the end-user

selected attribute and a value of an event.

Figure 39: Sequence diagram to show details of a valid dot

This feature satisfies FR 4.3 functional requirement. The sequence diagram

shown in Figure 39 depicts the sequence of steps take place to show the

details of a pie-chart. The MapImageRolloverListner class finds the valid dots

sd chart

BarChartWorkItemWorkItemChartsMapImageRolloverListener MapImagePanel

opt

getWorkItemAt(short, short) :WorkItemDot

chartPanel() :ChartPanel

createChart() :JFreeChart

actionPerformed(ActionEvent)

createBarDataset() :CategoryDataset

createBarChart(CategoryDataset) :JFreeChart

that are project at (x, y) coordinate of a map. It finds the details and perform

an action to create a chart based on the color scheme. The createBarChart

method will return a WorkItemChart class, so that it can combine table and

chart and display it on a pop-up panel. The diagram shows the steps take

place for creating a panel a bar chart. Similar steps are followed to create a

pie-chart for a panel.

A screen shot of a detail panel is shown in Figure 40. Here the office location

attribute is chosen, which means the attribute value schema is applied. The

colors for each office location automatically selected by the framework.

Figure 40: Screenshot of showing details of a valid dot

8.4 Show configuration panel

The framework displays a list of maps that are available on an input map file.

The user can select for which maps are interesting to process for generating a

process movie. This allows user to have flexibility to choosing which process

movie need to be generated. A screen shot of a configuration panel is shown

in Figure 41. The panel shows that, a map has three maps. The end-user can

choose maps of their interest for producing a process movie. This feature

satisfies FR 4.4 functional requirement.

Page 65

Figure 41: Screenshot of a map configuration panel

8.5 Export sub-log

As mentioned earlier, a visualization panel projects valid dots at several x and

y coordinates. The user can publish a sub-log for the selected coordinates on

the ProM framework. The framework creates a sub event log which includes

the traces, which are present on those coordinates. The sub-log file is created

based on the main input event log for the LogOnMapReplay plug-in. Figure

42 shows a panel which has Export Sub-Log button with which, user can

publish a sub-log on the ProM framework. This feature satisfies FR 4.1

functional requirement.

The sequence diagram shown in Figure 42 depicts the sequence of steps take

place for exporting a sub-log of the selected the pie-chart from the

visualization panel. The MapImageRolloverListner class is finds the valid

dots at (x, y) coordinate of a map. The WorkItemDot class created a list which

has all trace id available on a merged dot. An ExportSubLog class publish the

all the events corresponding to those traces. The publish method filter all the

traces and their events from the original event log.

Figure 42: Sequence diagram for export sub-log

8.6 Merge map file plug-in

A new plug-in is created to support merging of two or more maps files. The

plug-in supports merging of maximum five map file into one map file. After

discussion, we decided the maximum limit for merging the map file.

Although we believe it is easy to increase the maximum limit. Figure 43

depicts the logical view the design of the plug-in. The plug-in required

minimum two map files. It supports merging of both old and new map file

schema that are shown in Appendix in A and B. This plug-in satisfies FR 1.4

functional requirement.

MergeMapFiles
plug-in

Map 1

Map 2

Map 3

Merge map file

Figure 43: Logical view of Merge map file plug-in

sd v isualize

MapImageRolloverListener MapImagePanel

ExportSubLog

WorkItemCharts

WorkItemDot

mouseClicked(MouseEvent)

getWorkItemAt(short, short) :WorkItemDot

publishTable() :Map<String,

Map<String, String>>

createSubLog(ArrayList<String>)

publishSubLog(ArrayList<String>)

publish(PluginContext, String, T, Class<? super T>, boolean)

Page 67

9. Conclusions

This chapter summarizes the limitations of the existing implementation and

the main results achieved during this project. It also lists the future work for

LogOnMapReplay and AMG plug-ins.

9.1 Results

This project was initiated to enhance the functionalities and overcome the

limitations of the existing version of the LogOnMapReplay plug-in. After

discussion with the stakeholders, the main limitations were as follows

 Main input file called Map file is manually created. Manual creation

requires technical guidance and knowhow.

 Improve the scalability which includes reduction in computation time

and the memory usages of LogOnMapReplay plug-in on a laptop

equipped with an Intel Core i7 Processor at 2.20GHz.

 Basic functionalities such as filtering data, comparative analysis were

not available in the plug-in.

To overcome the limitations of the existing implementation, we developed a

new plug-in and enhanced the features of the existing ones. Following

describes the results of the two in brief:

1. The Automatic Map Generator (AMG) plug-in was developed to

reduce the effort and time for creating different maps. In the AMG

plug-in, we automated the process of creating a Cartesian and a

process model map. This plug-in increases the usability of the

LogOnMapReplay plug-in. The user does not have to go through the

manual and monotonous process of creating a map file.

2. The MapDB database is introduced to store the processed data. This

Key-value database adds no external dependency expect import one

JAR file in the project. Before optimizations, the plug-in supported

approximately two hundred thousand events and would process them

in 6-7 hours on a laptop equipped with an Intel Core i7 Processor at

2.20GHz. In the same machine if the plug-in is processing more than

three hundred thousand events, it goes out-of-memory. By

introducing MapDB, more than one million event log can be

processed in less than a day.

3. Various features such as filtering of events and attributes and

showing drift are introduced to increase the usability of the tool. The

evaluations (discussed in the previous chapter) show that the tool

fulfils the requirements and meet the expectations of the

stakeholders.

9.2 Future work

After the evaluation of the plug-ins, various observations have been pointed

out which deserve attention for the future of these plug-ins.The following

functionalities can be considered for the future work of the AMG plug-in.

 Automate the process of creating geographical, timeline, and

organization maps.

 Create GUI in ProM framework for editing the map file.

 Create GUI in ProM framework for deleting maps from the map file.

Page 69

 Improve the readability of Cartesian map by adding following

functionalities.

o Provide an option for selecting attribute values for a

respective attribute in a Cartesian map. The plug-in draws

line only for selected attribute values.

o Define the position of a dot at the centre of each box of the

attribute value instead of at the intersection point of the

Cartesian Literal map.

The following functionalities can we considered for the future work of

LogOnMapReplay plug-in.

 The plug-in should allow the user to aggregate several timeframes

into a day, week, or month levels. This is to be able to group

information based on time to perform a top-down analysis rather than

bottom-up.

 The plug-in currently displays only the count of active activities in

the centre of the dots. It is desirable that based on a numeric attribute,

selected by the user, sum, mean etc. of the attribute-values is

displayed instead. For example to show the total amount of the

reclamations, instead of the number of reclamations.

 Make it possible to use an event logs with only compete life: cycle

transition status. For example by adding an offset time for all events,

and show events for the duration of this offset time.

10. Project Management

In this chapter, we discuss the management aspects of the project. It includes

the project planning, communication, user acceptance testing, and work-

break down structure.

10.1 Management process
We followed an agile approach with regular Scrum during this project. It is

an iterative software development technique whose goal is to develop

software through repeated iterations. The reason for choosing this approach

was, we needed constant collaboration and feedback from UWV process

analyst for following activities

 Prepare an event log.

 Evaluate and receive feedback on new or modifies features of

LogOnMapReplay, AMG, and MergeMapFile plug-ins.

The project was divided into several phases. At the end of each phase, a demo

meeting was conducted to show the new or improved features of each plug-

in. Our tasks during the project can be roughly divided in five sub-tasks.

1. Domain: Study the process mining State-of-art domain, get familiar

with UWV business processes, the stakeholder requirements.

2. Experiments: Conduct various experiments on existing plug-in.

3. AMG plug-in: Create and develop the design, and implementation of

AMG plug-in.

4. LogOnMapReplay plug-in: Create and develop the design, and

implementation of new features for this plug-in.

5. Documentation: Document, evaluation, and demo the plug-ins.

10.1.1. Planning and Scheduling
The planning meetings helped in dividing tasks into segments where each

segment had measureable deliveries. Each segment contained a number of

deliverables. The types of deliverables are: plug-ins versions, evaluation of

plug-ins, and documentation. The detailed planning is documented in the

work breakdown structure section 11.2. At the end of every month the plan

for the coming deliverables was revised and updated.

10.1.2. Communicating with supervisors
In the beginning of the project, twice per week meetings with company

supervisor and other company stakeholders were held to discuss the

requirements and progress of the project. Once the requirements were clear,

this was replaced with once a week or fortnight depending on the need for a

meeting. The meetings with the university supervisor took place every week

in order to share and discuss the design and implementation of the

requirements of the project.

In order to align the expectation with two main stakeholders TU/e and UWV,

a Project Steering Group (PSG) meeting was held. The PSG was composed

of the university supervisor, the company supervisor, the project manager and

I. During a PSG meeting the following tasks were performed:

Page 71

 Update on the current status of the project.

 Discuss the further project planning.

 Discuss over the tasks for next month.

 Feedback of the progress of the project.

10.1.3. User Acceptance testing
After completion of each phase, plug-ins demo was conducted for all

stakeholders in order to receive the feedback on developed features. The User

Acceptance Testing (UAT) was conducted to determine if the requirements

are met the expectation or not. This testing is done by the business/ process

analyst of UWV. The process analyst wanted to check the ease-of-use the

new features.

10.2 Work-Breakdown Structure
Figure 54 shows the timeline of the project with the major milestones. This

project timeline was created in the beginning of this project. Pre-defining the

milestones was helpful thorough out the project. However, in order to align

the planning with the availabilities of the stakeholders, some activities

changed over time. The milestones of the project are described in

chronological order.

In the first phase, we got an overview of process mining techniques, and

relevant information about UWV business processes.

In the second phase, we defined the plug-in requirements of the project based

on the demo and discussions with stakeholders. We conducted a demo of

existing LogOnMapReplay plug-in with defined use cases scenarios,

discussed in Chapter 4. These demos helped us in understanding the existing

features and functionalities of the plug-in and finding out the requirements of

the project.

Figure 44: The project timeline

The design and implementation phase of all plug-ins required through

understanding ProM framework. The ProM framework has Application

Program Interface (API) for importing and using event logs in the plug-

in. The developer has to follows certain guidelines for creating a new

plug-in in ProM framework. During the design and implementation

phase, it was important to understand the existing design, architecture,

and implementation of LogOnMapReplay plug-in because we had to

improve the processing time and adding/modifying the features in this

plug-in.

The last phase included writing of the final report, evaluation of plug-ins,

share and presentations for stakeholders with in UWV for sharing

insights about the reclamation event log.

Page 73

Appendix A New map file schema

Figure 45: New map file schema

Appendix B Old map file schema

Figure 46: Old map file schema

Page 75

 Glossary
Term Description

PDEng Professional Doctorate in Engineering

TU/e Eindhoven University of Technology

XES Extensible Event Stream

AMG Automatic Map Generator

PAIS Process-Aware Information Systems

ProM

framework

Process mining framework

UWV Uitvoeringsinstituut WerknemersVerzekeringen

XML Extensible Markup Language

IEEE Institute of Electrical and Electronics Engineers

GB Gigabyte

MB Megabyte

GHz Gigahertz

FR Functional Requirement

NFR Non-Functional Requirement

GUI Graphical User Interface

API Application Program Interface

RAM Random-access memory

UAT User Acceptance Testing

PSG Project Steering Group

CPU Central Processing Unit

Bibliography
Christian W. Günther, E. V. (2014). XES Standard Definition.

kotek, J. (2015). MapDB. Retrieved from http://www.mapdb.org/

Massimiliano de Leoni, S. S. (2014). Turning event logs into process movies:

animating what has really happened.

Petri net. (2015). Retrieved from https://en.wikipedia.org/wiki/Petri_net

Thomas, J. C. (2005). Illuminating the Path. Retrieved from

http://www.visual-analytics.eu/faq/

van der Aalst, W. (2011). Discovery, Conformance and Enhancement of

Business Processes.

W3C. (2014). XQuery. Retrieved from https://en.wikipedia.org/wiki/XQuery

XES. (n.d.). Retrieved from XES: http://www.xes-standard.org/

YourKit. (n.d.). Retrieved from https://www.yourkit.com/.

Page 77

About the Authors

Neha Gupta received her Bachelor of Computer

Science (2006) from MDU University, India and

Master of Computer Science degree (2009) from

Amity University, India. She carried out her

final project in HCL Ltd. (Indian IT company)

on designing database and Application

development of "Retail management" project.

After her Master's she worked for IT Services

company, Steria India Ltd., for 2.9 years (2010-

2013) as ETL Developer using Abinitio Tool in

Banking domain (for Barclays Bank, UK).

In 2013 she joined the PDEng program in

Software Technology at the Eindhoven

University of Technology. Her final project as a

part of the PDEng program is entitled

“Interactive visualization of business processes”:

a monitoring tool for dynamically visualizing the

executed business process. The project was

carried out at UWV.

