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Printed in US A

FORWARD RECURSION FOR MARKOV DECISION
PROCESSES WITH SKIP-FREE-TO-THE-RIGHT
TRANSITIONS, PART I: THEORY AND ALGORITHM*

JACOB WIINGAARDYi anD SHALER STIDHAM, JR.§**

We consider a Markovian decision process with countable state space (states 0,1,2,...)
which is skip-free to the right (a transition from i to j is impossible if j > i + 1). In this type of
system it is easy to calculate by forward recursion the maximal total expected reward going
from state O to state i; the same can be done, of course, for the case where a constant gis
subtracted from the one-period reward function (g-revised reward). Let —w&(i) be the
maximal total expected g-revised reward going from state 0 to state i. We show that w8(-)
satisfies the average-reward optimality equation. If w#(-) satisfies a growth condition, then
g = g*, the maximal average reward. For all other g, the function w# increases or decreases so
fast that this cannot be the case. Thus, in principle the solution w& can be used to check if
g < g* or g > g*, which suggests a method for approximating g* and an associated average-
return optimal policy. We develop an efficient algorithm based on this idea. In a companion
paper we shall show how the algorithm, or modifications of it, can be applied to some special

cases, such as control of arrivals to a queue, control of the service rate, and controlled random
walks.

We consider a semi-Markov decision process (Ross [7]) on a countable state space
§=1{0,1,2,...}. Let A(i) be the set of possible actions in state i and for a € 4 (i) let
the expected time and the expected reward until the next transition be denoted by
7(i,a) and r(i,a), respectively. The transition probabilities from state i under action
a € A(i) are denoted pi(a), j€S. We assume that the following conditions are
satisfied.

Condition 1. The system is skip-free to the right (Keilson [2], [3]) and nondegener-
ate: p;(a)=0, for all j> i+ 1 and all a € A(i), and p;,, (a) > 0, for all i and all
a € A().

Condition 2. For each state i the set of possible actions 4 (i) can be represented by
a compact metric space such that 7(i,a), r(i,a), and p;(a) are continuous in a € A ().

Our objective is to construct an efficient algorlthm exploiting the right-skip-free
transition structure, for finding the maximal long-run average reward, g*. The average-
reward optimality equation for this problem is:

i+1

x(i)= max { r(i,a)— gr(i,a) + jgop,-j(a)x(j) , i>0. )

ac A(i)
(Condition 2 ensures that the max is attained for each state i.) An equivalent form of
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this equation is:
i1
x(i+1)—x(i)= alél;rzi)[pi,iﬂ(a)]_l{ gr(i,a) — r(i,a) + Z py(@) [ x(i) — x()] }
j=0
@)

(A formal proof of this equivalence can be constructed along the same lines as the
proof of Lemma 5 in §2 of this paper.) It is clear that for each g setting x(0) = 0 fixes a
solution to (2): call this solution w8(-). In fact (see Lemma 5) —w&(i) equals the
maximal total expected reward if the process is started in state 0 and stopped at the
first entrance into state i (before earning a reward) and the reward function is
r(-,+) — g instead of r(-, -) (g-revised reward).

Let X, denote the state at stage n. If the expected value of w8(X,), given X, = i, is
o(n) as n—> o, for each control strategy and each starting state i, then g = g* (Ross [7,
p. 145]). For all other g the function wé increases or decreases so fast that this cannot
be the case. Thus, in principle, the solution w8 can be used to check if g < g* or
g > g*, which suggests a method for approximating g* and an associated average-
reward optimal strategy. Rather than work with the above limiting condition on wé, we
formulate an alternative condition that is more easily checked and equivalent to the
above condition when the reward and transition probabilities satisfy certain regularity
conditions.

The idea of solving an average-reward Markovian decision process by approximat-
ing g* and solving a sequence of stopping problems with g-revised rewards has been
exploited by other researchers (see, e.g., Low [4], [51, Miller [6]). The difference
between Miller’s approach and ours is that, roughly speaking, Miller checks whether
g = g* by looking at x(0), whereas we look at x (i) for large i. In addition, our method
makes essential use of the right-skip-free transition structure.

§1 of this paper lays the groundwork by providing an appropriate formulation of the
maximal average-reward problem. We give conditions which, together with Conditions
1 and 2 above, are sufficient for an average-optimal strategy to exist and for v2(i), the
optimal total expected g-revised reward going from state 7 to state 0, to exist and to
satisfy the average-reward optimality equation with g = g*. Our conditions are not
stringent and seem to be satisfied, for example, in most queueing-control applications.
The proofs of the results in this section are rather technical and are therefore deferred
to an appendix.

§2 develops the algorithm for approximating g*, based on the average-reward model
of §1. The algorithm estimates g* by a value g, calculates the associated values of
w&(i), i > 0, by forward recursion from (2), and then checks to see if wé coincides with
v%. Since this will be true if and only if v8(0) = 0 and the latter is true if and only if
g = g*, we have thereby a mechanism for checking whether or not g = g*. The check
on whether w& coincides with v8 requires additional conditions on the rewards and
transition probabilities: specifically, that the rewards are “almost polynomial” (Condi-
tion 7) and that the chain has a “uniform tendency to the left” from large enough
states (Condition 8). Under these conditions, it follows (from results proved in an
appendix) that v¢ is the unique solution, in the class of almost polynomial functions, to
the functional equation for the total expected g-revised reward until state 0 is reached.
Moreover, wé = v8 if and only if wé is also in this class. We are able to develop an
algorithm, based on upper and lower bounds on v%, for checking whether or not w?
belongs to this class.

Finally, in §3 we show how problems with discounted rewards can also be solved by
our algorithm, by first replacing the discounted-reward problem by an equivalent
average-reward problem.
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In a companion paper we shall show how the algorithm can be applied in some
special cases, including control of arrivals to a queue, control of the service rate, and
controlled random walks. Modifications of the algorithm to cope with nonstandard
applications will be presented. We shall also discuss alternative procedures for check-
ing whether or not wé = v8, based on relations involving the stationary distribution of
the chain. In the special case of a controlled random walk, the conditions based on the
stationary distributions are shown to coincide with the original conditions.

1. Average-reward semi-Markov decision process. Our framework for average-
reward maximization in the semi-Markov decision process introduced in the previous
section will restrict attention to the set &/ of stationary strategies «. For each state
i € S, a(i) € A(i) is the action dictated by strategy a whenever the process is in state i.
For each a, let P, denote the transition-probability matrix and let r, and 7, denote the
reward and transition-time functions, respectively. That is, P, is a matrix with i-jth
component equal to p;(a(i)) and r, (7,) is a vector with ith component equal to
r(i, a(®) (r(i,a(D)).

We shall introduce some conditions, which, together with Conditions 1 and 2, ensure
that a strategy exists that maximizes long-run average reward and that it can be found
from the average-reward optimality equation. Proofs of all the results in this section
are given in Appendix 2.

Condition 3. There exist positive numbers L, M,, and M, such that L < 7(i,a)
< My, and r(i,a) < My, for all i, a € A().

Condition 4. For each i there is a positive number ¢ and an n > i such that,
starting in /; the probability that the first visit to 0 occurs before the first visit to
{n+1,n+2,...} is at least ¢, independent of the strategy.

Note that Condition 4 is more or less naturally satisfied in most queueing-control
applications. It follows from Condition 4 that there exists a B, such that the expected
number of visits to [1,n — 1] before the next visit to state 0, starting in state / and
following strategy «, is bounded above by B,, for all i > 0 and all a.

Before stating the final two conditions, we introduce some additional useful nota-
tion. For each strategy a and each integer n > 0, we define an operator P, on the set
of functions f: §—> R by

i+1

(Panf Y1) 1= jgnpy(a(i))f(j)’ i

Vv

0.

Note that P,,f can be interpreted as the (column) vector resulting from pre-multiplying
the (column) vector f by the matrix P,, after replacing columns 0,1, ...,n — 1 of P,
by columns of zeroes. Also, when it is well defined, the quantity 3% o(P~.f)(i) is the
expected total accumulation of f until the next visit to [0, — 1], starting in state i and
following strategy «. We shall be particularly interested in the case where n = 1 and
f=ryor f=1,. The quantities 3,7 o(Ps;r, )P and 3% (P! 7, )(i) are, respectively, the
expected total reward and expected total time until the next visit to state 0, starting in
state i and following strategy «. In Condition 5 we require the finiteness of both these
quantities for at least one a.

Condition 5. There is a strategy @ such that 3% (P4,7)(i) and 3% ((PL74)(0) are
both finite for all i.

For each a we define the average reward, starting in i, as follows (cf. Ross [7, p.
159]:

n—1 n—1
.0 = imsw| S (7)) | /| 5, (rinn |
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Condition 5 implies (see, e.g., Ross [7, Theorem 7.5]) that, for a= &, g, (i) is
independent of i and takes the form

8= 2= [ £ (10 |/ | 5 rim)0 | ®

Our next and last condition will make it possible to restrict attention to strategies a for
which (3) holds, without loss of optimality.

Condition 6. There exist a real number g, and an integer ng, such that gy < g; and
r(i,a) < got(i,a), for all i > ny, a € A(J).

For the remainder of this section we assume that Conditions 1-6 hold.

THEOREM 1. Let a be a strategy for which g,(i) > g; for all i. Then the sums
© (PLr)(@) and 32 o(PLi7, i) are both finite for all i.

It follows from Theorem 1 that (3) holds for any strategy that has g, (i) > g; for all .
The problem of finding an optimal strategy has thus been reduced to finding a strategy
that maximizes the expression g, given in (3), among strategies for which both
numerator and denominator are finite.

The next step is to construct a solution to the average-return optimality equation,
from which an optimal policy can be determined. To this end, we first consider the
problem of maximizing the total expected g-revised reward until the next visit to state
0 from each starting state i. For arbitrary g, i, and «, define v#(i) as the total expected
accumulation of r, — gr, until the next visit to 0, starting in / and following strategy a.
Let v8(i) 1= sup,c ., v8(i). Under Conditions 1-6, an argument like that used in the
proof of Theorem 1 shows that v8(i) is well defined and satisfies the following
functional equation in x( ):

i+l
. x(i)= max | r(i,a) — gr(i,a)+ 3 py(@)x()) - (4)
ac A(i) =

Condition 5 implies that v2(i) is finite for all i. Moreover, a strategy that takes a
maximizing action in each state i is optimal for this problem (cf. Schal [8)).

LeMMma 2. Let a be a strategy for which both the expected total reward and the
expected total time until the next visit to state 0, starting in i, are finite. Then
lim,_,  (PJo8)i) =0 for all g,i.

LEMMA 3. v8(i) is continuous in g > g, for each state i.

By Condition 3 it is clear that for g = M,/ L, we have v¥(0) <0. On the other hand,
for g=g;, we have v¥(0) > 0 (see Condition 3). The existence of a g* such that
087(0) = 0 now follows from Lemma 3. Hence for this g* we have (i > 0)

i+1
of'(i) = max {’(i,a) —grr(ha)+ 2 Py(“)vg*(j)}’ ©)
a € A() o
that is, ( g*,vg*(-)) satisfy the average-reward optimality equation (1).

The next theorem asserts that g* is the maximal average reward and that g* is

realized by a,., where a,. is a strategy that maximizes the right-hand side of (5).

THEOREM 4. The average reward under o. equals g*. There are no strategies in o

with average reward greater than g*.

2. Algorithm. Recall the average-reward optimality equation (1). From the previ-
ous section we know that v8(-) satisfies (1) if and only if ©v8(0) =0, in which case
g = g*. But we remarked in the introductory section that, for any g, fixing x(0) =0
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generates a unique solution to (1), denoted wé(-), which can be calculated recursively
from (2). Therefore, g = g* if and only if v8(-) = w&(-). We shall use this observation
as the basis of an algorithm for iterative approximation of g*. The following lemma
gives an interpretation of w8(-) which is useful in understanding the algorithm.

Lemma 5. Assume Conditions 1 and 2. For 0 < i < j let z(i, j) be the supremum of
the total expected accumulation of r — gr until the first visit to state j, starting in state i
(z8(i,i) = 0). Then z8(0,i) = —w8(i), so that wé(i) is the infimum of the total expected
accumulation of gr — r until the first visit to state i, starting in state 0. The infimum is
attained for some stationary strategy.

Proor. By Conditions 1 and 2 the probability p,;, (a) is bounded away from 0.
Thus z8(-, -) is well defined and finite. We may write

28(i,i + 1) = max {r(i, a)— gr(i,a) + > py(a)z8(j,i + 1)}. (6)
a€A(i) =0

The skip-free characteristic implies z&(j,i + 1) = z8(j,i) + z8(i,i + 1) for j < i. Substi-
tuting this into (6) yields

P (@)zf(ii+ 1) > r(i,a) = g(ia) + Zopy(a)zg(ﬁf)
=

for all a € A(i), with equality for at least one 4. Thus, using z8(j,i) = z8(0,i) —
z8(0, j) for j < i, we obtain

z8(0,i + 1) — 25(0,/) = max [p,-,,,r](a)]_l{r(i,a) — gr(i,a)

ac A(i)

+ 2 py(@)[28(0.0) - Zg(o,j):l}-
j=0

From equation (2) and the definition of w#(-) it then follows that z8(0,i) = —w8(i). It
is also clear that a strategy that chooses a maximizing action in each state 7 is optimal.
|

Throughout the remainder of this section, we shall assume that Conditions 1-6 hold,
as well as the following two conditions:

Condition 7. The reward r(i,a) is almost polynomial: |max,c 4, r(i,a)|/p’ is
bounded, for all p > 1.

Condition 8. There exist an € > 0 and positive integers N and k, with £k < N, such
that foralli > N— 1,

i i—k
—Pusi(@)+ X (i = Dpy(a) + > kp;(a) > .
jei-k+l j=0
In particular, Condition 8 implies that, under every strategy «, the Markov chain P,
has a uniform tendency to the left: 2;:})(1' — ppy(a(i)) > €, i > N — 1. That is, at every
transition from a state i > N — 1, the expected jump to the left is uniformly positive.
These conditions will give us a way of checking whether or not v8 = w8, and hence
whether or not g = g*. We shall show that Conditions 1-8 imply that v8(i) is almost
polynomial and that w(i) is almost polynomial if and only if g = g*. Our algorithm
exploits these facts by first computing upper and lower bounds on v8(i) that are
almost polynomial, and then checking to see if w8 (i) lies within these bounds. The next
theorem establishes the basis for this approach and also indicates how to distinguish
between the cases g < g* and g > g*.
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THEOREM 6. For all g, the function v® is almost polynomial; that is, v&(i)/p’ o'
bounded for all p > 1. For g < g* there is a p > 1 such that w¥(i) /p’ is not bounded
from below (w8 (i) goes exponentially fast to — o). For g > g* there is a p > 1 such that
wE(i)/p' is not bounded from above (w¥(i) goes exponentially fast to + 0).

Proor. First note that Conditions 1-8 imply that Conditions Al.1, A1.2, and A1.3
of Appendix 1 hold for each fixed strategy a. The first assertion of the theorem then
follows directly from Theorem Al.3 of Appendix 1, applied to the Markov chain
generated by the strategy that yields vé. To prove the second and third assertions, we
define wg(i) as the total expected accumulation of g7, — r, until the first visit to J,
starting in 0 and following strategy a. By Lemma 5, we have wZ(i) > w&(i) for all i
and all strategies. Let a, be the strategy found in the construction of wé. For g < g*
we have

w8 =wk <wg < wf; = wt" = &,
&

The difference wg - wg (i) is equal to the total expected accumulation of (g* — g)7
until the first v151t to i, startmg in 0 and following strategy a,.. From Appendix 1 (see
remarks in the final paragraph) it follows that this difference goes exponentially fast to
+ 0. Hence, w8(i) goes exponentially fast to —co. For g > g* we have

* * * *
wg=w§i>w‘i > wk =wt =08,

As in the previous case we can now prove that w8(i) goes exponentially fast to + co.
]
Next we derive upper and lower bounds for v#°(i) which are almost polynomial.
First a lower bound. Take some strategy a. Then v&°(i) > v (i), which is the total
expected accumulation of r — g*r until the next visit to 0, starting in state / and
following strategy a. From Condition 3 we have g* < M,/L and

ro(f) = 8 1a(i) > ro(i) = [ M/ L]7a(D)-

The total expected accumulation of r,(i) — [M,/L]7,(i) until the next visit to O,
starting in i and following strategy a, can be calculated by the methods described in
Appendix 1. This gives a lower bound for v¢".

Next an upper bound. First we need a lower bound for g*. One possibility is to use
the constant g, from Condition 6. A better lower bound might be g;, where the
strategy & is from Condition 5, provided g; is easy to calculate. Alternatively, one can
make a guess g and then calculate w# and check whether it violates the lower bound
for 08" we have already. Suppose g is a lower bound with g, < g < g*. Then

r(i,a) — g*(i,a) < r(i,a) — gr(i,a).

Choose n, such that r(i,a) — g(i,a) <0 for i > n, and for all @ € 4(i) (cf. Condition
6). Define r'(i,a) in the following way (with K:= L if g >0, and K:= M, if g <0):

r'(i,a) := M, — gk, for i< ng,
r'(i,a) =0, for i>ny.

Then r(i,a) — g*(i,a) < r'(i,a). For some n > ny, let B, be an upper bound for the

expected number of visits to [1,x] until the next visit to 0 startlng in i (see remarks

foilowing Condition 4 in §1). Then an upper bound for 08'(i) is \1V12 gK)B,. Using

the ¢; in Condition 4, it is possible to derive an upper bound B, in an analytical way.
It is now possible to sketch the algorithm to approximate g*.

Step 1. Calculate a lower bound and an upper bound for v&".
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Step 2. Choose g equal to the lower bound for g* used in the calculation of the
upper bound for v&". Choose g, equal to M,/L. Then g, < g* < g,.

Step 3. Calculate wé for g:= (g, + g,)/2. If w violates the lower bound for 08
then g < g* and we define g, := g. If w® violates the upper bound for v*" then g > g*
and we define g, 1= g.

Step 4. 1If g, — g, is greater than some fixed ¢ >0, then go back to Step 3.
Otherwise the iteration stops and (g; + g,)/2 is chosen as the approximation for g*.

The algorithm gives a good approximation for g*. The following corollary to
Theorem 6 shows that it also yields a good strategy.

COROLLARY 7. Let g < g*. Let o, be the strategy found in constructing w¥. The

average reward under a, is at least equal to g.

ProOF. Let g be the average reward under a,. Then of; = w&i and wf; is almost
polynomial. Since w,fg goes exponentially fast to — oo, it follows that g < g (cf. proof of
Theorem 6). n

Applying Corollary 7 to g = g; < g* yields the desired result.

The algorithm can be used for all semi-Markov decision processes satisfying
Conditions 1-8, but its performance depends rather heavily on certain characteristics
of the decision process. Most important is the strength of the tendency to the left. The
rate of divergence of w# for g < g* is determined by the strength of the tendency to
the left of the strategy a,., which is the average-reward opt1mal strategy (see proof of
Theorem 6). For most problems this tendency to the left will be rather sirong and
therefore the check g < g* will work rather well in general. The rate of divergence of
wé for g > g* is determined by the strength of the tendency to the left of a,, which is
the strategy found in constructing w. We may expect the tendency to the left of a to
be weaker than that of a,.. This can be seen as follows. The quantity w¥(i) is the
minimal expected total accumulation of gr — r until the first visit to i, starting in 0. If
g > g* we know that on the average r cannot keep up with gr. Therefore, to keep the
total expected accumulation of gr —  until the first visit to i small, it is necessary to
keep the time until the first visit to i small. This implies a kind of “minimal” tendency
to the left for a,. As long as all strategies have a strong left-tendency, there is no
problem. Otherwise, there may be numerical difficulties.

In such cases it is possible to use a, rather than w¥ to check whether g > g*. For
example, one may add a decision d@ such that p;; (@ = 1. One must choose the
reward and transition time of this action so that it is certainly not used under an
optimal strategy. In general this is not difficult since an optimal strategy has a
tendency to the left in most cases. Now the check on g < g* is executed as before by
calculating w8. The existence of the extra decision @ does not interfere with this step,
since only the tendency to the left of Ops is used here. The check on g > g*, however, is
executed by considering a,. If we find that, for some 7, a, (i) = d, then we know that
g > g*. For a special queueing-control problem described in Part II, this idea of using
a, for checks on g > g* is exploited. There it is worked out more precisely.

Another condition which may be too strong is the requirement that p; ,;, (a) > 0 for
all i, a € A(i) (see Condition 1). In problems involving control of arrivals to a queue, it
is indeed unnatural to have this condition, since an optimal policy may reject all
arrivals in some states. We consider arrival-control problems in Part II, where we show
how problems caused by p, ;, (a) = 0 can be circumvented.

3. Discounted rewards. We have developed the theory and the algorithm for the
average-reward criterion. Problems with discounted reward can also be solved by
transforming them into equivalent average-reward problems (cf. Derman [1, p. 115]).
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We illustrate this transformation for the Markov case, but it can also be done for the
semi-Markov case.

Let p;(a), r(i,a) be the transition probabilities and reward function for a discoun-
ted-reward Markov decision process with state space {0,1,2, ...}, infinite horizon,
and one-stage discount rate 8. Consider an average-reward Markov decision process
with extended state space {—1,0,1,2, ...} and transition probabilities and reward
function as follows:

pi’j(a) = Bpij(a), for 4,j=0,1,2,..., a€A(i);
pl.’,_,(a):=1—,8, for i=0,1,2,..., a€A(i);
r(i,a):=r@ia),  for i=0,1,2,..., a€A()
In state — 1 there is only one possible action, a’, and
Poi_i(a):=1-8; Poio(a) = 6; r(-1,a’):=0.

If the original (discounted-reward) decision process is skip free to the right, then so is
the new (average-reward) decision process.

Using the methods developed in §§1 and 2, one may find an average-reward optimal
strategy for the new problem and an associated solution v'(-) of the average-reward
optimality equation, with v’(—1) = 0. Thus, for i = — 1,0,1,2, ...

{ i+1

\
1
v()= max 1 r(a) — g+ % p&(a)v'(j)}-
] acA(®) j=0
Substitution for #'(i,a) and pl.’j(a) yields, fori=0,1,2, ...,

v/(§) = max {r(i,a)—g*+§) Bpi,-(a)v’(j)}- M

a € A()

Define o(i):= v'(i) + g*/(1 = B), for i =0,1,2, ... . Then

i+1
o(i)= max { r(i,a)+ Aa)o()) i,
(i) aEA(,.){ () + B 3 py(@ <J>}
and the maximizing a is the same as in (7). Hence the restriction of the optimal
strategy for the average-reward problem to the states i=0,1,2,..., is an optimal
strategy for the discounted-reward problem and the solutions to the two optimality
equations differ only by a constant.

Appendix 1. Total expected reward in a right-skip-free Markov chain. In this
appendix we derive some results that yield information about the behavior of the total
expected g-revised reward until the next visit to state 0, following a particular strategy
a, as a function of the starting state i. We establish conditions under which this
function is almost polynomial and the unique solution to a functional equation
analogous to (4), in the class of almost polynomial functions. This result is applied (in
Theorem 6 in §2) to form the basis for our algorithm for approximating the maximal
average reward g*.

We consider a Markov chain P = (p;) on the state space S=1{0,1,2, ...}, which is
skip-free to the right and nondegenerate (cf. Condition 1). Let r(i) denote the
one-stage reward received when the chain is in state i, i > 0. (In our applications in §2,
we might have, for example, P = P, r = r, — gr,, With a a strategy that attains 07.)

For p > 1 let %, be the set of all complex-valued functions f on the state space S
such that | f(i)]/p’ is bounded in i. One can make such a set a Banach space by
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defining a norm || f||, 1= sup, | f(i)|/p’. We shall use the following conditions (cf.
Conditions 7 and 8 in §2).

Condition A1.1. For all p> 1, r € #,. That is, r is almost polynomial.

Condition A1.2. There exist an € > 0 and positive integers N and k, with &k < N,
such that

i i—k
Pt 2 (i=)pyt X kp;>e  forall i>N-1
j=i—k+1 j=0

Let the operator P,, n > 0, be defined in an analogous way to P, in §1.

LemmA Al.l.  Assume Condition A1.2. Then there exists a p* > 1 such that Py, is a
contraction operator on % ..

ProOF. Letp>1and f € %,. Consider Pyf. For each i > 0, we have

i+l i+1
(PH@/0" <07 S plFDI< IS, S pye™
j=N j=N

For i < N — 1, the right-hand side of the last inequality equals 0. Therefore, to prove
the lemma it suffices to show that there exists a §, 0 < 8§ <1, such that 371} pp/ ™"
< 6, for p > 1 and sufficiently close tc 1, for alli > N — 1. Now
i+1 i i—k
2 P,'jpj_i< Pii1 T pijpj—iJ'_ 2 Pijp_k
j=0 =ikl j=0
i i—k
<l=(p— 1)[']’:‘,:’” + py(i —j)pj_i_l + Z Pykp_k_l}
j=i—k+1 j=0
i i—k
<l—(p— 1)[ka—1{_Pz‘,i+1+ 2 (i—Jpy + szpij}
j=

j=i—k+1
- (1= p_k_l)pi,i+lj|

<I=(p—-hlp™* A+ e 1]

The second inequality follows from the fact that the expression on the right-hand side
of the first inequality is convex in p > 1. The fourth inequality follows from Condition
Al1.2. Now choose p = p* > 1 such that the term in brackets is > 0. In this case the
right-hand side of the last inequality is < 1, so that there exists a § < 1 such that
Sitop(p*)/ 7' <8 <1, foralli > N —1, and hence Py is a contraction on %,«. 1§

Let f € Z,«. It follows from Lemma Al.1 that 32, Pyf is also an element of %,
if Condition A1.2 holds. The value 3% ((Pyf)(i) may be interpreted as the total
expected accumulation of f until the next visit to [0, N — 1] from starting state ;. (Note
that for i < N — 1, 39 (Py () = f(i).)

Our goal is to study the behavior of the total expected reward until the next visit to
state 0, as a function of the starting state i. To this end we consider the imbedded
Markov chain on [0, N — 1]. Let R(i) denote the one-stage reward function for this
chain, so that R(i) = 37 ((Py7r)(i), which belongs to #,. if Conditions Al.1 and A1.2
hold. The transition operator associated with the imbedded chain is denoted by Q and
is defined on the set of functions f with support in [0, N — 1] by

o0

(2N = 2 (PvEf)(D).

t=0
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For any state i, ( Qf)(i) can be interpreted as the expected terminal reward received if
the system is started in state i and stopped at the next visit to [0,N — 1}, with a
terminal reward f(j) if termination occurs in state j €[0,N — 1}. For i, j € [O,N — 1]
and f the indicator of state j, ( Qf)(/) gives the probability of a one-step transition from
i to j in the embedded chain on [0, N — 1]. Let Q, be the restriction of 0 to [1,N — 1],
so that Q, = 3%, P4 P;. The following condition guarantees recurrence of state 0.

Condition A1.3. The operator Q, is an n-stage contraction with respect to the
metric || - || - on the space of functions with support in [1,N —1].

This condition is satisfied, for example, if there is a positive probability of visiting
state 0 before leaving [1,N — 1].

If Conditions Al.1, Al.2, and Al.3 are satisfied, one can write the total expected
reward until the next visit to state 0, starting in state 7, as

o0
o(i) = 20( QiR)(i), i>0.
=
In this case it is easy to verify that v is an element of B,. and that v satisfies
x(i) = R(i) + (21x)()- ®)
Moreover, since R(-) € %,- and Q, is an n-stage contraction, v is the unique solution
in %,« to (8). But, by standard arguments applied to the original Markov chain P, v
must also satisfy the more familiar functional equation

i+1

x(i) = r(i) + ng pix(J)s i>0. )

It is easy to show that, since P, is a contraction on %, any solution to (9) in A« is
also a solution to (8). We have thus proved

THEOREM Al12. Assume Conditions Al.l, Al2, and A1.3. Then v is the unique
solution in % to the functional equation (9).

Equation (9) can be rewritten (i > 0) as

i—1

x(i+ 1) = x(i) = (piis1)”" jgop,.j(x(i) = x(J)) + piox(0) — r(i) |- (10)

This shows that each x(0) generates a unique solution to the equation. An easy
induction on i shows that the general solution to (10) takes the form w + fx(0), where
w is the solution generated by w(0) =0, and f is the solution to the corresponding
homogeneous equations with f(0) = 1. By an argument parallel to that used in the
proof of Lemma 5 in §2, it can be shown that —w(i) equals the total expected reward
until the first visit to state i, starting in state 0.

The unique solution in %+ to the homogeneous equations is identically zero. Hence
f cannot be an element of %,.. The next lemma sharpens this result and gives a
probabilistic interpretation of f.

LEMMA Al.3. Assume Conditions Al.1, A1.2, and A1.3. Let f be determined by the
equations (i > 0)

Py (f(i) = f())) + _pmf(O)]

;;;;;

i—1
)= ) = (e | 3 |

i=0

J d

and f(0) = 1. Then (p*)"/f(n)—>0 as n—> o0.
ProoF. Let ¢"(i) denote the probability that, starting in state i <n, state n is
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visited before the next visit to state 0. The recurrence equations for ¢"(i) are:

i+1

¢O=3 paGy  i€[on—1],
j=1

with ¢"(n) =1. Tt is clear from (7) that ¢"(i) = f(i)/f(n) is a solution to these
equations. In particular 1 = f(0) = ¢"(0)f(n), so that 1/f(n) = ¢"(0) = the probability
that, starting in state 0, state n is reached before the next visit to state O.

To prove that (p*)"/f(n)—>0, consider the function s(-) on S defined by s(n)
:= (p*)". Since 5 € %, the sum 372, Pys is finite. Considering the interpretation of f,
it is clear that 372 ((P{s)0) > S_o(p*)"/f(n), and hence (p*)"/f(n)—>0, as n— oo.

1

The results derived so far can be used to calculate v(i), i > 0, in an efficient way.
For Lemma Al.3 and the fact that v € #Z,« (from Theorem Al.2) imply that
lim,_, v(n)/f(n) =0 and therefore v(0) = lim,_, , —w(n)/f(n). Since both f(n) and
w(n) can be calculated recursively from (10), this formula can be used to approximate
v(0). Once v(0) is known, the values of v(l), v(2), etc., can also be calculated
recursively, using (10). See Wijngaard [9] for details.

Our main use of the results from this appendix, however, will be to distinguish
between w and v in the case where r = r, — g7,: the case of g-revised reward in a
semi-Markov decision process under strategy a. Since v = w + fo(0), it follows from
Theorem Al.2 and Lemma Al.3 that w € # . if and only if v(0) =0, in which case
w = v. We use this fact in §2 (Theorem 6) to provide a check on whether ©8(0) = 0 and
thus on whether g = g*.

Appendix 2. Proofs of theorems in §1.

Proor oF THEOREM 1. For any strategy a, let Q, denote the transition operator of
the imbedded Markov chain on [0,n, — 1] generated by a, where n; is defined in
Condition 6. That is,

(@)= S (PLPSYD. 120

for all functions f with support in [0, n, — 1] (cf. Appendix 1). Let Q,, be the restriction
of Q, to[l,ny— 1], 50 that @, = 372 o Py, Pas-

Let a be such that g, (i) > g4 for all i. First we prove that the imbedded Markov
chain on [0,n, — 1] generated by « is nondegenerate. Define [ ,(i) := lim,,_, (P, D(?)
= Pr{system stays in [ng, c0) forever under strategy «| start in state i}. For i > n,, we

have g < g,(i) < L, ())go + (1 — 1, ())M,/ L and hence, since g, < g < M,/ L,
L) <[Ma/L = g:]/[ Mo/ L~ go] i=8 < 1.
It follows that /,, (i) < 8 <1{or alli > 0. But

L, =P,L, =imP! [ <I

ny T angang ang“ang ang ®

which implies that /,, (i) =0 for all i. This means that under strategy a for each
starting state i the set [0, ny — 1] is reached with probability one. In other words, the
imbedded chain on [0,n, — 1] is nondegenerate, as claimed.

Now we modify the process under strategy « in the following way. In the first place
we set r,(7) equal to M, for i < ny and equal to gy, (i) for i > n,. In the second place,
if the state remains outside the set [0,n,) for more than N transitions, we only count
the contribution of the first N transitions, in computing both the expected total reward
and the expected total time until the nth transition. The result is a semi-Markov
process with rewards, defined on the state space {(i,n):i=0,1,...; n=0,1,...,




306 JACOB WIINGAARD & SHALER STIDHAM, JR.

and n =0 for i < ny}. Here the component n records the cumulative number of
transitions since the last visit to [0, 7n,) and both reward and transition time for states
(i,n) with n > N are equal to 0.

Let gV (i,0) be the average reward for this process, defined in the usual way. It
follows from the definition of n, and the hypothesis that g, (/) > g; that gN({,0) > g,
for all i. Let R (i) and TV (i) denote the expected reward and expected time for the
modified process until the next visit to a state (j,0) with j < ny, starting in (7,0) with
i < ny. Both expectations are finite. From the way in which rewards are defined for the
modified process, it follows that

RY(i))y= M, + gO(TOfV(i) - 'ra(i)), i<ny. (11

(In particular, for i < ny— 1 the skip-free transition structure implies that T, N (i)
=r1,(i) and R (i) = M,.)

Condition 4 implies that the expected reward and the expected time until the next

visit to state (0,0), starting in state (i,n), are finite for all / and n. For starting state

(i,0) with i < n, these expectations equal, respectively, X7 o( QL RN)Y(i) and

% (QLTN)i). Hence we can write the average reward g, (i,0) in the following way

(for all 7)
geo= $(enro]/| 3 om0 (12)
Using (11), (12), and the fact that g (i,0) > g;, we obtain

g&zgo( 0Ty )(0) < Mzg:o( Qoi11)(0) + gotgo( 0Ty )(O)

-3 (Q4r7)(O)
so that
(& —go)go( 0a7T3 )(0) < Mzgo( 0:11)(0). (13)

The summation on the right-hand side of (13) equals the expected number of visits to
[0, ny — 1] before the next visit to 0, starting from state 0, which is finite by Condition
4. Thus (13) implies that 5% ( @7, T.N)(0) has an upper bound that is independent of
N. Let T, (i) denote the expected time in the original process until the next visit to
[0, ny — 1], starting in i. Then

3 (04T )0 3 (24T.)(O)

as N — oo. The latter sum is therefore finite, and is equal to the sum 32 o(Pg,7,)0).

Since p; ;. (a(i)) > O for all 4, it follows that 3372 o(P,7,)(i) is finite for all i. We may
therefore write

808 t=| £ (0] /| 5 (Pim))

for all i > 0. Since g, > g;, the sum 3% o(Py7,)(0) is also finite and because
Pii+1(a(i)) >0, we may conclude that the sum % o(PLyr, i) is finite for all i. This
completes the proof of Theorem 1. &

Proor oF LEMMA 2. By Conditions 3 and 4 the function v# is bounded above. Let
b be an upper bound. The finiteness of 3% ((PJi7,)(i) implies that lim,_,,(P,6)(?)
=0.
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Let v(i) be the total expected accumulation of r, — gr, until the next visit to 0,
starting in i and following strategy a. So v2(i) = 27LoPa(rs — 87)()- The finite-
ness of S (PLr (i) and T2 ((PLi7,)(i) implies that of(i) is finite and that
lim,,, (P v8)(i) = 0. The desired result then follows from the fact that vf(i) < v2(i)
< band lim,_, (P}b)({) =0foralli. &

PrROOF OF LEMMA 3. Let g > g, be arbitrary. For all i,a let

fl(ia) i=[r(i,a)— gr(i,a)|Y(i < no) and f*(i,a):=[r(i,a)— gr(i,a) |1(i > no),

where ng is from Condition 6. Conditions 3 and 4 imply that the total accumulation of
f’ until the next visit to 0, starting in i, is bounded over all strategies. Let « be a
strategy that attains the maximum in (4), so that vf(i) = v¥(D. Then the total
accumulation of f* until the next visit to 0, starting in i and following a, is finite. This
implies, by the definition of f", that the expected total accumulation of both r and 7
until the next visit to 0, starting in i and following a, is finite. Let 7(i) denote the
expected total accumulation of r until the next visit to 0, starting in i and following a.
Let € > 0 be arbitrary. Choose & < €/ T, (i). The total accumulation of r — (g + 8T
until the next visit to 0, starting in i and following a, is equal to v&8(i) — 8T, (i), and
hence v8*8(i) > v8 — 8T, (i) > v8(i) — e. By the definition of vf it is clear that
08*%(i) < v3(i). We have thus established continuity of v8(i)ing > go.

PROOF OF THEOREM 4. Let Pi= P e, 1'1= Fypr, T1= Typu. It foliows from equation
(4) that

n—1

o8 = > Pi{(r—g*n+ PwE.
t=0

By the arguments used in the proof of Lemma 3, the expected total accumulation of
both r and 7 until the next visit to 0, starting in i and following a,., is finite. Therefore,
by Lemma 2, lim,,_,  (Pv®")(i) = O for all i. Hence

n—1 0 ©
v&(0) = Jim zopf(r - g*)(0) = ZO(P;r)(O) —g* ZO(P;¢)(0).
t= t= 1=
Since v&'(0) = 0 this implies that the average reward under a,. equals
gt = [ IZO(P{r)(O)} / [ ZZO(PI’T)(O)}.

Now suppose there is another strategy a with average reward g, > g*. By Lemmas 1
and 2, lim, , (P08 )(i) =0 and

200-| £ ero)]/| 50| s
Moreover,

08 (i) > ry(i) — g*1,(i) + (Puv® () > - - -
n—1 n—1

> ZO(Pa’lr)(i) — g* zo(p;,fa)(z) + (P2oS")(0)
t= P
Hence 0 = og*(O) > (g, — g*)zﬁo(});l,ra)(o), so that g, < gt
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