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LOCAL RECOGNITION OF NON-iNCIDENT |
POINT-HYPERPLANE GRAPHS

" ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH '

ABSTRACT. Let P be a projective space. By H(P) we denote the graph whose -
vertices ‘are the non—incide,nt’point—hyperplane‘pair's of P, two vertices (p, H )

and (g, I) being adjacent if and onlyifp € J and ¢ € H. In this paper we give :

. a characterization of the graph H(P) (as well as of some related graphs) by its.

" Jocal structure. We.apply this result by two characterizations of groups G with
PSL.(F) < G.< PGLn(F), by properties -of centralizers of some (generalized)
reflections. Here F is the {skew) field of coordinates of P. : : )

1. INTRODUCTION |

Local recognition of graphs is a problem described, for example, in [2]. The
general idea is the following. Choose your favorite graph A and try to find all . .
" connected graphs I that are locally A, ie., graphs whose induced subgraph on the

set of all neighbors of an arbitrary vertex of I' is isomorphic to A. One restricts
. the search to connected graphs, because a graph is locally A if and only if all-of its
connected components are locally A. There has already been done a lot of work in -
- this direction, see, e.g., [1, 6; 7, 8, 10, 11]. o S
Suppose P is a projective space of (projective) dimension n (possibly infinite).
Then by H(P) we denote the graph with as vertices the non-incident point-hy-
perplane pairs and with two vertices (p, H) and (g,]), with p,q points and H,I .
hyperplanes such that p € H and ¢ & I, being adjacent if and only if pe I and

" For each vertex of the graph. H(P), the induced subgraph on the neighbors of
this vertex is isomorphic to H(Pp), where Py is a liyperplane of P. In this paper we
give a-characterization of the graphs H(P) by their local structure.

- In fact, we consider a slightly larger class of graphs. Let H be a subspace of
the dual P4u! of P with the property that the intersection of all the hyperplanes
H ¢ H is trivial (we say H has a trivial annihilator in P). IfPis finite-dimensional,

“then H equals P9°#!, but for infinite dimensional P the space H can be a proper

‘subspace of P4u2!. The subgraph H(P,H) of H(P) induced on the vertices (p, H)-

with H € H, has the property that for each vertex v the induced subgraph on the

neighbors of v is isomorphic to H(Po,Hy) for some hyperplanes Py of P and Hy of

H: Indeed, if v = (z,X), then with Po the projective space induced on X -and Hy -
the'set of hyperplanes K of o such that the subspace of P generated by z and K
belongs to H, we find the induced subgraph on the neighbors of v to be isomorphic

~to _H(]Po,%): Moreover, as (\geiqen B = {2}, we have Neen, H = 0. Our
main result reads as follows. . : o e
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2. ARJEH M. COHEN, HANS CUYPERS, RALF GRAMLICH

Theorem 1.1. Let Po be a projective space .of dimension at least 3 and Hy a sub-
space of P32 with trivial annihilator in Pg. Suppose L is a connected graph which
is locally H(Po,Ho). Then T is isomorphic to HP,H) for some projective space P -

and some'subspace'H of Pual -ywith trivial annihilator in P. o

The condition dim(%); >3 in»o'ur local recognition result is sharp as is shown -
~by.an example in Section 5 of a connected, locally H(P(F3)) graph that is not
* isomorphic to HEP®E). S T R

Our proof of Theorem 1.1 is partly motivated by the methods developed in 14,
‘where local recognition results are obtained for subgraphs of H(P) fixed under
- polarities of P. o L R S
- If P'is the projective space P(V) of some vector space V defined over a field
" F of order at least 3, then the graphs H(P; H) can be described as graphs-on the
" reflection tori in subgroups of GL(V). Let V be 2 left vector space over a (possibly
commutative) skew field F. For g € GL(V), we set el o
_ [V,g]:{vg—i)[vEV} and -Cv(g)—-:{vEV]vg—vr-"O},
and call these subspaces the center and azis of g. A tr_ansf_ormatiori‘ g € GL(V)
satisfying dim([V, g]) = 1 is called a reflection if [V, g] € Cv(g). Observe that Cy (9)
is a hyperplane if g is a reflection. ) B . ’

If 'we specify a hyperplane H and a one-dimensional subspace, that is, a projective - '
point, p of V, then by Tp.p we denote the subgroup of GL(V) generated by all
g€ GL(V) withp=[V,gland H = Cy(g). I p & H, the subgroup Tp,z consists of
“the identity and. all reflections with center p and axis H. The group is isomorphic
with F* and is called a reflection torus. All reflection tori in GL(V) generate the
full finitary general group FGL(V) of V, ie, the subgroup of GL(V) consisting '
of all elements g € ‘GL(V) with [V, g] finite dimensional. Below we will describe
more examples of groups generated by reflection tori, closely related to the graphs
appearing in Theorem 1.1. = = RN ' S L
"Let ® be a subspace of V*. By R(V,®) we denote the subgroup G of GL(V)
generated by the reflections with center in V and axis in . If @ = V*, then G is
equal to the full finitary general linear group FGL(V). If & # V* but {v eV |
v = 0 for all ¢ € 8} = O (i.e., the annihilator of & in V is trivial), then R(V, ®)
still acts irreducibly on V/, see [3]. o AT SR S o
If Tip,my and T(g1y are two distinct reflection tori in GL(V),.then Tip gy and
Tiq.n) commute if and only if p € I and ¢ € H. Hence, if G is one of the groups
R(V, ®), where the annihilator of ® in 'V is trivial, then the graph. with as vertex

. set the reflection tori in G, two tori being adjacent if and only if they commute, is

- l isomorphic to the graph H(P(V),P(®)).

- If C is a conjugacy. class of reflections in GLy41(F), then each reflection torus of -

GLpy1 (F) meets C'in a unique element. So, the commuting graph on C, ie., the |

graph with vertex set C and in which two distinct vertices are adjacent if and only

if they commute, is isomorphic to Ha(F). _ o I

_In view of these observations we can use Theorem 1.1 in order to locally recognize
_ linear groups. We state two such results. T - -

T,heor'em‘l 1.2. Letn > 3 be finite, and let. F be a skew field of order > 3. Let G
‘be a group with distinct elements T, y and subgroups X, Y such that '
(i) Co(®) = X x K with K = GLn11(F); L ‘
(i) Cc,'(y) =Y x J with J = GLa (B);
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+ (iii) -there emzsts an element in JOK that is.a reﬂectzon of both, J and K conjugate
toz in J and Y in K, respectively. '

- IfG (J, K), then (up to isomorphism) PSLya(F) < G/Z(G) < PG‘Ln+2 (F).

Our second apphcatxons deals with finite groups Let n be ﬁmte and F a field.

. An element 7 of SLp1(F) | is called a generalized reflection if, up to a scalar factor .
7 is a reflection in GLn+1(F)) ie., if there exists a reflection in 7Z(GLp41(F))-.
The axis and center of a genﬂrahzed reflection are, by definition, its eigenspaces of
dimension n and. 1 respectlvely, in the natural module They are the axis and center

of the unique reﬂectlon inrZ (GLnH (F)). The group generated by: -all generalized

reflections with & given axis and ‘center is called a geneml*zed reflection torus apd'
is isomorphic to F* /(X € F* | AnFl=1). L -

. With this notlon we have the followmg result for ﬁmte groups :

‘ Theorem 1 3. Letn > 3 be finite, and let F be a ﬁmte field of order g > > 3 Letp
be a prime dividing ¢ — 1. Let G be a group with distinct elements z, y of order p’
such that : _

(i) Cg(z) contains chamcberzstzc subgmup K with K = SL.H 1 (1)
(). Caly) contains a characterisiic subgroup J with J = SLyq1 (F); S
(iii) ' there exists an element z in JNK conjugate to z in J and y in K respectwely
Moreover, zisa genemlzzeof reflection of both K and J

.- ’sz (J,K), then G/Z(G) = PSLusa (). |

The latter theorem is the kind of result that is useful in the classification of finite
simple groups in that a quam—sunple group is recognized from a component in the
centralizer of an element about which some fusion information is given.

The remainder of this paper is organized as follows. In the next two sections -
we derive various properties of the graphs H(P,H). In partlcular we show that
" both P and H can be recovered from the graph H(P, H). As a consequence we are
able to determine the full automorphism group of H(P, H). 'Then in Section 4 we
prove Theorem 1.1. As mentioned before, in-Section 5 a family of graphs which. -
are locally H(P()) is discussed and finally in Section 6 the two group—theoretlcal
: apphcamons Theorem 1. 2 and 1.3, of 1he0rem 1.1 are dlscussed .

: Acknawledgment The aLthors want to thank Andrles Brouwer, Richard Lyons,
Sergey Shpectorov and Ronald Solomon for various helpful remarks concerning the
‘topics of this paper. An earlier version of thls paper forms’ part of the PhD thesis
of the last author, see [5]. : , B

2 THE POI’\IT—HYPERPLANE GRAPH

. Deﬁmtxon 2.1. Consuier a projective space P a:nd a subspace H ot the dual Pdual.
of P with (\geg H = = 0. The point-hyperplarie ‘graph H(P,H)-is the graph. whose
vertices are the. non—1nc1dent point-hyperplane pairs of P with the hyperplanes in H,
in which a vertex {a, A} is adjacent to a,nother vertex (b, B) (in symbols, (a,4) L
(6,B)) ifand onlyifa € Bandbe A~
By definition, we have x [ x, so the perp x* - of x Cof all vertices of H (lP’ }H[) in L
-relation to x is the set of vertices in H(P, H) at distance one from x. Moreover, for a
set X of vertices, we deline the perp of X as X*+:= (Nyex x* with the understanding
that 0+ = H(P,H). The double perp of X is XLL:z (x4Ht R
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The graph H(P, P! is also denoted by H(P). Moreover, if P ="P(V) for some
(n + 1)-dimensional vector space V' over a (skew) field F, then we also write Hn(F)
for H(P). If the field F is’ finite of order g, then we write Hy(g). Finally,if the field
F is irrelevant, then we also write H,, instead of H.(F)." PR

Let P be a projective space and H a subspace of the dual of such that the:
intersection over all hyperplanes in H 1s empty. A point p of the projective space

P = (P;L) determines the set of vertices v, = {(z,X) € H(P,H) |z = p} of the -

graph H(P,H). Alinelof P determines the union v; of all sets v, of vertices for
p € I Clearly the map v': PUL — QH®.H | 5 s v, is injective, and p € I if
and only if vp C v, so we can identify the projective space with its image under v

" in the collection of all subsets of the vertex set of H(P, H). We shall refer to this_
“image in, 2H®® as the eaterior projective space on H(P,H). Similarly, one can
map-points IT and lines A of H onto subsets of vertices of H(P, H) of the form wi =
" {(z, X) € H(P,H) | X =1} and wa = Uri~a wi for IT running over all points of
Pdual containing A. This gives rise to ‘he dual exterior projective space on H(P, H).

" The subsets vpy i, wa and wr SO obtained are called ezterior ‘points, exterior:linés,

- exterior hyperlines, and exterior hyperplanes of H(P; H), ‘respectively. Note that,

- if the projective space I is.isomorphic to H, there is'an au‘pqmqtphiSM“ﬁf' H(P,1) e ke

mapping the image under v onto the image under w. (I 7 is an isomorphism from
P to H, then (z,X) — (n(X ), w{z)) is an automorphism of H(P,H) as required.)
Also, if P is a subspace of ‘Héval with trivial annihilator in H (in particular; if -
P and H have the same finite dimension), then H(P,H)) = H(H, P) by the map
" (z,X) = (X,3). So, in general it will not be possible to distinguish exterior points
from exterior hyperplanes if one tries to reconstruct the projective space from the
graph. ‘Another useful observation is that the exterior points partition the vertex E
set of H(P, H). In other words, each vertex of H(P, H) belongs to a unique exterior
point. The same holds for exterior hyperplanes. ‘ o .

‘One of our goals is to c_@aracterizethe graph H(P,H) By its local structure: In
" this light the following two observations are important. ' N R

Proposition 2.2. Let P have dimension at least one. The graph FL(P, H) is locally
H(Py, Ho) for some hyperplanes Py of P and Hy of T o ' .
Proof. Let x = (z,X) be a vertex of H(P, H). Identify X with Po. For any vertex
y = (y,Y) adjacent to x, wehavez € Y, y € X\Y,and X NY a hyperplane in
both X and Y, so (y; X N'Y)-belongs to H(X). We can identify the space of all
., hyperplanes of the form X N Y of X where z € Y € H with a hyperplane Hy of HL. .
Hence, (y, X NY) belongs to H(Po, Ho). ' I : b
" Conversely, for any vertex of H(Pg,Hp), i-e., for any non-incident pair (z,7)"
- consisting of a point z and a hyperline Z of P with. z € X, Z € X, the pair
(2,{Z,x)) is a vertex of xt. (Indeed, z & (Z, ), since T & Xy, '

Clearly, the maps (,Y) = (v, X-NY) and (z,2) v (2,{Z,z)) are each othe_r’é S

inverses.” Moreover, the maps preserve adjacency.and the proposition follows. O

Proposition 2.3. Hg consists of pﬁeciseiy one point; Hy is the disjoint union "o_‘f
cliques of size two; the diameter of Hz equals three; the diameter of H(P, H), where
- dim(P) > 3, equals two. In particular, H(P,H) is connected for dim(P) >2..
Proof. The statements about Ho and H; are obvious. Let x = (z,X), ¥ = (1, Y) ;
be two non-adjacent vertices of Hy. The intersection X MY is a point or a line, and

=
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zy is a point or a line. The vertices x ‘and ¥ have a common neighbor, i.e., they

are at distance two, if and only fXNY zy. BX nY Cay, however, it is easily
‘seen, that they are at distance three. Indeed, choose a € X\ {y} and b € Y\{z} -
with ay # b and bz ¥ a. Then (':c,'-X)‘,- (a,bz), (b,ay), (y,Y) establishes a path of

~ length three. . - S o ‘ = . ’

Now let x = (2, X), ¥y = (% Y) be two non-adjacent vertices of H(P, H), where -
dim(P) > 3. The intersection X NY contains a line. Since = ¢gXandy ¢Y, we,
find a point z € XNY and a hyperplane Z D zy with z ¢ Z and, thus, a vertex .
(2, Z) adjacent to both x and-y. o C ' " 0

Our first main result will be 4 reconstruction theorem of the pro jective space from
graphs isomorphic to the point-hyperplane graph H = H(P, H) without making use
of the coordinates, see the next section. This goal will be achieved by the study
" of double perps of two vertices, i.e., subsets of H = H(P, H) of the form {x,y}+*.
By n we denote the dimension of P. ' L L

Lemma 2.4. Letx = (z,X),y = (¥, Y) be distinct vertices of H with {x,y}‘L #9.
Then the double perp {x, y}i‘L equals the set of vertices z = (2,Z) of Hwithz € zy
and Z2XNY. A e
. Proof. Distinct vertices with non-empty perp only exist for n > 2. The vertices of
- Ax, y}L are precisély the non-incident point—hypefplané pairs (p, H) withp € X ny. -
and H O zy. Let {(pi, Hy) € {x, 3} |1 €1 } be the set of all these vertices, indexed
by some set I. Now [x,y}7" = ({x,y}*)" consists of precisely those vertices
' (z,Z) € H with z € Nier Hyand Z > ((p{)ie}). But since {:'c,y}l # 0, we have
(icr Hi=zy and {(pi)ier) = X NY, thus proving the claim. =~ oo
- In order to recover the pro jectivé spaces P and H from the information 'c'ontaine'd

in a graph T’ éH we have to recognize vertices X, y of T withz =y or, dually,

X =Y, #(x).= (z,X), ¢oly) = (v,Y). Clearly, z = y and X =Y if and only
if the vertices x, y are equal. To recognize the other cases, we make use of the
following definition and lemma. IR T ;

Recall that the (projective) codimension of a subspace X of a projéctive space
P is the number of elements in’'a maximal chain of proper inclusions of subspaces
properly containing X and properly contained in P. For example, the_codimension
of a hyperplane of P-equals 0. : " ' '
Definition 2.5. Let n > 2. Vertices x = (a:,»X),"y ='(y,Y) of H(P,H} are in
relative position (i,7)4f ' L ) o :
' - i = dim (2, ) and j.= codim(XNY)
where dim denotes the projective dimension and codim the projective codimension.’ )
Note that 4,5 € {0,1}. A T SER
' Lemnia 2:6. Letn > 2, and let x, y € H. Then the following assertions hold.
(i) The vertices x and y are in relative position (0,0) if and only if they are equal.
(i) The vertices x and 'y are in relative ‘position (0,1) or (1,0) if and only if
they are distinct and the double perp {x,y}AJ'J‘ is minimal with respect to
containment, i.e., it does mot contain two vertices with a non-empty strictly
- smaller double perp. ' ' -
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(iii) The vertices X and y are in fcldtive’ position (1,1) if and only if they are '

. distinet and the double perp {x, y_}J‘J'. is not minimal.

Probf. Statement (i) is obvious. Suppose X and y are in relative position '(0,'1).-
" Then {x,.y}J'-7é ¢ (since n > 2), and we can apply Lemma,2.4. We obtain -
{;(,y}“‘ ={(z,Z2)eB|z=z=Y, Z D X NY}, whence any pair of distinct ver- -

" tices contained in’ {x,y}~ " is in relative position (0,1) and gives rise to the same -

double perp. Symmetry handles the case _'1,0).‘ If x and y are in relative po-.

sition'(l,i) and {i, vy}t = @, then {x, y}‘L‘L = H, which is clearly not mini-
_ mal. “So let us assume {x,y}* # 0. Again by Lemma 2.4, we have {x,y}* " =
{(z,Z)eH|z€ezY,Z 2 X NY}. This double perp contains a vértex that is at
relative position’ (0,1) to x, and we obtain a double perp strictly contained in
{x, y3+t. Stzi"sements (ii) .and (iil) now follow from the fact that distinct vertices

x = (z,X) and y = (y,Y) are in relative position (0;1), (1,0}, or (1,1).- - O

: We'coﬁciude'this section with a lemma ﬁhat Willi be need_géd later.

Lemma 2.7. Letx = (z,X) and y = (3, Y) be two adjacent vertices in H. If x-is

adjacent to a verter (2,Z.) and y adjacent to o veriex (2:22), then there exists a
vertez (z, Z3) adjacent to both x andy.’ 1 :

. Proof. The statement of the lemma is ,ex'ript'y‘for n < 2, and we can assume 1 > 2.
. We havez € XNY. Since x and y are adjacent, z € Y and y € X are distinct and

the line zy does not contain z. Hence the choice of a hyperplane Zs that contains -

zy and does not contain z is possible, and we have found a vertex (z, Zs) adjacent
to both xand y. s : '

" 3. RECONSTRUCTION OF THE PROJECTIVE SPACE
. This section will concentrate on the reconstruction of the projective spaces P and
H from a graph T isomorphic to H(P, H). Abusing notation to some extent, we will
sometimes speak of relative positions on I, but only if we have fized o particular
isomorphism T = H(P,H). Throughout the whole section, let n = dim(P) > 2.
Furthermore, let F bé a division ring and I' = H = H(P,H).. ’ :

Definition 3.1. Let x,y be vertices Q’va‘. Write x &~ y to denote that X, y are
equal or the double perp {x, y}J“L is minimal with respect to inclusion (in the class
of double perps {x, v}t for vertices u,'v with u # v). S

For a fixed ‘isomorphism I = H the re}aﬁion ~ coincides with the :elation-‘beiﬁg ‘
equal or in relative position (1,0) or (0,1)’ by Lemma 2.6(il). What remains is the

problem of distinguishing the dual-cases (0,1) and (1,0}: ‘

Lemma 3.2. On the vertez set of T, there are unique equivalence relations ~? and -

~P such that & eguals &P U ~F and &7 N ~P is the identity relation.  Moreover,
for o fized isomorphism T = H,,, we éither have - ' a '
o P is the relation ‘being equal or in relative position (0,1)’, and =" is the

" relation ‘being equal or in relative position (1,0)’, or .

o =P is the relation ‘being equal or in relative position (1,0)’, and =" is the

" relation ‘being equal orin relative position(0,1)". D
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- . In other Wbr’dsv,‘ for a fixed isomorphism [ = H(IP’,IHI)' and up to interchanging
=P and =", we may assume that ~F stands for being equal or-in relative position
(0,1) and =" stands for being equal or in relative position (1,0). ’

- Proof. As we have noticed after Definition 3.1, vertices X, y of T are in relation =
if and only if their images (z, X) and (y,Y) in H are equal or in relative positions
(0,1) or (1,0). Let us consider -equivalence relations that are subrelations of =~.
Obviously, the identity relation is an equivalence relation. Moréover, the relation
‘equal or in relative position (0,1)" and the relation ‘equal or in. relative position
(1,0) are equivalence relations. Now let us agsume we have vertices X. = (x,X),
y ={y,Y), z= (2,Z) of T = H such that X, y are in relative position (0,1)
and %, z are in relative position (1,0). Theny #zandY #2 and 'y, z cannot
be in relative position (0,1) or (1,0). Consequently, if we want to find two sub-
equivalence relations ~* and " of ~ whose union equals &, then either of ~* and
~ ~" has to be a subrelation of the relation ‘Qqudl or in relative position (0,1) or.of -

the relation ‘equal or in relative position (1,0)’. The lemma is proved. O

' ‘Conventien‘S;B.’ From now on, we will alwaYS-aésume that, as soon as we. fix an
isomorphism I' & H, the relation P corresponds to ‘equal or in telative position
Definition 3.4. Let x be a vertex of I'. With ~” and ~" as in Lemma 3.2, we
" shall write [x]? to denote the equivalence class of =7 containing %, and similarly we
~ shall write {x]" to denote the equivalence class of &" containing x. We shall refer

~to [x]? as the interior point on X and to [x]* as the interior hyperplane on X. ‘

Lemma 3.5. For a fizred isomorphism T = H(P,H), an interior point of T is the
image of an exterior point of H(P, H) under this isomorphism, and vice versa. The
same correspondence exists between interior hyperplanes of T' and exterior hyper-
planes of H(P,H). SR e : S ’

Proof. This is direct from the above. , S S 0

Note that an exterior point and an exterior hyperplane of H(P,H) are disjoint
if'and only if the corresponding point and hyperplane of P,(F) are incident. The
above lemma; motivates us to call a pair (p, H) of an interior point and an interior
hyperplane of T incident if and only if pN H = 0. This enables us to define interior

_lines. : ‘ o L

. Definition 3.6. Let p and g be distinct interior points of I The interior line | of
I spanned by p and ¢ is the union of all interior points disjoint from every interior

hyperplane disjoint from both p and g. In other words, the interior line pg consists

~ of exactly those interior points which are incident with every interior hyperplane

_ incident with both pand g. :

Dually, one can define the interior hyperline spanned by distinct interior hyper-
planes H and I as the union of all interior hyperplanes disjoint from every interior
point-disjoint from both H and I. R . '
Lemma 3.7. For a fized isomorphism T' = H(P,H), each interior line of T i3 the
image of an exterior line of HL(P,H) under this isomorphism, and vice versa. The
analogue holds for interior hyperlines. : » '
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Proof. The proof is straightforward. : 8 R R 0o

' The geometry'(’P,'ﬁ, C) on T where P is the set of interior points of I' and L is
. the set of interior lines of T is called the interior projectivé space on T'. By Lemma :
3.5 and Lemma 3.7, this interior projective space is isom‘_orphic to the exterior

projective space on H(P, H). Proceeding with ~h as we did for &7, the same holds

for the dual of the interior projective space on.I'. We summarize the findings in
the following proposition. " : . ;

Proposition 3.8. Letn 2 2. Up to interchanging =¥ and & every isomorphism
= H(P,H) induces an isomorphism between the interior projective space omn T and
" the exterior projective space on H(P,H). The analogue Hholds for the dual interior

projective space on T.. DS ' - S . g

Corpilgry '3.9. Letn >2, and letT be isomorphic to H(P, H). _.Thep the, inﬁéribrv, :
projective space On T is isomorphic to P or H. .~ ' : R i

. Coroﬂary 3.10. Letn > 9, and let T be isomorphic. to H(P). If P and P42 are .
“isomorphic, then the automorphism group of I is of the form Aut(P).2. Otherwise,

it is_isomorphic toAut(®). o5 o _ o oot i

Proof Indeed, every automorphism of P induces an auﬁomorphis;ri of I'. Cdnvéiéely; S

every automorphism of T that preserves the interior projective space gives rise to
a unique autontorphism-of P, by the theorer. Moreover, every ‘automorphism of
T either preserves the interior projective space or maps it ‘onto the dual interior .
_projective space, again by the theorem. Finally, an outer automorphism 1§’ induced

"on T by the map (p, H) — (6(H),8(p)) for a duality & of the projective space, and

- the map (p, H) > (62(p), 62 (H)) preserves the interior projective space on I'. . [l

Remark 3.11. Now might be an appropriate moment to address. the problem of
duality. Although, by Convention 3.3, as soon as we fix an isomorphism I' = H,
we also choose the equivalence relation &% to correspond to the relation ‘equal or
in relative position (0, 1)’ of H, there is a subtle problem—mainly of notation—

coming with ‘this: Suppose I' = H,(F) with F % FPP. Then, by the convention, - -

the interior projective space on T will always be isomorphic to Pr(F): If one wants
the interior projective space to be isomorphic to P,,(F)®*, then one will have to fix
an isomorphism T' = H,(F°PP), although Hy (F) = H,,(F°P?) by means of the map
(p,H) > (H,p). The reason for this is that we have defined the graph H,(F) as the

point-hyperplane graph of the space Py (F), which by Convention 3.3 determines
the'isomo_rphisr_n class of the interior projective space onT:" :

: The remainder of this section serves.as a collection of results to be used later on.
- First comes a useful result on spbspaces of the interior projective space of T

~Lemma 3.12. Let U be a ﬁm‘te dimensional subspace bf the intsrio}r /priojéctive‘
space on'T'. For any projective basis of U there exists a-clique of vertices in I’ such

that the interior points containing these vertices are the basis elements.

Proof. Fix an isomorphism ¢ : T' — H(P,H). By Proposition 3.8, we can as
well argue with exterior points of H(P,H). Let z;, for i = 1,...,m, be exterior
points forming a (projective) basis for ¢(U). Let K be a complement to o(U)
in P, which is the intersection of hyperplanes in H. Notice that such:subspace
K exists as [Vyen H is empty.. Moreover, as K has finite. codimension in 'V, all
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,hyperplanes of V contammg K are in lHL If for each i € {1,...,m} we have zi=
{(ps, H) € H(P, lHl) | H € H}, then the vertices (p;, (K, {p; | j € {1 m}\ {z}})) €
zi, with ¢ = 1 ;m, form the chque we are lookmg for.

‘Notatlon 3. 13. Let n > 3 For a vertex x of T = H(lP’ l[ll), we write & Ay for the -
relation = defined on xl (bear in mind that the latter is isomorphic. to H(P,, ll-llo) o
by Proposmon 2.2, where Pg and Hp are hyperpla,nes of P and H, respectlvely)

Lemma 3.14. Letn > 3. Letx be a vertex ofl." Then =y is the restmctzon of =3
to x*

In partlear, 1\” p is an mtenor point of T wﬁ;h pN X‘L # 0, then pN x* is an
interior point or an interior hyperplane of x*, and conversely, ifgisan 1nter10r pomt
<of xt, then there ex1sts an m’uenor point or hyperplane q of F w1th qgn x =q.

Proof. Fix an 1somorphxsm ¢ I‘ S H. As above; we argue in H rather than in P
Let ¢(x) = (z,X). Now the statement follows from the fact that, for a,b € x*, ~
with a =~y b-and ¢(a) = (a, 4), ¢(b) = (b B) the statements Aﬂ X =B ﬂX and
A= B are eqdwa.lent T : g R El '

‘Notation 3.15. In view of the lemma, we can choose the equivalence relamon
onx~* in such a way that (~ x)” (~P)x. In that case, there is no harm in Wrxtmg.
~F to denote this relatlon In particular, there is a one-to-one map from the-set of -

o 1nter10r points of xt mto the'set of interior points of T. -

Lemma 3.16. Let n > 3 and let x be a vertez of T. Then the mtemor proyectwe
space om x*t is o hyperplane of the interior progectwe space on L. ‘

" Proof. Fix an 1somorph1sm ' = H(P,H). By Proposmon 3.8 this 1somorplrusm
of graphs induces an 1somorph1sm between the interior projective space on I' and
the exterior projective space on H(P,H). The vertex x € I' is mapped onto a
non-incident point-hyperplane pair of H(P,H), say (z,X). The neighbors of x are
mapped onto point-hyperplane pairs (y,Y) withy € X, inducing a map of the set
of interior points of T that meet x - non-trivially onto the set of exterior points
of H(P,H) that intersect (z,X )+ non-trivially. But that set of exterior points
form a hyperplane of the exterlor prOJectlve space on H(IP H), and the lemma is’
proved. . S T =

4. LOCALLY POI\IT-HYPERPLANE GRAPHS

Throughout the Whole section, we taken > 3,and T a Connected locally H(IP, H)
graph for some projective space PP of dimension n (possibly infinite) and subspace H
of P4ua! with trivial annihilator in P. Thus, the fact that ' is locally H(P, H) means
that, for each vertex x of T, there is an isomorphism x* — H(P, H). Consequently,
by Corollary 3.9, the interior projective space on xt is isomorphic to P or H. The
' goal of this section is, by use of thése 1s0morphlsms to show that I' is 1somorph1c
to the non-incident point-hyperplane graph H(P;, H; ) for some pro;ectwe space P4
and subspace Hy of ll"ld“al This will establish Theorem 1.1

Notice that the definitions of 1nterlor points and lines-are only local and may
: dlffer on different perps. It is one task of this séction to show that there is a :
well-defined notion of global points and global lines ot the whole graph. To avoid
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x whose perp it belongs to, so we write pxand lx instgad;bf p and {. These interior

_ points and lines are called local points and local lines, 'respgctivgly‘. We do the same -
* for the relations =, ~P, ~" obtaining the local relations ®x, S ’

' Lemma.4.1. Let x and y be two adjacent vertic‘e_& of . V/Then there is a choice of '
local equivalence relations ~% and =5 such that the restrictions of ~% and ~§ to

x+ Nyt coincide.

Proof.'.This follows immediately from a repeated application of Ler_nma'?).lé to.

N .

xb = H(P,H) and x* Ny* and to y" *H(P,H) and x- 0y o

' The preceding jemma allows us tdt'ransfér points from x* to y*. Indeed, if

there is a local point py in x* that lies in the hyperplane Yy induced by the vertex

y on x%, the point px corresponds to a point py of y*+. That point py is simply

the zg.equivalence class that contains the set px ny+. - ,

" In the next two lemmas we prove some technical statements enabling us to provg

simple connectedness of I'. (A graph is simply connected if it is connected and
every c¢ycle in can be triangulated.) s R

of vertices in <L Azt fromy to a verter in {W,X, z}.

Notice that, for example, we have Xy NZy ﬂf(xy, zy) =@, in case .’L'y"z Zy-

Proof. Choose local equiivalence relations ~%,, ~2, ~F, and ~F such that ~f and.
‘~% coincide on W N xt, such that ~% and =% coincide on xt Ny*, and such

~ confusion, We_wiﬂ ixidéx each interior point p and each interior line { by the verte)é :

LI

g _‘Lemmé 4.2. Letw LUx Ly 1z beapath of veﬂicé’s“z’n‘f‘. ‘Then for x = (zy, Xy) -
and z = (zy, Zy) inside vy, if Xy NZy Nayzy = 0 or if Xy'= Zy , there is a path

that ~ and ~f coincide on y* Nzt as indicated in L‘emma 4.1.  Application -

at ~y
of Lemma 3.16 to the interior projective space’ of y+ = H(P,H) shows. that the

interior projective spaces of x* Nyt and of y* Nz* correspond to hyperplaneés -
of yt = H(P,H). We have to investigate xt Nyt Nzt We have x = (zy, Xy)
" and 7 = (2y, Zy) inside y*. Then the graph x- Ny* Nz* (considered inside y*)

consists of the non-incident point-hyperplane pairs whose points are contained in,

" X, N Zy and whose hyperplanes contain the subspace (Ty,2y).

- First, let us assume Xy 0 Zy N {zy,2zy) = 0. Also assume that Ty # zy and
denote the intersection zy2zy N Xy by ay. Inside x* denote w by (wx, Wx) and y
by (yx, Ys). Consider x*, in which the point ay € Xy arises as ax inside Yy. Inside

y+, the intersection Xy N Zy contains a line y. ‘This line Iy arises as a subspace

Iy of x* that is contained in Yx. As there exists a y' in {x,7, z}J', we can assume,

up to a change of y into y’, that wx is also contained in Yy: (Indeed, choose-a
hyperplane Hy that contains dx, Wx, and g, but not Iy, and choose a point px’

on Ix off Hy. The vertex (px, Hx) gives rise to a vertex y' that is adjacent to x
and y. Local analysis of y— shows that the hyperplane of the vertex'y’ ‘contains

the point z, and the point ay, whence also the point z,. Moreover, the point of
y' is.contained in Iy, whence also in Zy, and 'y’ is-a neighbor of z.) Inside xt
we have now the following setting. The hyperplane Yy contains the points wx and
ax’ as well as the line I Note that Ix has to intersect the hyperplane Wy. If
{ax, wx) does not intersect Ix M Wy, then we can choose a point inside Iy N Wy

~and a non-incident hyperplane that contains (ax,Wx,¥x), yielding a vertex that is -



LOCAL RECOGNITION OF NON-INCIDENT POINT-i’IYPERPLANE GRAPHS 11
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adjacent to W, X, ¥, and—after‘local'éur\la;lysis_ of yJ-——éulso to z. Therefore- assume

that (ax,wx) does intersect lx 1 Wy. Then fix the point ux 1= {ax, wx) NIx N Wi B '

~ and choose a hyperplane Ux that contains ax and yx but not ux. The pair (tx, Ux)
d‘escribeé another vertex, u say, that is adjacent to %, y, and z. Inside ut we have
a hyperplane X, of X, a line ky in Xy that arises from a line kx contained in the
interseétion Ux N Wy of the hyperplanes of the vertices u and w, inside x*, and
the hyperplane Zy of z. Choose a point vy in kyN Zu and a hyperplane V3, on
ZuZa that does not contain vy. Obviously, this vertex v = (v, Va) is adjacent to -
‘x,uandz In x1, however, we see v as (vx, Vi) whose hyperplane Vx cofitains the
points dx and Uy, therefore also wx. Moreover, vx i8 contained in ky, whence also
i Wy, and v is the required vertex. T S S
I Xy 0 Zy N {2y, 2y) = 0 and zy = 2y, then similar arguments yield a proof.
Also the case that Xy = Zy runs along the same lines and is, in fact, easier to
' Lemma 4.3. For every pathw Lx Ly Lzl there is a vertexr Xg € {x}u .
“{w,x,y}*+ such that, with Xo = (2,X3) and z = (zy, Zy) inside yt, we have
‘(‘:cg,‘zy>ﬁX3ﬂZy=®L = R, : o s

 Proof. Choose a path w L x Ly L =z of vertices in T', and fix local equivalence’
" relations ~%,, ~%, ~F, and &2 as in the proof of the preceding 1emma: Inside -
yi, let x correspond to (zy; X,) and z correspond to (2y, Zy). Suppose that
Xy N Zy N {2y, zy) # 0. Then Xy 0 Zy N (zy, 2y) is a point; Xy N Zy\eyzy contains
(the point set of) an affine line, for n.= 3, and (the point set of) a dual affine plane,
for in > 4; it may be éven bigger if Xy = Zy. The set of comimon neighbors of x and
-z in'yl corresponds to the set of all non-incident point-hyperplane pairs (py, Hy)
with p, € Xy N Zy and Hy D zyzy inside y+.. This implies that for any point
" py € Xy N Zy\zyzy we can find a vertex (py, Hy) in y* adjacent to both x and . -
Now consider x1. Let w = (wx, Wx) and y = (yx; Yy). Any vertex xo = (23, X2)
adjacent to w, x, y consists of & point £ € WxNYx and a non-incident hyperplane
X8 S iy Hence, as above in y=, we can choose 20 freely on an affine line for
n = 3 or a dual affine plane for n > 4. This translates to'y1 as follows. The line
WYy intersects Yx in a point, ax say, which gives rise to & point ay € Xy of y*. So .
- all these hyperplanes X3 arise as hyperplanes XJ in y* that contain the line zyay.
Notice that this line zyay is the largest subspace of v that is contained in all these
hyperplanes XJ. If for some fixed choice of 3, there exists a hyperplane X9 of
y* such that X9 N Zy N {25, 2y} = 0, we are done. Hence, for a fixed mg, suppose
all choices for X3 contain the point (23, 2y) N Zy. But in this case, we can choose

another z} instead of mg and find an X9 with X3 N Zy N (z1,zy) = 0. For, suppose .

‘ for a choice 2, distinct from z§ still XONZy N (zy,2y) # O for all possible X inside
. y*. Then the points uy = (23, 2y) N Zy and vy = (z3,2y) N Zy span a line as
2y & Zy. But this line uyvy has to-coincide with the line zyay. In particular, Ty is
contained in Zy. But this contradicts our assumption that Xy N Zy N{zy, zy) # 0.
Hence we can find an zy & X9 with X§ N Zy N (zy,2y) = 0, and so the vertex
(z}, X)) is as required. S R |

] We‘_owe the following proposition to Andries Brouwer, Who'db'sered that the
- combination of the two preceding lemmas yields simple connectedness.
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Propdsit'ion 4.4. The g.'mph T, considered as @ two-dimensional simplicial com-
plez whose two-sitnplices are its triangles, is simply connected. Moreover, the di- -
ameter of T equals two. - I e

" Proof. Lemma 4.3 shows that forr“every' path of distinct ‘verﬁqe_s» Wv, x,y,zinT
" there exists a vertex xo € {W, %, y}"‘ with xo = (%,X3) in y+ such that (23, 29)0

X;’, N Zy = §. Lemma 4.2, on the other hand, implies ‘that there exists a path of '

‘vertices inside Xg Nz+ from y to a vertex v that is adjacent to w, %o, and z. Simple
connectedness of I' follows. L T ' '

- As for the second statement; suppose W LxLlylzisapathin T, then by
* by the above arguments there is a vertex v in wt nzt. Hence z is at distance at
most two from w. This implies that the diameter of T is at most two and settles
the proof of the proposition. o ' R

Lemma 4.5. There is a choice of local equivalence relations ~ for allx €T such
that, for any two adjacent vertices X andy, the restrictions of &% and =% to xtnyt
goincéde._' : JEERIREES ; e : .
_Proof: Suppose that x, v, z is a triangle. In view of Lemma 4.1, we may assume
that =2 and ~% have the same restriction to x+ Nyt and that ~% and ~% have
“the samé restriction to <L Azt Let px be an interiér point of x* such that
pe Nyt Nzt # 0. By analysis of xL, we can find two vertices, say u and v,’in
pxNy*+Nzt. Now the above choices of local equivalence relations imply that (u,v)
belongs to ~§ N ~F (indeed, (1, v) belongs to both ~% N = and =& N zfz’) By
- Lemma 3.2 this forces that ~% and ~2 have the same restriction to yin z-L Since
T is simply. connected' (by Proposition 4.4), the lemma follows jmmediately from
the triangle analysis. _ ) o - , O
Notation _4'.6; Fix a choice of =&, for all vertices x of T, as in Lemma 4.5 and set
" Lemma 4.7. Let x and y be vertices of T such that x =% y for some veriez u in '
{x,y}". Then x &%y for every vertez v in {x,y}+. o :

Proof. Let u, X, ¥ be .as in the h_ypo_thésis and let v. € {x,y}" be an additional
vertex. If u L v, then the claim is true by Lemma 4.5.. : BRTEREE

Thus, it is sufficient to show that the induced sub sraph {x, y}J‘ of T is connected.

" In xt we have 0 = (ux, Ux) and v = (v, Vi). Moreover, the intersection XuNYy . - l

from u arises as a hyperplane Wy of Ux in x+. Therefore the intersection Wx N Vx
contains a point px. If in x* the line uxvx does not ‘contain py, we can find a
hyperplane Hy ‘D uxvx that does not contain pyx, and (px, Hx) is a vertex of x+
which is adjacent to both u and v. But inside u this vertex also corresponds to.
someé point-hyperplane pair, whose point is contained in Yy, and whose hyperplane

. contains yy = ZTu. In particular, this vertex is also adjacent to'y, and we are done.
So assume we have px € uxvx in x+. Then choose any hyperplane Hy that’
contains uyx but not px. Then the vertex t := (px, Hx) is adjacent to- x, u, and
y, but mot v. Inside t* we have hyperplanes X; and Y; coming from x and y.

The intersection X NY; corresponds to a subspace Sx of Hy (the hyperplane of the

* vertex t) in x*. The intersection Sx NV in xt contains some point gx. If gx lieson
the line px¥x, then gx = Pxvx N Hx = Pxlix N Hy = ux, and we have uy € V. But
this contradicts px € UxUx, a8 Px € Va NUx, vx & Vx and ux € Vx\Ux. Therefore
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" we have gx &’ vax a_,nd we are in the s1tuat10n of the precedmg paragraph with the
. vertex t instead of u. , L e .

7" We are now ready to show that there ex1sts a well-defined: notlon of global poznts »
" on T, which will then allow us to Study a geometry onT. ’

. VLemma 4.8. The relation = NP on the. vertzces of T isan eqmvalencc relatzon

Proof. Reﬁex1v1ty and symmetry follow from reflexivity and symmetry of each

To prove transitivity, assume that x ~P y and y ~f z. Then there exist vertlces
‘u, v with x = y and y = ‘~? z. By Proposition 4.4 there also exists a vertex

~a€ {x, z}T. We will prove that x ~ z. In view of the Lemma 4.2 (applied to. the'
“the chains a L X _L dlyandalzlv D y) there are vertlces b € {a, x,y}

and ¢ € {a,z y} . Lemma 4. 7 implies x ~b Y and y ~2 z. Set b = (ba,: B.),

c = (ca,Ca) X = (ma, X.), and z = (za} Za) in at Notlce that za € Cy. We

~can additionally assume that x4 € Ca afid ¢ca & oaxa (Iudeed set a. = (Gc, A,
v = (ye,Ye), 2 = (zc, Zc) in ¢t. The mtersecmon AN Y. contains a line I..
Moreover, Yc ='Zc, 88 Y. & ~P z. Locally in at the line I, arises as aline ly C Ca. Fix

" a hyperplane Ha “that contams {cs, xa,za) and fix a point.pa 0N la off (Ca,Za, Za)

and (ba, Ta); such a choice is always possible as xa ¢y and ca ¢ Ca and Iy contains
at least three points.. This gwes a new vertex ¢’ = (pa, Ha) that is, ad;acent to a,
¢, and y. Local analysis of ¢t shows that we can find a vertex z' in & rela,tibn
to z that is adjacent to ¢' and a.}) But now, we can find 2 vertex d = (ﬁ'a, D.) .
in at that is ad;acent to b = (ba, Ba) and ¢ = (ca,Ca) (notlce that by the. above
. we can assume Ca ¢ baza, whence Ta 4 baca) By constructlon we have d & x, -
'so d &% x by Lemma 4.7, and as X M, ¥ we also have d &) y. Now Lemma, 4.7
: implies d ~P y. But alsoy =% z. Transitivity of ~% 1mphes d ~? Z and ‘again
Lemma 4.7 ylelds d =% z. Flnally transxthty of ~f gives X P g, yleldmg x P 7.
. Hence ~% is transmve , Do i 7 O
All statements and results about the local relatlons ~F are also true for the. 1ocal
relations ~ le and we can define a global relation & ~h= U el" Ry WI’nh the same nice
propermes on the’ local mtersectxons S . : :

Deﬁmtlon 4.9. A global pomt of I'is deﬁned asan eqmvalence class of ~1° Dua,lly,
define a giobal hyperplane as an équivalence ciass of &,

We a.lready have a local notion of mc1dence as deﬁned before Deﬁmtlon 3.6. A v
global notion also exists. : .

Lemma 4.10. A global pomt p.and a global hyperplane H are 1nc1dent if and only
ifpnH=0. . ,

Proof: O 1e implication is trivial. To prove the other suppose there emsts a vertex

y €pnH. Then any vertex x for which px and Hy exist is at distance at most
two to y, by Proposition 4.4, and there exists a vertex z adjacent to both y and -

C X The local elements p; and H, exist, as y-is a representatwe of both. But then

Cpe Nzt £ 0 as well as Henzt # 0. \Iow1ns1dex ﬂz ‘we see that p, and Hy
‘have a non empy intersection. \ R . O

Definition 4.11. Let p and ¢ be dlstmct global pomts and 1et x be a vertex such
that px and-gx exist. Then the global line of T spanned by p and ¢ is the set of -
those global pomts o such that ax exists and is contamed in the local line pxgx.
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" Let Pr = (Pp, Cr, C) be the point-line geometry con51st1ng of the pomt set Pr of o
' global pomts of I‘ and the line set Ly of global lines of T. :

o Lemma 4.12. The notion of ¢ globai line is well-defined.

: Proof Let p and g be. global points and suppose x and y are distinct vertices such' o

" that px; Gx; Py, and gy exist. We prove that for any global point r for which rx
- exists and is contamed in the local line on px and Ox; the local point ry also exxsts
and is on.the local line on py, and gy. - -
If x Ly, then px Npy 75 (D and ¢gx NGy #0, and the clalm follows from Lemma
3.16 applied to x*. .
Choose vertices a € px, b € qx, ce dys and de py By Lemma 3. 12 we can
assume that ¢ and d are adjacent. By Proposition 4.4 there exists a vertex zj E
adjacent to both x and ¢. By Lemma 4.2 (applied to the path a, X, z1, C) we can
'ﬁnﬂ 5 vertex zp adjacent to a, X, and ¢ (mdeed inside z{ the point ¢z, of ¢ has”
'§6 lie in the hyperplane Xz, of x. So, the condition of the lemma is satisfied and -
wé can apply that lemma). Local analysis of ¢ yields a vertex z3 that is adjacent
to 22, ¢, and d. The induced ‘subgraph {c, d} of I'is 1somorph1c to H(Pg, Ho) for
-.some hyperplane Po of P. According to Proposx‘mon 2.3, it is connected.: Therefore, -
~we can find a path from y to z3 inside {c, d} ThlS estabhshes the 1emma N

Proposnslon 4.13. The space IP’p is a linear space wzth thzck lmes
Proof Thls is an 1mmed1ate consequence of Lemma 4. 12 s g

As customary in linear spaces, for dxstmct global pomts p and q we denote by g
pq the unique global line on p and q. '

"-Proposﬁ:lon ‘4.14. The space Pris a proyectwe space..

Proof. In view of Proposmon 4.13 we only have to verlfy Pasch’s Axmm Let a,, :
- b, c,dbe four global points such that ab intersects cd in the global point e. Then
ab = ae and cd = ce. By Prop031t10n '4.4 and Lemma 3.12, there are vertices a in
o and e in e such that a L e. Choose a vertex'c in ¢ Now, by Prop051t10n 4.4,
there is a vertex y ad;acent to e and c. After suitable replacements of e in e and
¢ in ¢, we can assume that inside y* we have ¢ = (cy;Cy) and e = (ey, Ey) with
Cy N Ey N {cy,ey) = 0. Lemma 4.2 implies the existence of x €. {a,c,e}*. The
global - hnes ae and ce meet X+ in interior tines. In- partlcuiar by Pasch’s Axiom
applied to the interior projective space of x+, there is an interior point wy on-both
‘the interior lines (ac)x and (bd)x of x+. Consequently, the' global hn,es ac and bd
‘meet in a global pomt whence Pasch’s Axxom ‘holds. - _ 0 -

Notation 4.15. Denote by (XJ-) the set of global points intersecting xL Notlce
that this set is a suospace of Pr. :

, Lemma 4. 16 Letx,y €T wzth x &P Y Then (X'L> <Yl>

Proof. By symmetry of AP it suffices to show- (X‘L> € {y*). To this end, let
p'e {x*), so that there exists a vertex p € p with p L x. By Proposition 4. 4 we
can find a vertex z W1’ch xlzly Ifx= (xz,Xz), y = (Ya, Y=) inside 7+, we
‘have X, = Yz, asx =M y. Applymg Lemma 4.2, we obtain a vertex a E {p)x%, y}

Writing p = (pa, Ha) in a®, we see pa € Xa, whence pa € Ya by x =% y. But now :
we can find a vertex pi = (pa, HL) with ya € H} a.n& consequently pe€E (y )
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We a,re':re'ady'to' give a nice descriptién of the hYperplanés of the projective space
" Pr appearing in vertices of T'. To this end, denote by (x*) the'set of global points
that meet x+; it will turn out to be a hyperplane. Co —

Lgmma 4.17. The set (x*) does not contain the global point that contains X.

Proof. Otherwise:x" contains a vertex y that belongs to the same global point. '

" But then there exists a third vertex z adjacent to both x and .y, 50X and y are two _

" adjacent vertices belonging to the same interior point in 'z, a contradiction. - O
Lemma 4.18. Let x be a vertez of . Then (,&) is a hyperplane of Pr. o

Proof. Suppose [ is a global line of . We have to show that it intersects (x*). Let
a # b be two global points on ! and choose vertices a € a, b € b. By Lemma 3.12
‘we may assume a L b. By Proposition 4.4, there exists a vertex y withb Ly L x.
Changing b inside bNa’t Nyt and x inside y* while leaving (x*) invariant, we
can assume By N Xy N (by,zy) = § (for b ='(by, By), x = (y, Xy), inside )

notice that, by Lemma 4.16, changing x as indicated basically means changing the
point Ty. Consequently, by Lemma, 4.2, there exists a vertex ¢ € {a,b,lx}f'. Now
local analysis of ¢! shows that { has to intersect (xt). Lemma 4.17 shows that

- (x*) is not the whole space, and (x') is a hyperplane. . : O

By Hr we denete the set of all subsets (x*), where x runs through the vertex -
set of . ' ‘ BERER P ' ‘ ’
Lemma 4.19. The set Hr is a.subspace of Prdul such that Hr has trivial annihi-
~lator in Pr. ' ' R . o :
Proof. Let x and y be two points of T with (x*) # (y*). Denote by zand ¥y
the global points and by X and Y the global hyperplanes containing' x and y, .
respectively. By Proposition 4.4 there exists a third ‘Vertex adjacent to x and y.
Then, by Lemma 3.12, there exist adjacent vertices x;- € X and y1 € Y with .
(xt) = (xt) and (y*) = (yi). We will show that the hyperpline on (x) and
(y*) is contained in Hy. By the above we can assume that x and y are adjacent.
“'We show that for every global point there is a point z such that (x+)N(y™) C
(z*) and u € (z*).” . R TR .
Let II be the hyperplane of Pr containing (xtyn{y*) and u. The global line on
z and y ineets II in a point outside (x+)n{y*). So, without loss we may assume
this intersection point to be u. ' . , g :
Let w be adjacent to both x and y.. Then both z and y are global points"i'n ,
(w') and hence so is u. So, inside wi = H(P,H) we find a point z such that
7+ meets all global points meeting x* Ny~ Nw* and «. Indeed, inside w the |
‘hyperplane (z*) of Pr is the hyperplane containing (xty N {yt)y n(wt) and u.
- But then {z') contains (x*) N (yt) N (wt) and w, the global point on w; and.
hence (x*) N {y*). Moreover, as z~ meets u, it contains. IT and hence coincides
Cwith I R e e
- - . It remains to show that the intersection of all elements in Hp is empty. However,
" “that easily follows from Lemma 4.17. g v : Y O

. Lemma 4.20. Suppose x s a global point in Pr and H € Hy is o hyperplane not
containing z. Then there is-a vertezr X € = with (x+) =H. . ‘ S
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'Proof. Suppose X € Z and y is a vertex of I' with {(y*) = H. Thenin z*, for some

common neighbor z of x and ¥, we find a vertex x' € zNY, where Y is the global
hypérpla,ne on y. But then, by Lemma 4.16',‘<x’ ’L> = H. : : ]
Proposition 4.21. LetT be a connected, locally H(B,H) graph. ATh‘en T is _z'si_)-'

v.Proof. Consider the map I‘ — H(Pr,Hr) DX (2, (x*)) where x is the global

" -point of I' containing X. We. want to show that this is ah isomorphism of graphs.

Surjectivity,follows‘from Lemma 4.18 and Lemma_4.20, since any point z of Pr is
a global point of I" and any hyperplane in Hr not containingit is of the form (x+)
for a vertex X € . Injectivity is obtained as follows. Suppose the global point =

 contains two vertices X1, X2 With (%)= (x3). By Proposition 4.4 there exists a

T

vertex y adjacent to both x, and Xz. Since (xi) = (x3), both vertices describe the
same hyperplane in y*. But they also describe the same point and hence have to be
equal. Finally,if x L y, then, letting = and 4 be the global points of T' containing x
and y, respectively, we find @ € (y*)eandy € (x1), so (x, (xH) L (¥, (yt)). O

- - Theorem 1.1 is an immediate cénégquéx_ice; of the above Vpropc}sition and"the
: 'Lem'ma,_s 4.19 and 4.20. o p - s - g

5. SMALL DIMENSIONS

'In view of Propc;sitixon 2.3, any connected, locally Hg graph'is isombi_éphié to a’
clique of size two. Furthermore, it is easily seen that any, connected; locally H; -

g}:aph admits an infinite universal cover and we obtain infinitely many counterex- .

amples to local recognition of Hy. The case of a locally Hy graph proves to be a
bit more complicated. We can’only offer a counterexample for F = F,. The proof

of its existence is based on a computation with the computer algebra 'pa,ckage GAP
9 SIS ' : o

'Proposition 5.1. There exists a connected graph on 128-120 vertices that is lo,cally‘ :

Proof. We determine the stabilizers of a vertex, an edge, and a.3¥cliqi1é of the graph
H(2) inside the canonical group (P)SL,(2).and let GAP determine the order of the
tniversal completion of the amalgam of these groups and their intersections. This

universal completion is' the group G with a presentation by the generators w, u, b,

a and the relations
| P mP =1,
() = (@b =1,
(bw)® = (bu)* =1, - ,
v » (wub)” = (wa)? = (ua)® = 1.
fThe stabilizers of .a,.:\}ertex, an édge, and a 3-cliqﬁe of Hz(2), resj)eétively,' are of ﬁhé -
orm : , ' . : , .

(w,u,b) SL3(2)7: L

| (’UZ,'U;,&) :V_: SL2(2) X 2,
{(a,b) =

Symg,
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with the intersect‘ioﬁs : AT
w;u,b) N (w,u,0) = (w, u) © SLs(2),
(w,u,0) N {a,b) ={a) = 2, -
S (a,b) N (w,u,b) = (b) = 2. | ,,
'A ¢oset enumeration in GAP shows that the order of G is 128 <|SL4(2)|, and that
there exists a normal subgroup N = 2146 of G. Hence H;3(2) admits a 128-fold
cover T' with the same local structure.. . ' ’ L

1R

R

This:proposition shows that the bound on n.in Theorem 1.1 is sharp. Besides the
‘above universal cover of the canonical graph Hs(2) nothing is known to us about
locally Hy(F) graphs. The methods that we have presented for n > 3.do not apply
. in this case. L : S o : :

6. GROUP-THEORETIC CONSEQUENCES

In this éegtion ‘we study group-theoretic consequences of our local recognition
~ Theorem 11 of the point-hyperplane graphs H,(F), where n 2 3 is a finite integer
“and F a skew field. In particular, we prove Theorem 1.2 and Theorem 1.3.

Proposition 6.1. Let G be a group. as m the hypothesis éf .Théb‘rém 1.2. Then
- PSLn12(F) <.G/Z(G) < PGLy42(H)- ' . L

" Proof. We use the notation of Theorem 1.2. By (iii) of Theorem 1.2, we can choose
~an element z € JNK that is a reflection in the groups J-and K conjugate to z and
"y, respectively. Hence z is a reflection in J and y is a reflection in K. Note that
z commutes with z‘and y. As, by (i), K = GLy11(F), we find the elements y and
'z to be conjugate in K by an involution. Similarly, by (ii); z and z are conjugate
in-J by an involution. Therefore the conjugation action of the group G induces an-
action as the group Sym; on the set {z,y,z} and as the group Sym, on the set
{z,y}. Consider the graph I on all conjugates of £ in G: A pair a, b of vertices of I
is adjacent if there exists an element g € G such that (gzg~*, gyg~*) = (a,b). Since
G induces the action of Syms, on {z,y, 2}, this definition of adjacency is completely
symmetric, and we have defined an undirected graph. The elements z, y, z form
a 3-clique of T Define U1 to be the stabilizer in G of the vertex , and’ define

Us to be the stabilizer in G of the edge {z,y}. The stabilizer of {z,y} permutes

"z and y and therefore interchanges Ce(z) > K and Cgly) >-J, see (i) and ().
Hence the stabilizer of z together with the stabilizer of {z,y} generates G, as
G = (J,K) < (U1, Us). Consequently, the graph T is connected. Also, I is locally

"H,(F) by construction. To prove this, it is enough to show that any triangle in I'is’
a conjugate of (z,y,2). Let (a,b,¢) be a triangle. Let g € G with (gzg~,gyg™") =
(a,b}. Notice that b,d = gzg~! € gKg! are commuting reflections of gK g L.
The edges (a,b) and (a,c) are conjugate in.Cg(a) = gXg V% gKg™t (use' (i)
of Theorem 1.2). Choose h € Ca(a) such that (hah™1,hbA™) = (a,c). Then =

= hxhx with hx € ¢Xg~%, hg € gKg™". The element hx centralizes b and
d, since b,d € gKg~'. Therefore ¢ = hbh™" = hxbhyt € gKg* is a reflection of -
gKg~*. Hence (a,b,d) and (a,b, ¢)-are conjugate in gKg™ = GL,(F). Therefore
(a,b,c) and (z,y, z) are conjugate in G. o ’ -
" Thus, by Theorem 1.1, the graph I is isomorphic to H, .1 (F). Moreover, there )
is a kernel N of the action of G on I, such that G/N can be embedded in Aut(T),
which has been determined in Corollary 3.10. Since G/N is transitive on T and the

o
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stabilizer in G/N of the vertex z induces PGLy1 (F) on the neighbors of z, we find -
that PSLin42(F) < G/N. Furthermore, as @ is generated by Ca(z) and Caly), we ~
find that G/N embeds in PGLp42(F)- . S L

. Let g € N. Then g acts triviallyon Ty in particular it centralizes # and-y, so we

have g€ X x K and g€ Y % J. Let gx € X and gx € K besuch that g =gxgk. .
The element, gx commutes with K, and therefore also centralizes all neighborsof z.

‘Consequently, also gx = gx'g centralizes all neighbors of =, and hence lies in the
center of K. We have proved that g commutes with K. Similarly, g commutes with -
J. This implies that g commutes with G = {J,K), and, thus,; g € Z(@). Certainly, .
'Z(@) acts trivially on.T, whence N = zZ@G@. - ' R 0o -

_ The a_,b:ove proves Thebrém 1.2: Tt only remains to prove Theorem 1.3. This will
be done in the next proposition. Its proof proceeds along the lines of the proof of
-Theorem 1:2. ' ’ S e : N
Proposition 6.2. Let G be a group. as in the hypothesis of Theorem 1.8. Then
| GJZ(G) S PCLya(B). B o SR

- Proof: With the notation as in ’ﬁ:hé hypothesis of Theorem 1.3 we have the following.

The element z is conjugate to both -z and y, so, also z and y are conjugate.”
"Moreover, z and ¥y @regeneralized reflections in' J and K, respectively. Note that . '

2 commutes with = and y. As K = SLpp (F), we find the elements y and z to -
be conjugate in X by an involution. Similarly,  and z are conjugate in.J by
an involution. Therefore the conjugation action of the group G induces an action.
as the group Sym; on the set {z,y,z} and as the group Sym, on the set {z,y}. -
Consider the graph ' on all conjugates of (z) in G, A pair a, b of vertices of Tis
adjacent if there exists an element g € G such that (g(z)g~t,9{y)g™") = (a,b). As
in the proof of Proposition 6.1, the graph T is connected. -~ ~ : '
- Let (a,b,c) be a triangle of . We will show that (a,b,¢) is also conjugate to
" ({2), (), {2)). Without loss of generality, we can assume that @ = (z) and b= (y).-
- The edges (a,b) and {a,c) are conjugate in Ng(a). Choose h € Ng(a) such that
(hah~1,hbh~1) = (a,c). Since Ca(a) is normal in Ng(a), and K is characteristic
in Cg(z), we find that h normalizes K. Therefore ¢ = hbh~! is a group of order p
‘generated by a generalized ceflection’of K. But then (b, (2)) and (b, ¢) are conjugate '
“inside K & SLn11(F). As'K < Co(a) we find the triangles (a, b, ) and ((z),{y), (2)) -
to be conjugate in' G.. . A SRR
As each generalized reflection torus is cyclic and thus contains a unique subgroup .
of order p, we find I' to be locally ‘H,(F). But'that implies, by Theorem 1.1, that
the graph T is isomorphic to Has1 (). o : ’ ' o

Let N be the kernel of the action of G on I'. Then, as in the Aprobf of Theorem 1.2, - B

we see that G/N < PGLr+2 (B). In_parti%:ular, KNN =1 and, since G is generated |
~ by J and K, we even have G /= PSL4z(F). Moreovet, as N < Ng{{z)) and K

‘is normal in Ng{(z)), we find [N, K] < KON =1. Similarly, [N, J] = I and hence

N<Z (K, J)) = Z(G), which completes the. proof of the proposition, as Z(G) is
in the kernel of the action by construction of T'. = : ,
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