
 

GM : a gate matrix layout generator

Citation for published version (APA):
Lieshout, van, G. J. P., & Ginneken, van, L. P. P. P. (1987). GM : a gate matrix layout generator. (EUT report. E,
Fac. of Electrical Engineering; Vol. 87-E-179). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/eb7f5a16-1ac7-4cb9-ae94-c73525120259


GM: 
A Gate Matrix Layout 
Generator 
by 

G.J. P. van Lieshout 
and 
L.P.P.P. van Ginneken 

EUT Report 87 -E-179 
ISBN 90-6144-179-X 

September 1987 



ISSN 0167- 9708 

Eindhoven University of Technology Research Reports 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 

Faculty of Electrical Engineering 

Eindhoven The Netherlands 

GM: 

A gate matrix layout generator 

by 

G.J.P. van Lieshout 

and 

L.P.P.P. van Ginneken 

EUT Report 87-E-179 

ISBN 90-6144-179-X 

Eindhoven 

September 1987 

Coden: TEUEDE 



CQQPERA TIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL 

AND MULTIVIEW YLSI DESIGN SYSTEM WITH DISTRIBUTED 

MANAGEMENT ON WORK STATIONS. 

(Multiview VLSI-design System ICD) 

code: 991 

DELIVERABLE 

Report on activity: 5.3.0: Implement totally integrated cell generator and place- and route 
scheme. 

title: OM: a gate matrix layout generator 

Abstract: We present a gate matrix cell generator which can layout any nMOS circuit. The 
circuit is specified as a netlist of parametrizable transistors. The size of the transistors can 
be freely specified thereby giving the opportunity of optimizing parameters as power, 
speed and fanout. Also shape, pinout and design rules can be parametrized. The pinout 
can be determined while building the gate matrix structure, by simply extending certain 
gates or nets to the correct side. The design rule parameters can be satisfied by a simple 
two dimensional grid-based compaction algorithm. The horizontal connections are realized 
in the metal layer and are called the nets. The vertical connections are realized in poly 
silicon and are called the gates. We used a new two dimensional folding algorithm, to 
improve the layout density and to manipulate the shape of the cell. Two dimensional 
folding allows nets to be assigned to the same row, IUwell as gates assigned to the same 
column. The area used for small logic examples is smaller on average (upto 40% smaller) 
than the area used by a plur! cell style random logic generator. 

deliverable code: WP 5,lask: 5.3, aClivily D. 

date: 21-08-1987 

parlnt'r: Eindhoven University of Technology 

authors: G.J.P. van Lieshout and L.P.P.P. van Ginneken 

This report was a~cepted as a M.Sc. Thesis of G.J.P. van 
Lieshout by Prof. Dr.-Ing J.A.G. Jess, Automatic System 
Design Group, FacuLty of ELectricaL Engineering, Eindhoven 
University of TechnoLogy. The work was performed in the 
period from 1 January 1987 to 27 August 1987 and was 
supervised by ir. L.P.P.P. van Ginneken. 

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Lieshout, C.J.P. van 

GM: a gate matrix layout generator / by G.J.P. van Lieshout and L.P.P.P. 
van Cinneken. - Eindhoven: University of Technology, Faculty of Electrical 
Engineering. - Fig., tab. - (EUT report, ISSN 0167-9708; 87-E-179) 
Met lit. opg., reg. 
ISBN 90-6144-179-X 
SISO 663.42 UDC 621.382:681.3.06 NUGI 832 
Trefw.: elektronische schakelingen; computer aided design. 



Abstract 

I. General Introduction 

2. The gate matrix layout style 
2.1 Introduction. . • . 
2.2 Definition of the problem 

- iii -

CONTENTS 

3. Structure of a Gate Matrix Layout Generator 

4. Generating the gate matrix structure 

5. The gate order . . • . . . . . 
5.1 Some ordering methods . . • 
5.2 A Kang based algorithm for gate ordering 

5.2.1 Seed selection 19 
5.2.2 Improving the result 19 

6. Column folding .... 
6.1 The folding problem I 
6.2 The folding problem 2 
6.3 The folding algorithm 

7. The Net placement 

8. Net placement with column folding 

9. The final steps of the placement 
9.1 The function I . . . . 
9.2 The function k . • . • 
9.3 Realizability of the layout 

10. The power lines ..•.• 
10.1 The Power Matrix . . . 
10.2 Calculation of the power line positions 

II. Compacting the layout 

12. Some results . • . • 

13. Suggestions for continuation 

14. Conclusions . . . . . . 
Appendix I: Literature . . 
Appendix 2: Layout example ( 83 transistors) 
Appendix 3: Larger layout example ( 180 transistors) 
Appendix 4: An example of layout inefficien :cy 
Appendix 5: An example of shape flexibility 
Appendix 6: Another example of shape flexibility 
Appendix 7: Implementation details. . . • . 

2 

4 
4 
7 

II 

13 

16 
16 
17 

21 
23 
25 
27 

29 

31 

33 
33 
33 
34 

35 
35 
36 

39 

41 

43 

44 
45 
47 
48 
49 
50 
51 
52 



- iv -

LIST OF FIGURES 

Figure 1. Unfolded gates 

Figure 2. Folded gates 

Figure 3. Possible realization for a transistor 

Figure 4. Four different implementations of a transistor 

Figure 5. Example of a gate situated in an outer column 

Figure 6. Example of a net implemented in the diffusion layer 

Figure 7. Main Program Structure . • . . . • . 

Figure 8. Transformation of a transistor into a layout structure 

Figure 9. Deleting a superfluous gate 

Figure 10. Circuit example • . . . 

Figure II. Illustration of the different gate groups 

Figure 12. Two realizations of a transistor . . 

Figure 13. The G _fold graph for the example 

Figure 14. Possible foldings for the example . 

Figure 15. Example of a graph indicating a successful net placemen t 

Figure 16. Example of unefficient folding 

Figure 17. G _fold with undirected edges 

Figure 18. Possible realizations of fig.17 

Figure 19. New G fold . . . • . . 

Figure 20. Example of a new G _fold graph 

Figure 21. Possible realizations of fig.19 

Figure 22. Acyclic new G _fold graph 

Figure 23. Idea behind checking order for column folding 

Figure 24. Example of a cross conflicts • 

Figure 25. Directions of design rule checking done by the row 
compactor • . . . . . . • • . . . . . 

4 

5 

5 

6 

7 

7 

II 

13 

13 

14 

18 

19 

22 

22 

23 

24 

25 

25 

26 

26 

26 

27 

28 

39 

. . 40 



- v -

Acknowledgements: 

Before I start, I want to thank Lukas van Ginlleken and Jos van Eijndhoven. 
Without their support and suggestions, ! would never have come 80 lar.! also 
want to thank Reinier van den Born, who made the laser jet layout pictures 
shown in the appendices. 
There is one other group of people! should not forget. I want to thank all other 
students of the Automatic System Design group for never missillg a single 
chance to delay my work. 



- I -

Abstract 

Lopez and Law introduced a new layout style in 1980: the gate matrix layout style. 
This matrix is made of intersecting rows and columns. Often, the columns are imple
mented in the polysilicon layer and the rows in both the metal and the diffusion layer; 
the transistors are situated on the intersections of rows and columns. 

In this report, a gate matrix layout generator, GM, will be discussed. GM can generate 
layouts with any size of transistors; GM will always come up with a feasible result and 
GM allows the user to manipulate the shape of the final layout. 

We will present the algorithms used in GM for signal ordering and folding and discuss 
the heuristics used for net placement. We will describe the addition of the power lines 
to the matrix and we will describe the compaction of the layout. 

At the end, we will show some promising results generated by GM and compare them 
with layouts obtained from other layout generators. 



- 2-

1. General Introduction 

One of the current projects of the Automatic System Design group at the Eindhoven 
University deals with the application of the stepwise refinement technique in the lay
out design part of a silicon compiler. 
The stepwise refinement technique was first described by Wirth [WIRT7Ij for pro
gramming purposes. Starting with a clear problem statement the problem is progres
sively redefined. Each decision should leave enough freedom to following stages to 
satisfy the constraints it created and at the same time rearrange the available data such 
that further meaningful decisions can be made in the next step. 

The principles of stepwise refinement obviously apply to any complex design task 
based on a top-down strategy. It can also be used for layout generation [GINN84j. 
Say we want to generate a layout, consisting of several modules, defined as functional 
layout parts with a flexible shape. The size and shape of a module are constrained by 
the amount and type of circuitry that have to be accommodated into the module. These 
limitations can be found in the shape constraints. 
Using the stepwise layout refinement technique, we start with the generation of a 
floorpian. First the modules are appointed to one out of two cells. Cells are collections 
of modules. They have a relative position; cell a can be situated to the right of cell b. 
The decision of which cell is suited for a module is primarily based on the resulting 
wiring length between the modules. Next, the mOdules within one cell are divided 
again, into smaller cells. This process continues until every cell contains only one 
module. 
When the floorplan is complete, we know the relative position of every module; we 
know in what part of the layout it is going to be situated; we know the neighbouring 
modules; we know the topology of the layout. The exact shape of the layout is still 
unknown at this stage since we only have the shape constraints to work with. The 
geometrical details of the floorplan can now be determined. 
We compute the shape constraints of all cells by adding the shape constraints of the 
different cells and modules it contains. This way, we will get the shape constraints for 
the total layout and are able to choose a certain shape for it. Then we work our way 
down again, specifying a shape for each cell and module. 
The stepwise layout refinement technique is quite the contrary of other placement 
techniques. These work with totally specified modules, difficult to handle because of 
their inflexibility. In most cases, there is no possibility for adapting the modules to 
their environment. Using the stepwise layout refinement technique, the exact 
geometries of the modules are determined only after the generation of the floorplan. 
If we want to exploit the benefits of this layout generation technique completely, we 
should be able to generate modules with the property of having very flexible shape 
constraints. In that case, the shapes of different modules can be well adapted to each 
other and cells containing several modules, can be made efficiently. 

In recent years, a new layout style was introduced: the gate matrix layout style. Apart 
from being efficient, this style can be made to have the right shape flexibility. 

To exploit the gate matrix layout style, a program, called GM, to generate gate matrix 
layouts has been developed. GM should generate the modules needed by the stepwise 
layout refinement technique. There were two demands set for GM: 

I)The generated layout would have to be reasonably efficient. 

2)The shape of the layout should be flexible. 

Chapter 2 discusses the gate matrix layout style. The chapters 3 to II describe the 



- 3-

different techniques used in GM to generate a gate matrix layout. Results obtained 
with GM are shown in chapter 12, followed by some suggestions for continuation in 
chapter 13. Finally, some concluding remarks are made in chapter 14. 



- 4-

2. The gate matrix layout style 

The gate matrix layout style was introduced by Lopez and Law [LOLA80] in 1980. It 
can be regarded as a generalization of the earlier developed Weinberger layout style 
[WEIN67]. 
The gate matrix layout problem has received some attention in the past few years and 
various algorithms ([WING82], [WING83], [JTLl83], [WIHU85], [DELA87] ... ) have 
been designed to automate the layout procedure. In this chapter I will introduce the 
gate matrix layout style and give a definition of the gate matrix problem ( compare 
[WIHU85] ). 

2.1 Introduction 

In the vertical direction of the gate matrix, the gates are situated in the different 
columns. If we only allow one gate in a single column, we get something like figure 1. 

coil col2 col3 col4 

gate I gate2 gate3 gate4 

Figure 1. Unfolded gates 

The gates will be implemented in the polysilicon layer. They will serve the dual role of 
transistor gates and interconnection. 
There may be a gate for every signal present in the circuit Or just for a distinct subset 
of all the signals. This depends on how we represent the circuit with the different gate 
matrix elements. 
If we allow more than one gate into a single column, we could get the gate ordering 
shown in figure 2. Placing more than one gate into a single column is called folding ( 
compare PLA folding ). 

coil col2 col3 

o 
gate2 

o 
gate] gate3 gate4 

FIgure 2. Folded gates 



-5-

What we want to realize next, is a transistor. Figure 3 shows a possible gate matrix lay
out for a transistor. The gate of the transistor is situated in column 2. The drain and 
the source of the transistors are connected with gates I and 3 by two nets. Nets are 
usely implemented in the metal layer. What we call drain or source is unimportant for 
the whole transistor is symmetric. 

coll col2 col3 

neUr -
••. ).1Vl 

- - ""rlet2 

gatel 

" •• 1t:::::J rvI·I···· 
~ ..... 

L __ __..J 

gate2 gate3 

r - n -, = transistor l-_tj_J 

I~I = contact 
, .......... ,= metal 
............ 

r - - - -, = diffusion L ____ J 

'-_--'I = poly 
Figure 3. Possible realization for a transistor 

In the last figure, the nets were placed into the same row of the gate matrix. In that 
case, the transistor will always be placed in the same row also. We have to choose a 
position for the transistor if the two nets are situated in different rows. Look at figure 
4; the resulting circuit is the same for all four. Only the position of the gate matrix ele
ments near column 2 varies. 

coll 

:~~~~~ 
diC~LI 

r -
I 
L __ 

col2 

- - -net2 
rvI·I·· .. 
~ ..... 
--" 

col3 

gatel gale2 gate3 



coil 

- 6-

col2 

::::~!::::: :::~tn 
r - - _I~ -net2 
1[8]:: :: ::: ::1 :::: 
L__ __.J 

col3 

gatel gate2 gatd 

coil col2 col3 

neU-- -
""I'IV! ..... ~ 

'---

--, 
I 

I®ti 
gatel gate2 gatd 

coil col2 

n,U-- --, 
.•. ) ••.••.••.• ,.;;;, I ............. ~ 

col3 

di~ ... ~.~.: .... . l19B ............ . 
net2 

gate2 gate3 

Figure 4. Four different implementations of a transistor 

We use a diffusion run to get from one row to the other. This diffusion can be placed 
on either side of the transistor gate. If we allow no more than one diffusion run for 
every transistor, the transistor will have to be placed in one of the two rows containing 
a net. 
Contrary to the situation of figure 3, in this case the layout is not completely specified 
after the net placement. The layout generator will have to decide upon where the dif
fusion runs and the transistors are going to be placed. 

In the figures 3 and 4, the gate signal of the transistor was always situated in the mid
dle column. An example of a gate signal in an outer column is shown in figure 5. 



- 7-

coil col2 col3 

r-- --""1letl 
I C8J: I. ... 

,L. n - __ J 

dl~: :::::::::~~~:: 

gale2 gate} gale3 

Figure 5. Example of a gate situated in an outer column 

Not all nets are implemented in the metal layer. Figure 6 shows an example of a net ( 
net 2 ) implemented in the diffusion layer. 

coil col2 col3 col4 

neUr-- --""L~'~.r--
:: ::l:t8] I I 

L..__ __.J- - - -L __ 

gale} gale2 gale3 gale4 

Flilure 6. Example of a net implemented in the diffusion layer 

We will gain some improvement of performance by implementing net 2 in the diffu
sion layer because of loosing two metal/diffusion contacts we would have had other
wise. 

Having read this paragraph, the reader should have gained enough insight into the gate 
matrix layout style to understand the definition of the optimalization problem given in 
the next paragraph. 

2.2 Definition of the problem 

One of the inputs for GM is a description of the circuit to be generated. The circuit is 
described on the transistor level. The transformation of this description into a layout 
can be divided into two separate problems: 

I) First, we have to obtain a circuit description using gate matrix elements only. 

2) Next, these elements have to be ordered efficiently. 

Out of the first step, we get a description of the circuit using elements of the following 
sets: 



- 8-

T = ( ti I I " i " number of transistors) : set of transistors 

G = ( gi I I " i " number of gates) : set of gates 

N = ( ni I I "i " number of nets) : set of nets 

We also get information about the relations between these elements. This information 
can be found in the next Incidence matrix: 

Define: Incidence matrix I{number of gatesJ[number of nets]: 

I[i)U) = 

-I : there is a connection between gate i and net j; no transistor is present. 

0: there is no connection between gate i and net j. 

1 .. ( number of transistors) : on the intersection of gate i and net j a transistor is 
present with transistor number I[i)U). 

Apart from this circuit description, there are two other inputs to the placement prob
lem: 

I) The structure of a gate matrix. 

2) Details about the technology in which the layout is going to be generated. 

ad I) 
The program has to know certain details about the structure of a gate matrix. 
In this description the following sets are defined: 

ad 2) 

C = (Ci I I " i " number of columns) : set of columns of the gate 
matrix 

C' = { C'i I I" i " number of C columns + I J' : set of columns, 
situated in between the polysilicon columns of C 

R = ( ri I I" i " number of rows) : set of rows of the gate matrix 

While generating the gate matrix, we have to know details about the technol
ogy in which the gate matrix is going to be realized. It will specify facts like 
which layers are allowed to overlap or what the distance between two metal 
wirings should be to avoid short circuiting ... This technology description is the 
third input. 

One last gate matrix element has to be mentioned: the diffusion runs. 

D = ( di I I " i " number of transistors) : set of diffusion runs in the gate matrix 

Which transistors will cause a diffusion run is determined during the net placement. 

1. 'nle fint column of C' i •• ituated al; the leU of the tint column of C; the lalt column of C' iu situated at the 
rightof C thus C· baa one element more than C. 



-9-

Knowing the three inputs for the placement problem, we are now able to define the 
placement problem. The gate matrix layout is completely specified if we have deter
mined the next four functions: 

I) The gate assignment function I assigns the different signals of the 
set G, to the columns: 

I: G -> C 

2) The net assignment function h assigns nets to the rows of the gate 
matrix: 

h: N ->R 

In the previous paragraph we discussed the problem of the diffusions. Consider a 
transistor whose drain and source are connected to nets m and n respectively. If h(n) 
<> h(m), there will be a vertical diffusion run between h(n) and h(m). For these dif
fusions, we define a third function: 

3) The diffusion assignment function k assigns diffusion runs to the 
intercolumn area of the gate matrix: 

k: D -> C' 

One last function is needed to complete the description. We have to choose the posi
tions of the different transistors. 

4) The transistor assignment function 1 assigns transistors to the rows 
of the gate matrix. 

I: T -> R 

A generated layout is said to be realizable if all the diffusion runs defined by k are 
realizable without collisions. Say we have two diffusion runs: diffusion I from net 
dill begin to net dill end, and diffusion 2 from net dil2 begin to dil2 end 
(h( dilx_begin) < h( dilx=end). A collision occurs if: - -

I) k(dill) ~ k(diI2) 

2) h(dill_begin) >- h(diI2_end) and h(dill_end) <= h(diI2_begin) 
or 

h(diI2_begin) >- h(dill_end) and h(diI2_end) <= h(di/l_begin) 



- 10 -

If we take the "unfolded" approach, the optimal gate matrix layout problem can be 
stated as follows: 

Given a set of transistors T together wIth the set of distinct gates G 
and the set of nets N, find functions f,h,k and I such that 

in the layout: 

1) the number of rows is minimum. 
2) the layout is realizable (no diffusion collisions). 

The layout generator we developed is able to place more than one signal into a column. 
If we allow folding, the problem shouid be stated in a more general way: 

Given a set of transistors T together wIth the set of distinct gates G 
and the set of nets N, find functions f,h,k and I such that 

in the layout: 

1) the area used is minimum. 
2) the layout is realizable (no diffusion collisions). 

Most iayout generators use a two-stage approach to the problem. First the function f is 
optimized and afterwards h is optimized. Some try to optimize the two functions in one 
stage [DEY A86]. I chose for the two-stage approach because it is generally not as time 
consuming as the second approach and because more literature is available about this 
approach. 
However, the probability of choosing a function f' with a bad column order for the 
resulting h is probably smaller in the one-stage approach because of the closer relation 
between f and h. 

If f and h are determined, it is quite easy to determine satisfying functions k and I, as 
long as they still exist. The functions f and h may disable the possibility of creating 
functions k and 1 causing no diffusion collisions. While determinating f and h, we will 
have to keep the realization of k and 1 in mind. 

The purely on efficiency based problem descriptions given above, can be extended 
with several extra constraints e.g. a maximum width or height or some kind of aspect 
ratio. In the algorithms we will discuss, the user is able to manipulate the shape of the 
gate matrix during the determination of f. 



- 11 -

3. Structure of a Gate Matrix Layout Generator 

This chapter discusses the structure of our gate matrix layout generator GM. The lay
out generator is subdivided into several functional blocks. Figure 7 shows a diagram 
of these blocks. 

program start 

Block I : 
Data Input. 

oc 
Generation of the 

Gate Matrix Structure 

B oc 
OPtimizing the 

function f 

oc 
Optimizing the 

function h 

oc 
Determination of 
functions k and I 

Yes 
B oc 

Adding the power lines 
to the gate matrix 

Block 7: 
Compaction 

loc 
Final Layout 
Gene~ation 

program end 

Figure 7. Main Program Structure 



- 12 -

I) We start with loading in the necessary data. The layout generator checks the data 
format of the input. 

2) Block 2 generates a gate matrix structure for the circuit. It determines what sig
nals are going to be represented by nets, what signals are going to be represented by 
gates, what extra nets have to be added for output signals etc .. Chapter 4 discusses 
this block in more detail. 

3) If the two-stage approach for the optimization of the gate matrix is taken, the 
next step is the optimization of the function f. This is a very important part of the 
layout generator. A bad gate order can enlarge the layout area with a factor 2 or 
even more. Chapter 5 discusses different approaches to this problem. 
If we allow more than a single gate into one column, f becomes a bit more compli
cated. An extension of f for this purpose, is discussed in Chapter 6 on column fold
ing. 

4) The second stage of the two-stage approach is the optimization of the function h. 
We place the different nets into the rows of the gate matrix. 
Chapter 7 discusses the approach for net placement in an unfolded gate matrix and 
in chapter 8 this approach is expanded into one suitable for a gate matrix with 
folded gates. 

5) Chapter 9 discusses the determination of k and 1. If GM generated an unrealizable 
layout ( a layout with diffusion collisions ), it will have to start anew at block 2. 
This time, we would like to have an increased probability of generating a realizable 
layout. Chapter 9 also deals with these questions concerning the realizability of the 
layout. 

6) For reasons to be explained in chapter 49 many gate matrix layout generators place 
the power lines after the complete placement of the signal containing part of the 
gate matrix. The "normal" gate matrix nets do not supply the power to the circuit. 
Chapter 10 shows how the positions of the power lines can be determined. 

7) Moving towards the end, the final coordinates of every element of the gate matrix 
are determined. This" compaction step" is discussed in chapter 11. 

8) The final step is the actual generation of the layout. This is more a matter of solid 
bookkeeping than of great algorithmic expertise. If all details about the gate matrix 
are exactly computed in the previous part, the gate matrix is uniquely described. 
In our implementation of GM, only the center coordinates of every gate matrix ele
ment arrive at block 8. The coordinates of the different element parts still have to 
be computed. Although this block is not really all that simple, it is not interesting 
enough for a detailed discussion. 



- 13 -

4. Generating the gate matrix structure 

Before any oPtimization methods can be used, the circuit has to be represented by gate 
matrix elements. This gate matrix structure is generated in three stages: 

g 

The first stage deals with all the transistors. Every transistor has three connections 
with the outer world. We generate a single gate for every single signal. 
One transistor will generate (at most) two nets, each net containing one half of 
the transistor. Thus, one transistor will result in the gate matrix elements given 
below: 

sl 

1.-

IL-

gate sl gate g 
neti r--' fi'5H ......... ·1·fVI 1 

~"""""I'~l 
L.. __ -.I 

gateg gate s2 
r--' 
1 !'VI- 1 ••••••.••• rP5il 
IIL~iH"""""~ 
L __ .J net2 

S gate s1 gate s2 gate g 

Fillure 8. Transformation of a transistor into a layout structure 

In the final layout, the different components are able to realize a transistor as 
shown in chapter 2. 

The second step has to remove some overhead produced in the first step. We can 
delete a gate out of a column if: 

- The gate is not used as a transistor gate. 

-The gate does not have to be connected to "the outside world". 

- The gate is connected with two nets. 

The deletion is shown in figure 9. 

coil col2 col3 

r-- --"bet! 
~:I:::: 

L..__ __J 
r-- --, 

···T~ 1 
net1.. ____ -I 

gate 1 gare2 gate3 

coil 

r--
1 
L __ 

col2 

--"'netlr--
I:8J:c: :1:0 

--., 
__...I t... __ --~ 

gate1 gate3 

Flaure 9. Deleting a superfluous gate 

As a result of this step, we now have nets connecting two transistors. No such 



- 14 -

nets were generated by the first step. 

The third step generates extra nets for output signals. If the user wants to have an 
output to the right or the left side of the gate matrix, an extra net is generated, 
connecting that specific gate and the right or left border of the gate matrix2• 

Note that all the generated nets have exactly two terminals. They can be divided in 3 
categories: 

OT: nets with on one side a transistor piece and at the other side a poly/metal 
contact. These nets are generated in step I. 

TT: nets with a transistor piece on both sides. These nets are generated in the 
second step. 

00: nets with on one side a poly/metal contact, and at the other side a termi
nal. These nets are generated in the third step. 

The reader might wonder if there are not any "but's" for the gate matrix structure just 
generated. And indeed, there is one. Look at the following example: 

Figure 10. Circuit example 

Signal a will result in a gate placed in a column and three nets will leave from this 
column. Say, the gate representing signal a is placed into column 2, and the gates 
representing the transistor gates are placed into columns 1,5 and 6. The three nets leav
ing from column 2 are connected with columns 1,5 and 6 respectively. After the place
ment of the first two nets, signal a is already present as far as column 5. Generating 
the third net, this information is not used: not a net from 5 to 6 is generated but a net 
from 2 to 6. This disadvantage becomes particularly clear if we have signal connected 
to many other signals. 

The caused disadvantage may seem bigger then it really is: 

I) We can reduce the disadvantage by taking a different approach to some 
nets. Chapter 10 discusses the special approach we used for the power sup
ply ( a heavily connected "signal" ). 

Note : Because of this special approach to the power supply, no nets 
resulting from connecting a transistor to the power supply will be 
found in the gate matrix structure. These connections are added to the 

2. If the user wanta to have a certain signal as an output to the bottom or top lide of the gate matrix, we 
simply extend the gate to tha.t specific border of the gate matrix. 



- IS -

gate matrix afterwards ( see chapter 10). A consequence of this 
approach is the fact that there is only one net present in the gate 
matrix structure, containing a transistor piece for a transistor con
nected to the power supply. 

2) In a technology with only one metal layer, both sides of most transistors 
will have to be reached by nets placed in this metal layer . It will not be pos
sible to continue a net, coming from one direction, into the other direction 
because a net is already present at the other side of the transistor. 

Apart from the nets connected to the power supply, there is one other type of nets that 
will not be found in the gate matrix structure. In this case it concerns nets connecting a 
transistor gate with the source or drain of the same transistor. We remove these nets 
from the gate matrix structure and mark the transistor. In the layout, we will place a 
diffusion/poly contact to realize the connection. 

At this stage, we have determined the gate matrix structure. Now we know the dif
ferent elements of the gate matrix, which order can be oPtimized in the next parts of 
the layout generator. 



- 16 -

5. The gate order 

The first optimization problem is to determine the gate order in the columns. The 
order generated in the previous chapter ( gate I into column I, gate 2 into column 2 
... ), does not have to be efficient at all. At first, only one gate is placed into a column. 
Placing more than one gate in a column is seen as a separate optimization problem 
which will be discussed in the next chapter. 
We want to minimize the number of rows of the gate matrix, needed by the nets. 
Although not equal, this problem is highly correlated with the problem of finding a 
gate order resulting in a minimal total net length. 

Probably because the importance of this problem, most of the literature on gate matrix 
layouts deals with this optimization problem. After a brief description of several possi
ble solution methods, I will discuss the algorithms used in GM. 

5.1 Some ordering methods 

Probably the most productive author on gate matrix layout generators is Omar Wing. 
Since the early eighties, he writes about this subject. He started with an approach to 
this linear gate array problem, similar to the one dimensional logic gate assignment 
introduced by [OHM079j. First he generates a matrix containing all connections of 
nets and gates. Look at the next matrixs: 

net! 
net2 
net3 
net4 

gate I 
o 
I 
I 
o 

gate2 
I 
o 
o 
I 

gate3 
o 
o 
I 
I 

gate4 
I 
I 
I 
o 

In this matrix, we can not see the net intervals clearly. The matrix does not show that 
net I is also positioned at col3. We can change this by filling up the matrix: substitute 
on every row, the O's situated between I's by I's. Now the matrix becomes: 

net! 
net2 
net3 
net4 

gatel 
o 
I 
I 
o 

gate2 
I 
I 
I 
I 

gate3 
I 
I 
I 
I 

gate4 
I 
I 
I 
o 

This last matrix has the "consecutive I's property": in every row the ones are grouped 
together. 
If in one column of the matrix, two nets have I, this means that if we would take the 
gate order of the columns in the matrix, those two nets would overlap at that particular 
column. The matrix is a representation for an interval graph [WIHU85j: the columns of 
the matrix are the vertices and there is an edge from vertex a to b if they have a I 
situated in the same column. 
Nets which have a I positioned at the same column, form a clique in the interval 

3. This matrix resemble. the Incidence matrix of chapter 2. The matrix .hawn above can be obtained out of 
the Incidence matrix by 8UlntitUtin, a one for every non uro element in I. 



- 17 -

graph. The number of tracks needed in the final layout is equal to the largest clique 
number thus equal to the largest number of I's positioned in a column. Now we can 
state the optimization problem: 

Find a permutation of the columns such that if each row without the consecutive 
ones property is filled with ones, the largest number of ones positioned in any 
column is minimized. 

Unfortunately, it is shown in [KAFU79) that this problem is NP-hard. 
Omar Wing used several heuristics described in [WING82), [WING83) and [WIHU85) to 
find a reasonable result. Columns are placed one by one, at each stage trying to keep 
the number of necessary 0 to I substitutions as small as possible. 

A some what different approach is used by [ITU83]. He uses a different matrix to 
describe the problem but he also has to solve the problem of filling a matrix in order to 
get the consecutive ones property. 
In [DEKR87], it is shown that there is a family of problems for which the ratio of the 
number of tracks, resulting from the two optimization methods described above, and 
the minimum number of tracks is unbounded. 

Another approach is described by Leong [LEON86j. He used an algorithm based on 
simulated annealing. A temperature schedule, a cost function and several types of 
moves are described. 

As mentioned in chapter 3, some optimization methods use a two dimensional place
ment to obtain the gate order and the gate folding in one step. In GENIE [DEV A86], 
Devadas and Newton use an algorithm again based on simulated annealing, to obtain a 
2 dimensional order. Although the results shown look very promising, time complexity 
will become a problem for larger layouts. It would be nice to implement a two dimen
sional approach into GM in the near future and compare the results with the results 
obtained by the algorithm of paragraph 5.2. 

The first algorithm I implemented, was the one described by Omar Wing in one of his 
more recent publications [WIHU86j. The gate order was based on the approximation 
algorithm described by Asano [ASAN82j. Some changes were made to this basic algo
rithm, for example Wing's algorithm uses the information about the size of the dif
ferent components. 
If we compare the results obtained by this algorithm, with the results from the algo
rithm we will discuss in the next paragraph. we have to decide in favor of the second 
algorithm. Wing only looks at the number of new nets he is introducing while placing 
a new gate. He does not take into account the number of finishing nets. We would need 
more time to determine the exact cause of the difference in performance between the 
two algorithms but at a first glance. this looks the main reason. 

5.2 A Kang based alaorlthm for aate ordering 

The algorithm finally implemented in G M is based on an algorithm described by Kang 
[KANG83J. This linear ordering algorithm was already used for standard cell and gate 
array layout. The algorithm is given below: 

1) Read in the information about the circuit and put all the gates into OUT. 

2) Select the most lightly connected gate from OUT. ( This first column is called the 
seed of the placement ). 



- 18 -

3) Move the selected gate from OUT or ACTIVE to IN, and all gates connected to it 
from OUT to ACTIVE. 

4) If ACTIVE is empty, go to 2. Otherwise select a gate from ACTIVE and go to 3. 

5) Repeat 3-4 until OUT is empty. 

Figure II should illustrate the different groups. The gates in IN are already placed. 
The ones in ACTIVE are possible candidates for placement and the rest is situated in 
OUT. 

continuing net. 

erminlt.tinl nete new neta 

IN ACTIVE OUT 
Figure 11. Illustration of the different gate groups 

The algorithm works very fast; O(coIOcol). This is partly due to the fact that only gates 
situated in ACTIVE are candidates for placement, not all the unplaced gates. We could 
take the groups ACTIVE and OUT together; the algorithm becomes more simple and a 
better performance will be the result ( we remove an extra constraint ). It will increase 
the time usage of the algorithm. 

In step 4 of the algorithm, a gate is chosen. Kang defines the net gain: the net gain is 
the number of new nets minus the number of terminating nets if a certain gate would 
be placed next. 
The selection rules described by Kang are: 

I) First, select a gate with minimum net gain. 

2) For a tie, select one with larger number of terminating nets. 

3) For a tie, select one with larger number of continuing nets·. 

4) If tie again, select lighter one (least number of connected nets). 

In figure 12 , two realizations of a transistor are shown. It may be clear that we prefer 
the left situation. The right situation uses more diffusion space. Can we incorporate 
this fact into the selection rules? 
The answer is Yes ( of COUrse ): we do not want to place a gate functioning as a transis
tor gate, if both source and drain are not placed yet. A function, say two_track(), 
should compute the number of these drain source conflicts for a certain gate, would 
this gate be placed next. If two track( gatel) > two track( gate2) , we prefer gate2 to 
be placed instead of gate I. - -
The remaining difficulty is where this selection rule should be fitted into the old 

4. I did not implement this selection rule because if two rates introduce the same number of terminating 
neta, they will always have the .ame number of continuing netl. 



coil col2 

nett"' -
•.•• ).PV\ ..... ~ L __ 

- - "beU 
~I. ... __ J 

col3 

- 19 -

coil col2 col3 

r - - - - -netl 
I 01. .... 

,L n - __ .J 

dl~ net2 
~:::::::::::::::::::::::::::: 

gate1 gate] gale3 gate] gate1 gate3 

Figure 12. Two realizations of a transistor 

selection rules. In GM, we choose to integrate it into the first selection rule, which 
becomes: 

I) Select gate with Minimum net gain + Iwo_track( gate). 

I would probably be wise if the weight of two track in this selection rule could be 
varied; one could think of an input variable specifying the weight of a gate source 
conflict in terms of an extra net gain. Two _track() will add the input variable to his 
total for every gate source conflict a column placement would introduce. 

S.2.1 Seed selection 

Step 2 of the Kang algorithm chooses the most lightly connected gate from OUT to 
start with. It may be clear that we do not want to start with a heavily connected gate, 
but does a lightly connected gate always result in an efficient placement? 
I tested the placement algorithm using different seeds and found that the placement 
depends very strongly on the seed. In general, it is true that the best results are 
obtained starting with a relatively lightly connected seed. But, it is also true that the 
difference in total net length between two placements both starting with a 'most lightly 
connected seed', can be very large. In some examples, differences in total net length up 
to 30% were reached. 
For this reason, we placed an extra option into GM. GM will then tryout all most 
lightly connected seeds and continue with the one resulting in the smallest total net 
length. 

Note: If the user has specified terminals at the left side of the gate matrix, we do not 
have the problem of choosing a seed. In that case the "column", connected with all nets 
realizing an output at the left side, will be the seed. 

S.2.2 Improving the result 

We were still not satisfied with the result obtained. There should be some extra 
improvement possible. This time, the time complexity was of nO importance; these 
extra steps should be optional. After some experimental work, the user could use these 
options to get a final result. Two strategies are implemented: 

I) The first thing we did is, if the algorithm has decided what gate should be 
placed, an extra step decides whether this gate should be placed at the back of all 
the gates placed until now or in front of these gates. This decision is based on 
total net length. 



- 20-

2) We also thought of improving the result by performing swap operations; we 
started with trying to swap every gate with one of the adjacent columns and a 
considerable improvement of the total net length was obtained. Continuing this 
idea, we came up with the next swapping routine: 

BEGIN 

WHILE (new_net length < old_net length ) 
( 

} 

old net length a new net length; 
FOR( dist = 0 ; dist <~ MAX SWAP DIST; dist++) 

WHILE (new_netl < old_netl) -
FOR (c = I + dist ; c < lastcol ; c++) 

{ 

} 

old_nell = new_nell; 
swap (coif c-dist}.colf c}); 
temp_nell =the net length now obtained; 

IF (old netl < temp nell) 
swap (coif c-diSt}.colf c}); 

ELSE 

END 

lastcol = number of columns. 

Notice that the algorithm is purely based on net length and does not consider the 
diffusion size of the different transistors or the number of tracks the gate matrix 
is going to use. So in a way, we spoil the former result. 

The swapping routine does not always result in a decreased number of tracks but, 
certainly for larger layout examples, the improvement was drastic. For a large 
unfolded gate matrix example, the number of tracks was reduced from 39 to 29. 

We also tried to achieve improvement by using mirroring routines. We mirrored a 
certain number of adjacent columns. They proved very useful working at the 
traveling salesman problem. Nevertheless, probably due to the different connec
tivity structure of the problem6, the total net length resulting from these routines 
had a worse average and a larger spread than the results from the swapping rou
tines. 

5. In the traveling salesman problem every element i. only connected to two other elemena. If we mirror a 
cerlain group of adjacent elemental only two connections between this group and all other element. 
change. Mirroring a. group of gate. in the gate matrix will generally affect more than jUlio two nett. It will 
also affect neb starlin, IOmewher. in the middle of the group and connected &0 alemenu outside the 
group. 



- 21 -

6. Column foldIng 

What we have up till now, is a linear ordering of gates in the columns, every gate using 
a single column. If we want to fold different gates in one column, we will have to 
establish what columns are allowed to be folded6• 

There are a few reasons why two gates can not be folded into one column: 

-If two gates are in- or output gates at the same side ( bottom or top) of the 
gate matrix, the gates can not be placed into one column. 

-If two gates are interconnected by a net, the two gates can not be placed 
into the same column ( the net would have to be folded ). 

-For reasons to be explained in the chapter on net placement with column 
folding, we do not want to fold gates connected to the same net path. A net 
path is a sequence of nets interconnected by diffusion runs. 

We can generate a matrix FOLD using the facts stated above: 

FOLD[gatel)[gate2) = TRUE: if only one pair of gates of the gate matrix is going to be 
folded, it is allowed to fold the gates gatel and gate2. 

FOLD[gatel)[gate2) = FALSE: otherwise. 

Taking care of the matrix FOLD, does not guarantee that we will be able to place all 
nets into the gate matrix. This is due to the following fact. 

Say lIate a and b are placed In the same column and gate a Is placed above gate b. All 
nets connected to gate a will have to be placed before any net connected to gate bean 
be placed. Only then we know the row In which gate b can start. 

The following example might put things into a clearer perspective: 
We have 4 columns (a,b,c,d) and 3 nets (I,2,3). Their relations are given in the table 
below: 

a b c dl 
I 
I 
I 
I 

- I 

Explanation of the figure: e.g. net 3 is connected to the gate a and the gate d. Recall 
that all the nets are two terminal nets. 

Knowing the connections, we can generate the matrix FOLD: 

6. The reader may wonder why the gate orderin, and the pte foldin, are .eparated into two different parts 
of the layout lenerator. It i. true indeed, that the fe.ultine orderina would probably be better if the 
intersrated gate placement .AI uHd but then again tihi. could be much more time conlumin&,. 



- 22 -

FOLD I 

Everything looks fine if we fold gates a and c into column I, and gate b and d into 
column 2. But what happens if we start to place the nets: 
First, we place net I. So gate a has started in column 1 and gate b has started in column 
2. Next, we want to place net 2. We can make a connection to gate a, but not to gate d 
because gate b is not placed completely yet. So we skip net 2 and try to place net 3. 
Again no luck; gate c can not be used because of the incomplete gate a. So there is no 
placeable net and the net placement will fail. 

We can display the represent the situation by a graph G_fold. G_fold is made out of: 

nodes: one for every gate. 

labeled directed edges: a directed edge from node a to node b means that 
placement of nets connected to gate b can only occur after complete place
ment of all the nets connected to node a. The edge is labeled with the 
number of the column that caused it. 

labeled undirected edges: an undirected edge from node a to node b indicates 
that the gates represented by the nodes are connected to the same net path. 
The placement of a net represented by an edge between node a and b 
depends on both nodes. The edge is labeled with the net number. 

In figure 13, the G_fold graph for the folding chosen above is shown. 

Figure 13. The G_fold graph for the example 

The matrix FOLD excludes several gates from folding but does not guarantee success
ful placement if we fold gates which are allowed to be folded by FOLD. In figure 14, 
possible foldings are represented by dashed directed edges. 

net 

Figure 14. Possible foldings for the example 



- 23 -

If we want to perform as many foldings as possible, we have to find a graph G fold 
with as many directed edges as possible and still describing a placement, guaranteed to 
succeed. 
In the next two paragraphs, two possible approaches to this problem will be discussed. 
The approach discussed in 6.1 will be able to find the optimal G fold but is also very 
time consuming and for reasons to be explained in paragraph 6.1 :-the generated layout 
may still be very unefficient. Paragraph 6.2 describes a more simple approach, not as 
time consuming but then again also not as smart as the first approach. 

6.1 The folding problem 1 

Take another look at figure 13. The reader may wonder how G fold displays a failing 
placement. It can be found using the next algorithm: -

I) Label all the nodes with no incoming directed edges; these gates can be placed 
right away. 

2) Label all nets connected to two labeled nodes. 

3) Try to label the unlabeled nodes. A node may be labeled if all the connected 
undirected edges are labeled and if all the directed edges pointing at the node 
come from a labeled node. 

4) If there are no edges or nodes labeled in the last two steps and not all nodes and 
edges are labeled yet, the folding indicated by the graph will result in a failing 
net placement. 
If all edges and nodes are labeled, the folding indicated by the graph will result in 
a successful net placement. If not all edges and nodes are placed yet, goto step 2. 

If we apply the algorithm to the example given in figure 13, we get: 

I) label node a and b 

2) label net I 

3) no new nodes labeled 

4) go to 2 

2) no new nets labeled 

3) no new nodes labeled 

4) --> failing net placement 

If we apply the algorithm to the example given in figure 15, we get: 

Flaure 1 S. Example of a graph indicating a successful net placement 



- 24-

I) label a and d 

2) label net 3 

3) label node b 

4) goto 2 

2) label net I 

3) label node c 

4) goto 2 

2) label net 2 

3) no new nodes labeled. 

4) --> successful net placement. 

What is the complexity of the search. Say the number of nodes is n and the number of 
edges is e. In the worst case, every time we apply step 2 and 3 only one additional node 
is labeled. This way, we cycle 0( n ) times through the loop. Rule 3 is the most time 
consuming step. Every time all unlabeled nodes have to be examined for possible 
labeling. A node can be connected to e edges at most so we will have to perform e 
comparing operations at most. Applying step 3 will thus cos t O( n - e ). This results in 
a total complexity of O( n • n • e ). 

Having determined a search algorithm, we could tryout all possible combinations of 
gate foldings and choose the one resulting in most foldings, still representing a success
ful net placement. This way, we will find the gate order with most foldings for sure. 
Apart from being very time consuming, there is another disadvantage to this method. 
Look at the configuration in the next figure: 

coil col2 col3 

G G 0 
G [:] [j 

G 0 D 
o 

FIgure 16. Example of uoefflcient folding 

If gates a and d only have connections with one gate from col 3, say gate j, and a and d 
are placed at the top of col 3, we would like gate j to be placed at the top of column 3 
also. If gate j, like in the figure, is placed at the bottom of col3, gates a and d will 
become much longer than necessary. 



- 2S -

We could avoid this situation by choosing the gate order in a column during the net 
placement. If we have placed gates a and d, nets from these gates will need gate j, and 
gate j will be placed at the top of col 3. The exact mechanism is described in chapter 8. 
As a consequence of this approach we can only determine what gate is going to be 
placed in what column during the folding. The order within a column is not deter
mined yet. This approach is described in the next paragraph. 

6.2 The folding problem 2 

If we do not know the ordering of the gates in a column, the directed edges in G fold 
become undirected edges. Look at fig 17. -

~ 
Figure 17. G _fold with undirected edges 

This figure corresponds to the four possible orderings shown in figure 18: 

}-.=..:=---{ b 

net4 d }-..=.:..:.c...--j c d }-.::n.:..:etc.;..4--{ net4 d }-'=":'-..:...--{ C 
net4 

c 

Fiaure 18. Possible realizations of fia.17 

If we want to be sure of a succeeding net placement, no possible gate ordering should 
result in a failing net placement. Out of the four possible realizations of fig 18, two 
result in a failing net placement, so the situation of figure 17 will have to be forbid
den7. 

How can we find out if a folding is legal? 
We will change the fold graph a bit. If gates are folded into the same column, we will 
represent those gates by one node. We also substitute edges connected to the same two 

7. Note that it we forbid this situatioD, we allO throwaway two legal foldinga. 



- 26-

nodes by one edge, at each node labeled with the number of gates the nets, the edge 
represents, are connected to. E.g. a new edge representing one old edge will be labeled 
with I-I. An edge representing two nets, connected to different gates out of the same 
column, will be labeled with 2-2 .... 
The graph of figure 17 now changes into the graph shown in figure 19. 

Figure 19. New G _fold 

What kind of structures are forbidden in this new G fold graph. Having read the 
beginning of this chapter, it may be clear that we do not allow an edge with label 2-2 
or higher between two nodes. 
Another situation is shown in figure 20. 

Figure 20. Example of a new G _fold IIraph 

The graph in figure 20 represents 8 possible foldings. One of them is shown in figure 
21. 

a b 

net net3 

e f 

Figure 21. Possible realizations of fig.19 

This folding will result in a failing net placement so we have to forbid the situation of 
figure 20. We could change it into figure 22. 
In the new G fold graph, we have to check for loops between nodes containing more 
than one gate-:-It is easy to check for this property: for every subgroup of intercon
nected nodes containing more than one gate, the number of edges has to be one less 
than the number of nodesB• 

8. Due to a lack of time, this 'cycle check' i. not implemented in GM yet. 



1-

- 27 -

ad )-...:I;;...--=I_-l b 

1-1 
cf)--"--=---(e 

Fillure 22. Acyclic new G_fold graph 

Resuming; the second approach is less time consuming but will forbid a number of 
foldings unnecessarily. It does have the advantage of giving the net placement the 
freedom of choosing the gate ordering. The second approach is implemented in GM. 

6.3 The folding aillorithm 

Before we give the final folding algorithm, a few problems will have to be discussed. 

Should we try to fold a certain gate with every other gate or just with a certain sub
group of the other gates? 
Say we have a linear ordering of 20 gates coming from the gate optimization. The ord
ering is primarily based on the number of connections between the different gates. If 
we would fold gate 18 with gate 3 into column 3, the result would probably be poor. 
Signal 18 will be highly connected with gates near 18 (16,17,19,20). If we fold 18 and 
3, many nets will have to go from the left side of the gate matrix (column 3), to the 
right side of the gate matrix (16,17,19,20). This would cost a lot of rows. 
So we only want to try to fold gates with their "surrounding" gates. A solution may be 
to let the user specify this surrounding by an input variable BACK_COL. 
BACK_COL is the number of columns we go backwards during the folding, to see if 
folding is allowed. 

Now another problem becomes evident. Let the gates 1,2 and 3 be placed into columns 
1,2 and 3. If the user has specified that we are allowed to go 3 columns backwards for 
a folding attempt, gate 4 could be folded into columns 1,2 or 3. If all the foldings are 
legal, which one of them do we prefer? 
One might think column 3 because if gate 5 is placed in column 4, and gate 4 and 5 are 
highly interconnected, the nets will stay short. If we use this "thought", we should work 
our way, checking for possible folding, form column 3 to column 2 to column 1. 
In GM, we choose for the reverse order (1,2,3), because of the following consideration: 
Say, we fold gate 4 into column 3. Again I want to point at the fact that the linear ord
ering is primarily based on the interconnecting nets. So in the described situation, it is 
very likely for gate 5 to have an interconnection with gate 4 or 3. This will disable the 
folding of 5 into column 3. Maybe 5 can be folded into column 2. Then we are revers
ing the column order, which will cause difficulties at the left end. 
The idea is shown in figure 23. Distance A, generated by checking for possible folding 
from the left to right to the left, is smaller than distance B, generated by checking for 
possible folding from the right to the left. 

123 
<-- A --> 
4 5 6 7 

123 
654 
<--- B ---> 

7 

Figure 23. Idea behind checking order for column folding 



- 28 -

I admit that the given evidence is not completely satisfying and further research could 
result in better folding. It might even be true that it is best to change the direction of 
the search depending on how much folding we want to have in our gate matrix ( 
columns <--> rows). 

One last consideration has to mentioned. If we, having taken all the facts mentioned 
above into account, are allowed to fold two gates, will we always want to fold them? 
If we have a layout which is unfolded realisable using 8 rows, and the folding of the 
gates a and b would result in using 15 rows just for these two gates, we probably do 
not want to execute the folding. We have to arm ourselves against such a mistake: 

First we make an estimation of the number of rows we want the gate matrix to use. 
The user may specify ESTIMATION CO and the number of rows wanted, 
ESTimation NUMBer TRAcks, is determined by dividing the number of transistors 
in the gate matrix withthe ESTIMATION CO. An estimation for the number of rows 
needed for a certain column, after folding another gate into that column, can be 
divided into 3 groups: 

TI : Number of nets connected to gates in the column before the latest fold
ing. 

T2: Number of nets that cross the column. 

T3: Number of nets connected to the gate, candidate for folding. 

Now, if (Tl + T2 + T3) <~ ESTimation_NUMBer_TRAcks, we decide to fold the gate 
into the column. 

The total folding algorithm is given below: 

BEGIN 

place gate 1 into column 1; 
PLA COUNT = 1; 
FOR( all gates) 

END 

FOR (COL = PLA_COUNT - BACK_COL; COL <= PLA_COUNT; COL ++) 
IF (the matrix FOLD allows the folding && 

T1 + T2 + T3 <= EST NUMB TRA && 
folding is allowed by new G _jold graph) 

fold gate into column COL; 
ELSE 

( 

) 

PLA_COUNT = PLA_COUNT + 1; 
place gate into column PLA_COUNT; 

PLA_COUNT = number of columns ( out of C), containing gates. 



- 29-

7. The Net placement 

In step four of the total gate matrix realization the nets have to be placed in the rows 
of the gate matrix. I have chosen for a greedy routine, based on the left edge algo
rithm. If unconstrained left edge would be used, the realizability of the diffusions 
between the nets could not be guaranteed; diffusion collisions ( contacts between dif
fusions of different transistors) might occur. 
So alterations had to be made in the original left edge algorithm. In this chapter, 
several heuristics will be discussed. Heuristics, used during the placement in order to 
increase the probability that the generated layout is realizable. 

We recall the division of the nets. In chapter 3, we defined three categories: 

00) nets with a poly/metal contact at one side and a terminal at the other side (a net 
for an output signal ). 

OT) nets with a transistor piece at one end, and a poly/metal contact at the other end. 

IT) nets with one transistor piece at each side. 

In Chapter 4, it was explained that if we had two nets for the representation of every 
transistor, nets of the type IT will not exist. For a start we will only look at nets of the 
first three types. 

HeurIstIc 1. 

If a net of group OT Is placed, always search for the other transistor 
part and place the two nets while checking for diffusion collisions. 

If all nets of the gate matrix are in the first three groups, Heuristic I guarantees that 
the generated layout is realizable because during the placement of every single diffu
sion we check for a collision and all nets of one net path are placed at the same time. 
Problems arise if nets of category IT are present. In that case we may have more than 
one diffusion in a single net path. The placement of two nets with a realizable diffu
sion in between at the start of a net path, may disable a diffusion between t wo nets in 
another part of the net path. To avoid this situation, the following Heuristic should 
help: 

HeurIstic 2: 

If a net of type IT Is placed, and both connected transistors have a 
second half at another net, the net is placed in combination with one 
of the two nets containIng the other transIstor pIeces. The third net is 
placed on a stack, and will be placed next. 

Note that in this way, it can still not be guaranteed that the diffusion between the net 
of the type IT and the net on the stack is realizabie. In order to lower the chance of a 
collision, another heuristic is used. Look at the next example: 



I example J I net 

I a) 
I b) I c) 
I d) 

Syntax: 

Tx -> a transistor 
: -> a diffusion part 

-> a net part 
-> empty 

- 30-

I 
coll col2 co13 COl41 

TO I 
Tl: T2 I 

I 
Tl: T3 I 

T2 I 

Note: transistor T3 is a transistor connected to a power line thus only one transistor 
piece will be present among the nets. 
Net a) was already placed and net b) has to be placed next. Net c) is placed at the same 
time and the diffusion of Tl will be realizable. Net d) is put on the stack and will be 
placed next. The diffusion of T2 cannot be placed because the transistors TO and T3 
block the way in both directions. A solution is brought by the next heuristic: 

Heuristic 3: 

Never place a net of type TT without having placed one of the other 
nets containing a transistor half flrst.9 

Using this Heuristic, the placement of example I becomes: 

I example 2 I I net coll col2 co13 COI4/ 

I a) TO I 
I I c) Tl: T3 I 

I b) Tl: T2: I 
I d) T2: I 
! I 

Now no collision occurs for T1 or T2; both diffusions can be placed. 

The heuristics explained above were implemented into GM. Very seldom a collision 
occurred and within 3 attempts all the layouts could be realized. 

9. Note: this Hauri.tic do .. noi apply to netl of type TT) with one of the tranailton havinC only one 
tl'lUlli.tor piece. 



- 31 -

8. Net placement with column foldIng 

The placement described so far, does not take any notice of column folding. How can 
we adapt the net placement to the column folding? From chapter 6, we know what 
gates have to be assigned to what columns, but we do not know the order of the gates 
within a certain column; we do not know which rows are going to be crossed by what 
gates. 

In the horizontal direction we used a left edge algorithm. Why not use the same idea in 
the vertical direction as well. Start a gate in a columns and if the nets connected to this 
gate are placed, place another gate, out of the set of gates that have to be placed into 
that column, into the column; again place the nets connected to this column ...... 
In the left edge algorithm we used for net placement in the unfolded gate matrix, it 
was always allowed to place a certain net. This is not true any more. How do we know 
whether we are allowed to place a net? 

First we define the array ACTIVE: 

ACTIVE[col) = gat : in column col, the gate gat is said to be active if it is 
allowed to place nets in the gate matrix connected to this gate. 

Several facts about ACTIVE can be stated: 

Out of every column, only one gate can be active at the same time. 

Starting the net placement, all the gates that have to be connected with the 
upper outside of the gate matrix are active because they will have to be the 
top gates of a column anyway. 

A gate, not connected to the bottom side of the gate matrix, can be made 
active if no other gate folded to the same column is active. If the gate has to 
be connected to the bottom side of the gate matrix, every other gate folded 
to the same column has to be placed already: every other gate folded to that 
column has to be placed above the gate that has to be connected to the bot
tom side of the gate matrix. 

A gate is made inactive if all the nets connected to the gate are placed. 

In the columns of the power supply, situated at the left and right side of the 
gate matrix, the gates containing the power supply are always active. 

Looking at ACTIVE, we know what gates we are allowed to use. What we want to 
know is what nets we are allowed to place. We need to know on what gates the place
ment of a certain net depends; what gates have to be ACTIVE if we want to place a 
certain net. 
The placement of a net depends on the gates the net is connected to. If those gates are 
inactive, the net can not be placed. If we use the second Heuristic of the last para
graph, we will want to place the nets of a net path without having to place other nets 
in between, thus increasing the probability of generating a realizable layout. 
If we state, the placement of a net depends on the gates connected to the net and on 
the gates connected to the same net path, we will always be able to place the nets of the 
net path as a whole. So we state: 

A net depends on all the lIates connected to the net path, the net Is part of. 



- 32 -

At this stage the reader should be able to understand why we did not want to fold gates 
connected to the same net path in the paragraph on column folding. We can not place 
net paths connected to more than one gate out of a column because the gates connected 
to the net path will never all be active at the same time. 

In the table below, an example is shown: 

2 

TI 
TI 

3 4 5 

T2 
T2 

Net a,b and c, all part of the same net path, all depend on the gates 1,2,4 and 5. 

One last Heuristic is used during the net placement. It should assure that the gates in 
the columns do not use an unnecessary number of rows. 

Heuristic 4: 

Do not make any new gates actl.e If there are still nets left, depending only 
on gates already active. 

The net placement algorithm becomes: 

BEGIN 

WHILE ( not all the nets are placed) 
{ 

} 

END 

search from the left to the right. for a placeable net; 
( a net only depending on active gates) 

IF ( no placeable net is found) 
{ 

} 

try. again from the left to the right. to make a net placeable 
by making the gates it depends on active; 

IF ( still no placeable net is found) 
exit; (the placement failed) 

place_net( ); 
update _ active( ); 

The column folding determines whether the exit will be reached or not. If the folding 
was allowed by the new graph G fold, as discussed in the paragraph on column fold
ing, the placement will never failbecause of not finding any placeable net. 



- 33 -

9. The final steps of the placement 

Having ordered the gates and placed the nets, all that remains to be done is the deter
mination of the functions k and I. The next two paragraphs will discuss those func
tions. The last paragraph discusses what has to be done if an unrealizable layout is gen
erated. 

9.1 The function I 

The rules for the generation 1 are quite simple: 

- If the two nets, containing a transistor piece of a certain transistor, are situated in 
the same row of the gate matrix, we also place the transistor in this row. 

- If there is only one net containing a piece of a certain transistor, the transistor will 
be placed in the same row. 

- The situation becomes a bit more complicated if we have two nets containing a 
transistor piece of a certain transistor and they are situated in different gate matrix 
rOwS. If we allow one diffusion run for each transistor, only the two rowS contain
ing one of the nets are candidates for the transistor placement. 
The choice between those two rows is based on the width of the transistors. We 
choose that gate matrix row that contains the transistor with the largest width 
already. 

9.2 The function k 

The function k has to be determined next. Look at the following example: 

I coli 
1 

col2 col3 col4 colS 

1 I Tl t3 
12 T2 T3 
13 tl T4 
14 t2 

Syntax: 
a empty 

- :.I net 
tx - metal/diffusion contact for transistor x 
Tx a transistor x. 

We have to realize diffusions contacting Tx and tx. They can be placed in one of the 
columns from C', adjacent to the C column in which Tx and tx are placed. Working 
our way through the matrix from the left to the right, we will try to place each diffu
sion at the C' column at the left of the C column the transistor is placed in. If this is 
not possible, we will place the diffusion at the right side. 
We will expiain the determination of k using the example shown above. We start at the 
left side of the matrix, at the left of the first C column. We move from top to bottom 
and look at each row if a diffusion is needed. At the left of column I, no diffusion has 
to be placed. At the left of column 2, we can place the diffusion for transistor I and at 
the left of column 3, the diffusion run for transistor 2 can be placed. 
We have to be alert arriving at transistor 3. Transistors 2 and 3 will be connected by a 



- 34-

net implemented in the diffusion layer. Therefore, the diffusion of transistor two will 
have to be situated at the left of T2, and the diffusion of transistor three will have to 
be situated at the right of T3. In these cases, there is only one C' column available. 

We continue to work our way through the columns until we have reached the last row 
in the last C' column. If by then, all diffusions are placed, we succeeded in generating 
a layout. If not, we failed and we will have to proceed as described in the next para
graph. 
If it is possible to place the diffusions using the given functions f and h, this algorithm 
will find a diffusion placement. If the placement of diffusion a is disabled by diffu
sion b at the left C' column, there was no alternative placement for diffusion b. If dif
fusion a cannot be placed in the right C' column, this cannot be caused by a diffusion 
run, but must be the result of a transistor placement. In that case, the net placement is 
to blame. 

9.3 Reallzab11lty of the layout 

The layout generated will not always be realizable. If the layout is not re!liizable, we 
have to find out between which diffusions the collision takes place. At leas¢ one of the 
transistors connected to these diffusions is part of a net of the type TT. If that TT net 
did not exist, the collision would not take place. The TT nets were generated making 
the structure of the gate matrix. If a gate, connected with two nets of type OT, was 
deleted, a net of type TT was born. If the gate is not deleted, the TT net is not gen
erated. 
The thing to do, if a collision occurs, is to find out which of the deleted gates was con
nected to the two nets now included in the TT net causing the collision. If, during the 
generation of the structure of the gate matrix, this gate is not deleted, the problem 
causing TT net will not be created and the same collision can not occur. 
In the worst case, all the TT nets will be rejected in subsequent runs. Even in this case, 
the program will still be able to generate a realizable layout since the result of the 
algorithms discussed in the previous chapters is always realizable if no TT nets are 
present. 



- 3S -

10. The power lines 

In chapter 4, the generation of the layout structure was discussed. It was mentioned 
that all the nets are two terminal nets. The disadvantages of this approach became 
clear dealing with signals having a lot of contacts. They were subdivided in so many 
non overlapping gate matrix nets, that the result could not be efficient any more. Sig
nals with many terminals are e.g.: 

- a clock signal in clocked logic 

- power lines 

Because of this effect power nets are treated differently from all other nets. It is not 
unusual to treat the power nets differently; in many articles discussing gate matrix lay
out generation, the power nets are situated in a different layer (extra metal layer), and 
are not really placed in the gate matrix. 
In chapter 4 it was also mentioned that the signals connected to the power supply, are 
not represented by gate matrix nets. Only after the other nets are placed, these power 
nets are placed. The horizontal part of the power lines is placed in the metal layer, the 
vertical part in the diffusion layer. The metal part of the power lines can be situated 
between two tracks of the layout matrix we generated until now. We will call the tracks 
from the layout matrix made so far 'signal tracks', while the possible situations for the 
power lines will be called "power tracks". 

In this chapter, the determination of the position of the power lines will be discussed. 
First, a matrix POW_MAT is generated, and using this matrix, the positions of the 
power lines are calculated. 

10.1 The Power Matrix 

The matrix POW MAT has a row for each transistor trns, and a column for every 
power track trek:-If POW MAT(trns,trek) = 1 , this means that it is possible for a 
vertical diffusion to go from the power line trek to the transistor trns. So one could say 
that if POW_MAT(trns,trek) = I, trek is a legal position for the power line connected 
to transistor trns. 
The matrix is constructed as follows: 
The power track beneath and above the signal track in which the transistor is placed 
will, apart from the signal tracks at the outside of the gate matrix, always be legal 
because a diffusion run is always possible. Next, move away from the transistor in 
vertical direction, at each signal track checking for a collision, e.g. caused by another 
transistor.10 We could have the user specify how far we are allowed to move away from 
the transistor by an input variable, e.g. MAX TRA CROS. MAX TRA CROS 
specifies the MAXimum number of signal TRAcks the power line is allowed to 
CROSs. 

Apart from this matrix, we need two other pieces of information: what is the polarity 
of the power line needed and between what columns is it going to be situated. The 

10. There will not be a colli.ion every time another transi.tor i. metj •.•. if the transistor i. placed in the 
lame column and al.o need. a connection to a power Jine of the right polarity at the right .ide. there will 
be no colli,ion, and the diffusion may b. continued. 



- 36 -

procedure is illustrated by the following example: 

trans track I track2 track3 track4 track5 track6 track? pol col 

I I I I 0 0 0 0 + 2 
2 0 I I I I 0 0 2 
3 I I I I I I 0 + 3 
4 0 0 0 I I 0 0 + 4 
5 I I 0 0 0 0 0 I 

In the first line it says that, as far as transistor I is concerned, it's power supply will be 
well taken care of if there is a power line with positive polarity situated in power 
trackl, power track2 or power track3. 

It seems that this is all the information we need to determine where the power lines 
should be situated. 

10.2 Calculation of the power line positIons 

Our goal is to realize the power supply with the smallest number of necessary power 
lines. We applied the following algorithm: 

BEGIN 

WHILE (not all power transistors are connected to a power line) 
( 

) 

END 

Walk through POW _MAT from the left to the right. and if at one row 
there is a 1 to 0 transition, a power line has to be placed at 
this position, having the polarity of the transistor; 

Connect as much transistors to this power line as possible, using the 
constraints set by POW _MAT; 

Update POW_MAT; 

Updating the POW_MAT matrix is more than just the deletion of power line requests 
of transistors just connected. This updating is performed by the algorithm shown on 
the next pagell. 

We will demonstrate the algorithms, using the example of the previous paragraph: 
The first power tracks where there is a I to 0 transition, are tracks 2 and 3. So at track 
2, a power line will have to be placed and transistor 5 can be connected. But if a 

11. To undentand exactly why the <. > or the = lilIl8 are used in the algorithm one .hould know that if two 
power linea are placed at the lame power track, the leeond power line i. placed above the fint one. 



- 37 -

BEGIN 
DO ( for all power transistors trns connected to the power line placed latest) 

FOR ( trck = I ; trck <= numb_tracks; trck++) 
POW _MAT[trnsj[trckj = 0; 

DO ( for all power transistors trns. demanding a diffusion in a column where 
a diffusion run is just placed) 

IF ( power[trnsj.track <= pow end) 
FOR (trck=pow end; trck <= power[trns].track + MAX TRA CROS; 

trck++) - - -
POW _MAT[trnsj[trckj = 0; 

ELSE 

END 

FOR ( trck=power[trnsj.track - MAX _TRA_CROS : trek < pow _end: 
trck++) 

POW _MAT[trnsj[trckj = 0: 

pow end = position of the power line placed latest. 
power[trns].track = signal track of transistor trns. 

Algorithm for POW_MAT updatlDIl. 

power line is placed at power track 2, transistor 2 can also be connected. ( The other 
transistors cannot be connected, because their polarity is incorrect.) Fill the rows of 
transistors with a I at the power track where the power line is going to be placed with 
O's, because they do not need a power line any more. The matrix of our example now 
becomes: 

trans track I track2 track3 track4 trackS track6 track7 pol col 

I I I I 0 0 0 0 + 2 
2 0 0 0 0 0 0 0 2 
3 I I I I I I 0 + 3 
4 0 0 0 I I 0 0 + 4 
S 0 0 0 0 0 0 0 

Suppose we do not perform the rest of the updating. 
The next column will have to be placed in track 3, because of transistor I. Transistor 3 
can also be connected. Everything seems to go all right, but just now we made an 
error and the generated layout will have an interconnection between the positive and 
negative power supply. 
Chapter 2 dealt with the layout configuration of a gate matrix: only I diffusion run 
was allowed between two columns. More diffusion runs will result in a short circuit. 
In column 2 a collision is created between two power diffusions: if transistor 2 is 
situated in signal track 4, there will be a diffusion from signal track 4, to the power 
line in power track 2. If transistor I is situated in signal track I, we placed a diffusion 
from track I to the power line in power track 3. The two diffusions will be short cir
cuited at track 3. 

The example shows the use of the updating algorithm. If a diffusion is placed in a 



- 38 -

certain column, all the diffusion entries in POW MAT in rows with the same column 
label, will have to be checked and updated depending on where the power line and the 
transistors are situated. So, during the power line placement the positions of the 
transistors have to be known also. 

In the table below, the updated POW_MAT matrix is shown, present after the place-
ment of the first power line. 

trans track I track2 track3 track4 trackS track6 track7 pol col 

I I 0 0 0 0 0 0 .+ 2 
2 0 0 0 0 0 0 0 2 
3 I I I I I I 0 + 3 
4 0 0 0 I I 0 0 + 4 
5 0 0 0 0 0 0 0 I 

Another power line will have to be placed at power track I connecting transistors I 
and 3. Again the matrix is updated: 

trans track I track2 track3 track4 trackS track6 track7 pol col 

I 0 0 0 0 0 0 0 + 2 
2 0 0 0 0 0 0 0 2 
3 0 0 0 0 0 0 0 + 3 
4 0 0 0 I I 0 0 + 4 
S 0 0 0 0 0 0 0 I 

One last power line is needed at track S. This time, updating the matrix leaves no 
POWMA T elements equal to one. This completes the power line placement, resulting in 
three power lines: 

I Power line position polarity connected transistors I 
I I 2 2&5 I I I 
I 2 I + 1&3 I 
I 3 5 + 4 I 

The algorithm discussed are implemented in GM and guarantee that no collision occurs 
between power diffusions. 



- 39-

11. Compacting the layout 

Having placed the nets into the gate matrix, we should be able to generate a symbolic 
layout without any problem. Next, we will have to work our way towards the "real" 
layout. We have to compute the coordinates of the different parts of the gate matrix. 
For this purpose, we think of the gate matrix as being projected on a grid; the rows of 
the gate matrix are the rows of the grid and the columns of the gate matrix are the 
columns of the grid. We use a grid compaction: we determine the necessary separation 
between rows and columns and out of this information, we calculate the different 
coordinates. 
There is more than one possible way to perform a grid compaction: 

method I) A first implementation is to let the compactor work his way through 
each column ( row) computing the maximum width needed for a certain 
column ( row). Columns a and b are placed at a separation distance of 0.5 • 
width(col a) + 0.5 • width(col b). 

This method has one serious disadvantage: if we calculate the necessary dis
tance between two columns and the first column has a large transistor at 
track I and the second column has a large transistor at track 2, the computed 
separation distance will be very large: to large because this method does not 
use the information that the transistors are placed into two different tracks. 
A better result can be obtained if we use the next approach: 

method 2) Look at every track (column) what the separation distance should be in 
order to have no design rule errors. The final separation distance between 
two columns (tracks), will be the maximum of these distances over all tracks 
(columns). 

If we would use method two like this, the generated layout would probably contain 
design rule errors. Look at the next situation: 

coil 

r-
I 

L __ 

col2 col3 

--., 
I 
I 

r'--

" --r' 

r-
I 
I 

--~ 

" ~--
I I 
I I 
L__ __.J 

--., 
I 
I 

---' 

gatel gate2 gate3 

Flaure 24. Example of a cross conflicts 

Neither one of the two compacting steps of method two will detect the combination of 
transistors and overlapping may be the result. For this reason one of the two steps 
should not only look at one track (column) at a time. In GM, the roW compactor com
putes the distance between signal tracks by looking at one element of track I and look
ing at three elements situated in track 2. This way, not only conflicts in the the same 
column are detected, but also cross conflicts are seen. The idea is demonstrated in the 
figure below: 



con 

gale] 

- 40 -

col2 

--, 

I 

--~ 

col3 

gale2 gale3 

Figure 25. Directions of design rule checking done by the row compactor 

We choose to let the row compaction solve the cross conflicts because most of .the 
time a gate matrix will have far more columns than rows. So a worsening of the 
column compaction would have a larger impact on the area needed than a wor
sening of the row compaction. 

The two methods described are both used in GM. Method I is used: 

-at the borders of the gate matrix. 

-to compute separation distances between power tracks and other parts of the gate 
matrix. This can be done because of the nearly constant width used by a power 
track. 

The distance between two signal tracks and the distance between columns is computed 
using method 2. 

The necessary separation distance between the gate matrix elements depends on the 
design rules of the technology used. In order to keep a program as technology indepen
dent as possible, we could have the user specify the distance between all possible ele
ments on a column / track; e.g. the user has to specify what ~he distance between two 
columns should be as a result of two metal/poly contacts. All this technology depen
dent information is brought into the layout generator by a ·technology file. Details 
about this file for GM, can be found in the appendix on implementation. 



- 41 -

12. Some results 

In this chapter, the layouts generated by GM will be discussed on 2 aspects: 

-efficiency. 

-shape transformability. 

1) It is hard to say something about the efficiency of the layout produced in 
general. We should compare GM with other gate matrix layout generators on a 
fair basis. GM does not use a second metal or polysilicon layer. Many IC gen
erating technologies have this layer nowadays and all the gate matrix layout 
generators we were able to lay our hands on, used this extra layer. So we were 
not in a position to compare GM with another gate matrix layout generator in a 
fair way. to 
We did compare GM with a Standard cell layout generator, called logic, for 
generating random logic. The area needed for small layout examples ( up to \00 
modules) is about equal ( 60-120% )12. An example is given in appendix 2. For 
larger layout examples, we were only able to generate unfolded gate matrices 
because of the cycles spoiling the folding. For larger layout examples the area 
needed by GM increased more rapidly than for Standard Layout generator; the 
disadvantage of one small signal demanding a total column became dominating 
( see appendix 3 ). 

GM can generate layout using any size of transistors, but if the size difference 
between the transistors becomes to large, the layout can hardly be efficient any 
more. Look at the example in appendix 4. The three large transistors screw up 
the result; the tracks they are placed in have the same height over the entire 
width. 

2) It depends on the layout structure, but most of the time the shape can be 
changed relatively easy. There are several possibilities to correct the shape of 
the layout: 

a) If we do not use folding, the width of the gate matrix depends on the 
number of signals, present in the circuit. If we vary this number, we 
will vary the width of the gate matrix as well. This approach can be 
used while generating logic: manipulating with the logic expressions, 
we can change the number of signals in the circuit. If we want to have 
many signals, we should do as many kernel and cube substitutions as 
possible. On the other hand, if we want to have a small number of sig
nals, corresponding to a high gate matrix layout, we do not want to 
perform any substitutions. In general, the most efficient results were 
obtained performing as many substitutions as possible. 

b) In GM, the user can increase the height of a layout by increasing 
BACK_COL and decreasing ESTIMATION_CO, thus allowing more 
signals to be folded. Examples of a result one can get with varying 

12. Interpreting these resu1ta, one should keep in mind that the Standard cell Layout generator waa specially 
dewloped lor generating logic, and. did not haw the freedom of lUling different sized trall8iloors as we 
have with OM. 



- 42 -

these two variables are shown in appendices 5 and 6. The flat layouts 
are generated without column folding. There is no real need to be so 
flexible: it would have been sufficient if we could have changed from 
the flat layout into a square lS • but nevertheless it illustrates the shape 
flexibility of the gate matrix. 

13. If GM would haw be able to go from flat: to square, a thick layout could be obtained by turning the flat 
layout. 



- 43 -

13. Suggestions for continuation 

GM in its present form, is nearly complete: Except for the cycle check,the program 
does not need any alterations. 
This does not mean that there are no further positive modifications possible. In this 
chapter I will give some suggestions as to how I think the performance of GM could be 
improved. 

I) While generating the initial gate matrix, we could allow more terminal nets. 
Although this alteration might improve the efficiency of the layout considerably, 
it will also have many consequences for the rest of the program. It will be diffi
cult to maintain the guarantee of being able to generate a realizable layout for all 
possible circuits. 

2) The signal ordering and folding could be integrated into one single stepu. 

3) During the placement of the nets into the gate matrix, we could look more care
fully if it is allowed to place a net into a certain track. Now, GM only allows the 
overlap of different nets if they do not have components in the same layout layer. 
We could extend the overlap allowance to nets having components at the same 
layout layer e.g. if two nets are connected to the same signal, in many cases over
lap of these two nets will be allowed. 
This alteration should not be to hard to implement and could partly undo the 
disadvantage created by using two terminal nets as discussed in Chapter 4. 

4) The level of compaction could be increased. We could make graphs for the hor
izontal and vertical directions. For the horizontal graph, the different nets would 
be the nodes. The labeled edges would indicate the existence of a necessary 
separation distance between the signals represented by the nodes. For the vertical 
direction, the different signals would be the nodes and the edges would again 
indicate a necessary separation distance. 
We could calculate the coordinates of a certain net (signal) by taking the longest 
possible path to get at a net (signal) and add the distances shown by the edges 
along the way. 

14. Ai the time thit report WIUI writte", far developed plans for in~grating a 2·dimensional Min Cut approach 
into GM. were already preaem. 



- 44 -

14. Conclusions 

At the end of this report, I want to make some concluding remarks: 

- We showed that it is possible to obtain promising layout results with a gate matrix 
layout generator only using quite simple algorithms. 

- The gate matrix layout style,used with column folding, has indeed quite flexible 
shape constraints. With some manipulation, large variations in the aspect ratio can 
be reached. 

- The usage of different sized transistors, in analog or digital circuits, does not 
decrease the efficiency of the gate matrix layout very much as long as the size 
difference does no exceed a factor 5/6. 

-Some alterations could increase the efficiency of the layout to some extent. Do 
not expect miracles; I guess an improvement of over 10/20% cannot be made as 
long as the same gate matrix structure is being used. 



- ".J ~. 

Appendix 1: Literature 

[ASAN82] Asano, T. 
AN OPTIMUM GATE PLACEMENT ALGORITHM FOR MOS ONE-DIMENSIONAL 
ARRAYS. 
J. Digital Syst., Vol. 6(1982), p. 1-27. 

[DEKR87] Deo, N. and M.S. Krishnamoorthy, M.A. Langston 
EXACT AND APPROXIMATE SOLUTIONS FOR THE GATE MATRIX 
LAYOUT PROBLEM. 
IEEE Trans. Comput.-Aided Des. Integrated Circuits & 
Syst., Vol. CAD-6(1987), p. 79-84. 

[DEVA86] Devadas, S. and A.R. Newton 
GENIE: A generalized array optimizer for VLSI synthesis. 
In: Proc. ACM/IEEE 23rd Design Automation Conf., Las Vegas, 
Nev., 29 June-2 July 1986. 
New York: IEEE, 1986. P. 631-637. 

[GINN84] Ginneken, L.P.P.P. van and R.H.J.M. Otten 
STEPWISE LAYOUT REFINEMENT. 
In: Proc. 2nd IEEE Int. Conf. on Computer Design: VLSI 
in Computers (ICCD'84), Port Chester, N.Y., 8-11 Oct. 1984. 
New York: IEEE, 1984. P. 30-36. 

[HUWI86] Huang, S. and O. Wing 
IMPROVED GATE MATRIX LAYOUT. 
In: Proc. 4th IEEE Int. Conf. on Computer-Aided Design 
(ICCAD'86), Santa Clara, Cal., 11-13 Nov. 1986. 
New York: IEEE, 1986. P. 320-323. 

[HWAN86] Hwang, D.K. and W.K. Fuchs, S.M. Kang 
AN EFFICIENT APPROACH TO GATE MATRIX LAYOUT. 
In: Proc. 4th IEEE Int. Conf. on Computer-Aided Design 
(ICCAD'86), Santa Clara, Cal., 11-13 Nov. 1986. 
New York: IEEE, 1986. P. 312-315. 

[JTLI83] Li, J.-T. 
ALGORITHMS FOR GATE MATRIX LAYOUT. 
In: Proc. 16th IEEE Int. Symp. on Circuits and Systems, 
Newport Beach, Cal., 2-4 May 1983. 
New York: IEEE, 1983. P. 1013-1016. 

[KANG83] Kang, S. 
LINEAR ORDERING AND APPLICATION TO PLACEMENT. 
In: Proc. ACM/IEEE 20th Design Automation Conf., 
Miami Beach, Fla., 27-29 June 1983. 
New York: IEEE, 1983. P. 457-464. 

[KAFU79] Kashiwabara, T. and T. Fujisawa 
AN NP-COMPLETE PROBLEM ON INTERVAL GRAPHS. 
In: Proc. 12th Int. Symp. on Circuits and Systems, 
Tokyo, 17-19 July 1979. 
New York: IEEE, 1979. P. 82-83. 

[KERN78] Kernighan, B.W. and D.M. Ritchie 
THE C PROGRAMMING LANGUAGE. 
Englewood Cliffs, N.J.: Prentice-Hall, 1978. 
Prentice-Hall software series 



- 46-

[LEON86] Leong, H.W. 
A NEW ALGORITHM FOR GATE MATRIX LAYOUT. 
In: Proc. 4th IEEE Int. Conf. on Computer-Aided Design 
(ICCAD'86), Santa Clara, Cal., 11-13 Nov. 1986. 

New York: IEEE, 1986. P. 316-319. 

[LOLA80] Lopez, A.D. and Hung-Fai S. Law 
A DENSE GATE MATRIX LAYOUT METHOD FOR MOS VLSI. 
IEEE Trans. Electron Devices, Vol. ED-27 (1980) , p. 1671-1675. 

[NAKA86] Nakatani, K. and T. Fujii, T. Kikuno, N. Yoshida 
A HEURISTIC ALGORITHM FOR GATE MATRIX LAYOUT. 
In: Proc. 4th IEEE Int. Conf. on Computer-Aided Design 
(ICCAD'86), Santa Clara, Cal., 11-13 Nov. 1986. 
New York: IEEE, 1986. P. 324-327. 

[OHM079] Ohtsuki, T. and H. Mori, E.S. Kuh, T. Kashiwabara, T. Fujisawa 
ONE-DIMENSIONAL LOGIC GATE ASSIGNMENT AND INTERVAL GRAPHS. 
IEEE Trans. Circuits & Syst., Vol. CAS-26 (1979) , p. 675-684. 

[WEIN67] Weinberger, A. 
LARGE SCALE INTEGRATION OF MOS COMPLEX LOGIC: A layout method. 
IEEE J. Solid-State Circuits, Vol. SC-2(1967), p. 182-190. 

[WEST85] Weste, N.H.E. and K. Eshraghian 
PRINCIPLES OF CMOS VLSI DESIGN: A systems perspective. 
Reading, Mass.: Addison-Wesley, 1985. 
Addison-Wesley VLSI systems series 

[WIHU85] Wing, o. and S. Huang, R. Wang 
GATE MATRIX LAYOUT. 
IEEE Trans. Comput.-Aided Des. Integrated Circuits & Syst., 
Vol. CAD-4(1985) , p. 220-231. 

[WING82] Wing, O. 
AUTOMATED GATE MATRIX LAYOUT. 
In: Proe. 15th Int. Symp. on Circuits and Systems, Rome, 
10-12 May 1982. 
New York: IEEE, 1982. P. 681-685. 

[WING83] Wing, o. 
INTERVAL-GRAPH-BASED CIRCUIT LAYOUT. 
In: Proc. 1st IEEE Int. Conf. on Computer-Aided Design 
(ICCAD'83), Santa Clara, Cal., 12-15 Sept. 1983. 
New York: IEEE, 1983. P. 84-85. 

[WIRT71] Wirth, N. 
PROGRAM DEVELOPMENT BY STEP-WISE REFINEMENT. 
Commun. ACM, Vol. 14 (1971), p. 221-227. 



Appendix 2: Layout example ( 83 transistors) 

ILllP 

. '-
rf,h 
'-----



- 48 -

Appendix 3: Larger layout example ( 180 transistors) 

1 
b 



- 49-

Appendix 4: An example of layout Inefficlen· cy 

I 
..... 

r 

[ 

I 

IL 
11: 



- 50 -

Appendix 5: An example of shape flexibility 

~!n 
1..-1-, 

r$ ~ 

II ~ ~ I ~I-

~'fJS» I- ~11\1 
~ 

1£ j:J 

11 Ii 
~ !J !J 

& 
~ !~ ~~ 

.. l-
II ~ 

polE til )tI hl ~hl ~ '" .. h1 "hl ~ III ~ Ir. .. 
~- .~ 

"'"ill "" 
~ M. III ~ ~~ ~"" i-

~I-I~ I~ I~ l>l~ ~ I~ 'jl ~ t'J In> "'t.::::; 
ill 15 In 

i~ ~ jJ 11'= II""'" 11= 

~ I-< ~ 
'~~ IJT I,. 

U~ M: 



- 51 -

Appendix 6: Another example of shape flexibility 

= 

j r H'W 

jj 

~ ,J 

11' 

j.,1r» 1 "'" = "'lrriB'IIi~ 111' 
1 

IT If ~ ~ ~gr 
JllW 

~ 
"M 

~ rt .. Iii ~~ me :rr lilt 

,...~ t!.. ~ 

~ 

~ US il 



- 52 -

Appendix 7: Implementation details 

In this Appendix, we present details about the implementation of GM. We will start 
with a description of the different input files. In the second part, several tables, speci
fying relations between different functions in GM are presented. 

7.1: Input description 

The input for GM consists out of 4 different parts: 

- I) The input file modules. 

- 2) The input file terminals. 

- 3) The input file exits. 

- 4) Specification of design rules. 

In the file modules, all transistors have to be specified. The syntax: 

< module name> < module type> < Width> < Length> 

The module name has to be unique for every module. Module type specifies the type of 
transistor. For NMOS we have nenh, for enhancement transistors, and ndep for deple
tion transistors. 

The connections between the different transistors are specified in the file terminals. 
The syntax: 

< signal name> < module name> < module terminal> 

One line describes one connection. e.g. the line" 13 nenh 40 g", specifies that the g of 
module nenh 40, is connected to signal 13. An in- Or output signal, demanding a ter
minal in the gate matrix, should have an extra line in this file: 

< signal name> < "root" > < signal name> 

The third input input file is exits. This file specifies on what side of the gate matrix a 
terminal should be present, connected to a certain signal. The syntax: 

< "root" > < signal name> < side specification > 

Possible side speci/icaliolls are u for up, d for down, I for left and r for right. GM 
wants one line in the file exits for every terminal. It will give an error message if this 
is not the case. 

The last input for GM specifies the different design rules. For NMOS, we haw the 
function design_rules_nmos, in which all necessary variables can be specified. 
The variables can be divided into three classes: 



- 53 -

- Variables specifying horizontal distances. 

- Variables specifying vertical distances. 

- General variables. 

An example of a variable of the first class is POLY CON POLY. It should specify the 
necessary separation distance between two columns if there is no gate matrix element 
placed in the columns ls, only poly is present, and there is a poly/metal contact situated 
in between the two columns. 

In the second class, we find the same kind of variables but now specifying vertical dis
tances. 

In the third class we find all kinds of general variables like width specifications for 
certain layers or minimal overlap specifications. Here we also specify the names of the 
different layers in the final layout. If a layer is given the name callcel, this layer will 
not be present in the final layout. This layer will be removed out of the layout by a 
special C-function, called del-cancel. 

7.2: Three tables specifying GM's functions 

In the following tables, details about the structure of GM are presented. The first table 
specifies the file in which a certain function can be found: 

FUNCTION: 

Min_cost! 
Min_cost2 
Min_cost3 
adaptl 
adapt2 
add_track 
addnetl 
addord 
after_place 
allow 
and_bitbit 
and_bitmat 
cal_fold 
calcul_coord 
case_T 
case_ps_t 
case_t 
case_tJs 
check dif 

IS DEFINED IN FILE: 

optimal.c 
optimal.c 
optimal.c 
adapt1.c 
adapt2.c 
matr_lay.c 
mkstr.c 
mkstr.c 
place1.c 
matr lay.c 
bitmat.c 
bitmat.c 
cOI_fold.c 
coord.c 
gen_lay.c 
coord.c 
gen_lay.c 
coord.c 
matr_lay.c 

15. If the reader haa: studied Chapter 11 on layout compaction, he will understand that all these variables only 
specify the neeeuary separation distance on one track. The compactor calculates the maximum of all 
the.a variables. 



check _ dif _placed 
choose_trans 
chose net 
col fold 
coordinates 
create _ bitmat 
delexc 
design_rules_cmos 
design_rules nmos 
det_hor 
det verI 
det ver2 
deter best track 
deter_pow _pos 
deter _track_pair 
determination 
detr pow 
disapprove 
end_generation 
exnet 
firstpla 
forbidden 
gateas 
get_bit 
improvement 
in it 
init active 
init coord 
init_generation 
init_ldmfile 
inityow 
initial 
innit 
inv_net 
kang 
layout_generation 
left_right_sets 
load 
loadexit 
loadmod 
loadter 
main 
matr init 
mkstr 
negpow 
net contacts 
net len 
net_placement 
netnam 
new _left_right_s 
new _net_contacts 
new new s net 
new_priint 
new s net 
new update_exits 

- 54 -

matr_lay.c 
matr_lay.c 
placel.c 
col fold.c 
coord.c 
bitmat.c 
mkstr.c 
cmos _rules.c 
nmos rules.c 
coord.c 
coord.c 
coord.c 
matr_lay.c 
power.c 
matr_lay.c 
optimal.c 
power.c 
power.c 
assist_lay.c 
mkstr.c 
mkstr.c 
placel.c 
mkstr.c 
bitmat.c 
optimal.c 
mkstr.c 
placel.c 
coord.c 
gen_lay.c 
assist_lay.c 
power.c 
placel.c 
col fold.c 
bitmat.c 
optimal.c 
gen_lay.c 
adaptl.c 
load.c 
load.c 
load.c 
load.c 
lead.c 
matr_lay.c 
mkstr.c 
mkstr.c 
adaptl.c 
optimal.c 
placel.c 
load.c 
adapt2.c 
adapt2.c 
adapt2.c 
adapt2.c 
adaptl.c 
adapt2.c 



nnplace 
noplace 
onplace 
ooplace 
opplace 
optimal 
or_bitmap 
or_bitmatr 
place_col 
place_con _trans 
place contact 
place dif 
place_exit 
place _gasodr 
place_grid 
place_net 
place nets 
placed 
ploce_net 
poplace 
powJrint 
pplace_dif 
ppplace 
pre_update _ dif 
priint 
prins 
print_coord 
printJos 
prrint 
rect 
set bit 
sodras 
sprinnt 
sprint 
start 
switch columns 
test_split 
trans 
two_track 
upd_del_col 
upd_del_columns 
upd_split 
u pd tr pieces 
update dif 

- 55 -

place2.c 
place2.c 
place2.c 
place2.c 
place2.c 
optima1.c 
bitmat.c 
bitmat.c 
col fold.c 
gen lay.c 
assist_lay.c 
matr_lay.c 
assist_lay.c 
gen_lay.c 
gen_lay.c 
matr_lay.c 
gen_lay.c 
optima1.c 
place2.c 
place2.c 
power.c 
gen_lay.c 
place2.c 
matr_lay.c 
adaptl.c 
cOl_fold.c 
coord.c 
power.c 
optima1.c 
assist_lay.c 
bitmat.c 
mkstr.c 
matr_lay.c 
mkstr.c 
optimal.c 
optimal.c 
matr_lay.c 
assist_lay.c 
optimal.c 
mkstr.c 
matr_lay.c 
matr_lay.c 
mkstr.c 
matr_lay.c 

The second table describes which functions are called, by functions located in a certain 
file, present outside this file. Due to the modular structure of GM, this table is not to 
extensive. 



FILE: 

adaptLc 
adapt2.c 
assist_lay.c 
bitmat.c 
cmos rules.c 
col_fold.c 
coord.c 
gen_lay.c 

lead.c 

load.c 
matr_lay.c 
mkstr.c 
nmos rules.c 
optimal.c 

placeLc 

place2.c 

- 56 -

CALLS FOR EXTERNAL FUNCTIONS: 

design rules cmos, design rules nmos 
end_generation, init_ldmfile, place_contact, place_exit, rect, 
trans 
adapt!, adapt2, col_fold, coordinates, detryow, 
layout_generation, load, mkstr, netylacement, optimal 

and bitmat, create bitmat, get bit, inv net, or bitmap, 
set_bit - - - -
check_dif_placed, choose_trans, matr_init, place_dif, 
ploce_net, pre_update_dif, sprinnt, upd_split, update_dif 
add~track, allow, check_dif, deter_best_track, deter_track_pair, 
place_net, test_split 

In the third and final table specifies which functions are called by a certain function. 

FUNCTION: 

Min cost! 

Min cost2 

Min cost3 

adapt! 

adapt2 

and bitmat 

case T 

case t 
chose net 

CALLS: 

get_bit 
two track 
create_bitmat 
get bit 
or_bitmap 
two_track 
get_bit 
kang 
left_right_sets 
net contacts 
new s net 
priint 
update_exits 
new _left_right_sets 
new net contacts - -
new_new_s_net 
new_priint 
new update exits 
get_bit -
set bit 
place_contact 
trans 
place_contact 
forbidden 



col fold 

coordinates 

delexc 
det hor 

det veri 
det ver2 
deter best track - -

detrJow 

exnet 
firstpla 

init_generation 
init_pow 
initial 

kang 

layout_generation 

load 

main 

- 57 -

place_col 
cal fold 
innit 
calcul_coord 
design_rules_cmos 
design_rules _ nmos 
det hor 
det veri 
det ver2 
init coord 
print_coord 
upd_del_col 
caseJs_t 
case_t_ps 
strncmp 
strncmp 
add track 
allow 
check_dif 
add track 
check_dif 
deter _ trackJair 
deter_pow JOs 
initJow 
addnetl 
addnetl 
addord 
gateas 
sodras 
init Idmfile 
disapprove 
init active 
matr_init 
get_bit 
net len 
set -bit 
switch_columns 
two track 
end generation 
init _generation 
place_eon_trans 
place_gasodr 
place_grid 
place_nets 
pplace dif 
loadexit 
load mod 
loadter 
netnam 
adapt I 
adapt2 
col fold 
coordinates 
detr pow 
layout_generation 



mkstr 

net len 
netylacement 

nnplace 

noplace 

onplace 

ooplace 

opplace 

optimal 

- 58 -

load 
mkstr 
netylacement 
optimal 
delexc 
exnet 
firstpla 
init 
negpow 
upd _ tr _pieces 
get_bit 
after place 
check_ dif _placed 
choose_trans 
chose net 
initial 
place_dif 
ploce net 
pre_update_dif 
sprinnt 
upd_split 
update_dif 
add_track 
allow 
check_dif 
deter_best_track 
noplace 
onplace 
place_net 
test_split 
add track 
allow 
check_dif 
deter_best_track 
deter_track _pair 
place net 
test_split 
add track 
allow 
check dif 
deter _ best_track 
deter_track yair 
place net 
test_split 
add track 
allow 
place_net 
add track 
allow 
check_dif 
deter_best _track 
deter_track yair 
place_net 
test_split 
Min costl 



place_nets 
ploce_net 

poplace 

pplace_dif 
ppplace 

start 

switch_columns 
two track 
update_dif 

- 59 -

Min_cost2 
Min cost3 
create _ bitmat 
improvement 
inv_net 
or_bitmap 
placed 
prrint 
set_bit 
start 
and bitmat 
determination 
get bit 
set bit 
case T 
case_t 
place contact 
place exit 
rect 
place_exit 
rect 
rect 
nnplace 
noplace 
onplace 
ooplace 
opplace 
pop lace 
ppplace 
add_track 
allow 
check_dif 
deter best track 
d~ter track Jair 
place net 
test_split 
rect 
add_track 
allow 
check_dif 
deter _ best_track 
opplace 
place_net 
poplace 
test split 
get -bit 
or bitmap 
set_bit 
main 
improvement 
placed 
upd _ del_columns 



Eindhoven University of Technology Research Reports 
Department of Electrical Engineering 

(159) Wang Jingshan 
HARMONIC AND RECTANGULAR PULSE REPRODUCTION THROUGH CURRENT TRANSFORMERS. 
EUT Report 86-E-159. 1996. ISBN 90-6144-159-5 

(160) Wolzak, G.G. and A.H.F.J. van de Laar, E.F. Steennis 
PARTIAL DISCHARGES AND THE ELECTRICAL AGING OF KLPE CABLE INSULATION. 
EUT Report 66-£-160. 1966. ISBN 90-6144-160-9 

(161) Veenstra, P.K. 

ISS» 0167-9708 
Coden: TEUEOE 

RANDOM ACCESS MEMORY TES~INGt Theory and practice. ~he gains of fault modelling. 
EUT Report 96-E-16l. 1996. ISBN 90-6144-161-7 

(162) Meer, A.C.P. van 
TMS32010 EVALUATION MODULE CONTROLLER. 
EUT, Report 66-£-162. 1986. ISBN 90-6144-162-5 

(163) ~tok, L. and R. van den Born, G.L.J.M. Janssen 
HIGHER LEVELS OF A SILICON COMPILER. --
EUT Report 86-E-163. 1986. ISBN 90-6144-163-3 

(164) Engelshoven, R.J. van and J.F.M. Theeuwen 
GENERATING LAYOUTS FOR RANDOM LOGIC: Cell generation schemes. 
EUT Report 86-E-164. 1986. ISBN 90-6144-164-1 

{165} ~, P.E.R. and A.G.J. Slenter 
GAOL: A Gate Array Description Language. 
EUT Report 87-E-165. 1987. ISBN 90-6144-165-X 

(166) Dielen, M. and J.F.H. Theeuwen 
AN OPTIMAL CMOS STRUCTURE FOR THE DESIGN OF A CELL LIBRARY. 
EUT Report 87-E-166. 1987. ISBN 90-6144-166-8 

(167) Oer1emans, C.A.M. and J.F.M. Theeuwen 
£SKISS: A program for optimal state assignment. 
EUT Report 87-E-167. 1987. ISBN 90-6144-167-6 

(168) Linnartz, J.P.M.G. 
SPATIAL DISTRIBUTION OF TRAFFIC I~ A CELLULAR MOBILE DATA NETWORK. 
EUT Report 87-E-168. 1987. ISBN 90-6144-168-4 

(169) Vinck, A.J. and Pineda de Gyvez, K.A. Post 
IMPLEMENTATION AND EVALUATION OF A COMBINED TEST-ERROR CORRECTION PROCEDURE FOR MEMORIES WITH DEFECTS. 
EUT Report 87-£-169. 1987. ISBN 90-6144-169-2 

(170) Hou Yibin 
DASH: A tool for decomposition and analysis of sequential machines. 
EUT Report 87-E-170. 1987. ISBN 90-6144-170-6 

(171) Monnee, P. and M.H.A.J. Herben 
MULTIPLE-BEAM GROUNDSTATION REFLECTOR ANTENNA SYSTEMt A preliminary study. 
EUT Report 87-E-171. 1987. ISBN 90-6144-171-4 

(172) Bastiaans, M.J. and A.H.M. Akkermans 
ERROR REDUCTION IN TWO-DIMENSIONAL PULSE-AREA MODULATION, WITH APPLICATION TO COMPUTER-GENERATED 
TRANSPARENCIES. 
EUT Report 87-E-172. 1987. ISBN 90-6144-172-2 

(173) Zhu Yu-Cai 
ON A BOUND OF THE MODELLING ERRORS OF BLACK-BOX TRANSFER FUNCTION ESTIMATES. 
EUT Report 87-E-173. 1987. ISBN 90-6144-173-0 

(174) Berkelaar, M.R.C.M. and J.F.M. Theeuwen 
TECHNOLOGY MAPPING FROM BOOLEAN EXPRESSIONS TO STANDARD CELLS. 
EUT Report 87-E-174. 1987. ISBN 90-6144-174-9 

(175) Janssen, P.H.M. 
FURTHER RESULTS ON THE McMILLAN DEGREE AND THE KRONECKER INDICES OF ARHA MODELS. 
EUT Report 87-E-175. 1987. ISBN 90-6144-175-7 

(176) ~, P.H.M. and P. Stoica, T. Soderstrom, P. Eykhoff 
MODEL STRUCTURE SELECTION FOR MULTIVARIABLE SYSTEMS BY CROSS-VALIDATION METHODS. 
EUT Report 87-E-176. 1987. ISBN 90-6144-176-5 

(177) Stcfanov, B. and A. Veefkind, L. Zarkova 
ARCS IN CESIUM SEEDED NOBLE GASES RESULTING FROM A MAGNETICALLY INDUCED ELECTRIC FIELD. 
EUT Report 87-E-177. 1987. ISBN 90-6144-177 

(178) Janssen, P.H.M. and P. Stoica 
ON THE EXPECTATION OF THE PRODUCT OF FOUR MATRIX-VALUED GAUSSIAN RANDOM VARIABLES. 
EUT Report 87-E-178. 1987. ISBN 90-6144-178-1 


	Contents
	List of figures
	Abstract
	1. General introduction
	2. The gate matrix layout style
	2.1 Introduction
	2.2 Definition of the problem
	3. Structure of a gate matrix layout generator
	4. Generating the gate matrix structure
	5. The gate order
	5.1 Some ordering methods
	5.2 A Kang based algorithm for gate ordering
	6. Column folding
	6.1 The folding problem 1
	6.2 The folding problem 2
	6.3 The folding algorithm
	7. The Net placement
	8. Net placement with column folding
	9. The final steps of the placement
	9.1 The function l
	9.2 The function k
	9.3 Realizability of the layout
	10. The power lines
	10.1 The power matrix
	10.2 Calculation of the power line positions
	11. Compacting the payout
	12. Some results
	13. Suggestions for continuation
	14. Conclusions
	Appendix 1: Literature
	Appendix 2: Layout example (83 transistoren)
	Appendix 3: Larger layout example (180 transistoren)
	Appendix 4: An example pf layout inefficiency
	Appendix 5: An example of shape flexibility
	Appendix 6: Another example of shape flexibility
	Appendix 7: Implementation details

