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1 Introduction

Golden Ten is a modified version of roulette. The game is played with a small ball
moving in a relatively large bowl, at the bottom of which there is a ring with numbered
compartments. The main differences with Roulette are that the drum is in fact a smooth,
conic bowl, in which the ball is smoothly spiraling down, and secondly that the players
do not have to stake before the ball has reached a certain level. Although the players
can not effect the motion of the ball, it is claimed that the possibility to observe part of
the ball's orbit enables them to make a better than random guess on the outcome, thus
implying that Golden Ten is a game of skill, rather than a game of chance.

The main attributes of the game are a solid little ball, made of ivory-like synthetic
material, and a big, slightly grooved, uncoated metal drum. Figs. 1 and 2 respectively
contain a top- and a side-view of the drum. At the beginning of the game, the ball
is launched from a slit plastic arm at the upper rim of the drum. After rolling a few
rounds alongside of the rim, the ball gradually spirals down the drum, towards a ring
with twenty-six numbered, equally large compartments. On the surface of the drum two
concentric circles have been drawn (as shown in Fig. 1). The upper circle is called the
observation ring, the lower one is the limit ring. The players start betting - on one or
more possible outcomes - when the ball reaches the observation ring, and the betting
must be stopped at the limit ring.

This paper employs a mechanical model to describe the motion of the ball in the
drum. The result of this model is a set of differential equations. Provided that the values
of the physical constants in the model are known, this set of equations can be solved
numerically. The friction coefficients generate a problem here, because they have to be
estimated by means of complementary experiments. After the numerical solution has
been presented, the paper proceeds with a quest for an analytical solution. The system
of equations is rewritten in terms of a set of small parameters - implicitly representing
the friction coefficients and the drum's angle of inclination - and an analytical method is
employed to express the solution as an asymptotic power series. A part of the solution
will even be determined exactly. At the end of the paper, the attained results will be
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Figure 1: The Golden Ten drum; top-view.
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Figure 2: The Golden Ten drum; side-view.
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Figure 3: The moving frame {Oele2e3}; top-view.

utilized to predict the outcome of the game. The paper concludes with some suggestions
and directives for further research.

2 The mechanical model

The most natural model to describe the motion of the ball is a three dimensional rigid
body model, but before such a model can be constructed, we have to make some basic
assumptions:

i) the ball is considered to be a uniform sphere;

ii) the drum is assumed to be rotationally symmetric;

iii) the surface of the drum - including that of the rim - is considered to be so smooth
that the ball rolls without bouncing, but (on the other hand) so rough that the
ball - after two or three revolutions along the rim - rolls without slipping;

iv) the motion of the ball is completely deterministic, Le. no random factors are in­
cluded.

No assumptions are made for the, preferably, horizontal position of the drum, Le. we
allow for a slightly tilted position. We denote the angle over which the drum is tilted
with f3. The radius of the ball is a, that of the rim is R.,.im, whereas Rnum denotes the
radius of the numbered ring. The angle of inclination of the conical drum surface is a
(as in Fig. 2). Note that 0 < a ~ 1r/2 and 0 :5 f3 ~ a.

A moving rectangular coordinate system {Oe l e2 e3 } is introduced to describe the
motion of the ball on the drum surface (see Figs. 3 and 4). Here, the origin 0 coincides

3
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Figure 4: The moving frame {Oele2ea}; side-view.

with the apex of the drum, e l points in the direction from 0 to P - being the point of
contact between the ball and the drum - and e3 is parallel to the drum surface normal
in P. Calling c.p the angle of rotation of e l about the central axis of the drum, we obtain
for the angular velocity [J of the {Oe 1 e~e3} frame:

[J = ep sin ae l + ep cos ae3 0

The rotation of the coordinate axes can thus be written as

(1)

(2)

The position :Co of the centre of the ball 0, with respect to 0, can be written as

(3)

where r is the distance from 0 to P. The velocity 110 of 0 is the time derivative of :Co,

so it equals
110 = Zo = rei +rei +ae3 0

By substituting (2) into (4), and introducing

(4)

R = r cos a - a sin a, (5)

we obtain

110 rei + (rep cos a - aepsina)e~

R R'- --e l + c.pe~.
cos a

(6)

Likewise, the acceleration of 0 is
00 °

R R. RO

• R" R"--e l +--e l + c.pe~ + c.pe~ + c.pe~
cos a cos a

(~- Rep2 cosa)e l + (Rrj; +2Rep)e~ +Rep2 sinae3 •
cos a

(7)
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According to assumption iii, the ball purely rolls, hence the instantaneous velocity
Vp of P is zero. With w denoting the angular velocity of the ball, this implies

0= Vp = Va +w X (-aea).

Substitution of (6) into (8) yields

Rrj; R .
w =--e 1 + e~ +1jJea,

a acosa

(8)

(9)

where;P denotes the third component of w. We will call this third component the spin.
The time derivative of w follows from differentiating (9) and substituting (2) into the
result, i.e.

Rrj; + Rep Rrj; . R R. .i. .i. .
w = e 1 - -e 1 + e~ + e~ + 'f/ea + 'f/eaa a acosa acosa

Rep + 2Rrj; (R- Rrj;2 cos2 a . .i.') (Rrj; tan a .j,)
- - e 1 + - <p'f/ sm a e~ + + 'f/ ea'

a acosa a
(10)

The equations of motion are implicitly contained in the law of momentum and that
of moment of momentum. With m representing the mass of the ball, and. F the total
force acting on the ball, the first law reads

and the second states
Iw=M,

(11)

(12)

with I being the central moment of inertia, so I = ~ma2, and M being the momentum
about o. Before we can elaborate these equations - by writing them out in components
with respect to the {Oele~ea} system - we first must specify F and M. Four distinct
forces act on the ball: the normal force Fn, the frictional force (or dry friction) Fd,
the resistive force Fa (due to air friction) and the gravitational force Fg • These forces
combine into

Fn + Fd + Fa + Fg = F. (13)

We note that the forces Fn , Fa and Fg act in 0, whereas the line of action of Fd is
through P. Hence, only Fd contributes to the moment about o.

The normal force can simply be written as

(14)

where N is a nonnegative scalar. Likewise, the frictional force, which is tangent to the
surface of the drum in P, is given by

(15)
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The resistive force Fa is due to the air friction the ball experiences on account of the
translation. Since this force is directed opposite to v o , and its magnitude depends on Vo ,

we write

where

Fa - -mf(vo)vo

- -mf(vo)( -.!!:...-e 1 + Rrj;e~),
coso

(16)

R2
Vo= IIvo ll = --+R2rj;2, (17)

cos2 o
and f( vo ) is assumed to be a simple function of vo , e.g. a constant or a linear function.
For the gravitational force, we know that it would be directed along the central axis
of the drum, if the position of the drum was exactly horizontal (the ideal case). Since
we here assume that the drum is tilted about a small angle {3, and that the plane of
inclination is rotated about an angle epp (epp E [0,211'")), we now have that Fg takes the
form

Fg = mg(cos 0 sin {3 cos(ep - epp) +sin 0 cos {3) e 1

+ mg sin {3 sineep - epp) e~

+ mg(sin 0 sin {3 cos(ep - epp) - cos 0 cos {3) e3 , (18)

where 9 respresents the acceleration of gravity.
The last term to express in {ele~e3} coordinates is the total moment M. M is

composed of two parts: the rolling resistance M r , which is assumed to be proportional
to the spin (rolling resistance due to the in-plane rotations WI and W2 is neglected), and
the moment M d , which is caused by the frictional force Fd • Hence

(19)

with
(20)

and
M r = -Nh~e3' (21)

where h is a friction coefficient. From (3), (6) and (9), we know that the motion of
the ball is completely determined by the three variables R, ep and~. By writing (11)
and (12) out in components in the {Oe 1 e~e3} system, and by eliminating the unknowns
N, DI and D2 , we obtain

R - -~f(vo)R + Rrj;2 cos2 0 + ~rj;~ sin(2o) - ¥cos2 o(sin{3 cos(ep - epp) + tan 0 cos {3)

ep -~f(vo)rj; - 2Rj +¥-k sin {3 sin(ep - epp)

1/J - ;~ ~{Rrj;2 sin 0 - g(sin 0 sin {3 cos(ep - epp) - cos 0 cos {3)} - ~Rep tan 0 .

(22)
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Figure 5: The ball rolling along the rim.

The above system of differential equations can only be solved when complemented
with a set of initial conditions. We derive these conditions by again using assumption
iii: when the ball is rolling along the rim, we know (see Fig. 5) that the instantaneous
velocity VQ of Q - being the point of contact between rim and ball - must be zero. So

o = vQ = Va +w X a(cos ae 1 - sin ae3 ). (23)

By substitution of equations (6) and (9) into (23), we find

R(I - sin a) . .
---'---.........:..e 1 + {a¢cosa +Rcp(I- sina)}e2 - Re3 = o. (24)

cosa·
Let the initial time t = 0 be the time when the ball leaves the rim. From (24) we conclude
that, at t = 0, the ball momentarily moves in a circular orbit (R = R= 0), with radius
R(O) = Rrim - a. Furthermore, since we are only interested in the relative difference
between the point where the ball leaves the rim and that where it ultimately hits the
~umbered ring, we may choose cp(O) arbitrarily, so we have cp(O) = cpo. To find cp(O) and
¢(O), we combine the second term in (24) with the first equation in (22), whence

(25)

0,,.-----------
Sg(sina cosp+cos a sinp cOS(<Po-<P,,)

R(O)(7 cos a-2 tana(l-sina»

R(O) ­

cp(O) -

Rrim - a,R(O)

cp(O) - cpo,

tb(O) R(O)cp(O)S~~~s-al ,

At this point, we have derived a system of three nonlineair second order differential
equations (22), with a proper set of initial conditions (25). This system completely
determines the motion of the ball in the drum, but unfortunately it does not allow for
any standard analytical solution method.

3 Numerical solutions

Any system of second order differential equations can be rewritten as a system of first
order differential equations by introducing some extra variables. To this end, we define

Xl = R, X2 = R, X3 = cp - cpp, X4 = cp, Xs = tb, (26)

7



and regard these variables as components of the five-vector

(27)

With these new variables, the equations of motion (22) can be rewritten as

Xl -
X2 -
X3 -
X4 -
Xs -

where

X2

- ~ f( Va )X2 +Xl X4 2
COS

2 0' + ~X4XS sin(20') - ~ (COS X3 sin {3 + tan 0' cos {3) cos2 0'
X4

-.2f(v)x - 2~ + ~sinx3 sin{3
7 a 4 Xl 7 Xl

- ;/:2 Xs {X1 X 4
2 sin 0' +g(cos X3 sin 0' sin {3 - cos 0' cos {3)} - ~X2X4 tan 0',

(28)

(29)

Likewise, with
XOi = Xi(O),

the initial conditions (25) can be transformed into

(30)

X01 - Rrim - a
X02 0
X03 - 0 (31)
X04

Sg(sina cos,8+cos a sin,8)- (7 cosa-2 tana(l-sina»xol

XOS - l-sina X X
-~ 01 04,

where the value of epo - ep,8 is, for the sake of simplicity, set to zero. The system of
differential equations is now written in the formal representation

with initial conditions

d~;t) = j(z(t)),

z(O) = zoo

(32)

(33)

We can solve this type of differential equations by using a Runge-Kutta method, but
before we can run such a routine, we have to fill in the numerical values of the system
parameters in both (28) and (31).

When the game is played under ideal circumstances (Le. with a perfectly horizontal
position of the drum), we have

{3 = ep,8 = O. (34)

The dimensions of the drum and the ball are supplied by [De Vos 1994], from which we
obtain

a = 0.0175 (m), Rrim = 0.487 (m), Rnum = 0.205 (m), 0' = 0.083 (rad). (35)

For the acceleration of gravity we have

9 = 9.807 (m/se!?).

8
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The values according to (34)-(36) lead to the following initial conditions

XOI = 0.470 (m), X02 = X03 = 0, X04 = 1.13 (rad/sec), X05 = -28 (rad/sec), (37)

or, as a vector,
Zo = (0.470,0,0,1.13, -28). (38)

This leaves us with the unknown friction coefficient h and the unknown friction func­
tion f. In first instance, we neglect the resistive force due to spin, implying

h = O. (39)

For the air resistance we have two simple options: the resistive force can be assumed to
be directly proportional to the speed V o , in which case

(40)

or we can postulate a pure quadratic model, implying

(41)

We tentatively consider these models to be equally acceptible, so we will - until further
notice - employ them both. At the final time tf, when the ball hits the numbered ring,
we have

(42)

which provides us with an extra condition for Xl' The value of tJ can be estimated by
using the experimental data supplied by [De Vos 1994]. From orbit T11B21 - which is
one of the smoothest orbits, and therefore will serve as an example - we obtain the value

fj = 116 (sec). (43)

We can now determine the two coefficients f/ and fa by running two Runge-Kutta pro­
cedures (one for each friction model) for varying values of f/ and fa, while continually
checking on condition (42), with tJ substituted by fj. This method eventually yields the
rough estimates

0.015 (sec-I),

0.035 (m-I
).

(44)

(45)

With the above data we have run the Runge-Kutta routine ODE45.M, supplied by
the mathematical software package 386-MATLAB©, where we set the error tolerance
to 10-6

• The results are reported in Figs. 6-11, where the dashed graphs represent
the output from the quadratic friction model. Fig. 6 shows an almost linearly evolving
total covered angle <p, for both models. Therefore, and because the motion of the ball
is in fact an orbit round the centre of the drum, we will often consider the solution as a
function of <p, rather than of t. A more natural way to observe the motion of the ball,
especially from a player's point of view, is thus depicted in Fig. 7. It shows that the
ball slowly spirals down the drum, with clearly perceptible elliptical revolutions. The
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Figure 6: Total covered angle cp
as function of time t.

Figure 7: Radius R as function of cp.
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Figure 9: Radial velocity R
as function of cp (quadratic model).
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distance to the centre of the drum decreases slightly faster in the quadratic case, as do
the corresponding oscillations (see Figs. 8 and 9). The angular velocity of the ball shows
a gradual increase, whereas the spin gradually decreases (see Figs. 10 and 11). Although
the two friction models lead to different results, the overall characteristics appear to be
very similar. We prefer to work with the linear model. Our reasons for this preference
will be stated in the next section.

4 Analytical solutions

In this section - as in the previous section - we neglect the spinning resistance, and
assume that the drum is in a perfectly horizontal position. Hence the motion of the
ball primarily depends on the resistive force due to air friction. In order to bring an
analytical approach within reach, we somewhat simplify the model by assuming that
the resistive force Fa is a linear, rather than a quadratic, function of the speed Va' The
consequences of this are discussed later on in this section (in connection with Fig. 13).
By our assumptions, system (22) simplifies to

R - -~flR +R<p2 cos2 a +e;<p-J - ~) sin a cos a

cp - -(~fl + 2~)<p (46)

1/J
1 •

- -;;:R<p tan a .

11



When air resistance is completely neglected (J(vo ) = II = 0), the equations of motion
admit three first integrals, representing conservation of angular momentum - about two
distinct axes - and of energy.

4.1 An exact solution

When II = 0, the equations in (46) reduce to

R Rep2 cos2 a + (2; ep~ _ 5:) sin a cos a,

2R .ep - Rep,

1 .
t/J - --Reptana.

a

From (48) we find that

(47)

(48)

(49)

(50)

(52)

!!:-{R2 '} = 0dt ep ,

reflecting conservation of angular momentum about the central axis of the drum. Com­
bination of (48) and (49) leads to conservation of angular momentum about the axis of
spm, or

d .
dt {a2t/J - aRept~na} = O. (51)

Another quantity that is preserved in the absence of air friction is the total energy, being
the sum of kinetic and potential energy. From equations (47) to (49) we can deduce

d 7m R,2 ma2 .
dt { 10 (cosa2 +R2ep2) + -5-t/J2 +mgRtana} = O.

Hence, the most direct way to study the dependency on coefficient II is by analyzing the
momentary changes in the three physical quantities in equations (50) to (52).

To this end, let us consider the new variables

After differentiation we find

, R2 • , .j, R'Yl = ep, Y2 = a'f' - ep tan a.

., 5t 'Yl - -7 IYl'

., 5 Y~
Y2 - -711 R tana.

(53)

(54)

(55)

A full system of differential equations can be obtained by completing this set of variables
with R. Note that expression (52) will not be used here, since it will needlessly complicate
the calculations. After standardizing the variables to initial values 1 and 0, we obtain
three new variables

R2ep a~ - Rep tan a R
Yl = R(O)2ep(O)' Y2 = a~(O) _ R(O)ep(O)tana' Y3 = R(O)'

12
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Figure 12: Regression residuals

and a system of nonlinear differential equations

Y2 (57)

Y - - §..lY +.2.L( 7-5sin
2

cr ~ _ 2sincr 11J11l.. + 1) sin Q' cos Q'
3 - 7 I 3 7R(O) 7-2sincr-5sin2 cr Y32 7-2sincr-5sin2 cr Y32 ,

with initial conditions
Yl(O) = Y2(O) = Y3(O) - 1

(58)
Y3(O) - O.

The first equation in (57) is uncoupled from the rest of the system, and leads - through
the corresponding initial condition in (58) - to the solution

(59)

This formula expresses the explicit dependency of the total covered area per unit time
R2ep on the air friction coefficient 11 and time t. It does however not provide separate
formulas for any of the basic variables R, ep, or tb.

4.2 An estimated solution

By fitting equation (59) to the experimental data provided by [De Vos 1994], we can
expect to obtain a more accurate estimate of coefficient 11 than in (44). A logarithmic

13
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Figure 13: Total covered area per unit time R2<i' as function of t.

transformation and a simple linear regression model, applied to orbit TllB21, yield the
estimated value

1, = 0.014 (sec-I). (60)

Note that this value differs only slightly to the one in (44). Fig. 12 shows the residuals
from the regression model. The apparently small residuals indicate a close fit, but the
rough sine shape does not indicate a truely linear friction model. But it also does not
point to a truely quadratic model, as can be seen in Fig. 13, where we used the earlier
estimates of II and Is to plot Yl for both friction models (the dashed line respresents the
quadratic model). Because of its elegance and greater simplicity, we favour the linear
model.

Substitution of the estimated II in (60) into the Runge-Kutta procedure does not lead
to an orbit that closely matches example orbit T11B21. One of the obvious reasons for
this is that the experimentally determined initial angular velocity appears to be lower
than the theoretical value of 1.13 (rad/sec) in (37). [De Vos 1994] reports the value

<i'(O) = 1.09 (rad/sec). (61)

Fig. 14 compares orbit T11B21 to the Runge-Kutta output based on the newly estimated
values of II and <i'(0) (the dashed graph represents the Runge-Kutta output). The overall
shape of the graphs appears to be quite similar, especially during the first part of the
experiment. However, the second part shows a slightly varying phase shift and a small
variation in amplitude. For a closer match we obviously need an extended model. The
influence of the system parameters and the initial conditions on the orbit of the ball
can be better judged when system (46) is supplied with an analytical solution. Since
such a solution is not available, we are confined to an asymptotic solution. In the next
subsection, we will present such a solution. The asymptotics are based on the small
values of II and 0'.
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Figure 14: A comparison of numerical results and experimental data

4.3 Asymptotic solutions

Since the motion of the ball is an orbit round the centre of the drum, it is only natural
to replace independent variable t in system (57) with variable <po From the definitions
in (56) we immediately find

d<p = . = '(O)Yl
dt <p <p u2'

where we have introduced the new variable

1
u= -.

Y3

This change of variables transforms (62) into the new system

(62)

(63)

t - _..llL...L
7",,(0) u2

t ..llL(' ) 1 (64)- - 7",,(0) sm a it

J2u = -(1 - 2 sin2 a)u + (1 - ~ sin a - 2 sin2 a)_I- + ~(sin a)1ll .
d<p2 7 7 7 Y1 2U2 7 Yl

Note that we used relation (25) to eliminate the coefficients 9 and R(O). Note also
that the new set of equations reveals an explicit dependency on only two, dimensionless
parameters

and

5fl -3
C = 7ep(0) ~ 8.8 X 10 ,

S =sina ~ 8.3 x 10-2
•
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The approximate values are based on the measurement results in (35), the estimated
value J, in (60), and the theoretical value of ep(O) in (37).

The expression in terms of two small parameters tempts us to employ an asymptotic
method. To this end, we need an independent variable of magnitude 0(1), whereas the
current variable cp reaches as far as 160. We therefore define a new variable

¢> = ecp, (67)

which is of magnitude 0(1). We can now try to expand the solution into an asymptotic
power series in 8 and e, with coefficients expressed in terms of ¢>: the powers will indi­
cate the order of the approximation, the coefficients reflect the overall behaviour. The
behaviour of the solution is depicted in Fig. 7, showing a smooth downward movement,
whereupon superposed a small oscillation. The period of the oscillation appears to be of
O(e-1 ) when considered as a function of ¢>, and of 0(1) when considered as a function of
cp. Hence, this process has two different time scales, represented by cp and ¢>. Therefore,
it is useful to consider Yll Y2, and u as functions of both variables cp and ¢>. To this end,
we introduce new variables by

1
v(cp,¢» = -, w(cp,¢» = Y2, u(cp,¢» = u.

Yl
System (64) now transforms into

8v + ",.8vl¥ "a¢ -

8
2
u +2eA +e28

2
u -(1 _ 282)u + (1 _ '£8 _ 282 ) v

2 + '£8vw8cp2 vcpv'f' 8¢>2 7 7 7 u2 7 •

Without loss of generality we furthermore assume that

cp(O) = ¢>(O) = 0,

thus transforming the set of initial conditions in (58) into

v(O, 0) = w(O,O) = u(O,O) 1

~(O, 0) +e~(O, 0) = O.

We now expand u, v, and w into the following asymptotic power series

u - E~o 8iui +O(8m +I )
v - E~o 8ivi +0(8m +I)
w - E~o8iwi +0(8m +I) ,

with
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We shall try to find solutions for Uij, Vij, and Wij - on a limited time scale, where
<jJ = 0(1), cp = O(C;-l) - by substituting these power series into (69) and (71), and
by matching the corresponding powers ~ic;j. We start by comparing the powers of c;,

tentatively neglecting the influence of parameter~. The equations in (69) thus simplify
to

%~ +c;%i! c; ~~~

~~o +c;~~o _ 0

82 82 82 2
~+2C;~+c;2~ - -u +~.
~ OcpO<p 8<jJ2 0 tl;!

The second equation in this system leads - via (71) - to the simple solution

Wo = 1.

(74)

(75)

This leaves us with only two variables, Uo and Vo, representing the first order approxi­
mations of radius R and angular velocity cp. Substitution of power series (73) into the
first equation in (74) yields

o= C;O [
8v

OO] +
8cp

1 [ 8VOI 8vOO Voo
2

]

c; 8cp + 8<jJ - uoo2 +
C;2 [8V02 + 8 VOI + 2UOI voo

2
_ 2VOOVOl] + (76)

8cp 8<jJ uoo3 uoo2

.,.3 [8V03 8 V02 3U012Voo2 2U02VOO2 4UOIVOOVOI V01
2

2VOOV02] O( 4)
<;. -+-- + + --- + c;

8cp 8<jJ uoo4 uoo3 uoo3 uoo2 UOo2 '

whereas substitution into (71) yields

In a similar way we can write out the third equation in (74):

0=
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with corresponding initial conditions - from (71) -

and

0= eO [8;;(0,0)] +el [8;;1 (0, 0) +8;;(0,0)] +

e2 [8;;2 (0,0) + 8;;1 (0, 0)] +e3[8;;3 (0,0) + 8;;2 (0, 0)] +O(e4
). (80)

We start by matching the coefficients of eO in (76) and (78), from which we find

V 2
-Uoo+~ .

Uoo

(81)

The corresponding initial conditions follow from matching the coefficients of eO in (77),
(79), and (80):

VOO(O, O) = UOO(O, 0) - 1

8;;(0,0) _ °
The solution to these equations is given by

(82)

(83)

We proceed with the coefficients of el . Substitution of the solutions for Uoo and Voo into
(76) to (80) renders

(84)

with initial conditions
UOI (0,0) = VOl (0,0) ­

8;~1 (0,0) _ ° (85)

Since the functions Vii represent coefficients in an asymptotic power series, we know
their magnitude to be of 0(1). A bounded solution to the first equation (84) can only
be acquired if

dVoo _ lfc 2/3
d<jJ - 00 ,

which leads - via (83) - to the solutions
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Substitution of these results into system (84) yields

8a~) - 0

82u V
~ + 3UOl - 6tf3,

from which we find

2Vln(<P) . ~) () (~)
VOl =l;(n(<P), UOI = <p+3 +Al (<p)sm(v3cp +Bl <P cos v3cp,

with - from the initial conditions in (85) -

2
Al(O) = -gV3, Bl(O) = o.

The coefficients of e2 in (76) and (77) lead to

8V02 dllcn 2llcn . ~ ~)] ( )
8cp = - d<p + <p + 3 - 2[A) sm(v3cp) +Bl cos(v3cp ,V02 0,0 = o.

The solution remains bounded only if

dlfcn 2~1

d<p = <p +3'

yielding - with (89) -
VOl = ~l =0,

and

(88)

(89)

(90)

(91)

(92)

(93)

(94)
2v'3 . ~ 4

V02 = ~2(<P) + -3-[Al (<p) cos(V3cp) - Bl (<p)sm(v3cp)], ~2(0) = g.
Substitution of (93) and (94) into the coefficient of e2 in (78) yields

82u02-- +3U02 =8cp2

_~+ 6V02 +2V3[(dBl _ 2Bl )sin(V3cp)_(dAl _ 2Al )cos(V3cp)]+
9 <p + 3 d<p <p + 3 d<p <p + 3

2(<p2: 3)2 [(A1
2+B1

2
) + 2A l B) sin(2V3cp) + (B1

2
- A1

2
) cos(2V3cp)], (95)

which can only lead to a bounded solution if

*-1~1 - 0

dJlt -l~] = O.

Combining this result with the initial conditions in (90) renders the solution
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which - with (89) and (93) - leads to

2v'3( 4»2' ( r.; )
UOI = - -9- 1+ 3" sm V 3<p • (98)

We can continue this process of matching and substitution until we reach a satisfactory
level of accuracy, say 0(e3 ). For the corresponding coefficients we thus obtain

V02 - 8
2
1(1 + ~)( 4>2 + 154> + 18 - (1 + ~) cos(V3<p)), (99)

U02 - 8
2
1 (</J2 + 124> + 12 _ 4>3 + 10:: + 351 cos(V3<p) + (1 +~? cos(2V3<p)XI 00)

Here we finally found an explicit solution to the simplified system in (74). Conclusions
are left for the next section.

5 Conclusions

In a deterministic model, the orbit of the ball in the drum is completely determined by
the equations of motion, as in (25) and (46). This system of equations can be solved
numerically by employing a Runge-Kutta method - as depicted in Figs. 6 to 11 - and part
of the solution can even be obtained exactly - as in (59) - through simple calculus. The
full system of equations can however not be solved analytically, so we have to recourse
to asymptotic methods to approximate the solution to a certain accuracy. The explicit
expressions of the solution can be utilized to determine or predict the orbit of the ball, and
hence the outcome of the game, but the experimental data from [De Vos 1994] already
indicate that a completely deterministic model will not suffice, and random factors will
have to be included. Nevertheless, we can draw some interesting conclusions from the
results we found so far.

The outcome of the game can be represented by the final angle

(101)

The final angle can be computed by substituting the estimated coefficient of air friction
from (60) and the observed initial angular velocity from (61) into a Runge-Kutta proce­
dure, as has in fact already been done in Section 4.2. Fig. 14 however shows that this
estimated final time is unfit for use. By employing an extended model, we might expect
to obtain a better estimate, but we still have to realize that even a small inaccuracy in
one of the parameters will lead to an entirely different outcome. Nevertheless it is often
claimed that players can make a better than random guess on the outcome by adding the
estimated final angle to the angle where the ball leaves the rim. Although this strategy
may seem simple and effective, it has several drawbacks, one being the fact that the
point of descent is very hard to determine by mere observation.

A more manageable prediction method might emerge from the asymptotic results in
Section 4.3. There we found an explicit expression for variable Uo, which - according to
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Figure 15: Variable Uo compared to variable u

(56), (63) and (72) - roughly coincides with the reciprocal of radius R. From equation
(98) we can deduce

Uo2 _ (1 + ~)4{1 _ 4e~ sin(V3cp)} +0(e2
)

_ (1 + ~)4{1 + 4e~ cos(V3(cp + 11"~))} + 0(e2
), (102)

which - particularly the part between the braces - strongly resembles the phase plane
equation of an ordinary ellipse:

2a2b2

-- = (b2 +a2
) + (b2

- a2 )cos(2cp).p2

Apart from a decaying factor (1+~)4, the expression of uo2 in (102) represents an elliptical
curve with an ellipticity of 1- ~V3e+0(e2). Since Uo is apparently periodic with period
211"/ V3, the orientation of the elliptical curve varies with cpo If Uo would exactly represent
the reciprocal of radius R, then any of its observed minima - or maxima - could be used
to extrapolate to the next or to the previous minimum, and thus to the position where
the ball left the rim, or even to where it will fall down in the numbered ring. Major
drawbacks of this strategy are that Uo does not exactly represent the reciprocal of R,
and that the ball does not necessarily have to fall down at one of the curve's minima.

Since the pattern of rotating ellipses is quite easy to observe, it could provide a helpful
mechanism for predicting the outcome of the game. For an accurate prediction algorithm
we obviously need accurate approximations, but here we still have to cope with an error
of 0(6). Fig. 15 compares Uo (which is represented by the dashed line) to the numerical
results for u = Ra/R. The most remarkable difference is a change in periodicity, which
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must be caused by neglecting the influence of parameter b. These b-effects will have to be
determined through future research; because of the shifting periodicity, we believe that
the Poincare-Linstedt method will eventually lead to a fitting asymptotic power series.
From the supplemental asymptotic results we will be able to derive some practical rules
of thumb, which will allow players to predict the outcome of a deterministic game.
Nevertheless, a prediction strategy for Golden Ten will not be available until we have
extended our deterministic model with some random factors; the nature of these factors
will have to be determined through matching the deterministic solution to experimental
data, as provided by [De Vos 1994].
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