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1. ABSTRACT 

In this report an approach is presented towards the problem of making 
a standard cells IC implementation from a previously optimised and 
decomposed set of boolean functions. The algorithms were implemented 
in Comrnonlisp. 

The library of standard cells should contain and-or-invert-gates up to 
a certain maximum size. Libraries of standard cells for NMOS or CMOS 
technologies usually do. This maximum size is a parameter to the 
algorithms, so the program can be used for different libraries of 
standard cells. 

The total problem is split up into two subproblems which are treated 
separately. First, functions which do not fit into standard gates 
directly, are split up in pieces small enough to fit. Second, the 
inverters, which are necessary between the gates in a technology with 
and-or-invert-gates, are removed if possible. Special attention is 
paid to the inverters on the critical path to speed up the circuit. 

Both problems are attacked in a partly heuristical and partly analyti
cal way. The heuristical part limits the problem to a size small 
enough for an analytical approach, which then solves the limited prob
lem completely optimal. 

Trial runs with international benchmark examples have shown that the 
approach shows good results. 
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2. INTRODUCTION 

2.1 A Short Overview 

Nowadays big efforts are made to generate the layout of (VLSI) 
integrated circuits automatically, or at least with a lot of computer 
support. In an ideal situation, the designer would feed some kind of 
functional description of the desired integrated circuit into the com
puter, push a button, and after a certain time the complete layout 
description, ready to go to the mask fabrication, would be produced. 
Currently, only some stages of the whole process are completely 
automatic. The designer still has to make a lot of choices Bt various 
points of this process. 

This report treats some of the problems which arise in the this field 
of automatic generation of layout for integrated circuits. Specifi
cally, we will describe some steps in the process from algebraic 
description of a piece of combinational logic to a so-called standace 
cell implementation. This process consists roughly of two steps, the 
first being logical optimisation, and the second technology mapping. 
This last step is the subject of this study. 

2.2 Some Definitions 

Throughout this report a number of terms will be used with a specific 
meaning in this context. The logical inversion of an expression will 
be denoted with a bar over the expression (i.e. expression). The 
meaning of the terms "literal" I "operator", "expression" and "func
tion" can be derived from the following description: 

<letter> : :- "a" "b" HZ" I "A" I "BTl I ... "Z" 

<digit> : :- "0" "1" "gil 

<subscript> : :- «digit»+ 
<special> : :- n_ n 

<character> : :- <letter> I <digit> I <special> 

<variable> : :- <letter> {<character>J* [<subscript>] 

<literal> : :- <variable> I <variable> 

<sum> : :- <literal> «product> "+" )+ <product> 

<product> : :- <literal> 1"(" <sum> H)" ".")+ "(" <sum> ")" 

<expression> : :- <product> <sum> 

<function> : :- <literal> "_" <expression> 

Furthermore the terms "cube" and "sum of cubes f1 are important and can 
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be defined like this: 

<cube> ::- <literal> I <literal> "." <cube> 

<sum of cubes> ::- <cube> I <cube> "+" <sum of cubes> 

The last notion we have to define here is "subexpression". Only if an 
expression is not a single literal, it has so-called subexpressions. 
There are two possibilities: 

l. The expression is a sum: the products which build the swn are 
the subexpressions. 

2. The expression is a product: the swns which build the product 
are the subexpressions. 

Boolean functions will be denoted according to the above syntax in the 
report, except in the sections called "The Lisp Implementation", which 
will describe the Lisp implementation of a specific part of the pro
gram. In those sections the representation will be as described in 
chapter 3, a prefix representation. This prefix representation is the 
exact image of the way the boolean functions are stored in the data
structure used by the program. The reader who is interested only in 
the ideas and algorithms and not in the Lisp implementation can skip 
these sections without missing essential information, and is not 
required to get acquainted with the prefix notation. 
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3. THE IMPLEMENTATION IN LISP 

3.1 Introduction 

First it has to be noticed that whenever we use the word Lisp in this 
report, we actually mean the Lisp dialect Common1isp. For a complete 
description of this dialect lit. [4J can be referenced. 

There are several reasons Lisp has been chosen to implement the algo
rithms for the technology mapping operation. The most important one is 
the possibility to make use of the Lisp standard data structure, the 
list. As will be shown in the next section, it is very easy to store 
boolean expressions, functions, and whole sets of functions in such a 
list. And, what is almost equally important, the implementation of 
operations on the boolean functions can be written as Lisp operations 
on lists in a very simple and c1ear-to-everybody way. No complicated 
types and structures have to be declared, no obscure pointer state
ments written, and no memory management done by the program; as would 
have been necessary when using pascal or C. All of this is hidden on 
the Lisp program level. And last but not least there is the beauty and 
simplicity of the basic Lisp structure, which makes it possible to 
write the Lisp functions in a very simple and beautiful way. 

3.2 The Representation Of Expressions And Functions 

As "data-structure" we use the Lisp list structure. In the follo, .. ing 
table the representation of the structures we need is defined: 

boolean structure: 

<variable> 

<variable> 

<literal> 

<sum> 

<product> 

<expression> 

<function> 

Lisp representation: 

::- Lisp symbol, symbol-name starting with letter 

::- Lisp symbol, symbol-name starting with "-" 

::- <variable> I <variable> 

: :- <literal> 

"(" "+" <product> «product»+ ")" 

: : - <11 tera1> 

I "(" "*" <sum> «sum»+ ")" 

: :- <sum> I <product> 

::_ "(" "_II <literal> <expression> ")" 

<set-of-functions> ::- "(" «function»+ H)" 

The term "subexpression" is defined for the prefix notation in exactly 
the same way as for infix. If an expression is not just a single 
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literal, it is built by an operator and a list of subexpressions. 
Again, there are two possibilities: 

l. The expression is a surn : the products which build the sum are 
the subexpressions. 

2. The expression is a product: the sums which build the product 
are the subexpressions. 

An example of a correct set of functions in our Lisp notation: 

« - Fl (+ (* a -b) (* c d) e» (- F2 (* d e f (+ -8 (* -e -f»») 
In infix notation this set would be denoted as: 

Fl a.b + c.d + e 

F2 d.e.f.(a + e.f) 

As you can see we now denote boolean expressions and functions in a 
prefix notation. This is standard practice in Lisp expressions, ane 
will prove very useful when we start writing Lisp functions whicl-. 
operate on boolean functions and expressions. It makes it for exampce 
especially easy to evaluate the boolean functions in the Lisp environ
ment, although this is something we do not need during the technolog" 
mapping. It will however be useful in future extensions. Some practi
cal examples can be found in the next section. 

3.3 Some Basic Boolean Function Manipulation In Lisp 

3.3.1 Logical inversion of a literal: 

This is very simple: if the symbol-name of a literal starts with a 
"-" it has to be removed, otherwise a "-" has to be added to the 
front of the symbol-name. 

In Lisp this may look like this: 

(defun invert-literal (literal) 
(if (eq (subseq (symbol-name literal) 0 1) "-") 

(intern (subseq (symbol-name literal) 1» 
;; else 
(intern (concatenate 'string "-" (symbol-name literal») 

) 
) 

3.3.2 Logical inversion of an expression: 

Expressions can be inverted in a very simple way using the Morgan's 
rules, which (in a prefix notation) state that: 
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a ) 
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a ), and: 
n 

a ) 
n 

So all we have to do is change the operator from 
and invert each of the subexpressions a .. All we 

~ is if the expression we get is a simple literal, 
function invert-literal will do the job. 

Implemented in Lisp this might look like this: 

(de fun invert-expr (expr) 
(let (result) 

(cond 

;; is expr perhaps a single literal? 

«symbolp expr) 
(invert-literal expr» 

'f expr is a list, a complex expression 

(t 
(setq result (if (eq '* (car expr» 

, (+) 
, (*») 

* to 
have 

in 

(dolist (sub-expr (cdr expr) (reverse result» 

+ or vise versa, 
to watch out for 
which case our 

(setq result (cons (invert-expr sub-expr) result» 
) 

) 
) 

As you can see the implementation is very short and very clear. The 
above two functions only serve as an example to show the possibilities 
we get after choosing Lisp and the prefix notation for the implementa
tion of the algorithms. 

3.4 The Data-structure 

3.4.1 The set of functions 

In all of our Lisp functions we will assume that the set of functions 
is stored in the global variable FUNCTION-LIST. This is done according 
to the format defined in section 3.2. 

Also available is the global variable FUN-NAHE-LIST, which is a list 
with the names of the functions stored in FUNCTION-LIST, in exactly 
the right order. This list is used to facilitate referencing functions 
in FUNCTION-LIST. 
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To make changes to FUNCTION-LIST the following functions are defined: 

• (add-function-to-function-list <function» 
Adds function <function> to the global function-list FUNCTIOS
LIST. It is added in front, and global variable FUN-NAHE-LIST is 
updated. 

• (replace-function-in-function-list <function> <literal» 
If a function with name <literal> is found in FUNCTION-LIST, it 
is replaced by <function> and t is returned. FUN-NAHE-LIST is 
updated if necessary. In all other cases nil is returned. 

• (remove-function-from-function-list <literal» 
Removes the function with name <literal> from the global 
function-list FUNCTION-LIST. Returns t if successful, nil other· 
wise. Global variable FUN-NAHE-LIST is updated. 

Each of these Lisp functions have the obvious effect of making the 
desired changes to FUNCTION-LIST destructively. To safeguard the con
tents of FUNCTION-LIST, these are the only functions allowed to change 
it. 

3.5 The Representation Of The Technology 

The technology is 
which represents 
This parameter is 
also section 6.2. 

represented by a single integer called gate-size, 
the maximum size of a standard cell in the library. 

an argument of the Lisp functions which need it. See 
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4. THE STEPS BEFORE AND AFTER THE TECHNOLOGY HAPPING 

4.1 Introduction 

The whole process from the designer-specified description of a piece 
of combinational logic to the actual geometrical layout description of 
this piece of IC area is performed in a series of steps. We ca" 
describe them as follows: 

1. The designer specifies the functional description as a set of 
logical (- boolean) functions. 

2. These functions are simplified as far as possible, which means 
that redundancies are removed. 

3. The now nonredundant set of functions is decomposed to a certain 
degree, which means that subexpressions which occur more ofte,
than a users-specified minimum are replaced by a new variable. 
and the subexpression is added as a new function to the set of 
functions. 

4. Now the result of the previous step is mapped onto a certain 
technology (NMOS, CMOS), using some kind of structure (gate 
array, p1a, standard cells, gate matrix ... ). 

5. In case of gate arrays and standard cells placement and routing 
have to be performed as a last step. 

Steps 1, 2, 3 and 5 will be looked at in this chapter. The mapping 
onto standard cells is described in the following chapters. 

4.2 The Functional Description 

The designer will have to specify a piece of combinational logic as a 
set of logical (boolean) equations. 

With i inputs, j users-specified intermediate functions, and k outputs 
we get: 

- f( inP1 inp i' inP1 

int .) 
J 
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inPi' inPl 
int .) 

) 

in t. l! 
)-

These functions have to be specified as sums of products. 

The following small set of functions is provided as a realistic exam
ple. It is part of the benchmark set which is used for testing pur
poses allover the world, and known under the name of "alul". It does 
not contain intermediate functions. 

Example: 

Fl a + e.l + e.k 

F2 b + l.f + k.f 

F3 c + l.g + k.g 

F4 d + l.h + k.h 

FS - e,a. i + e.a.j 

F6 f.b.i + f.b.j 

F7 g.c.i + g.c.j 

FS h.d.i 

4.3 Logical Simplification 

The logical simplification at this moment is performed by the program 
log_sim, which removes only certain types of redundancy. Removed is 
cube containment, resulting in a minimum term prime implicant cover of 
all the functions. 

To give an example of this simplification: 

F - a.b.c + a.b + c.d + c.d 

will be reduced to: 

F - a.b + c 

because cube a.b.c is contained in £ube 
B.b -> B.b + B.b.c, and because c.d + c.d can 
which is clearly logically equivalent to c. 

For more information on this subject see lit. 

B.b, which means that 
be written as c.(d + d), 

[lJ. 
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4.4 Decomposition 

The decomposition process performed on the set of functions can be 
guided by the designer with a number of parameters. He can choose a 
minimum size for subexpressions (measured in literals) to be substi
tuted, and a minimum number of occurrences for them as well, all 
independently. Also a limit can be put to the logical depth of the 
resulting set of functions, measured in gate-delays. In this way the 
size and speed of the resulting circuit can be influenced. For an 
example of this influence the benchmark results in appendix A. can be 
referenced. 

To give an example of this process, assuming no restrictions on the 
decomposition, We take the following set of functions: 

F1 a.b + c.d + e.f 

F2 - B.b + c.d + g.h 

The common term B.b + c.d will be found and substituted, after which 
the set of functions will become: 

F1 - subst + e.f 

F2 subst + g.h 

subst - B.b + c.d 

It should be noted that this step introduces an extra level of logic, 
and therefore extra delay in the resulting circuit. Inputs B, b, c and 
d will have to propagate through two gates now before they reach an 
output. This means that decomposition will make the resulting circuit 
smaller, but it also makes it slower. 

For more information on this subject see lit. [2J and [3J. 

4.5 Placement And Routing 

When the cells necessary to 
found, they will have to be 
order to be able to do this 

implement the 
interconnected. 
with as little 

cells will have to be placed smartly, so 
placement procedure. Only now the piece 
implemented completely. 

combinational logic are 
This is called routing. In 
wiring as possible, the 

the routing is preceded by a 
of combinational logic is 
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5. WEAK DIVISION 

5.1 Introduction 

As we have seen in chapter 3, the starting point of the technology 
mapping is a set of boolean functions in a sum of cubes format. This 
sum of cubes format is not very useful for us, because it often con· 
tains the same literal more than once. Because each literal which 
occurs in more than one cube will also mean that number of transistors 
in a standard cell in NMOS technology extra, or even twice that number 
of transistors in CMOS, reduction of these multiple occurrences will 
in the end reduce the necessary number of transistors, and therefore 
the occupied area on the chip. We will try to get rid of these mul
tiple occurrences by using weak division. 

Weak division will split up a function: 

in which B. occurs more than once, into: 
1 

F - a .. f(a l ... a. I' a. 1 ... a , a l ... an) 
1 ~- 1+ n 

+ f(a l ... ai_I' a i +l ... an' a l ... an) 

which can also be written like: 

F - term. cofactor + remainder 

To give a simple example, weak division will change the sum of cubes 
format: 

F - a.b + a.c 

into a complicated expression format: 

F - a. (b + c) 

5.2 The Approach 

All functions from our initial set of functions are treated one by 
one. As they are expressed as sums of cubes, with each cube containing 
only literals, weak division upon them is relatively easy. The stra
tegy chosen takes the literal occurring in the biggest number of 
cubes, and divides that one out. If there are more cubes with the 
same number of occurrences, the first one found is used. This process 
is then called recursively on the cofactor and the remainder, and is 
continued until all mUltiple occurrences are divided out. 
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Example: 

F - s.b.c.d + s.b.e.f + a.g.h + c.i.J + i.J.k.1 

will be divided in the following steps: 

1. F - s.(b.c.d + b.e.f + g.h) + c.i.j + i.J.k.1 

2. F 

3. F 

a.(b.(c.d + e.f) + g.h) + i.(c.J + j.k.l) 

s.(b.(c.d + e.f) + g.h) + i.J.(c + k.l) 

which can not be reduced further. 

It is clear that after this step the functions are no longer sums of 
cubes, but complicated expressions with an undefined level of bracket 
nesting. 

It is also clear that the strategy of starting with the most often 
occurring literal does not necessarily give the optimal result, the 
minimum number of literals. If we take the function: 

F - a.b + s.c + a.d.e.f.g.h + d.e.f.g.h.i containing 16 literals 

then the result of our strategy will be: 

F - a.(b + c + d.e.f.g.h) + d.e.f.g.h.i ,containing 14 literals 

whereas the best solution would be: 

F - a.(b + c) + d.e.f.g.h.(a + i) containing 10 literals 

It would therefore be recommendable to improve the 
respect of choosing the right litera1(s) to divide 
however it is not clear how to do this economically. 

5.3 The Lisp Implementation 

strategy in the 
by. At the moment 

If we assume the following Lisp functions to be defined: 

• (get-most-freq-term <expression» 
Returned is a list with the most frequent element in <expression> 
followed by the number of occurrences. For comparison #'equal is 
used. <expression> is scanned from left to right, so the leftmost 
element with the highest number of occurrences is found . 

• (remove-l-elt <item> <sequence» 
Returned is <sequence> with the first occurrence of <item> 
removed. 
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then we can write down the weak division algorithm in Lisp like this: 

(defun dirty-simpl-by-div (expr) 
(let «divterm (get-most-freq-term expr» 

remainder 
cube 
cofactor) 

(cond 
«- 1 (cadr divterm»; no term occurs more than once 
expr) 

(t ; there is something to divide 
(setq divterm (car divterm» 
(dolist (cube expr) 

) 

(cond 

) 

«operatorp cube) 
nil) 

;; is cube perhaps a single literal? 

«symbo1p cube) 
(if (eq divterm cube) 

(setq cofactor (cons '1 cofactor» 
;; else 
(setq remainder (cons cube remainder»» 

" is divterm in this cube? 

«member divterm cube :test #'equa1); yes, it is! 
(if (> (length cube) 3); removing divterm will not 

change cube to single literal 
(setq cofactor (cons (remove-l-elt divterm cube) 

cofactor» 
;; else, cube becomes single literal 
(setq cofactor (cons (cadr (remove-l-elt divterm cube» 

cofactor»» 

" divterm 1s not in this cube 

(t 
(setq remainder (cons cube remainder») 



) 
) 

) 
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;; format output 

(if (null remainder) 
(dirty-simp1-by-div (list '* 

;; else 
(dirty-simp1-by-div 

(cons '+ 

divterm 
(dirty-simp1-by-div 

(cons '+ cofactor»» 

(append remainder 
(list 
(list '* 

divterm 
(dirty-simp1-by-div 

(cons '+ cofactor»»»») 

This Lisp function is called dirty-simp1-by-div because it sometimes 
produces "dirty" output like (* a (* b (+ ... ») instead of the 
correct notation (* a b (+ " .». This direct nesting of products is 
not allowed by the definition in section 3.2., and therefore has to be 
removed by a filtering function. This of course is the case in the 
total program. 
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6. THE ACTUAL HAPPING ONTO STANDARD CELLS 

6.1 Introduction 

At this stage of the process, we are left with a set of boolean func
tions of unknown structure and size. Many of these functions will be 
too complex to fit directly on one of the standard cells available in 
the current technology. Therefore a mapping operation will have to 
take place, which will split up the big functions into a set of 
smaller ones, each of which should have a direct counterpart in the 
set of standard cells. This mapping operation should be as optimal as 
possible in two respects: big functions should be split up in as fe·.· 
standard cells as possible, and the resulting multiple-level structure 
of these standard cells should be as fast as possible, i.e. the logi
cal depth should be limited as far as possible. 

6.2 The Library Of Standard Cells 

For this program the library of standard cells should contain all 
and-Dr-invert gates up to a certain number of inputs for the and anc 
the or. This maximum number of inputs must be equal for the and and 
the or gate, to make sure that for any gate of the library the dual 
gate does also exist. By dual gate we mean the gate with and changed 
to or and vice versa. The necessity of this requirement will become 
clear in the next chapter, when we will remove inverters by inverting 
functions. This maximum number of inputs is a parameter to the progra::-. 
and will henceforth be called gate-size. 

To give a formal definition of which gates are in the library for a 
given gate-size, we can denote an expression as a directed graph, with 
every literal forming a node and an or relation giving rise to two 
parallel edges, opposed to the and relation, which connects two nodes 
with an edge in series. This seems to be a bit complicated, but a fe·." 
examples will soon clarify the situation. The expression a + b + c + C 
has a graph representation as follows: 

root 

leaves 

Figure 1. Graph of expression a + b + c + d 
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The expression a.b.c.d has a graph representation like: 

root 

leaf 

Figure 2. Graph of expression s.b.c.d 

And the more complicated expression a.b.c + d.e.(f + g).(h + i) + j.k 
has a graph representation: 

root 

leaves 

Figure 3. Graph of expression a.b.c + d.e.(f + g).(h + i) + j.k 
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In this last case the leaves are formed by the nodes c, h, i and k. 
The graph is directed in the sense that all edges connect downward or 
horizontally, but never upward. A horizontal part of an edge is there
fore bidirectional. 

Now the formal definition: A gate belongs to the library with parame
ter gate-size if and only if: 

1. There is no path from root to any of the leaves which passes by 
more than gate-size nodes, and: 

2. There is no horizontal cut in the graph which cuts more than 
gate-size edges. 

Clearly all 3 above examples are part of all libraries 
gate-size. 4. 

with 

So, if gate-size equals 3 (as it does in the technology currently used 
on the TUE), the following combined gates for example are in the 
library: 

• F - (a l + a
2 

+ a 3)·(b
l 

+ b
2 

+ b3),(c
l 

+ c 2 + c
3

) 

And of course all gates with the same form but missing one or 
more of the inputs. 

• F - al ·a2 ·a3 + bl .b2 .b3 + c l .c2 .c3 
And of course all gates with the same form but missing one or 
more of the inputs. 

• F - a.(bl + b2 )·(cl + c2 ) + dl .d2 .d3 

And the following gates for example are not included in the library: 

• F 

• F 

Note that the fact that all standard cells have an inverted output 
will not bother us at this stage. We simply pretend they have straight 
outputs and add an extra inverter to each gate output later. In 
chapter 7 an approach to remove as many as possible of these inverters 
will be presented. 

6.3 The Approach 

6.3_1 Representation of a complicated function 

The approach we use to split up the big functions is partly heuristi
cal and partly analytical. The heuristical part consists of the 
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following two limitations: 

1. We use a so-called top-down approach. i.e. the function is 
attacked at its highest level, the output level. In this way we 
hope to get a situation where we map onto big. complicated stan
dard cells near the output of the function, and get possibly 
smaller and simpler ones near the inputs. If we take for example 
the function: 

F - B.b.c.d + e.f.g.h + i.j.k.1 + m.n.o.p 

and the library contains standard cells with a maximum gate-size 
of 3, then the top-down approach breaks down F into the set of 
functions: 

F a.b.subst
l 

+ e.f.subst
2 

+ subst 3 
c.d 

subst 2 - g.h 

subst
3 

- i.j.subst
4 

+ m.n.substs 
subst4 k.l 

substs - o.p 

The logical depth (- the biggest number of gates through which 
an input signal must propagate to reach an output) of the cir
cuit represented by this set of functions is 3. The input sig
nals which have a path of this length, are k, 1, 0 and p. 

The bottom-up approach however would result in the follo~ing set 
of functions: 

F a.subst
l 

+ substs 
subst l 

b.c.d 

subst
2 - f.g.h 

subst
3 j.k.1 

subst
4 

n.o.p 

substs e.subst2 + i.subst3 + m.subst4 

The logical depth of this circuit is also 3, but now input sig
nals f, g, h, j, k, 1, n, 0 and p have a propagation path of 
this length. 

The reason for this difference in number of input signals with 
the longest path is that the top-down approach results in bigger 
gates near the output, and smaller gates nearer to the inputs of 
the circuit. The bottom-up approach however tries to fit big 
gates near to the inputs, and near to the output only a small 
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gate may be left. This certainly increases the number of inputs 
with maximum path length, and possibly in some situations even 
the logical depth. So we prefer the top-down approach here. 

2. At each moment we limit our view of a certain expression to 1 
level, which means we represent it like: 

expr 

expr 

subexpr
l 

+ subexpr
2 

+ 

subexprl ·subexpr
2

· ... 

... subexpr
n

, 

subexpr 
n 

or: 

whichever is appropriate, and solve the problem of mapping this 
expression on a tree of standard gates completely optimal, in an 
analytic way. If any of subexpr. is a complex expression itself, 
and not just a single literal,~this process is continued recur
sively with these subexpressions until literals are found. 

6.3.2 Size restriction 

To control this recursive process, the size an expression is allo~e~ 

to have is represented by a pair of numbers (a, b), with a indicating 
the number of subexpressions the expression is allowed to have, and b 
how many sub-subexpressior.s each of the subexpressions will be allo~ec 
to have. Size restriction parameter a is always important at the 
current level, and b at the next level. In fact, at each level the 
second size restriction parameter is never used or changed, but onlv 
passed on as the first size restriction parameter for the next (lower) 
level. So, if gate-size equals 3, then at top level, when we enter a 
function, the size restriction will be (3, 3). Each of the subexpres· 
sions of the function will get a size restriction of (3, ... ). The 
value of the second size restriction parameter for the subexpressions 
depends on what has happened with the expression on the current level, 
and will be important again for the possible sub-subexpressions, and 
so forth for every second level. In 6.4.2. this recursive process will 
be explained in more detail. 

A more formal definition of size restriction can be formulated 
picture the expression as a graph, as defined in section 6.2. 
now distinguish two possibilities: 

if we 
We must 

1. Expression is a sum. The first size restriction parameter a no~ 

is equivalent to the maximum number of edges any horizontal cut 
in the graph may cut, and the second size restriction parameter 
b is equivalent to the maximum path length in the graph which is 
allowed. 

2. Expression is a product. Now a limits the longest path and b the 
horizontal cut. 
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6.4 The Algorithm 

6.4.1 The solution of the one level problem 

If we take the problem of mapping the expression: 

expr - subexprl op subexpr2 op ... subexprn ; 

op being either . or + 

and the size restriction (a, b), 

then we can calculate the exact structure of the tree of standard
gates required to implement this expression. This solution of the one 
level problem will be optimal in two senses: we will use the minimal 
amount of standard cells to do it, and the logical depth of the solu
tion will also be minimal. For this we only need the size restriction 
parameter a, telling us how many subexpressions we can leave in the 
expression, and the technology parameter gate-size, informing us on 
the maximum size of the potential substitution gates. 

6.4.1.1 How does substitution on one level work? 

If we see that an expression has more subexpressions than the first 
size restriction parameter a allows, then we have to limit this number 
of sUbexpressions somehow. What we do is to take away a number of 
subexpressions from the expression and substitute one literal for them 
instead. This literal has to be unique in the set of functions. To 
keep the set of functions equivalent to the originally user specified 
set, we have to add a new function to it, which defines the value of 
the newly chosen literal. So, if we substitute i subexpressions in an 
expression with originally n subexpressions, the process is as fol
lows: 

expr - subexpr1 op subexPT2 op ... subexprn 

is transformed to the logically equivalent set of functions: 

expr 

subst 

subexpr
l 

op 

subexpr i I op n- + 

subexpr . op subst 
n-~ 

... subexprn 

Now if n-i is still bigger than a, more of these substitutions will be 
necessary. 

It is wise to take away exactly gate-size subexpressions per substitu
tion, because then the newly formed functions will automatically be 
mapped to a standard cell which is as big as possible at least in one 
"dimension". All other possibilities have disadvantages: 

• If we would take away less than gate-size subexpressions at a 
time, more substitutions would be necessary for every big expres
sion, resulting in too many new functions and therefore in too 
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many standard cells in the resulting circuit. This is a waist of 
area . 

• If we take away more than gate-size subexpressions per substitu
tion, but not a mUltiple of gate-size, then the resulting substi
tution functions will have to be split up in their turn, before 
they fit in a standard cell. But this will then result in at 
least one function with less than gate-size subexpressions, again 
not optimal . 

• Taking away a mUltiple of gate-size would be acceptable, but then 
these substitution functions would themselves have to be split 
into pieces with exactly gate-size subexpressions, so we might as 
well do this right away. 

6.4.1.2 The number of necessary substitutions 

It is now easy to verify that the number of necessary substitutions 
for an expression with n subexpressions and a current size restriction 
(a, b) is: 

nr-of-subst - ceiling«n - a)!(gate-size - 1» 

Verification: we start with n subexpressions, of which a may be left 
in the end. So we have to get rid of n - a subexpressions. Each sub
stitution takes away gate-size subexpressions, but adds the substitu
tion variable as an extra subexpression to the expression. So the 
actual number of subexpressions removed per substitution equals 
gate-size - 1. We have to take the ceiling of the division, because 
even if one of the substitutions does not have to take away 
gate-size - 1 subexpressions completely, there still has to be a sub
stitution for this smaller but excessive number of subexpressions. 

6.4.1.3 The one level substitution algorithm 

Once we have found the number of substitutions, we have to start 
thinking about how these substitutions should be performed. To give an 
example of different possibilities for these substitutions we will 
consider the function: 

F - a.b.c.d.e.f.g.h 

We will take gate-size to be 3, and accordingly the size-restriction 
at top level will be (3, 3). This gives as the necessary number of 
substitutions ceiling«8-3)!(3-l», which equals 3. Now there are a 
lot of possibilities to split up Fusing 3 substitutions, most of 
which do not have the minimal logical depth. To give a few examples: 

substl 

subst2 

subst3 

f.g.h 

c.d.e 

subst1 ·subst2 
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F - a.b.subst 3 

This solution gives us a logical depth in gates of 3. Let's look at 
another solution: 

subst1 
subst2 
subst

3 
F 

g.h 

e.f.subst1 
c.d.subst2 
a.b.subst3 

This solution gives us a logical depth of 4! Clearly the previous 
solution was better. But let's look at a third solution: 

subsC l g.h 

subst2 - d.e.f 

subst3 - a.b.c 

F - subsc1 .subsc2 .subst3 

This one gives us a logical depth of only two, and seems to be the 
best solution possible. 

6.4.1.4 The minimal logical depth 

It is possible to calculate the minimum logical depth needed to map a 
function with n subexpressions, and given gate-size and size
restriction. If the first size-restriction parameter is a, then: 

min-depth - ceiling(gate-sizelog n/a) + 1 

This formula can also be verified quickly. With a depth of 
handle a maximum of a subexpressions, with a depth of 2k_f 
subexpressions, and with a depth of k, a * gate-size 
sions. Clearly, the inversion of this formula results in 
sion for the minimal depth. 

1 we can 
* gate-size 

subexpres
the expres-

This minimal depth can only be reached if we choose the right substi
tutions. The algorithm presented here will always find the optimal 
solution, without actually calculating it. To understand it, we have 
to switch to the prefix notation now. In this prefix notation, an 
expression can be represented by: 

expr: (operator subexprl '" subexprn ); n > gate-size 

Because the operator is of no importance for the substitution opera
tion, we will take only the list with the subexpressions 
(subexpr

1 
... subexpr ), and formulate the substitution operation on 

that lisE. n 
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6.4.1.5 The small gate 

The first thing we have to worry about is that there is possibly one 
gate which does need less than gate-size inputs. This gate will always 
be one of the substitutes, because we will want the small gate to be 
one of the leaves of the tree of gates after the substitutions have 
taken place. The expression which tells us how many inputs this 
smaller gate will have is: 

size-of-small-gate - remainder«n + nr-of-subst - a)!gate-size) 

Verification: A total of n + nr-of-subst - a sUbexpressions have to be 
substituted into gates of size gate-size or smaller. Clearly we want 
as many substitutions as possible to have a size of gate-size. Then 
the one gate which can be smaller is of the above size. (If 
n + nr-of-subst - a is a multiple of gate-size, no small gate will be 
necessary). 

6.4.1.6 The actual substitution 

Now the substitutions are performed as follows: 

l. If size-of-small-gate > 0 substitute the small gate. Take a.ay 
size-of-small-gate subexpressions from the end of the list, and 
add the substitution variable to the front of the list. 

2. Now substitute all the other gates. Every substitution takes 
away the last gate-size subexpressions from the end of the list, 
and adds its substitution variable to the front of the list. 
This is continued until the list contains exactly a subexpres
sions, the number allowed by the size restriction. 

The result of this algorithm is an optimal tree of gates. This can be 
proven as follows: 

We start with a logical depth of 1 in the expression: 

(operator subexpr
l 

... subexpr
n

) 

Now, because we always take away subexpressions from the end of the 
list for each substitution, and add the substitution variables at the 
front, the logical depth connected to each subexpression of the list 
will always be decreaSing in the direction of the list. This guaran
tees that we take away the subexpressions with the lowest possible 
logical depth. In this way the logical depth will be kept minimal. 

6.4.2 The complete mapping algorithm 

We now know 
course most 
the problem 
cells. 

how to perform mapping on a one level expression. But of 
expressions are much more complicated. We will now discuss 
of mapping such a complicated expression onto standard 
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We take the complicated expression 

subexprl op subexpr2 ... op subexpr 
n 

and a size restriction (a, b). Of course initially both a and b will 
be equal to gate-size. Each subexpr. is itself an expression of 
unknown size and structure. Now we distiAguish two possibilities: 

1. n> a: There has to be substitution at this level. Solve the one 
level problem and then map each of the a subexpressions left in 
the expression with size restriction (b, 1). Because all substi
tution functions are added to the set of functions, they will be 
mapped later as an independent function. 

2. n" a: No substitutions on this level. Map all n subexpressions 
sUbsequently now, the first subexpression with a size restric
tion (b, a-n.l). Of each subexpression after it has been mapped 
the size it actually needs is checked. The size an expression 
needs is also expressed as a pair of numbers, like the size res· 
triction. This pair (x, y) has X" band y " a-n.l of course, 
otherwise substitutions would have been done. Now y is important 
for us. The second subexpression gets size restriction 
(b, a-n.l-y.l), and the i-th subexpression, after the other 
subexpressions have returned an actual size of (xl' Yl) ... 
(x. I' y. I)' a size restriction of: 

1- I-

i-I 
(b, a-n.l - I y. + i-I). 

)-1) 

So each subexpression gets a chance to expand on the "second 
level" as far as the situation up to now allows. If this space 
is not or not fully used up, the next subexpression gets the 
space which is left over. 

The above algorithm requires something we have not yet discussed, the 
actual size an expression occupies. Its definition is simple: it is 
equal to the smallest size restriction necessary to get no substitu· 
tions with this expression. Therefore, if we picture expression as a 
graph, it is equal to: 

• If expression is a sum, the pair (longest horizontal cut, longest 
path) of that graph, and 

• If expression is a product, to the pair (longest path, longest 
horizontal cut). 

To calculate it we use an equivalent recursive definition: 

• An expression with only n literals occupies a space of (n, 1). 
So a single literal occupies a space of (I, 1). 
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• An expression with n subexpressions, each of which occupies a 
space of (xi' y

i
), occupies a total space of 

n 
( ~ y., max(x

l 
... 

i-I ~ 
X » 

n 

This recursive definition also has its counterpart in graph theory: 

• If we connect subgraphs in parallel, which is equivalent to 
making a sum out of (product-)subexpressions, then the longest 
horizontal cut of the total graph will be the sum of the longest 
cuts of the subgraphs, and the longest path in the graph will be 
equal to the maximum of the 10ngests paths of the subgraphs. 

• If expression is a product, then we connect the sub graphs in 
series. Now the longest horizontal cut of the resulting graph 
will be equal to the maximum of the horizontal cuts of the sub
graphs, and the longest paths of the graph is equal to the sum of 
the longest paths of the subgraphs. 

6.4.3 A complete example 

To illustrate the mapping algorithm, we will perform the mapping of a 
function step by step. To make the process reasonably interesting, we 
will assume a gate-size of 4. The function to be mapped is: 

F - a.(b + c).(d + e.(g + h + i»).() + k.(l + m)) 
+ n.o.p.(q + r + s.(t + u)) 

It is clear that F is a sum, and consists of 2 subexpressions. To 
write down the steps the algorithm performs, we will make use of some 
formatting definitions. Each time we enter the mapping algorithm, we 
will write a line like "~entering: expression, size-restriction". The 
return value of the algorithm will be stated with "~returning: expres
sion, actual-size". The recursive nesting will be shown by indenting 
the lines when we move down a level. 

So, we enter the algorithm with the complete expression and a size 
restriction of (4, 4). 
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~entering: s. (b + c). (d + e. (g + h + i)). (j + k. (1 + m)) 
+ n.o.p.(q + r + s.(t + u)), (4, 4). 

expression is a sum ~ith 2 sUbexpressions. 

~entering: s.(b + c).(d + e.(g + h + i)).(j + k.(l + m)), (4, 3). 
expression is a product ~ith 4 subexpressions. 

~entering: s, (3, 1). 
~returning: s, (1, 1). 

~entering: b + c, (3, 1). 
expression is s sum with 2 subexpressions 

~entering: b, (1, 2). 
~returning: b, (1, 1). 

~entering: c, (1, 2). 
.. returning: c, (1, 1) . 

... returning: b + c, (2, 1) . 

~entering: d + e. (g + h + i), (3, 1). 
expression is a sum with 2 subexpressions 

~entering: d, (1, 2). 
~returning: d, (1, 1). 

~entering: e.(g + h + i), (1, 2). 
expression is a product with 2 subexpressions 
n > s, so substitution has to be performed 
the new function subsC

1 
- g + h + i is 

formed 
~returning: subst

1
, (1, 1). 

~returning: d + subst
1

, (2, 1). 
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-entering: j + k. (1 + rn), (3, 1). 
expression is a sum with 2 subexpressions 

-entering: j, (1, 2). 
-returning: j, (I, 1). 

~entering: k.(l + m), (1, 2). 
expression is a product with 2 subexpressions 
n > B, so substitution has to be performed 
the new function subst2 - k.(l + m) is 
formed 

-returning: subst
2

, (I, 1). 

-returning: j + subst
2

, (2, 1). 

-returning: s.(b + c).(d + subst
1
).(j + subst2 ) , 

(4, 2). 

~entering: n.o.p.(q + r + s.(t + u», (4, 2). 
expression is a product with 4 subexpressions 

-entering: n, (2, 1) . 
-returning: n, (1, 1) . 

-entering: 0, (2, 1) . 
-returning: 0, (1, 1) . 

-entering: p, (2, 1) . 
-returning: p, (1, 1) . 

-entering: q + r + s.(t + u), (2, 1). 
expression is a sum with 3 subexpressions 
n > s, so substitution has to be performed 
the new function subst3 - r + s.(t + u) 
is formed 

-returning: subst3 + q, (2, 1). 

~returning: n.o.p.(q + subst3 ) , (4, 2). 

-returning: B.(b + c).(d + substl).(j + subst2) + n.o.p.(q + subst3 ) , 
(4, 4). 

The result of this mapping operation is a set of 4 functions: 

F - B.(b + c).(d + subst1).(j + subst2) + n.o.p.(q + subst3 ) 

subst l - g + h + i 

subst2 - k.(l + m) 

subst3 - r + s.(t + u) 
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6.4.4 Possible fucure improvements Co che algorithm 

The main disadvantage of this algorithm is that the subexpressions of 
an expression are not investigated at all before determining how to 
substitute. It might well be useful to change this in future. Some 
kind of sorting operation on the subexpressions based upon their size 
could make the algorithm better. 

6.5 Optional Removal Of Equivalent Functions 

6.5.1 Introduction 

If the decomposition previous to the technology mapping was not 
exhaustive, meaning that it was limited to subexpressions with a 
minimum size greater than 2, or a minimum amount greater than 2, then 
it is possible that some of the remaining equal subexpressions are 
found during our mapping operation. This will mean that there will be 
2 or more functions in the set which are exactly the same. This also 
implies having two different gates on the chip doing exactly the same 
job. This is a waist of area, and therefore we will try to remove this 
redundancy. 

Because this test is only necessary if the decomposition was limited, 
it is optional and can be switched on and off by the designer. 

6.5.2 The algorithm 

Because testing for logical equivalence is a very time intensive 
operation, and because we know that the set of functions is freed as 
far as possible of redundancies, we will use a simpler algorithm 
instead. If we compare two functions, we will sort them uniquely, and 
then see if the results are subexpression by subexpression exactly 
equal. Only in that case we will declare them "equivalent" and remove 
one of them from the set of functions. Starting with leaf functions 
and working towards the outputs we test every function of the set (and 
its inverse) with every other function in this way, and remove the 
"equivalent" ones immediately. Of course all references to the removed 
functions are changed too. In this way we also find equivalences which 
occur only after another equivalence was removed. 

6.5.2.1 The sorcing of expressions 

Expressions are sorted with the relation expr<. (expr< expr
l 

expr
2

) 
returns t when: 

1. In case 
(string< 
order) . 

both expr
l 

and 
exprl expr2) returns c 

expr are literals: if 
(so ttey are put in alphabetical 
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If one is a literal and the other is a complicated 
the literal is considered expr< than the complicated 
The complicated expression is sorted recursively. 

expression: 
expression. 

3. When both are complicated expressions: The first sUbexpressions 
of the sorted (!) expressions are recursively compared with 
expr<. 

Thus recursively sorted, all functions will have a unique representa
tion. 

6.6 The Lisp Implementation 

6.6.1 The mapping algorithm 

The algorithm described in 6.4.2. is implemented in the Lisp function 
(implement-expr <gate-size> <expression> <size-restr1> <size-restr2». 
The Lisp code follows the algorithm step by step and should not be 
difficult to understand. 

(defun imp1ement-expr (gate-size expr max-nr-of-subexprs 
max-subexpr-length) 

;; We need quite a lot of local variables, here they come: 

(let* «expr-1ength (1- (length expr») 
(current-operator (car expr» 
(resu1t-expr (list current-operator» 
resu1t-of-sub-imp1 
(max-incr-subexpr-1ength-used 1) 
(tota1-incr-subexpr-width-used 0) 
incr-subexpr-width-used 
incr-subexpr-length-used 
new-function-def 
new·name 
new-expr 
subexprs-left 
first-strip 
nr-of-subst) 



- 30 -

(cond 

;; are there too many subexpressions? 

«> expr-1ength max-nr-of-subexprs) 

;;first we calculate how many substitutions will have 
;;to be done, and how many subexpressions should be taken 
;;away the first time ('first-strip') 

(setq nr-of-subst 
(ceiling (I (- expr-1ength max-nr-of-subexprs) 

(float (1- gate-size»») 
(setq first-strip 

(rem (- (+ expr-1ength nr-of-subst) 
max-nr-of-subexprs) 

gate-size» 

" is there a gate with less than gate-size subexpressions? 

(unless (zerop first-strip) 

) 

;; make new function out of last first-strip subexprs 
(setq new-function-def 

(cons current-operator 
(nthcdr (1+ (- expr-1ength first-strip» expr») 

" update expr 
(setq expr 

(subseq expr 0 (1+ (- expr-1ength first-strip»» 
;; get new name for substitution function 
(setq new-name (intern (symbol-name (gensym»» 
;; and add it to the front of expr 
(setq expr (cons current-operator (cons new-name (cdr expr»» 
(setq expr-1ength (1- (length expr») 
;; add new function to FUNCTION-LIST 
(add-function-to-function-1ist (list equivalence 

new-name 
new-function-def» 



) 

- 31 -

" now we start taking away 'gate-size' subexpressions at a 
" time until the expression is no longer too long. Substitution 

is exactly the same as above 

(while (> expr-length max-nr-of-subexprs) 
(setq new-function-def 

) ) 

(cons current-operator 
(nthcdr (1+ (- expr-length gate-size» expr») 

(setq expr (subseq expr 0 (1+ (- expr-length gate-size»» 
(setq new-name (intern (symbol-name (gensym»» 
(setq expr (cons current-operator 

(cons new-name (cdr expr»» 
(setq expr-length (1+ (- expr-length gate-size») 
(add-function-to-function-list (list equivalence 

new-name 
new-function-def» 

" all substitutions ready, at most max-nr-of-subexprs now 

(setq subexprs-left (length (cdr expr») 
(dolist (subexpr (cdr expr» 

(setq subexprs-left (1- subexprs-left» 
(cond 

«symbolp subexpr); subexpr is a literal 
(setq result-expr (cons subexpr result-expr» 
(setq max-nr-of-subexprs (1- max-nr-of-subexprs» 
(setq total-incr-subexpr-width-used 

(1+ total-incr-subexpr-width-used») 

(t ; subexpr is a list, a complicated expression 
(setq result-of-sub-impl (implement-expr subexpr 

max-subexpr-length 

(setq new-expr (car result-of-sub-impl» 

(- max-nr-of-subexprs 
subexprs-left») 

(setq incr-subexpr-length-used (cadr result-of-sub-impl» 
(setq incr-subexpr-width-used (caddr resu1t-of-sub-imp1» 
;; update I Yi 
(setq total-incr-subexpr-width-used 

(+ incr-subexpr-width-used 
total-incr-subexpr-width-used» 
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;; update max(x.) 
~ (if (> incr-subexpr-length-used max-incr-subexpr-length-used) 

) 

(setq max-incr-subexpr-length-used 
incr-subexpr-length-used) 

(setq result-expr (cons new-expr result-expr» 
(setq max-nr-of-subexprs 

(- max-nr-of-subexprs incr-subexpr-width-used») 

" Make return-value 
(if (- 2 (length result-expr»; result-expr of form (sgnlx +) 

(list (car result-expr) 

) 

total-incr-subexpr-width-used ;~ y. 
max-incr-subexpr-length-used) ;max~x.) 

~ (list (nreverse result-expr) 
total-incr-subexpr-width-used ;~ y. 
max-incr-subexpr-length-used) ;max~x.) 

~ 
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6.6.2 The optional removal of equivalent functions 

If we compare two functions. we sort them using the Lisp function 
(sort <sequence> <test». After this they are compared with the Lisp 
function (equal <iteml> <item2». As test for (sort ... ) we define the 
following function: 

(defun expr< (exprl expr2) 
(cond 

) 
) 

«and (symbolp exprl) (symbolp expr2» 
(string< (symbol-name exprl) (symbol-name expr2») 

«symbolp exprl) ; But not expr2! 
(sort (cdr expr2) #'expr<) 
t) 

«symbolp expr2) ; But not exprl! 
(sort (cdr exprl) #'expr<) 
nil) 

" Now both exprl and expr2 are complicated expressions 

(t 
(expr< (car (sort (cdr exprl) #'expr<» 

(car (sort (cdr expr2) #'expr<»» 

To understand this function fully, we must bear in mind that the car 
of an expression is always an operator, and that (sort ... ) sorts des
tructively. So we always sort the cdr of an expression only. 

Two complicated expressions are sorted comparing only their first 
subexpressions. This is of course not unique for all expressions, 
because subexpressions like (+ a b c) and (+ a d e) could not be dis
tinguished. But in our case. where redundancies are removed anc 
literals which occur more than once are divided out, this situation 
never occurs. 
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7. GETTING RID OF THE INVERTERS AND CRITICAL PATH OPTIMISING 

7.1 Introduction 

The situation now is that we have a set of logical functions, all bro
ken down to a size small enough to have a standard cell in the library 
which can implement them. All of the functions represent and-or or 
or-and combined gates, or simple and or or gates. The problem is how
ever, that the libraries of standard gates contain only and-invert, 
or-invert, and-or-invert and or-and-invert gates, because these are 
the most natural ones in the technology which is being used. This is 
the case for NMOS and CMOS for example. 

This implies that every standard cell we use will have to be followed 
by an inverter to restore the function we actually need. This has 
several great disadvantages. First, the extra inverters enlarge the 
necessary area on the chip, something which is undesirable. Secondly, 
the whole circuit is slowed down considerably, if we take a unit ga:e 
delay, even to half the speed that we expected when we were only look
ing at the set of functions. So it is clear that we will have to try 
to improve this situation. 

7.2 The Set Of Functions Represented As A Graph 

As we have seen in the previous chapter, a system of connected gates 
can be represented by a graph. Each gate becomes a node, and the rela
tion "being an input of" creates an edge of the graph. If we introduce 
an extra node, which we call root, and declare all outputs of the cir
cuit to be connected to root, then we have a directed a-cyclic graph 
(DAG) in which we can easily find these outputs. Each edge is directed 
in the sense that it points towards the outputs, and therefore follows 
the flow of the Signals in the circuit. For reasons of simplicity We 
do not represent inverters as nodes in the DAG, but instead introduce 
two types of edges, one meaning Ustraight connection", and the other 
"connection through inverter". Associated with these two types of 
edges are numbers which indicate the delay in that connection, being 1 
and 2 respectively. 
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To give a small example we consider the following set of functions: 

FI - a.b + intI + c. int
2 

F2 - B.b + d .int
l + int 3 

F3 d + int
2 

intI - e.f + e.f 

int
2 - g.h + ~nt2 

int
3 Lj + k 

If we make a DAG out of this set directly we get the following result: 

e f e f g h 

i j k 

Figure 4. DAG of gates. 

If we have a technology which requires extra inverters after each 
gate, we get exactly the same DAG, with the exception that the number 
next to each edge must be changed to "2". 
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7.3 The Delay In A Circuit 

If we take a look at Fig. 4., it is clear that signals i, j and k have 
the longest way to travel before they reach an output. If we assume 
the normal situation with inverters following every output, and there· 
fore all edges get a delay of 2, then, if we add up all delays on the 
path of i,J and k, we get 6. In fact, these signals determine the 
speed of the whole circuit. All other signals have a shorter way to 
the OUtput. So it is clear that the speed of the whole circuit is 
determined by the longest path in the DAG, if we define path length as 
the sum of the delays as described by the type of edge. This longest 
path is therefore named the critical path. It is clear that if we want 
to influence the speed of a circuit we will have to do something about 
the delay on the critical path. 

7.4 Inverting A Function In A DAG 

If we consider the operation of inverting a function in the set of 
functions without changing the logical behaviour of the whole set, we 
can consider the Morgan's laws again. For reference, they were wri ttee, 
down in section 3.3.2. With these we can see that a function is logi
cally equivalent to its inversion with inverters added to both the 
output and all of the inputs. 

Now if we note also that two inverters in series add up to no inverter 
at all, we have found a way to manipulate inverters, without changing 
the logical behaviour of a circuit. If we face the situation, as we 
often do, that all functions are connected through inverters, then we 
can try to get rid of as many of them as possible by selectively 
inverting some functions in the set. In the example of section 7.2. it 
would be possible to get rid of most of them by inverting F

l
, F

2
, F3 

and int
3

. The resulting set of functions then becomes: 

Fl -
F2 -
F3 -
intI 

inC
2 

Inc3 

(:;; + b). intI' (c + int
2

) 

(a + b).(d + inc l ).inC
3 

d.inc 2 __ 

e.f + e.f 

g.h 

(i+J).k 
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And the resulting DAG: 

e f e f g h 

i j k 

Figure 5. Optimised DAG. 

The length of the longest path is now reduced to 3. In fact ~here are 
three pat,hs with this length, int3 ~ F2 ~ root, 
Int

3 
~ int2 ~ F 3 ~ root and int 3 ~ int

2 
~ 4 ~ root....: As you can see 

there is s~ill an inverter left between int and F
2

. Trying to remove 
it would however lengthen the_critical pat~. It could be done by 
inverting either int3 or F2 , but in both cases other inverters are 
added to the circuit wfiich only make the situation worse. 

7.5 Which Functions Must Be Inverted? 

The answer to this question is by no means simple. It has been proven 
that to find the optimal solution, with the minimal number of invert
ers, is a N.P. complete problem. So finding this solution for big 
examples is probably not feasible. But then we must realise what goals 
we are really after. Mainly, we are interested in the speed of the 
circuit. But in section 7.3. we have seen that this speed is only 
determined by the critical path, and therefore by a few inverters 
only. On the other hand we still regard area as being important too. 
So the inverters in those parts of the circuit which are not on the 
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critical path bother us as well. 

To solve this situation the following strategy has been chosen: 

1. At first we make a global run through all the functions in the 
set, and determine with the use of some simple heuristics 
whether or not to invert this function. At this stage we limit 
our view to the output and the inputs of the function and base 
our decision upon that view only. In this way we hope to get rid 
of most of the inverters, but we can not claim an optimal solu
tion. 

2. Secondly, we find out what the critical path is (or: paths are), 
Bnd shorten this path (these paths) rigorously. In the simple 
case of straight paths this means that at most one inverter is 
left in each of them. This process is then repeated for the ne. 
critical path(s), until no progress is possible any more. 

This approach will yield a result with few inverters in the whole cir
cuit, if we choose the right heuristics for step 1. The speed of thE 
whole circuit, determined by the delay on the critical path, should be 
(near) optimal. Yet the implementation in Lisp can be very fast. 

7.5.1 The global optimising phase 

All functions are considered for inversion only once, in an order 
which takes functions near the root first, and leaf functions last. 
They are inverted if: 

• In case of leaf functions: 

if all input variables are inverted, OR 

if they do not have straight (- connected without inverter) 
parents AND more inverted variables as inputs than straight 
variables . 

• In case of an intermediate or output function: 

if they have more children through inverters than straight 
children AND no straight parents. 

The above strategy is simple and fast, and mainly based on commOn 
sense. Very probably it could still be improved, not enough experi
menting has been done with it. It has however shown to give good 
results in many trial examples, very often even a result with the 
optimal critical path length. However, our main goal was minimising 
delay, and this problem will be attacked much more thoroughly in the 
next section. 
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7.5.2 Critical path optimising 

The algorithm is as follows: 

1. First, we have to determine the critical path(s). This is done 
with a standard longest path algorithm from lit. [5]. The 
path-length of root is equal to 0, and all other nodes get a 
path-length entry equal to the maximum of the path-length of its 
parents plus the delay determined by the type of edge that con
nects this parent. The leaf nodes with the longest path-length 
then determine the critical paths. The paths themselves are 
found by tracing backward from those leaf nodes. From the set of 
parents of a node on a critical path only those parents are on 
the path which have a path-length exactly equal to the local 
node's path-length minus the delay on the connecting edge. 

2. After these paths have been found, they are shortened one by 
one. Starting at root all inverters are wiped off the path by 
making the necessary inversions of functions. Finding a~ 

inverter means invert the next function on the path. If tr.e 
path forks, each branch is treated in this way. If there is 
reconvergent fanout on the path, which means that after forkin5 
several branches come together again, the rest of the path gets 
wiped more than once. When a leaf function is reached, the 
inverter in its output is removed unless the function has 
straight variables as inputs only. 

3. Last, all path lengths are updated to the new situation. The ne~ 
critical paths are determined. If these new critical paths are 
not shorter than the old ones were, stop. Otherwise go to step 2 
and shorten the new critical paths. 

7.6 Optional Resubstitution 

7.6.1 Introduction 

In some cases where speed is very important, it can be useful to try 
to turn back some of the kernel or cube substitutions done during the 
decomposition program. The implementation will have a few extra 
transistors, and therefore a larger area, but the trade-off between 
speed and area may be worth wile. This resubstitution can however 
only be possible if the minimum kernel-size or the minimal cube-size 
specified for the decomposition was smaller than or equal to gate
size, and even then it is not guaranteed to succeed. Because of this 
fact resubstitution is an option for the designer, who can determine 
beforehand whether it could be successful or not. 



- 40 -

7.6.2 The strategy 

The resubstitution is currently limited to the leaf functions of the 
critical paths only. Perhaps in future it could be extended to func
tions in other places of the critical path(s), but that will compli
cate matters considerably. 

After the critical path optimisation stops, it is determined if it 
would be possible to resubstitute all of those leaf functions of the 
critical paths into their parents on the critical paths. Only if all 
of those resubstitutions are allowed by the gate-size restriction, the 
circuit can be speeded up. Even if only one should not be allowed, 
then there would still be a critical path left which keeps the circuit 
at the old speed. So all are resubstituted, or none. 

After a successful resubstitution, the resulting new critical paths 
are determined, and critical path optimisation is started again. After 
this resubstitution is tried again, and the program keeps on resubsti
tuting and optimising until the resubstitution fails. In appendix A. 
the number of successful resubstitution and optimising runs for the 
benchmark tests are recorded under "resubstitution level". Several 
times 3 consecutive runs were possible, speeding up the circuit con· 
siderably. 

7.7 The Lisp Implementation 

7.7.1 The representation of the VAG 

To create the DAG of functions the following data-structure is 
defined. Each function-name is bound to a vector of length II, and the 
definition of the contents of this vector are on position: 

0: <expression> denoting the function definition. 

1: a list of children which are connected straight. 

2: a list of children which are connected through an inverter. 

3: a list of parents which are connected straight. 

4: a list of parents which are connected through an inverter. 

5: an integer denoting the maximum path length from this function to 
root. 

6: a list with all inputs of this function. 

7: if this function is on (one of the) critical path(s), then a list 
of children which are also on the path and connected straight. 
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8: if this function is on (one of the) critical path(s), then a list 
of children which are also on the path and connected through an 
inverter. 

9: if this function is on (one of the) critical path(s), then a list 
of parents which are also on the path and connected straight. 

10: if this function is on (one of the) critical path(s), then a list 
of parents which are also on the path and connected through an 
inverter. 

Of course at certain stages of the program not all of these items are 
specified. There is however a minimum set of specified items, set to 
the right value by the function (initialise-function-DAG). This func
tions sets items 0, I, 2, 3, 4 &nd 6. The information for this is 
taken from global variable FUNCTION-LIST. 

To handle the information stored in the vector a set of macros is 
defined. In this way the data-structure is hidden from the other 
functions which use the information, and could be changed without 
changing any of the other functions. Also the algorithms are easier 
to read with the macros. Mapping the entries in the vector the follo'''
ing macros have been defined: 

0: (get-function-def <literal» and 
(set-function-def <literal> <expression» 

1: (get-children-straight <literal» and 
(set-children-straight <literal> <list» 

2: (get-children-through-inverter <literal» and 
(set-children-through-inverter <literal> <list» 

3: (get-parents-straight <literal» and 
(set-parents-straight <literal> <list» 

4: (get-parents-through-inverter <literal» and 
(set-parents-through-inverter <literal> <list» 

5: (get-max-path-length <literal» and 
(set-max-path-Iength <literal> <integer» 

6: (get-signal-sort <literal» and 
(set-signal-sort <literal> <list» 

7: (get-path-children-straight <literal» and 
(set-path-children-straight <literal> <list» 

8: (get-path-children-through-inverter <literal» and 
(set-path-children-through-inverter <literal> <list» 
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9: (get-path-parents-straight <literal» and 
(set-path-parents-straight <literal> <list» 

10: (get-path-parents-through-inverter <literal» and 
(set-path-parents-through-inverter <literal> <list» 

7.7.2 Calculation of the critical paths 

For any given node in the DAG we calculate the maximum of the max
path-lengths of its parents, to which the delay on the edge is added. 
This gives the correct entry for the node's max-path-length. Because 
the structure of the DAG is not known, it might happen that a parent's 
max-path-length is not yet defined. In that case it is calculated 
first. This is a more simple procedure than determining an order in 
which to calculate the max-path-length in the DAG first. We simple 
backtrack if necessary instead. When the current node's max-path
length is determined, the function calls itself recursively for the 
children of the node. Leaf functions do not have children, so it stops 
automatically. 

For practical reasons the function (set-path-length ... ) is 
handle a whole list of nodes to calculate the max-path-length 
calculate all path-lengths in a whole DAG it is enough to call 
root. 

(defun set-path-length (function-name-list) 
(let «max-length-parents-straight -1) 

(max-length-parents-through-inverter -2) 

able to 
for. To 
it on 

;; they are set to -1 and -2 to give correct results for root 
;; who does not have parents. 
length-parent) 

(dolist (fun function-name-list) 
(dolist (parent (get-parents-straight fun» 

) 

;; is max-path-length of parent defined yet? 
(if (setq length-parent (get-max-path-length parent» 

) 

;; then see if it has the longest path-length so far: 
(if « max-length-parents-straight length-parent) 

(setq max-length-parents-straight length-parent) 
) 

;; else, calculate it: 
(set-path-length (list parent» 

;; add edge delay to the longest path length found: 
(setq max-length-parents-straight 

(1+ max-length-parents-straight» 



) 
) 

) 
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;; and now the same for parents-through-inverter: 
(dolist (parent (get-parents-through-inverter fun» 

) 

(if (setq length-parent (get-max-path-length parent» 

) 

(if « max-length-parents-through-inverter length-parent) 
(setq max-length-parents-through-inverter 

length-parent) 
) 

(set-path-length (list parent» 

(setq max-length-parents-through-inverter 
(+ max-length-parents-through-inverter 2» 

(set-max-path-length fun 
(max max-length-parents-straight 

max-length-parents-through-inverter» 

;; reset variables for next fun in dolist: 

(setq max-length-parents-straight -1) 
(setq max-length-parents-through-inverter -2) 

and now calculate the path-lengths of all children: 

(dolist (fun function-name-list) 
(set-path-length (get-normal-children fun» 
(set-path-length (get-inverted-children fun» 

) 

7.7.3 Global optimising 

All functions in FUNCTION-LIST are picked up one by one, in the order 
they are stored there. Because substitutes are always added to tho 
front of FUNCTION-LIST, this more or less assures that we start with 
leaf functions. The test as described in section 7.5.1. is performed, 
and the function is inverted if necessary. This inversion of a func
tion in the DAG is performed by the function (invert-function-in-DAG 
<literal», which does all the necessary bookkeeping to maintain the 
correctness of the parents- and children- entries which bind the DAG 
of functions together. We will not provide the Lisp functions here, 
because they are algorithmically simple and not interesting. 

7.7.4 Critical path optimising 

The Lisp implementation of the critical path shortening as described 
in section 7.5.2. is straightforward. It is assumed that the critical 
paths are all made traceable with the right entries for the path
parents and the path-children. In root all starting nodes of these 



- 44 -

paths can then be found. The function (shorten-path <node» inverts 
all path-children-through-inverter of <node>, unless <node> is a leaf, 
in which case <node> is inverted if and only if its input variables 
are all inverted. As a last step (shorten-path <node» calls itself 
recursively on all path-children of <node>. 

(defun shorten-path (node) 

) 

(let «path-children-inv (get-path-children-through-inverter node» 
(path-children-str (get-path-children-straight node») 

) 

(cond 

) 

«and (null path-children-inv) 
(null path-children-str» ; leaf-function reached 

(let «invert! t» 
(dolist (signal (get-signal-sort node» 

(setq invert! (and invert! (inverted-signalp signal») 
) 
(if invert! 

(invert-function-in-DAG node) 
) 

» 
(t ; current node not a leaf 
(dolist (child path-children-inv) 

(invert-function-in-DAG child) 
) 

" beware! children could have been changed 
by invert-function-in-DAG 

(dolist (child (get-path-children-through-inverter node» 
(shorten-path child) 

) 
(dolist (child (get-path-children-straight node» 

(shorten-path child) 
» 

7.7.5 Resubstitution 

Like global optimising, resubstitution is mainly a question of book
keeping. If a certain resubstitution is allowed is checked with the 
recursive size determining algorithm of section 6.4.2. Care is taken 
that functions which loose all parents in the resubstitution process 
are removed from FUNCTION-LIST. 
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8. CONCLUSIONS 

In appendix A. the results of a benchmark test are presented. They 
show that the whole program works well. The number of inverters 
between gates is in most cases about 20 - 30% of the total number of 
gates. Perhaps this number could still be reduced by working on the 
heuristics for the global optimising phase (see section 7.5.1). 

The framework in which the whole technology mapping problem is split 
up in subproblems, each of which can be solved in a simple way, and 
implemented in a relatively simple Lisp function, is probably the big
gest achievement of this research. The heuristics are not extensively 
tested yet, and probably the overall performance could still be 
enhanced by working on them. But new ideas can very easily be inserted 
into the whole program because of its high degree of modularity. 

Therefore the conclusion I would like to draw here is: The program as 
developed here performs well. Future enhancements can be implemented 
easily because of the high degree of modularity. 
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9. APPENDIX 

9.1 Appendix A: Some Benchmark Results 

In this appendix the results are listed of running the 
through the simplification, the decomposition and the 
ping phase. The technology is NMOS with a gate-size of 

benchmark 
technology 
3. 

set 
map-

The decomposition restriction as can be found in the table is of the 
form is either "no decomp", which indicates that the decompositior. 
step has been skipped completely, or digit

l
digit

2
digit

3
digit4 , which 

means: 

digit l : minimum kernel size before substitution takes place. 

digit 2 : minimum kernel amount before substitution takes 
place. 

digit 3 : minimum cube size before substitution takes place. 

digit4 : minimum cube amount before substitution takes place. 

The other columns in the table have the following meaning: 

#gates: This is the number of standard gates used by this 
implementation. The inverters are not included in 
this number! 

#inverters: This is the number of inverters 
number indicates the number of 
inverted, and the second number 
inverters between gates. 

needed. The first 
inputs which must be 
is the number of 

#trans.: This is the number of transistors used by the imple· 
mentation. Load transistors are not included how
ever. Of course the total number of load transistors 
is equal to the sum of #gates and #inverters. 

delay: This is the length of the critical path(s), 
expressed in unit gate delays. if there is a "+ 1" 
in this column, it means that one or more of the 
inputs which feed the critical path(s) have to be 
inverted first. 

resubst. levels: This number indicates how many consecutive resubsti
tution runs were successful. 
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example decomp. #gates #inverters #trans. delay resubst. 
restr. levels 

alu2 2222 56 10 + 18 201 6 1 
a1u2 2323 54 10 + 25 214 6 0 
alu2 2424 51 9 + 20 201 6 0 
alu2 3232 98 10 + 38 362 8 0 
a1u2 3333 99 10 + 38 376 10 0 
alu2 4242 106 10 + 27 376 8 0 
a1u2 no decomp 60 10 + 16 293 6 0 

alu3 2222 42 10 + II 149 5 + 1 2 
a1u3 2323 38 10 + 17 155 5 + 1 1 
alu3 2424 37 10 + 10 148 4 + 1 0 
alu3 3232 59 10 + 19 210 7 0 
alu3 3333 50 10 + 14 202 6 + 1 1 
alu3 4242 56 9 + 15 209 7 0 
a1u3 no decomp 39 10 + 8 180 5 + 1 0 

apIa 2222 80 9 + 25 273 7 + 1 1 
apIa 2323 82 9 + 29 300 7 + 1 2 
apIa 2424 66 10 + 25 260 9 0 
apIa 3232 101 10 + 40 343 9 0 
apIa 3333 85 10 + 35 317 9 0 
apIa 4242 101 10 + 40 338 9 0 
apIa no decomp 122 10 + 14 481 5 + 1 0 

in6 2222 ll8 23 + 46 424 8 + 1 0 
in6 2323 ll7 24 + 42 442 7 + 1 1 
in6 2424 ll7 27 + 49 463 8 0 
in6 3232 132 25 + 34 456 8 0 
in6 3333 121 28 + 37 469 8 + 1 0 
in6 4242 134 25 + 36 472 8 0 
in6 no decomp 148 28 + 31 587 7 0 

in7 2222 59 17 + 18 202 7 0 
in7 2323 64 19 + 24 230 7 + 1 2 
in7 2424 75 21 + 22 267 8 + 1 0 
in7 3232 69 21 + 19 242 7 0 
in7 3333 61 17 + 20 234 8 0 
in7 4242 72 20 + 19 255 9 0 
in7 no decomp 64 21 + 15 286 6 0 

co14 2222 31 14 + II 130 7 0 
co14 2323 24 10 + 5 ll3 7 + 1 0 
co14 2424 24 10 + 5 ll3 7 + 1 0 
co14 3232 31 14 + II 130 7 0 
co14 3333 24 10 + 5 ll3 7 + 1 0 
co14 4242 31 14 + 11 130 7 0 
co14 no decomp 24 10 + 5 ll3 7 + 1 0 
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example deeomp. #gates #inverters #trans. delay resubst. 
restr. levels 

del 2222 19 4 + 6 67 3 + 1 2 
del 2323 21 4 + 5 67 3 + 1 3 
del 2424 16 4 + 4 64 3 0 
del 3232 18 3 + 3 64 3 + 1 0 
del 3333 17 4 + 3 62 3 + 1 0 
del 4242 12 4 + 1 61 3 0 
del no deeomp 12 4 + 1 61 3 0 

de2 2222 48 7 + 18 170 5 + 1 3 
de2 2323 50 7 + 15 185 5 2 
de2 2424 55 7 + 21 210 7 0 
de2 3232 59 7 + 13 197 7 1 
de2 3333 57 7 + 18 210 7 0 
de2 4242 62 7 + 19 226 7 + 1 0 
de2 no deeomp 40 7 + 9 194 4 0 

dk17 2222 51 8 + 10 163 7 2 
dk17 2323 44 10 + 11 159 5 + 1 0 
dk17 2424 46 9 + 17 170 7 0 
dk17 3232 48 9 + 16 163 7 0 
dk17 3333 48 8 + 18 173 9 0 
dk17 4242 48 9 + 16 163 7 0 
dk17 no deeomp 85 10 + 12 304 5 + 1 0 

dk27 2222 33 9 + 7 110 5 + 1 1 
dk27 2323 33 9 + 10 124 5 + 1 0 
dk27 2424 36 8 + 11 133 6 + 1 0 
dk27 3232 34 9 + 6 121 5 0 
dk27 3333 34 9 + 13 139 6 + 1 0 
dk27 4242 36 8 + 6 126 5 0 
dk27 no deeomp 37 9 + 4 141 4 + 1 0 

misg 2222 47 15 + 10 143 5 0 
misg 2323 40 18 + 15 144 5 0 
misg 2424 48 21 + 14 173 5 1 
misg 3232 56 15 + 19 188 7 0 
misg 3333 50 20 + 12 180 5 1 
misg 4242 45 22 + 13 171 5 0 
misg no decomp 41 19 + 15 163 5 0 

mish 2222 35 10 + 7 105 3 + 1 0 
mish 2323 32 15 + 8 118 3 0 
mish 2424 32 15 + 8 118 3 0 
mish 3232 34 12 + 7 116 3 0 
mish 3333 31 16 + 8 117 3 0 
mish 4242 31 16 + 8 117 3 0 
mish no deeomp 31 16 + 8 117 3 0 
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example deeomp. #gates #inverters #trans. delay resubst. 
restr. levels 

rd53 2222 18 5 + 7 75 4 + 1 1 
rd53 2323 22 5 + 3 89 3 + 1 3 
rd53 2424 25 5 + 2 93 4 2 
rd53 3232 43 5 + 9 135 6 + 1 0 
rd53 3333 32 5 + 9 132 6 + 1 0 
rd53 4242 33 5 + 13 128 7 + 1 0 
rd53 no deeomp 17 5 + 6 93 5 0 

rise 2222 56 8 + 17 146 5 + 1 0 
rise 2323 50 8 + 13 141 5 + 1 0 
rise 2424 46 8 + 7 139 3 + 1 1 
rise 3232 56 8 + 17 154 5 + 1 0 
rise 3333 47 8 + 21 152 5 + 1 0 
rise 4242 54 8 + 13 161 5 + 1 0 
rise no deeomp 54 7 + 9 188 3 + 1 0 

sqn 2222 51 7 +11 182 6 + 1 1 
sqn 2323 55 7 + 19 195 6 + 1 1 
sqn 2424 54 7 + 25 207 7 + 1 1 
sqn 3232 56 7 + 16 211 6 + 1 0 
sqn 3333 49 7 + 20 205 6 + 1 0 
sqn 4242 51 7 + 15 204 7 0 
sqn no deeomp 33 7 + 1 169 4 + 1 0 

wim 2222 19 4 + 5 63 3 + 1 3 
wim 2323 17 4 + 8 63 3 + 1 2 
wim 2424 16 4 + 7 60 3 + 1 1 
wim 3232 15 4 + 4 62 3 + 1 0 
wim 3333 13 3 + 3 57 3 0 
wim 4242 11 4 + 4 59 3 + 1 0 
wim no deeomp 12 4 + 3 60 3 0 
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