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A CONTINUOUS FLOW MODEL FOR THREE PRODUCTION UNITS IN SERIES ~ITH 

BUFFERS 

Rene de Koster,+ 

Jacob Wijngaard, Eindhoven 

Summary: In this paper we study three-stage production lines with 
intermediate buffers. The goods flow is supposed to be continuous and 
machine speeds may be different. Production units may be subject to 
stochastic failure and repair. We calculate the average line pro­
duction rate for some cases. Furthermore we prove some production 
lines can be reduced to simpler two-stage ones. 

Zusammenfassung: In dieser Arbeit untersuchen wir Produktionslinien 
mit drei Maschinen getrennt durch Puffer. Die Maschinen k~nnen ver­
schiedene Geschwindigkeiten haben und abwechselnd operationsf~hig 
und operationsunf~hig sein. Wir berechnen die erwartete Liniendurch­
satz ffir verschiedene F~lle. Ausserdem zeigen wir dass einige drei­
stations Produktionslinien gleichwertig sind mit einfachen zwei­
stations Linien. 

1. Introduction 

In Wijngaard (1979) a technique is introduced for analytically 

treating two production units in series with interstage buffer 

storage. In that model the goods flow is supposed to be continuous 

and the production units are subject to stochastic failure and rePair. 

In this paper we will apply the same techniques in order to obtain 

results concerning the stationary behaviour of the three-stage 

production line. This technique uses regeneration points. The idea 

behind this is, that the average output rate of a production line can 

be written as the quotient of the expected oroduction oer cycle and 

the expected cycle length, where a cycle is defined as the time 

between subsequent regenerations. 

In section 2 we work out the model. It will apoear that in the general 

case (that is all machines behave stochastically and all machine 

speeds are different) partial differential equations are involved, 

which cannot be solved analytically. However, in section 3 we show 

that in case two production units never fail and only one production 

unit breaks down from time to time, the exoected output rate can be 

calculated in some cases. In section 4 we will work out an example. 
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Finally, in section 5 we discuss the case where exactly two oroduction 

units break down from time to time. 

2. Model of the production line 

The three stage production line subject of our study in this oaper, is 

shown in figure 2.1. 

Fig. 2.1. 

We SUDROSe production is continuous, with different Production rates. 

The production rate of production unit i (PUi) is v·i (i=l,2,3). The 

PU's are subject to machine failure; the time to the first failure 

for PUi is exponentially distributed with oarameter \i. ~'ie assume 

failures to be time dePendent, that is, they occur at the same rate 

when the station is forced not to run or to run at a lower SPeed. For 

operation dependent failures the analysis can be carried out quite 

similarly. Since failure rates will only change in case a machine is 

blocked or starved, only the boundary conditions will change. 

Duration of repair of a PU which is broken down is also exponentially 

distributed, with parameter lli' respectively. We suPPose PUl is never 

starved, that is, it has always items to work on. In a similar way 

PU3 is never blocked by lack of storage caPacity for finished items . 

• ~ow suppose PUi is working with rate vi' buffer (i-1) (B(i-1}) is 

empty and vi > vi-l (i=2,3), then PUi has to slow down to rate vi-l' 

if PU(i-1) is working. If PU(i-1) is down then PUi is forced down. 

In the same way if vi > vi+l and Bi is full (i=l,2), then PUi has 

to slow down to rate vi+l' if PU(i+l) is working. Otherwise, if 

PU(i+l) is down, then PUi is forced down. The caPacities of the 

buffers are K1 and K2 , respectively. 

For this model, the state of the system can be described completely 

by the quintuple (a,b,c,x,y). The meaning of (l,O,l,x,y) for instance 

is that PUl is up, PU2 is under repair because of a failure, PU3 is 

up, the inventory level in Bl is x E[O,K
1

J and in B2 y E[O,K
2

]. 

The different machine states are defined as in table 2.2. 
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~ 1 2 3 4 5 6 7 8 
u 

1 1 0 0 1 1 0 0 1 

2 0 1 0 1 0 1 0 1 

3 0 0 1 0 1 1 0 1 

Table 2.2 Possible machine states 

Now let ai (x,y) be the cost rate in machine state i, given that the 

inventory level in B1 is x and in B2 is y (i=1, ... ,8). If ai (x,y) = 1, 

for all XE [O,K 1 J and YE [O,K2 J, then the e~pected cost oer cycle, CT, 

equals the expected cycle length, T. If ai(x,y) equals the real 

production rate of PU3 in machine state i, with inventory levels x and 

y, respectively, then CT equals the expected production uer cycle, PT. 

PT/T is the net production rate of the line. 

In order to calculate CT we define 

fi (x,y) = expected cost till the end of the cycle, if we are now in 

machine state i, with inventory levels x andy, respecti­

vely. 

Now CT can be expressed in the functions fi' depending on the regene­

ration point we choose. For instance, if we choose for a certain 

parameter setting the regeneration point to be (0,1,1,0,0), then 

c = 
T 

Here 

a
6 

(0, 0) 

1 

for instance, 

+ 
).: 

1 \3 
____ f 2 ( 0, 0) 

is the expected duration of a stay in (0,1,1,0,0) and, 

is t'1e conditional orobabili ty of a transition 

to state (1,1,1,0,0). 

By distinguishing between the cost in a certain small time interval n 

and the cost during the rest of the cycle, we can deduce the following 

system of equations for the fi's. We neglect some terms of o(n). 
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f 
1 

( x , y) a 
1 

( x , y ) t:, + ( 1- A 1 t:, ) ( 1- ~ 2 t:, ) ( 1- ~ 3 /::, ) f 1 ( x+v 1 t:, , y ) + 

+ A1 t:, (1-~2/::,) (1-~3/::,) f7 (x,y) + (1-).1 t:,) (1-~2/::,) ~3[',£5 (x,y) 

+ (1-).1t:,)~2t:,(1-~3t:,)f4(x,y) 

By letting t:, + 0 we obtain 

- v
1

£
1
x(x,y) a 1 (x,y) - (A 1+~2+~ 3 )f1 (x,y) + A1f 7 (x,y) + ~ 2 f4 (x,y) + 

+ ~3f5 (x,y), xe [0 ,K1} ye [ 0, K2 J (2. 1) 

where f 1x(x,y) 
Bf 

1 is shorthand for ---(x,y). The equations for the other 
dX 

states can be derived in the same way. 

In matrix-form they can be rewritten as 

Aix(x,y) + Biy(x,y) = £(x,y) + Ci(x,y), 

where i(x,y) is the vector (f 1 (x,y),f 2 (x,y), •• ,f
8

(x,y))T, 

~(x,y) is the vector (a 1 (x,y) ,a 2 (x,y), •• ,aq (x,y)) T, A is 

the diagonal matrix Diac;r(-v 1,v 2 ,'l,v 2-v 1 ,-v 1,v 2 ,o,v 2-v 1), 

B is the diagonal matrix Dia~(O,-v 2 ,v 3 ,-v 2 ,v 3 ,v 3-v 2 ,o,v 3-v 2 ) 

and 

0 0 ~2 ~3 0 AJ 
-).1-~2-~3 

0 ~I 0 ~3 >..2 
0 -).2-~1-~3 

-;~.r~~-~2 0 ~I ~2 ).3 
0 0 

AI 0 -).1->..z-~3 0 0 0 
C= A2 

0 AI 0 -;~.~-~2-;~.3 0 0 
).3 

;~.2 0 0 -~~-;~.2->..3 0 
0 ).3 

0 0 0 -~~-pz-~3 
~I ~2 ~3 

0 0 \l ;~.2 AJ 0 
0 

(2. 2) 

0 

0 

0 

~3 

~2 

~I 

0 

-).1-).2-).3 

The dimension of the system (2.2) can be reduced by one, by substitu­

ting the seventh equation in the other ones. 

It is straightforward to derive the boundary conditions for these 

equations. For instance, the boundary condition for equation (2.1) is 

as follows 

(2 .1a) 
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However, it is far from straight forward to solve the system (2.2) 

with the corresponding boundary equations. It can only be solved 

analytically in certain special cases (see Dennemeyer (1968)) and also 

a numerical approach is not very attractive. Therefore we will 

restrict ourselves to cases with two or one perfect machine(s). For 

simpler two-stage lines a solution for the averaqe line Production 

rate is mentioned by Koenigsberg (1959), in case both PU's have the 

same production rate and are completely balanced (that is also the 

net production rates are equal). For unbalanced machines with the 

same speed an analytical solution is given by Wijngaard (1979) and 

Malathronas, Perkins and Smith (1983). 

3. Two production units perfect, one production unit stochastic 

In this and the next two sections we simplify the three-stage 

production line, by assuming one or more PU's are perfect. We first 

suppose one PU is stochastic, the other two are perfect. 

To obtain the net average output rate we have to distinguish between 

the thirteen possibilities for the machine speeds as rePresented in 

table 3 .1. 

~ v3 < VI v3 = VI v3 > VI 
2 

vz < VI vz < v3 I vz = v3 [ vz > v3 vz < v3 vz < v3 

vz = VI vz > v3 vz > v3 Vz < v3 

vz > VI vz > v3 vz > v3 vz <! v3 I vz = v3 I vz > v3 
j 

Table 3.1 Different possibilities for the machine speeds 

However, depending on which PU is the stochastic one, Bany of these 

cases can be dealt with in the same way. We will give some examPles. 

Suppose PU2 is stochastic with parameters :\ 2 and 11 2 and v 2 :5_ v 1 , 

v2 ~ v 3 . PUl and PU3 are not subject to machine failures. After some 

time Bl will be occupied and will remain filled, B2 will remain emoty. 

Therefore, the expected output per unit of time will be v2 . __ 11~2~--

:\2+112 

If v 1 ~ v 2 ~ v 3 , then again Bl will be full after some time and the 

system will operate effectively as a system consisting of PU2, B2 and 

PU3 alone. It can be analysed as in Wijngaard (1979). 
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The case v
3 

v1 < v
2 

will be treated in section 4. 

The case v1 < v 2 ~ v 3 can be treated as in Wiingaard (1979), since 

B2 will remain empty. 

The two remaining cases v
3 

< v 1 < v
2 

and v
1 

< v
3 

< v
2 

could not be 
solved analytically. 

Now suppose PU3 is stochastic and PU's 1 and 2 produce constantly 

with rates v 1 and v
2

, respectively. We will not discuss all the cases 

mentioned before, but suppose v
2 

> v
3 

> v
1 . This system can be 

analysed by looking at the aggregate inventory level u := x+y. This is 

because PU3 has to slow down (to rate v1 ) if and only if u = 0. 

A similar analysis is carried out in section 5. The oroduction line 

will behave in the same way as a system consisting of two production 

units, namely PU3 and PU1, separated by a buffer of capacity K1 + K2 . 

4. A production line with one imperfect machine 

Suppose we have a production line consisting of a number of perfect 

machines with speed v 1 and somewhere in the line a stochastic machine 

with speed v > v 1 , immediately preceded and succeeded by a buffer. 

Such a line behaves exactly in the same way as our three-stage system, 

where PU1 and PU3 are perfect, v
3 

= v1 , and PU2 is stochastic with 

v
2 

> v1 . We are again interested in the average line production rate. 

The system of equations (2.2) reduces to 

a5 (x,y) - ]12f5 (x,y) + ]12f8 (x,y)' 

XE [0,K1), YE (O,K2] ( 4. 1) 

a8 (x,y) - \2f8 (x,y) + \2f5 (x,y), 

XE (O,K1], YE [0,K2) (4.2) 

As regeneration points we choose the entrances of the state 

(1,0,l,K 1 ,o). Note that if II (x,y)- (K 1 ,0)II ->-0, then f 5 (x,y)->-O. 

Therefore, in order to make f 5 continuous, we define f 5 (K 1 ,0)=0. (4.3) 

Other boundary conditions are 

(4. 4) 
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0 

as(x,O) - 112f5(x,O) + 112fs(x,O) I XE [O,Kl) 

as (0 ,y) - A2f8 (0 ,y) + A2f5 (0 ,y)' YE [0 ,K2 J 

a
8

(x,K
2
)- A

2
f

8
(x,K2 )+ A2 f

5
(x,K),xE [O,K1 J 

4. 5) 

4.6) 

4. 7) 

The expected cost per cycle, CT 
a

5
(K

1
,0) 

+ f
8

(K 1 ,0J ( 4. 8) 

112 

The system (4~1) - (4.2) can be reduced to a single oartial 

differential equation in W(x,y) := f
8

(x,y) - f
5

(x,y). The boundary 

equations (4.6) and (4.7) can be expressed in this function W. Since 

f 5 (K 1 ,0) = 0 we can also express CT in W. Now we may solve the new 

obtained equation by standard solution methods e.g. as indicated by 

Dennemeyer (1968). In order to obtain T we have to substitute 

a 5 (x,y) = a 8 (x,y) = 1, for all XE[~,K 1 J, yE[O,K2 J.To obtain PT we 

have to substitute a 5 (x,y) = a
8

(x,y) = v
1

, for all XE[O,K
1

J, YE 

(O,K2] and as(x,:J) = 0, as(x,O) = v1, for all XE[O,K1]. 

V2112 
For unbalanced lines, that is 

T 

t- v 1 , we obtain 

where p := + and hence 

We may check formula (4. 11) for the limiting cases to 

V1l12 V2112 

PT/T -+ if min {K1,K2} -+ 0. If > v1, then 
;1.2+ 11 2 ;1.2+ 11 2 

( 4. 9) 

(4. 10) 

(4.11) 

find 
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V2U2 
, if min {K

1
,K

2
} ~oo. If > v1 , then 

/.2+~2 

For balanced lines, that is, v1 , we may solve the system for 

\)2~2 

this new case or, alternatively, we may let -+ v
1 

in (4.9)-(4.11). 

1.2 +~ 2 

We find 

PT 

T 

1 

Cv 1 + ~ 2 min {K1 ,K2 }J and hence 

v1~2 (v2-v1) 

v1 (v12+v2~2 min {K1,K2}) 

( 4. 12) 

(4. 13) 

(4. 14) 

The reason why the system of partial differential equations can be 

solved in this case is that the oroblem is actually one-dimensional. 

In case K
1
=K

2 
the aggregate inventory level will equal K

1
, after some 

time and from that moment on the aggregate buffer contents will only 

move along the line y = K1 - x, xc [O,K 1J. 

It is interesting to compare the performance of this oroduction line, 

~hich we will denote by A, with the oerformance of the production 

lines Band C of figure 4.1. 
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B 

c . I Pu:
1 
I . ~'~:·'~ 

Fig. 4.1 Three production lines 

We suppose, as always, that the first production unit in a line is 

never starved and the last production unit is never blocked. 

Furthermore, since the case v 2 ~ v
1 

is unrealistic we suppose v 2 > v
1

. 

For B and C we choose as regeneration points the entrances of the 

state (0,1,0) and (1,0,K) respectively. The last entry stands for the 

inventory level in B. After some straightforward calculations, quite 

similar to the calculations just done, it appears that, in case min 

{K 1 ,K
2

} = K, for all production lines A, B and C, the exnected cycle 

time is the same, and this also holds for the expected nroduction per 

cycle! 

That this indeed has to be the case can be seen as follows. Let a(t) 

state of PU2 at time t, a(t) 1, if PU2 is UP 

a(t) 0, if PU2 is down. 

Suppose a(O) = 0 and the buffer contents at time t = 0 is 0 for line 

B, and K for line C. Let { (t, a(t)) It E I~ } be a stochastic realisa­

tion of PU2. The graphs of the buffer contents for lines B and C, 

corresponding to such a realisation, are sketched in figure 4.2. In 

case K
1 

= K
2 

= K it is also the graph of the contents of B2 and B1, 

respectively, of line A, provided we start with B2 empty and B1 

filled. The picture can easily be adapted for line A if K = min 

{K1 , K2 }, K1 f K2 . 
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buffer 
line B 

''':Ln 
0 I ........ --' 

contents 1 1 

K I 
I 

~--~ll~-----~~T~--~-~t-----
1 I 
I 1 

I 
I 
I 

o~--~-4----~----+-~------~~----~~--~~t~---
buffer content IT 
line C 

Fig. 4.2 Buffer contents for the lines B and C as function of time 

We see that, because of the chaise of the different regeneration 

points, the cycle time distribution is the same for all the production 

lines A, B and C. Now the only time line B cannot oroduce in a cycle 

is when the buffer is empty and PU2 is down. The only time in a cycle 

line C has no input is when the buffer is filled and PU2 is down. 

Since this only happens once in a cycle, by definition, we see that 

the input distribution of line C is equal to the outout distribution 

of line B. We see also that the input distribution of line A is equal 

to its output distribution (and equal to the input distribution of 

line C). In particular, since the average input equals the average 

output, per cycle, for all. lines, we have that the average output oer 

cycle is the same for all lines (= v 1 (T-l_)). 
112 

For more information about the reversibility of production lines see 

also the paper of Muth (1979). 

5. Two production units stochastic, one production unit nerfect 

In this section we suppose that the production rate for every PU 



equals 1. However, it is easy to see that some results also hold for 

more general cases. 
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If PU1 never fails and PU's 2 and 3 are stochastic, then the inventory 

level in B1 will increase monotonically. After the moment this 

inventory level equals K1 , the system will behave as a system consis­

ting of PU2 and PU3, separated by B2, only. This system has been 

analysed by Wijngaard (1979). In the same way, if only PU's 1 and 2 

are stochastic, then B2 always remains empty. Therefore, the averaqe 

line production rate equals the average line output oer unit of time 

of PU1, B1 and PU2. 

If PU2 is perfect and PU's 1 and 3 are stochastic the system can be 

analysed as follows. If x and y are the inventory levels in B1 and 

B2, respectively, then let u := x+y, u E[O,K 1+K
2

J. The state of the 

system can be described completely by the quadruple (a, 1, c, u), 

where a is the state of PU1, c the state of PU3. This is so, because 

starvation of PU3 is possible only if u = 0. 

For instance, if PU3 is up, B2 is empty and B1 not, then PU3 still 

produces with rate 1. Only if also B1 is empty and PU1 is down., then 

PU3 is forced down. Note that this argument also holds if v2 >1, bnt 

not if v2 <1. Therefore, if v 2~1 we can solve this model completely 

analogous to Wijngaard (1979), with solution 

for r 
K 

:\1Jl3 
f r£ ( rK : = --- + 

jl1+)l3 

( 

, r£ := 

\3 jl1 
--- e 
:\1 Jl3 

(r -r ) (K 1+K2 ) ) 
£ K - 1 + 
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