
 

Maintenance of 2- and 3-connected components of graphs;
Part I: 2- and 3-edge-connected components
Citation for published version (APA):
Poutré, La, J. A., Leeuwen, van, J., & Overmars, M. H. (1990). Maintenance of 2- and 3-connected components
of graphs; Part I: 2- and 3-edge-connected components. (Universiteit Utrecht. UU-CS, Department of Computer
Science; Vol. 9026). Utrecht University.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/bbed5979-a5db-45f9-8a53-2b678ee8528b


Maintenance of 2- and 3-Connected 
Components of Graphs, 

Part I: 2- and 3-Edge-Connected Components 

J .A. La Poutre, J. van Leeuwen and M.H. Overmars 

RUU-CS-90-26 
July 1990 

Utrecht University 
Department of Computer Science 

Padual .. n 14, P.O. Box 80.089, 

3508 TB Utrecht, The Netherlands, 

Tel. : ... + 31 • 30 - 531454 



Maintenance of 2- and 3-Connected 
Components of Graphs, 

Part I: 2- and 3-Edge-Connected Components 

J .A. La Poutre, J. van Leeuwen and M.H. Overmars 

Technical Report RUU-CS-90-26 
July 1990 

Department of Computer Science 
Utrecht University 

P.O.Box 80.089 
3508 TB Utrecht 
The Netherlands 



The results of this paper were presented at the French-Israeli Conference on Com­
binatorics and Algorithms, November 1988, Jerusalem (Israel). 

A preliminary version of this paper was completed in Februari 1989. The final 
version of this paper was released in June 1991. 

ISSN:0924-3275 



Maintenance of 2- and 3-connected 
components of graphs, 

Part I: 2- and 3-edge-connected components* 

J .A. La Poutre, J. van Leeuwen and M.H. Overmars§ 

Abstract 

In this paper a data structure is presented to efficiently maintain the 2-

and 3-edge-connected components of a graph, under insertions of edges in the 
graph. Starting from an "empty" graph of n nodes, the insertion of e edges 
takes O( n log n + e) time in total. The data structure a.llows for insertions of 
nodes a.lso (in the same time bounds, taking n as the fina.l number of nodes). 
Moreover, at any moment, the data structure can answer the following type 
of query in 0(1) time: given two nodes in the graph, are these nodes 2- or 
3-edge-connected. 

1 Introduction 

Recently there has been a growing interest in dynamic or on-line graph algorithms 
(see e.g. [3, S, 9, 10, lS]). A graph algorithm is called dynamic or on-line if it 
maintains some information related to a graph while the graph is being changed 
(e.g. by inserting or deleting a node or an edge). A dynamic algorithm exploits a 
suitable data representation for a graph and uses information of the old graph to 
compute the required information for the new updated graph. It is anticipated that 
a dynamic algorithm does not need to compute a new solution for the new graph 
from scratch, i.e., by using the new graph as input only, and a better performance 
may be expected compared to an algorithm that simply "recomputes". Dynamic 
algorithms are known for e.g. computing transitive closures (d. [S, 9, 10], or d. [17] 
for planar graphs), minimal spanning trees (d. [3]), incremental planarity testing 
(d. [2]) and maintaining shortest paths (d. [lS]). One sometimes uses the term 
"on-line" algorithm when only insertions (of nodes or edges) are allowed. 

·This research was partially supported by the ESPRIT'Basic Research Action No. 3075 (project 
ALCOM). 

§Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, 
The Netherlands 

1 



In this paper we consider the problem of maintaining 2- and 3-edge-connected 
components of a graph under insertions of edges (and vertices), where k-edge­
connectivity is defined as follows. Let G be an undirected graph. Two nodes x 
and y are called k-edge-connected in G (k ~ 1) if after the removal of any set of at 
most k -1 edge(s) x and y are (still) connected (i.e., there is a path between x and 
y). 

We present a data structure with algorithms for maintaining the 2- and 3-edge­
connectivity relation of a graph. The algorithm starts from an "empty" graph of 
n nodes (i.e., a graph with no edges) in which edges are inserted one by one and 
where at any time for any two nodes the query whether these nodes are 2- or 3-edge­
connected can be answered in 0(1) time. Moreover, the 2- and 3-edge-connected 
components are maintained. The insertion of e edges takes O( n log n + e) time 
altogether. By using additional data structuring techniques, the time bounds for 
2- and 3-edge-connectivity can be improved, as will be demonstrated in [14]. The 
algorithms have an improved running time of O( n + m.a( m, n)) where m is the 
number of edge insertions and queries and where a(m, n) denotes the inverse Ack­
ermann function. Recently, Westbrook and Tarjan [21] independently obtained the 
same time bounds for 2-edge-connectivity. The methods though are quite different. 
Moreover, our method for obtaining the results on 2-edge-connectivity can be used 
for 3-edge-connectivity as well, as will be shown. 

The paper is organized as follows. In Section 2 we introduce some terminology and 
state properties on connectivity. In Section 3 we consider the 2-edge-connectivity 
problem and in Section 4 we consider the 3-edge-connectivity problem: first we 
consider 3-edge-connectivity in 2-edge-connected graphs and then we extend this 
to general graphs. 

2 Preliminaries 

2.1 Graphs and terminology 

Let G =< V, E > be an undirected graph with V the set of vertices and E the set of 
edges. The edge set E consists of edges with the incidence relation in the following 
form: an edge is a triple (e, x, y), where e is the edge name and x and yare the end 
nodes of the edge. The order of the end nodes x and y of an edge is not relevant 
(hence, (e,x,y) = (e,y,x)). Moreover, all edge names are required to be distinct. 
Therefore we can denote an edge by its name only. 

We use the following notions (see also [7]). A path between two nodes x and y is 

an alternating sequence of nodes and edges such that x and y are at the end of this 
sequence and each edge is bracketed by its end nodes x and y. However, we often 

2 



consider a path to consist of the (sub )sequence of the nodes only. A path is nontrivial 
if it contains at least 2 distinct nodes. A path is simple if no node occurs twice in it. 
Two paths are called edge disjoint if they do not have a common edge. Two nodes 
are called connected if there exists a path between them. A (elementary) cycle is 
a path where the end nodes are equal and where no edge occurs twice. A cycle 
containing just one distinct node is called trivial, otherwise it is called nontrivial. A 
cycle is simple if there is no node that occurs twice in the sequence except for the 
end nodes. 

Definition 2.1 Nodes x and yare k-edge-connected (k ~ 1) if after the removal of 
any set of at most k - 1 edgers) x and yare (still) connected. If the removal of a 
set of edges separates the vertices x and y (i.e., x and yare not connected), then 
that set is called a cut edge set for x and y. 

It is easily seen that if two nodes are k-edge-connected, then they are k' -edge­
connected for any k' with 1 :::; k' :::; k. We state some lemmas. The following lemma 
of Menger (d. [16]) characterizes k-edge-connected vertices. 

Lemma 2.2 [Menger] Two nodes x and yare k-edge-connected iff there exist k 
edge-disjoint paths between x and y. 

A special case of this lemma occurs for k = 2: two nodes are 2-edge-connected iff 
they lie on a common elementary cycle. 

Lemma 2.3 k-edge-connectivity is an equivalence relation on the set of nodes of a 
graph. 

The 2-edge-connected components of a graph G are subgraphs of G that are induced 
by equivalence classes of nodes w.r.t. 2-edge-connectivity. To be precise, 2-edge­
connected components are defined as follows. 

Definition 2.4 Let G =< V, E > be a graph. Let C ~ V be an equivalence class 
w.r.t. to 2-edge-connectivity. Then < C,{(e,x,y) E Elx,y E C} > is called a 
2-edge-connected component of G (induced by C). 

In this paper we will represent the 2/3-edge-connected components in a graph by 
means of a "super" graph. To this end we introduce the notion of a class node. 

Definition 2.5 Let G =< V, E > be a graph. Let V be partitioned in classes and 
let some (new) distinct node be related to each class, called the class node of that 
class. Letcc(x) be the class node of the class in which x is contained (x E V). Then 

3 



the induced node set cc(V), the induced edge set cc(E') of a set of edges E' ~ E and 
the induced graph cc( G) are given by 

cc(V) .- {cc(x)lxEV} 

cc(E') .- ((e,cc(x),cc(y))l(e,x,y) E E' A cc(x) =I cc(y)} 

cc(G) .- < cc(V),cc(E) > 

We state some lemmas. 

Lemma 2.6 Let G =< V, E > be a graph and let k be a positive integer. Let V 
be partitioned in classes and let some (new) distinct node be related to each class. 
Suppose that any two nodes x and y that are in the same class are k-edge-connected. 
Let cc(x) be the class node of the class in which x is contained (x E V). Then the 
following holds. 

1. A collection E' ~ E of at most k - 1 edges is a cut edge set for x, y E V in G 
iff the induced edge set cc( E') is a cut edge set of cc( x) and cc(y) in cc( G). 

2. If E' is a cut edge set for nodes x and y of at most k-l edges and if (e, u, v) E E 
such that cc( u) = cc( v), then E'\ {( e, u, v)} is a cut edge set for x and y too. 

3. For all X,y E V and 1 ::; k' ::; k, x and yare k'-edge-connected in G iff cc(x) 
and cc(y) are k' -edge-connected in cc( G). 

Proof. Let E' ~ E be a set of at most k - 1 edges. 

If E' is not a cut edge set for x and y, then there exists a path P in G between x 
and y that does not use an edge of E'. The corresponding path of P in cc( G) is a 
path between cc(x) and cc(y) that does not use an edge of cc(E'). Hence cc(E') is 
not a cut edge set in cc( G). 

Suppose cc( E') is not a cut edge set for cc( x) and cc(y) in cc( G). Then there exists a 
simple path CP between cc(x) and cc(y) in cc(G) that does not use edges of cc(E'). 
Let P be the path in G constructed from C P as follows. Each edge (e, cc( u ), cc( v )) 
in CP is replaced by the (unique) edge (e,u,v) in G. Moreover, the vertices u and 
v bracket this edge in P in the proper order (i.e., if cc(u) occurs before cc(v) in CP, 
then u occurs before v in P). Finally bracket the obtained sequence with the nodes 
x and y. Now we have a sequence of nodes and edges in G such that each edge is 
bracketed by its end nodes and such that two consecutive nodes u, v in P without 
an edge in between are in the same class with class representative cc( u) (= cc( v)). 
Since a class is k-edge-connected and since E' contains at most k - 1 edges, there 
exists a path between such u and v that does not use an edge of E'. Now we can 
obtain the path P from the above sequence by inserting these paths between these 
nodes. Hence, P is a path in G that does not contain nodes of E'. Therefore, E' is 
not a cut edge set for x and y in G. This concludes the proof of the first statement. 

4 



If E' is a cut edge set for nodes x and y of at most k - 1 edges and if E' contains an 
edge (e, u, v) such that cc( u) = cc( v), then (e, cc( x), cc(y)) fI. cc(E') while cc(E') is a 
cut edge set for cc(x) and cc(y) in cc( G). Hence, by the first statement, E'\ {( e, x, y)} 
is a cut edge set for x and y too. This proves the second statement. 

The third statement now follows since we only have to consider cut edge sets E' 
with IE'I = Icc(E')I. 0 

In other words: "internal" edges of classes of k-edge-connected nodes are not relevant 
for cut edge sets up to size k - 1. The following lemma is based on the observa­
tion that for two nodes that are k-edge-connected, there exist k edge-disjoint paths 
between them, and hence, all the nodes on these paths are 2-edge-connected. 

Lemma 2.7 Let G =< V, E > be a graph. Let H be a 2-edge-connected component 
of G. Then H is a 2-edge-connected graph. Moreover, nodes x, y E Hare k-edge­
connected in H iff they are k-edge-connected in G (k ~ 1). 

Proof. Let x and y be two nodes of H. Suppose there are k edge disjoint paths in 
G between x and y, for some k ~ 2. (For k = 1 the lemma is trivial.) Let PI and 
P2 be any two of these paths. Now between x and a node a on PI there are 2 edge 
disjoint paths: they can be obtained by splitting PI at a and by concatenating P2 

with the appropriate part of PI in reversed order. Hence, all nodes on PI are in H 
and therefore PI is a path in H. Hence, G and H contain the same paths between 
x and y. 0 

Since a definition of 3-edge-connected components similar to Definition 2.4 does 
not yield 3-edge-connected graphs, we introduce the following definition, that can 
described informally as: a 3-edge-connected component J of a graph G is a subgraph 
that is induced by an equivalence class C of nodes of G w.r.t. the 3-edge-connectivity 
relation and that is extended with a collection of additional (new) edges such that 
two nodes x and y are k-edge-connected in G iff they are k-edge-connected in J. 

Definition 2.8 Let G =< V, E > be a graph. Let C be an equivalence class of V 
w.r.t. to 3-edge-connectivity. For each pail' x, y of nodes in C let f( {x, y}) be the 
maximal number of non-trivial edge disjoint paths between x and y that intersect 
with C at x and y only and that intersect with V\ C . Let E( {x, y }) be a set of 
f( {x, y}) new edges with end nodes x and y, called auxiliary edges. Let E( C) be the 
set 

E(C):= {(e,x,y) E Elx,y E C} U U E({x,y}) 
x,yEC 

Then the graph < C, E( C) > is called a 3-edge-connected component of G (induced 
by C). 

Lemma 2.9 Let G =< V, E > be a graph. Let C be an equivalence class of V 
w.r.t. 3-edge-connectivity. Let J be a 3-edge-connected component of G induced 

5 



by C. Then J is a 3-edge-connected graph. Moreover, nodes x, y E Care k-edge­
connected in J iff they are k-edge-connected in G. 

Proof. Let x, y E C. Suppose there exist k edge-disjoint paths in G between x and 
y. W.l.o.g. these paths are simple. Now replace each part of a path between two 
nodes a and b of C that consist of nodes in V\ C by an edge of E ( { a, b} ) that is not 
used in some other path already. Since the k paths do not intersect in edges and by 
the definition of f( {a, b}), E( {a, b}) and E( C) it follows that this procedure yields 
k edge-disjoint paths between x and y within J. 

On the other hand, suppose there are k edge disjoint paths in J between x and y 
(w.l.o.g. these paths are simple). By the definition of E(C), the edges in E(C)\E 
with end nodes a and b can be replaced by an equal number of edge disjoint simple 
paths in G between a and b such that each path does not contain other nodes of C 
except for their end nodes a and b and such that each path intersects with V\ C. 
Moreover, two such collections of paths, say, between a and b and between c and d, 
do not intersect in any node outside C if {a, b} =I {c, d}. (This is seen as follows. 
Suppose a ¢ {c, d} and suppose that such a path PI from a to b and such a path P2 

from c to d intersect outside C. Then follow path PI starting at a until it intersects 
with P2 at some node h, h ¢ C. Then this path part together with the two paths 
obtained by splitting P2 at h yield three edge-disjoint paths from h to nodes of C. 
Since C is 3-edge-connected it follows that h is 3-edge-connected with the nodes 
of C too, and hence h E C, which yields a contradiction.) Hence there exist kedge 
disjoint paths between x and y in G. 0 

Note that the 3-edge-connected component of graph G with vertex set C defined in 
Lemma 2.9 is unique apart from the names of the new edges. In the sequel we will 
not bother about these exact names and just call such a graph the component of G 
with vertex set C. An example is given in Figure l. 

By means of Lemma 2.7 and Lemma 2.9 the following lemma easily follows. 

Lemma 2.10 Let G be a graph. Let C2 be an equivalence class of V w.r.t. 2-
edge-connectivity, and let C3 be an equivalence class of V w. r. t. 3-edge-connectivity. 
Then either C2 n C3 = 0 or C3 ~ C2 • Let H be the 2-edge-connected component of 
G induced by C2 and let J be the 3-edge-connected component of G induced by C3 • 

If C3 ~ C2 then C3 is a 3-edge-connected equivalence class of H and moreover J is 
a 3-edge-connected component of H induced by C3 (up to edge names). 

Stated differently, each 3-edge-connected component of G is a 3-edge-connected 
component of some 2-edge-connected component of G and reversely. 

6 



Figure 1: Two and three edge-connected components of graph G . 

Graph G 

• 

2-edge-connected 
components 

2.2 Representation and algorithms 

• • e 
• 
• 

3-edge-connected 
components 

In order to deal with the maintenance problem we represent a graph as follows. All 
nodes and edges of a graph are represented in memory by records, which we will 
consider to be the actual nodes and edges. I.e., we do not distinguish between a 
vertex (or an edge) and the record that represents it. Each vertex has an incidence 
list, that consist of pointers to all edges that are incident with that vertex. Also, each 
edge contains pointers to its two end nodes. (Hence, the vertices that are adjacent 
to some vertex v can be obtained by the incidence list of v and by the pointers from 
edges to their end nodes.) Finally, an edge that has to be inserted is given by its 
record with the pointers to its end nodes (according to the above representation) as 
input for the algorithms. 

When we consider classes (sets) of nodes in a graph, we often refer to a class of nodes 
that is represented by a node e by "class e". Moreover, we will often not distinguish 
between a pointer to a record and the record itself. 

Lemma 2.3 states that k-edge-connectivity is an equivalence relation. In our algo­
rithms we need operations on equivalence classes like joining classes and determining 
in which class an element is contained. This problem is condensed in the Union­
Find problem, which is given as follows. Let U be a universe of n nodes, called 
elements. Suppose U is partitioned into a collection of singleton sets and to each 
set some node is related as its name. Suppose we want to perform the following 
operations: Union(A,B), i.e., join the two sets named A and B into a new set and 
relate a node to the resulting set as its name, and Find(x), i.e., return the name of 

7 



the set (= the node related to the set) in which element x is contained. The thus 
occurring set names must satisfy the condition, that at every moment, the names 
of the existing sets are distinct. Many solutions have been proposed for the Union­
Find problem (cf. [11,19,20]): these solutions all take O(n + m.a(m,n)) time for 
all Unions and m Finds on n elements, which is optimal [4, 12]. However, in the 
most part of this paper we only use a simple algorithm [1] taking O( n log n) time for 
all Unions together and 0(1) time per Find, since additional computations already 
take O( n log n) time. 

In the sequel, the Union-Find structure is used to maintain the equivalence classes 
for connectivity, 2-edge-connectivity and 3-edge-connectivity, where the Unions and 
Finds on the different kind of sets are denoted by Unionc, Findc, Union2ec, Find2ec, 
Union3ec and Find3ec, respectively. Note that this can easily be implemented by 
reserving a dedicated field for each type of ( equivalence) set in each of the considered 
nodes, where this field either contains the (sub )field( s) for the corresponding U nion­
Find structure, or where it contains a pointer to a representative record of the node 
for the considered Union-Find structure. We often denote the above three types of 
Finds just by c, 2ec and 3ee, respectively. 

We consider the connectivity problem for edge insertions. Let G =< V, E > be 
a graph. Suppose a sequence of edge insertions in G and queries whether two 
nodes are connected is performed. The equivalence classes of connected nodes are 
represented by a Union-Find structure on these nodes. The class to which node x 
belongs has e(x) as its name. Hence, nodes x and y are connected iff e(x) = e(y). 
If an edge (e, x, y) is inserted, there are two cases. If e( x) = e(y), then nothing 
needs to be done. Otherwise, if e( x) =I e(y) then x and y are not connected yet and 
the (old) equivalence classes e(x) and e(y) need to be joined. This is performed by 
Unionc(c(x),e(y)). Since apart from these Unions each insertion takes 0(1) time, 
it follows that all insertions and queries can be performed in O(lE!) time plus the 
time need for the Union and Find operations. In the sequel, we use this algorithm 
for maintaining connectivity. 

For maintaining 3-edge-connected we also need a structure for a problem that is 
closely related to the Split-Find problem [5, 13]: the Circular Split-Find problem 
[13], which is given as follows. Let U be a collection of nodes, called elements. 
Suppose U is partitioned into a collection of cyclic lists and suppose to each list a 
(new) unique node is related, called set name. We want to be able to perform the 
following operations: Find(x) and Split(x, y) (where x and y are in the same list and 
x =I y), i.e., given (pointers to) elements x and y, split the cyclic list that contains 
x and y into two cyclic lists, viz. the part starting from x up to but excluding y 
and the part from y up to but excluding x and relate set names to the two newly 
arisen cyclic lists. The occurring set names must satisfy the condition that, at every 
moment, the names of the existing cyclic lists are distinct. A solution for the Split­
Find problem is as follows: at any moment, each cyclic list is implemented as a 

8 



doubly linked cyclic list and each element has a pointer to its set name. Hence, a 
Find can be performed in 0(1) time. A Split(x,y) is performed as follows: first split 
the list at these two points into the two sublists as described above (which can be 
done in 0(1) time since the lists are doubly linked). Then determine the smallest 
of these lists as follows: traverse both lists by performing a step of each traversal 
in an alternating way, until one of the traversals has been completed: that lists is 
the smallest list. (Note that this takes time linear to the size of the smallest of 
the two resulting lists.) Finally, for all nodes in the smallest list, adapt the pointer 
to point to a new set name. It is easily seen that all Splits take O( n.log n) time 
altogether, since a Split takes time proportional to the size of the smallest resulting 
list (also d. the Union-Find algorithms in [1]). In [13] faster solutions for the 
Circular Split-Find problem are given which are optimal on pointer machines [12]. 
These solutions closely correspond to the solutions in [5] for the ordinary Split-Find 
problem. The solutions take O(n + m.a(m, n)) time for all Circular Splits and m 
Finds on n elements. 

3 Two-edge-connectivity 

3.1 Graph observations 

Let G =< V, E > be a graph. The set V can be partitioned into 2-edge-connected 
equivalence classes. Let each 2-edge-connected equivalence class C be represented 
by a new (distinct) node c, called the class node of C. Let 2ec( x) be the class node 
of the 2-edge-connected class in which the node x is contained. We define the graph 
2ec(G) as follows (according to Definition 2.5): 

2ec(G) =< 2ec(V), {(e, 2ec(x), 2ec(y))l(e, x, y) E E /\ 2ec(x) 1= 2ec(y)} > . 

Hence, 2ec( G) is the graph that is obtained if we contract each 2-edge-connected 
component into one (representing) class node. Since 2ec(V) represents the set of 
equivalence classes of G, it follows by Lemma 2.6 (sub 3) that 2ec( G) is a forest (d. 
Figure 2). We maintain the 2-edge-connectivity relation under edge insertions by 
means of the graph 2ec( G). 

Edge insertions can be handled as follows. Suppose a new edge (e, x, y) ¢ E is 
inserted in graph G =< V, E >. We distinguish three cases. 

1. c(x) 1= c(y). Then by Lemma 2.6 (sub 3) 2ec(x) and 2ec(y) are not connected 
in 2ec( G). Hence, (e, 2ec( x), 2ec(y)) connects two trees in 2ec( G) that have to 
be joined into one tree. 

2. 2ec(x) 1= 2ec(y) /\ c(x) = c(y). Then the edge (e,2ec(x),2ec(y)) arises as 
an inserted edge in 2ec(G). Edge (e,2ec(x),2ec(y)) connects the class nodes 

9 



Figure 2: Graph G and the corresponding graph 2ec( G). 

Graph G Graph 2ec(G) 

2ec( x) and 2ec(y) in a tree of 2ec( G) and a cycle arises. Hence, all class nodes 
on the tree path from 2ec(x) to 2ec(y) become 2-edge-connected in 2ec(G). 
By Lemma 2.6 (sub 3) all nodes in V that are contained in the corresponding 
classes become 2-edge-connected too. The update can now be performed in 
the following way . 

• obtain the tree path in 2ec(G) between 2ec(x) and 2ec(y) . 

• join all the classes "on" this tree path into one new class C' and adapt 
the related information. 

3. 2ec(x) = 2ec(y) AC(x) = c(y). Then the edge (e,x,y) connects two nodes that 
are 2-edge-connected in G, and, hence, insertion of this node will not affect 
the 2-edge-connectivity relation (cf. Lemma 2.6, sub 3). 

3.2 . The algorithms 

We will now describe the different steps in more detail. 

In our algorithms we represent each of the collections of connected classes and 2-
edge-connected classes of a graph G by a Union-Find structure (cf. Subsection 2.2), 
where the name of each class is the class node of that class (i.e., a Find on an element 
of a class outputs the class node related to that class). Therefore we (may) denote 
Findc(x) or Find2ec(x) by c(x) or 2ec(x) too (cf. Subsection 2.2). We represent the 
forest 2ec( G) by means of rooted trees in our algorithms. We denote a rooted forest 
by 2ec( G)R without making the roots explicit in our description. 

10 



For each class node c we have a field father(c) that is nil or that contains a pointer 
to the edge (e,x,y) such that 2ec(x) = c (i.e., x is contained in class c) and 2ec(y) 
is the father of 2ec( x) in the (rooted) forest 2ec( G)R. Edge (e, x, y) is called the 
interconnection edge between (classes) 2ec(x) and 2ec(y), or it is called the father 
edge of (class) 2ec(x). (Note that the father of 2ec(x) in 2ec(G)R can be obtained 
by the father edge of 2ec( x ). ) 

Initially, there are no edges, each node forms both a connected class and a 2-edge­
connected class and for all class nodes c, father(c) = nil. 

Now, suppose a new edge (e, x, y) fI. E is inserted in graph G = < V, E >. Then 
after inserting edge (e, x, y) in the proper adjacency lists, procedure insert2 given in 
Figure 4 updates the structure as follows. (The sub-procedures of insert2 are given 
in Figure 5 and Figure 6.) We distinguish the three previous cases. 

1. c( x) =I- c(y) (line 2-8). Then (e, 2ec( x ), 2ec(y)) connects two trees in 2ec( G) 
that have to be joined to one tree. Since the trees are represented by rooted 
trees this means that one of the two trees has to be redirected w.r.t. the father 
relation of classes. We take the tree with the smallest size, i.e., the tree that 
has the least number of nodes that are contained in the classes in that tree. 
(This can be determined by means of a parameter in the Union-Find structure 
for connected components.) W.l.o.g. this is the tree containing 2ec(y). It 
suffices to "reverse" the father pointers for the nodes on the root path of the 
class node 2ec(y) (i.e., the path from node 2ec(y) to the root of its tree). This 
is performed by procedure ReverseRootPath that is given in Figure 5. 

2. 2ec(x) =I- 2ec(y)Ac(x) = c(y) (line 9-12). All classes on the tree path in 2ec(G) 
between 2ec( x) to 2ec(y) become 2-edge-connected and must be joined. This 
is done as follows. First of all, the tree path P between 2ec( x) and 2ec(y) . 
is obtained by means of procedure call TreePath2 that outputs tree path P 
together with a pointer fath to the father edge of the nearest common ancestor 
top of 2ec( x) and 2ec(y) in 2ec( G)R (this pointer is nil if this edge does not 
exist). These are obtained by stepwise traversing the root paths from 2ec(x) 
and 2ec(y) in an alternating way (cf. Figure 6) until a node top has been 
visited by both traversals. This class node top is the nearest common ancestor 
of 2ec(x) and 2ec(y). Then the path between 2ec(x) and 2ec(y) consists of 
the two parts of these root paths up to and including this "first mutual class 
node". . 

The joining of the classes on P is done by means of Union2ec operations. Note 
that the father edge of the resulting class is the father edge of the (old) class 
top. (Cf. Figure 3.) 

3. 2ec(x) = 2ec(y) A c(x) = c(y) (line 13-14). Then nothing needs to be done. 

11 



Figure 3: Joining the classes of the tree path from 2ec(x) to 2ec(y). 

For the Union-Find structures we take the basic Union-Find structure that takes 
O( n.log n) time for all Unions on n elements and O( 1) time per Find. 

3.3 Time bounds 

We consider the time complexity of the algorithm. All insert operations can be 
performed in O(n log n+e) time for e edge insertions together (where n is the number 
of nodes). This is seen as follows. All redirections of trees are performed in the basic 
Union-Find way, i.e., always only the father values in the smallest tree are adapted. 
Since the redirection of a tree of size size is performed in O( size) time and since 
after the linking the resulting tree has to be at least twice as large as the smallest 
of the previous two trees, the total time for all these adaptations is O( n log n). 
Furthermore, all Unions take O(n log n) time altogether too. A computation of a 
tree path P (line 10) is done in O(IPI) time, since the traversed part PI of one of 
the two root paths contains class nodes of P only, while the traversed part P2 of 
the other root path contains at most as many class nodes as PI : hence at most 
2.IPI class nodes are encountered in these traversals. Since the number of classes 
decreases by IPI- 1 (> 0), since initially there are n classes and since the number 
of classes never increases, all tree path computations take O(n) time altogether. 
Finally, each insertion takes 0(1) time apart from the cost considered above. 

Combining the above time bounds yields that all e insertions take altogether O( n log n+ 
e) time. 

We consider the space complexity. Note that all edges that do not become intercon-

12 



Figure 4: Procedure insert2( e, x, y). 

(1) procedure insert2(e,x,Y)j 
(2) if c(x) # c(y) 
(3) -. if size(c(x)) ~ size(c(y)) 
(4) -. ReverseRootPath(2ec(y)); father(2ec(y)):= (e,x,y) 
(5) ~ size(c(x)) < size(c(y)) 
(6) -. ReverseRootPath(2ec(x))j father(2ec(x)):= (e,x,y) 
(7) fi; 
(8) Unionc(c(x),c(y)) 
(9) ~ c(x) = c(y) A 2ec(x) # 2ec(y) 
(10) -. Treepath(2ec(x),2ec(y),P,fath)j 
(11) for all C E P\{2ec(x)} -. Union2ec(C,2ec(x)) rof; 
(12) father(2ec(x)) := fath 
(13) ~ c(x) = c(y) A 2ec(x) = 2ec(y) 
(14) -. skip 
(15) fi 

Figure 5: Procedure ReverseRootPath(C). 

(1) procedure ReverseRootPath(C)j 
(2) if father( C) # nil 
(3) -. (e, u, v) := father( C)j father( C) := nil; 
(4) w.l.o.g., 2ec(u) = C A 2ec(v) # C (otherwise, interchange u and v); 
(5) ReverseRootPath(2ec(v)) ; 
(6) father(2ec(v)):= (e,u,v) 
(7) ~ father( C) = nil 
(8) -. skip 
(9) fi 

13 



Figure 6: Procedure TreePath2(C, D, output P, fath). 

procedure TreePath 2(C,D, output P,fath)i 

• stepwise traverse the root paths from C and D alternatively, i.e., by performing 
steps of the traversals of these root paths in an alternating way. During this 
traversals, mark the class nodes encountered and stop the traversals if one of 
the two path traversals encounters a class node top that has been marked by 
the other traversal; 

• path P between C and D consists of the two parts of these root paths up to 
and including tOpj 

• fath := father(top)j 

• remove the marks 

nection edge at the moment of insertion, are not used by the algorithm and hence 
do not need to be stored in memory. We show that there exist at most n - 1 in­
terconnection edges during all edge insertions. An edge that is inserted becomes an 
interconnection edge if its end nodes are in two distinct connected components just 
before its insertion, while these connected components are joined. Since initially (in 
the "empty" graph) there are n connected components, at most n - 1 joinings of 
components occur and hence there exist at most n - 1 such edges during the entire 
sequence of insertions. Therefore, it follows that the space complexity is O(n). 

A query whether two nodes are in the same 2-edge-connected class is simply done 
by performing Find2ec queries on these nodes, which takes 0(1) time. 

3.4 Maintaining components 

Although the above method maintains the 2-edge-connectivity relation, it does not 
actually maintain the components themselves. If the 2-edge-connected components 
have to be maintained, then this can be done as follows: for each node, we have two 
incidence list, viz. the list list2 containing the edges within its 2-edge-connected 
component and a list list! containing the edges outside of it. Each edge not only 
contains pointers to its end nodes, but to its occurrences in the incidence lists as 
well. The incidence lists are doubly linked. Since all edges that are incident with 
node x and that are within its 2-edge-connected component are stored in list list2, a 
2-edge-connected component can be traversed by means of these lists. (Moreover, all 

14 



nodes that are in this component can be enumerated by means of a list in the Union­
Find structure that represents the set corresponding to the class node 2ec(x).) Now 
again consider the insertion of the new edge (e,x,y). In addition to the previous 
algorithm the following steps must be performed: 

• c(x) # c(y). Then insert the edge in the lists list1 of the nodes. 

• c(x) = c(y) A 2ec(x) # 2ec(y). Then all interconnection edges encountered 
on the tree path of 2ec( x) and 2ec(y) become edges inside a 2-edge-connected 
component instead of outside it. Therefore, remove all these edge from the 
related lists list! and insert them in the lists list2 of their end nodes. This 
can be done in O( 1) time per edge. Moreover, edge (e, x, y) is inserted in the 
lists list2 of the nodes x and y. 

• 2ec(x) = 2ec(y). Then insert the new edge in the lists list2 of nodes x and y. 

Since the additional operations increase the time with only 0(1) time per encoun­
tered edge, it follows that this does not increase the time complexity in order of 
magnitude. 

Theorem 3.1 Given a graph G, there exists a data structure such that the query 
whether two nodes are 2-edge-connected can be answered in 0(1) time and that 
maintains the 2-edge-connected components of G when edges are inserted. Starting 
from the empty graph G =< V,0 > (i.e., a graph with no edges), the insertion of e 
edges take O( n log n + e) time altogether, if n is the number of nodes in G. Finally, 
the data structure can be initialised in O( n) time and it uses O( n + e) space when 
the 2-edge-connected components are maintained and O( n) space otherwise. 

It is easily seen that besides edges, new nodes can be inserted in the graph in 
0(1) time (where each inserted node forms a 2-edge-connected class in its own at 
the moment of insertion). Therefore, the statement in the above theorem can be 
extended with node insertions, where n is the final number of nodes in the graph. 

4 Three-edge-connectivity 

We will now extend the results to the maintenance of 3-edge-connected components 
in a graph. We first introduce some notions and prove some properties for them. In 
subsection 4.1 we consider maintaining the 3-edge-connectivity relation within 2-
edge-connected graphs and subsequently in Subsection 4.2 we consider the problem 
for general graphs. In Subsection 4.3 we consider the maintenance of complete 
3-edge-connected components. 

15 



Let G =< V, E > be a graph. The set V can be partitioned into 3-edge-connected 
equivalence classes. Each 3-edge-connected class C is represented by a new (distinct) 
node c, called the class node of C. Let 3ec( x) be the class node of the 3-edge­
connected class in which the vertex x is contained. We define the graph 3ec( G) as 
follows: 

3ec(G) =< 3ec(V), {(e, 3ec(x),3ec(y))l(e, x, y) E E A 3ec(x) i= 3ec(y)} >. 

Hence, 3ec( G) is the graph that is obtained if we contract each 3-edge-connected 
component into one representing (class) node (see Figure 7 if G is 2-edge-connected). 
By Lemma 2.6 (sub 3) it follows that 3ec(G) does not contain pairs of distinct class 
nodes that are 3-edge-connected in 3ec( G). 

4.1 Two-edge-connected graphs 

Throughout this subsection, we suppose that the graph G is 2-edge-connected. By 
Lemma 2.6 (sub 3) for 2-edge-connectivity, every two distinct class nodes must 
lie on a common elementary cycle in 3ec(G). On the other hand, simple cycles 
cannot intersect in more than one class node, since 3ec( G) does not contain pairs of 
distinct class nodes that are 3-edge-connected. (The proof is similar to the proof of 
Lemma 2.9. If two different simple cycles SI and S2 intersect in two different nodes, 
then take a maximal part P of cycle SI that consists of at least three nodes and 
that has no nodes in common with S2 except for both its end nodes. Then P and 
the two paths between these nodes in S2 yield 3 edge-disjoint paths.) Therefore, it 
follows that each edge in 3ec( G) is on exactly one simple cycle in 3ec( G). 

Let Cyc(3ec( G)) be the graph that is constructed from 3ec( G) as follows. Each non­
trivial simple cycle (i.e., consisting of at least two distinct class nodes) is represented 
by a distinct node, called cycle node. Let cn(3ec( G)) be the set of cycle nodes. For 
a cycle node s let cycle(s) be the set of all class nodes that are on the cycle s. Then 
the graph Cyc(3ec( G)) is defined uniquely up to the choice of (distinct) edge names 
by 

Cyc(3ec( G)) = 

< 3ec(V) U cn(3ec(G)), {(e,c,s)lc E 3ec(G) A s E cn(3ec(G)) AcE cycle(s)} > . 

Hence, Cyc(3ec( G)) consists of the class nodes and cycle nodes of 3ec( G), where 
a class node c is adjacent to a cycle node s in Cyc(3ec( G)) iff c lies on cycle s 
in 3ec(G) (i.e., c is "incident" with cycle s). Therefore, graph Cyc(3ec(G)) shows 
the incidence relation for class nodes and cycles. The structure of Cyc(3ec( G)) is 
illustrated in Figure 7, where the cycle nodes are drawn as boxes. 

Below we will show that Cyc(3ec( G)) is a tree. Therefore we call graph Cyc(3ec( G)) 
the cycle tree of G. 

16 



Figure 7: A 2-edge-connected graph G and the related graphs 3ec( G) and 
Cyc(3ec( G)). 

Graph 3ec(G) Graph Cyc(3ec(G)) 

Lemma 4.1 Let G be a 2-edge-connected graph. Let c, d E 3ec( G). Let P be a path 
between c and d in Cyc(3ec( G)). Then there are 2 edge disjoint paths in 3ec( G) 
between c and d that only consist of edges from the cycles represented by the cycle 
nodes on P. 

Proof. Between any two distinct class nodes on a simple cycle, there are precisely 
two edge disjoint paths within that cycle. On the other hand, each edge is contained 
in exactly one simple cycle. Now the lemma easily follows. 0 

Lemma 4.2 Let G be a 2-edge-connected graph. Then Cyc(3ec( G)) is a tree. 

Proof. Let c and d be two class nodes in Cyc(3ec(G)). By Lemma 2.6 (sub 3) for 
connectivity, graph 3ec( G) is connected. Hence, there is a simple path P in 3ec( G) 
between class nodes c and d. We can construct a path in Cyc(3ec(G)) between c 
and d by the observation that each edge (e, f, g) on P is in some simple cycle s and 
hence that there are edges between f and s and between g and s in Cyc(3ec(G)). 
Hence, all class nodes are connected in Cyc(3ec(G)). On the other hand, each cycle 
node is adjacent to at least one class node. Hence, Cyc(3ec( G)) is connected. 

On the other hand, suppose there is a nontrivial simple cycle in Cyc(3ec( G)). Hence, 
it consists of at least distinct 2 class nodes c and d and at least 2 cycle nodes. 
Lemma 4.1 yields that there are at least 4 edge disjoint paths between c and d in 
3ec( G), since an edge in 3ec( G) is contained in precisely one simple cycle. Hence, 
by Lemma 2.2 c and d are 3-edge-connected in 3ec( G). Contradiction by Lemma 2.6 
(sub 3). 0 

17 



4.1.1 Graph observations 

We maintain the 3-edge-connectivity relation under insertions of edges by means of 
the graph Cyc(3ec( G)). 

Suppose a new edge (e, x, y) is inserted in the 2-edge-connected graph G =< V, E > 
(( e, x, y) ~ E). Because G is 2-edge-connected, we have two cases. If 3ec( x) = 3ec(y) 
then the edge connects two nodes that are 3-edge-connected in G, and, hence (by 
Lemma 2.6, sub 3), insertion of this edge does not affect the 3ec-relation and the 
graphs 3ec( G) and Cyc(3ec( G)) remain unchanged. So we can assume that 3ec( x) # 
3ec(y) 1\ 2ec(x) = 2ec(y). Then edge (e,3ec(x),3ec(y)) arises as an inserted edge in 
3ec(G) and it connects two class nodes 3ec(x) and 3ec(y) in 3ec(G). 

Lemma 4.3 Let G be a 2-edge-connected graph. Suppose edge (e, 3ec( x ), 3ec(y )) is 
inserted to the graph 3ec( G). Then all the class nodes on the tree path from 3ec( x ) 
to 3ec(y) in Cyc(3ec( G)) become 3-edge-connected in 3ec( G), while the other pairs 
of distinct class nodes in 3ec( G) stay only 2-edge-connected. 

Proof. Let P be the tree path in Cyc(3ec(G)) between the class nodes 3ec(x) and 
3ec(y). Let c and d be any two class nodes on P. Now split Pinto 3 disjoint parts: 
part PI from 3ec(x) to c, part P2 from c to d and part Pa from d to 3ec(y). By 
Lemma 4.1 it follows that there exist 2 edge disjoint paths QI and Q2 in 3ec( G) 
between c and d that only consist of edges from cycles represented by cycle nodes 
on P2 • Similarly, it follows from Lemma 4.1 that there exists a path Rl from c to 
3ec( x) that only uses edges from the cycles represented by cycle nodes on PI, and 
a path R2 from 3ec(y) to d only using edges from cycles represented by cycle nodes 
on Pa. Let Qa be the path Rt, (e, 3ec( x), 3ec(y)), R2 from c to d. Then it follows 
that Qa has no edges in common with QI and Q2. Hence, by Lemma 2.2 c and d 
are 3-edge-connected. 

On the other hand, let c and d be 2 distinct class nodes in 3ec( G) such that c is 
not on P. Consider a cycle node r that is adjacent to class node c in Cyc(3ec(G)) 
such that r separates c from 3ec(x) and 3ec(y). (This node exists because r is not 
on P.) The deletion of the two edges in 3ec(G) that are incident with c and that 
belong to the simple cycle r, separates c from all class nodes on the other side of 
r in the tree Cyc(3ec(G)). (For, otherwise there would be a distinct class node on 
cycle r that was 3-edge-connected with c.) Hence, the removal of these edges either 
separates c from both d, 3ec(x) and 3ec(y), or c and d are "on the same side of 
r" in Cyc(3ec(G)). In the first case it follows that insertion of (e,3ec(x),3ec(y)) 
does not make c and d 3-edge-connected, in the latter case we can make the same 
construction for d, yielding the required result. 0 

By Lemma 4.3 all class nodes on the tree path from 3ec( x) to 3ec(y) in C yc( 3ec( G)) 
become 3-edge-connected in 3ec(G) and, hence, by Lemma 2.6 (sub 3) all the 

18 



corresponding classes form a new class. The update can now be performed in the 
following way . 

• obtain the tree path in Cyc(3ec(G)) between 3ec(x) and 3ec(y) 

• join all the classes "on" this tree path into one new class C' and adapt the 
cycle tree Cyc{3ec{G)) into Cyc{3ec{G')) accordingly (where G' is the result 
graph after the insertion of the edge). 

The update is illustrated in Figure 8. The cycle tree changes as follows. Consider 

Figure 8: Adapting the tree path between 3ec(x) and 3ec(y). 

3ec(x) 3ec(y) 

the simple cycle s and the class nodes c and d (c =f:. d) such that s, c and d are on 
P and c,d E cycle(s). Then classes c and d are joined into the new class d. The 
original simple cycle s splits into two "smaller" simple cycles, each one consisting 
of the class node d for the new class and of the class nodes of one of the two parts 
of the cycle between c and d, in the same cyclic order (cf. Figure 9). One or both 
of these two new cycles may be a trivial cycle: i.e., consisting of class node d only 
(which is the case if one of the parts mentioned above of the cycle is empty). 

4.1.2 The algorithms 

In our algorithms we represent the collection of 3-edge-connected classes of a graph 
G by a Union-Find structure (cf. Subsection 2.2), where the name of each class is 
the class node of that class (i.e., a Find on an element of a class returns the class 
node related to that class). Therefore we (may) denote Find3ec(x) by 3ec{x) too 
(cf. Subsection 2.2). 

19 



Figure 9: Splitting cycles. 

9 9 

e d 

a 

We represent the cycle tree Cyc(3ec( G)) as a rooted tree in a way which will be 
described in the sequel, where the root of the tree is some class node. We will 
denote this rooted tree by Cyc(3ec( G))R in the descriptions below without making 
the root explicit. 

The edges in Cyc(3ec( G)) are represented as follows. The data structure is ex­
tended with a (variable) collection of class representatives, which are new records. 
Each class representative represents some edge in Cyc(3ec( G)) between a class node 
and a cycle node. (If a cycle tree changes because of an edge insertion, a class rep­
resentative may represent another edge of the resulting cycle tree.) We denote the 
class representative that is related to the edge between class node c and cycle node 
s (in Cyc(3ec(G))) by repr(c,s). 

To implement the relation between a class representative repr( c, s) and the corre­
sponding edge between c and s in Cyc(3ec( G)), we use a Circular Split-Find and a 
Union Find structure, from which the end nodes c and s of that edge can be obtained. 
(Hence, in contrary to the representation of ordinary edges in the graph G, a class 
representative repr( c, s) that represents an edge between c and s in Cyc(3ec( G)) 
does not have direct pointers to the end nodes c and s of that edge.) These struc­
tures are used in the following way. A class representative repr( c, s) is an element 
of the so-called cycle list for cycle node s and of the so-called representative set for 
class node c, which are given as follows. The cycle list for a cycle node s contains 
the class representatives repr( c, s) of all class nodes c in cycle s in 3ec( G) in the 
order in which these class nodes occur in cycle s. The collection of cycle lists is im­
plemented as a Circular Split-Find structure (cf. Subsection 2.2), where the name 
of a cycle list for cycle node s is s itself. (Hence, a Find on an element of that list 

20 



returns node s.) We denote a Circular Split or a Find in this structure by Splitcyc or 
Findcyc respectively. The representative set for a class node c is the set that contains 
the representatives repr( c, s) for all cycle nodes s for which repr( c, s) exists. The 
collection of representative sets is implemented as a Union-Find structure, where 
the name of the representative set for class node cis c itself. (Hence, a Find on an 
element of that set returns the node c.) In the algorithms we perform a Union on 
two representative sets (of class representatives) for two class nodes c and d iff the 
corresponding classes c and d (of ordinary nodes) in the graph are joined. Therefore 
we will not make these joinings explicit in our algorithms. We denote a Find in 
this structure by Finddau. Hence, the operations Finddau and Findcyc on a class 
representative yield the end nodes of the edge that is related to it. 

The father relation in Cyc(3ec( G))R is implemented as follows. If h is the father of 
9 in Cyc(3ec( G))R, then father(g) is a pointer to the class representative repr(g, h) 
or repr(h,g), depending on which of the nodes 9 or h is the class node. Then the 
father of 9 in Cyc(3ec(G))R can be obtained by means of Findcyc(father(g)) or 
Findda .. (father(g)) respectively. 

We assume that initially the 2-edge-connected graph G is represented as described 
above, where the father relation satisfies the orientation in Cyc(3ec(G))R for some 
root. 

Now, edge insertions can be handled as follows. Suppose edge (e,x,y) is inserted in 
graph G =< V, E > with (e, x, y) rt E. Then after inserting this edge in the inci­
dence lists, procedure insert3 (given in Figure 10) performs the updates as follows. 
We distinguish the two cases. If 3ec(x) = 3ec(y) " 2ec(x) = 2ec(y) (line 2), then 
nothing needs to be done. Otherwise, we have 3ec( x) =F 3ec(y) " 2ec( x) = 2ec(y) 
(line 3-7). All class nodes on the tree path in Cyc(3ec(G)) between 3ec(x) and 
3ec(y) become 3-edge-connected in 3ec( G). The procedure first determines this tree 
path (line 4) and then adapts the cycle tree accordingly by first splitting all cycles 
on P (line 5) and then joining all classes on P (line 6). This is done as follows. 

1. The computation of the tree path (line 4). In line 4, the tree path P between 
3ec(x) and 3ec(y) is obtained by traversing the root paths of 3ec(x) and 3ec(y) 
alternatively like in Section 2. This is performed by the call of procedure 
TreePath3 which is given in Figure 11. This procedure returns the tree path 
P. Moreover, it detects whether the nearest common ancestor top of 3ec(x) 
and 3ec(y) in Cyc(3ec( G))R is a cycle node (if this is the case, topcyc = true is 
returned) and it returns the class representative father(top) in the parameter 
toprepr. 

2. The splitting of cycles (line 5) is performed by procedure AdjustCycles, which 
is given in Figure 12. The strategy is as follows: let c, s and d be three 
consecutive nodes on P,where s is a cycle node. Note that, since Cyc(3ec(G))R 
is a rooted tree, either c or s contains a pointer to repr( c, s) and that the same 

21 



holds for d, s and repr( d, s). Therefore, these records can be obtained by using 
these pointers. The cycle list for cycle node 8 is split into two parts: the part 
from repr( c, 8) up to but excluding repr( d, 8) and the part from repr( d, 8) up 
to but excluding repr(c,8). This is done by a Circular Split operation at those 
two elements. (Each part forms a new cyclic list, for which a new cycle node 
is generated.) If one (or both) of these two lists appears to correspond to a 
trivial cycle (i.e., it contains only one element), then that list is deleted. Note 
that if 8' and 8" are the cycle nodes resulting from the Circular Split, then the 
class representatives denoted by repr( c, s') and repr( d, s") (after the Circular 
Split) actually are the class representatives formerly denoted by repr( c, s) and 
repr( d, s). Each resulting cycle node 8' or 8" (which can be obtained by the 
Findcyc operation) gets a father pointer to repr( c, 8') or repr( d, 8") respectively. 

3. The joining of the classes on P is done by joining the classes pairwise, resulting 
in a new class c' (line 6). Note that afterwards all cycle nodes s' that have 
resulted from the previous Circular Splits, now have a father pointer to the 
class representative denoted by repr( c', s'). 

4. Finally, the father( c') value for the newly formed class c' is assigned by proce­
dure AdjustFathers (line 7). Procedure AdjustFathers is given in Figure 13. 
The father values are updated according to the following observations. 

Consider the old graph Cyc(3ec( G) )R. Let top be the nearest common ancestor 
of 3ec(x) and 3ec(y) in Cyc(3ec(G))R. Recall that toprepr is the class repre­
sentative corresponding to the edge between top and its father in Cyc(3ec( G)) 
(if any). We have the following cases: 

• top is a class node that is the root. Then the new class node c' will be 
the root of the new tree. 

• top is a class node that is not the root. Then the father of top in 
Cyc(3ec( G)) is a cycle node s for which no Circular Split is performed 
on its cycle list. Then s must be the father of the new class c'. 

• top is a cycle node (that is not the root). Then let a be the class node 
that is the father of top in Cyc(3ec( G))R. Note that the father of the new 
class c' must be the cycle node s that contains both a and c': this cycle 
node s may be different from top since a Circular Split just generates 
two new cyclic lists with two names (being the resulting cycle nodes). 
Hence, the father of c' is s and the father of s is a. Note that s can 
be obtained by Findcyc(toprepr). Then repr(c',s) can be obtained by 
father(s), since all involved cycle nodes have their father pointers to the 
representative of class c'. (See Figure 14 that shows the results of the 
four successive parts as distinguished above for this case (top is a cycle 
node), where a class representative together with the father pointer to 
that class representative is indicated as a directed edge as follows: e.g., 

22 



(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

if the father pointer of node t points to repr(d, t), then this is indicated 
as the directed edge from t to d). 

Hence, d becomes father of all the cycle nodes that are on P or that are 
created in the cycle splittings, except for the cycle node s of the third case 
given above. 

Figure 10: Procedure insert3((e,x,y)). 

procedure insert3((e,x,Y))j 
if 3ec( x) = 3ec(y) ----+ skip 
~ 3ec( x) =1= 3ec(y) 

----+TreePath3(3ec(x) , 3ec(y), P, toprepr, topcyc)j 
AdjustCycles(P)j 
for all class nodes c E P\ {3ec( x)} ----+ U nion3ec ( c, 3ec( x )) rofj 
AdjustFathers(3ec(x), toprepr, topcyc) 

(8) fi 

Figure 11: Procedure TreePath3(c, d, output P, top). 

procedure TreePath3(c, d, output P, toprepr, topcyc)j 

• traverse the root paths from c and d alternatively, i.e., by performing steps of 
the traversals of these root paths in an alternating way. During this traversals, 
mark the nodes encountered and stop the traversals if one of the two path 
traversals encounters a node top that has been marked by the other traversalj 

• path P between c and d consists of the two parts of these root paths up to 
and including tOpj 

• topcyc :=[top is a cycle node]j 
toprepr := father(top)j 

• remove the marks 

23 



Figure 12: Procedure AdjustCycles(P). 

procedure AdjustCycles( P)j 
traverse P and for all three consecutive nodes c,s, d on the path where s is a cycle 
node, perform the following. 

• obtain the class representatives repr( c, s) and repr( d, s) by means of the fields 
father(c), father(d) and father(s). 

• split the cycle list for cycle node s into two parts by a Circular Split 
Splitcyc(repr( c, s), repr( d, s)): the part from repr( c, s) up to but excluding 
repr( d, s) and the remainder, (while (new) cycle nodes are related to these 
cycles as names)j dispose such a cycle list if it contains only one element 

• as far as the considered class representatives repr( c, s) and repr( d, s) are not 
disposed: 

father(Findcyc(repr(c,s))) := repr(c,s)j 
father(Findcyc(repr(d,s))) := repr(d,s)j 

Figure 13: Procedure AdjustFathers(3ec(x), toprepr, topcyc). 

procedure AdjustFathers(3ec( x), toprepr, topcyc)j 
(1) if topcyc ----. s:= Findcyc(toprepr)j 
(2) father(3ec(x)) := father(s)j father(s) := toprepr 
(3) ~ -,topcyc ----. father(3ec(x)) := toprepr 
(4) fi 

24 



Figure 14: Changes in the father relation. 

toprepr 

~.a 

~~. 
~ •• I1t' 

r' \ " ~:, S 
:~~ "e 

ti'b 
r 

toprepr 

25 



4.1.3 Complexity 

We study the time complexity of the method. We express the time complexity of 
an execution of procedure insert3 in the number of computational steps that are 
executed, where a Find operation (a.o. for obtaining fathers in a tree) is considered 
to be one step. Consider some insertion. Apart from 0(1) steps for lines 1-3 we have 
the following cost (which is only the case if 3ec( x) =f:. 3ec(y)). Let the number of 
classes decrease by d (d ~ 1). Bya similar argument as for procedure call TreePath2 

it follows that a call of TreePath3 (line 4) takes O(d) steps of computation. It is 
easily seen that the call of procedure AdjustCycles (line 5) takes O(d) steps plus 
the time needed for the Circular Split operations. Finally, line 6-7 take O( d) steps 
apart from the time needed for the Unions. 

Concluding the above observations we obtain the following property. 

Property 4.4 A call of procedure insert3 in a 2-edge-connected graph takes 0(1 + 
d) steps plus the time needed to join 3-edge-connected classes and to perform Cir­
cular Splits, where d is the number by which the amount of classes decreases. 

Observe that there exist O(n) different classes during all insertions. Moreover, 
initially for the 2-edge-connected graph from which is started, there are at most 
2( n - 1) class representatives, since each class representative corresponds to an edge 
in Cyc(3ec(G)), the tree Cyc(3ec(G)) contains at most n class nodes, leaves of the 
tree are class nodes and edges connect cycle nodes and class nodes only. Hence, 
we obtain the following lemma, which a.o. can be used in [14]. 

Lemma 4.5 Given a 2-edge-connected graph G of n nodes with a cycle tree, there 
exists a data structure that allows inse1'tions of edges in G and that can answer 
queries of the following type at any moment: given two nodes in G, are these nodes 
3-edge-connected. The total time for m insertions and queries is O( m + n) plus the 
time needed to perform O(m+n) Finds and O(n) Unions and Splits in a Union-Find 
or a Circular Split-Find structure for n elements. 

By using a Union-Find structure and a Circular Split-Find structure with time 
complexity O(n + m.a(m,n)) time for all Union/Splits on n elements and for m 
Finds (cf. [11, 19, 20] and [5, 13]) we obtain the following result. 

Lemma 4.6 Given a 2-edge-connected graph G of n nodes with a cycle tree, there 
exists a data structure that allows insertions of edges in G and that can answer 
queries of the following type at any moment: given two nodes in G, are these nodes 
3-edge-connected. The total time for m insertions and queries is O( ( m + n) .a( m, n)) 
time. 

26 



4.2 General Graphs 

We now extend the solution of the previous section to general graphs. 

Note that for detecting the 3-edge-connected classes it suffices to detect the 3-edge­
connected components inside the 2-edge-connected components (cf. Lemma 2.10). 
Therefore, our algorithms for general graphs maintain the 2-edge-connected classes 
by using the previous solutions for 2-edge-connectivity (Section 3) and maintain 
the 3-edge-connected classes by using the previous solutions for 3-edge-connectivity 
within 2-edge-connected components (=graphs) (Subsection 4.1). 

The representation of a graph consists of the representations and the data struc­
tures of both Section 3 and Subsection 4.1 (for 2-edge-connectivity and 3-edge­
connectivity respectively). Hence, there is a cycle tree (of 3-edge-connected class 
nodes) for each 2-edge-connected component. 

Initially, there are n nodes and no edges in the graph. Each node forms a connected, 
a 2-edge-connected and a 3-edge-connected class on its own. For each class a 
distinct class node with the data as described in the previous (sub)sections is present. 
(Of course no cycle nodes are present yet.) Note that the initialisation can be 
performed in O( n) time. 

Suppose edge (e, x, y) is inserted in graph G yielding graph G'. Then the updates are 
performed by procedure INSERT (given in Figure 16), that is based on procedure 
insert2 (cf. Figure 4). The procedure works as follows. Three cases are considered 
(cf. Figure 16). 

If c(x) =F c(y) (line 2-3), then the 2-edge-connected classes do not change. Therefore 
the computations performed in insert2 for this case (i.e. line 2-8 of Figure 4) suffice 
here. 

Otherwise, if 2ec(x) = 2ec(y) (line 23-24) then the edge is inserted inside a 2-edge­
connected component. Therefore procedure insert3 (Figure 10) is performed, that 
deals with 3-edge-connected classes within a 2-edge-connected component. 

Otherwise, wehave2ec(x) =F 2ec(y) AC(x) = c(y) (line 4-22). Then consider 2ec(G). 
Let P2 be the tree path between 2ec( x) and 2ec(y) in 2ec( G) (consisting of the 
class nodes only) and let C 52 be the cyclic list obtained from P2 by inserting the 
interconnection edges between consecutive class nodes of P2 and by inserting the 
edge (e,x,y) between class nodes 2ec(x) and 2ec(y). Then the major changes are 
the following: 

• all 2-edge-connected classes corresponding to class nodes on P2 form one new 
2-edge-connected class 

• for each 2-edge-connected class Con P2 , the 3-edge-connected classes inside 
C (and hence the corresponding cycle tree) are changed: several 3-edge­
connected classes may form one new 3-edge-connected class 

27 



• a new cycle of 3-edge-connected classes arises that links the (updated) cycle 
trees that correspond to the 2-edge-connected classes on C S2 

We consider the updates more precisely. 

Consider the changes of the 3-edge-connected components that occur in 2-edge­
connected classes on P2. Consider a particular 2-edge-connected class C on P2 in 
2ec( G). Let u and v be the two nodes in C that are end nodes of interconnection 
edges on C S2. Then there is a new path between u and v in G' that does not intersect 
with C except for u and v, where such a path did not exist in G before. Hence, 
considered within C only, this corresponds to inserting a temporary edge between 
the nodes u and v (cf. Figure 15). Therefore, we can first insert a temporary edge 
between u and v to update the 3-edge-connected classes (and hence the cycle tree) 
inside C (causing u and v to be in the same 3-edge-connected class) and then 
perform all remaining updates w.r.t. the insertion of (e,x,y). 

Figure 15: Tree path versus temporary edges. 

2ec(u) 

2ec(G) together with 3ec(2ec(u)) after insert
3

(e,u,v) 

Now suppose all these "local" insertions are performed in the 2-edge-connected 
classes on P2 • Then the two edges in CS2 that are incident with one 2-edge­
connected class C on P2 have their end nodes in the same (updated) 3-edge­
connected class in C. Call such a 3-edge-connected class the interconnection class. 
Then all these interconnection classes form a new cycle r. Hence, all the updated 

28 



cycle trees in the 2-edge-connected classes on P2 (that result from the local inser­
tions of temporary edges) must be linked to the new cycle node r. All these cycle 
trees now form one new tree together. 

According to the above observations the following is performed in procedure INSERT 
(cf. line 5-21). 

First, the tree path P2 in 2ec( G) is computed together with the corresponding se­
quence C S2 that also contains the interconnection edges and the edge (e, x, y). Note 
that these interconnection edges can easily be obtained from the father fields of all 
class nodes that are on P2• (In fact this sequence can be obtained in TreePath 2 

instead of P2 .) Then for each pair of nodes u and v that are in a 2-edge-connected 
class on P2 and that are end nodes of two consecutive edges in C S2 (where u and 
v may be equal), procedure insert3((e',u,v)) is executed to adapt the 3-edge­
connected classes inside class 2ec( u) by means of a temporary edge (e', u, v) that 
only exists during this execution (d. Figure 15). Moreover, the cyclic list C S3 of the 
3-edge-connected interconnection classes is extended with the (updated) class node 
3ec( u) (= 3ec( v )). Finally, if the 2-edge-connected class 2ec( u) is not the largest 
class eo "on" P2 (i.e., it does not contain the largest number of nodes), then class 
node 3ec(u) is made to be the new root of the (updated) cycle tree in which it is 
contained (inside the 2-edge-connected class 2ec( u)) by reversing the root path of 
node 3ec(u). This is done by procedure ReverseRootPath3 , which works similar to 
procedure ReverseRootPath2 with obvious adaptations. 

Afterwards all 2-edge-connected classes are joined (while the father of the result­
ing 2-edge-connected class 2ec(x) is adapted) and a new cycle node r for the new 
cycle corresponding to C S3 is created. For each 3-edge-connected class c E C S3, 
that is on cycle r, a class representative repr( c, r) is created and is inserted in the 
representative set of class node c. (This can be done for the Union-Find structure 
as follows: first make a singleton set of repr( c, r) and then join that set with the 
representative set of c.) Then the father pointers w.r.t. this new cycle node r are 
adapted: the father of r will be the class node ceo (the 3-edge-connected class ceo is 
the interconnection class that was contained in the largest 2-edge-connected class 
eo), while all other 3-edge-connected class nodes in C 53 have r as their father. Note 
that now each 3-edge-connected class node occurring in the new cycle has at most 
one father pointer, since all class nodes in C S3 except for ceo were the roots of the 
cycle trees in the 2-edge-connected classes on C S2. Therefore, all father pointers 
implement a rooted tree. 

The Union-Find and the Circular Split-Find structures that we use here are the 
basic structures that take O(n. log n) time altogether for all the Unions/Splits on n 
elements and that take 0(1) time for each Find (d. Subsection 2.2). 

29 



(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

Figure 16: Procedure INSERT((e,x,y)). 

procedure INSERT((e,x,y)); 
if c( x) =I c(y) 

-+ insert2((e,x,y)) 
~ c(x) = c(y) 1\ 2ec(x) =l2ec(y) 

-+ Treepath2(2ec(x), 2ec(y), P2, fath); 
let Co be the class node on P2 with the largest number of nodes in its class; 
construct the cyclic sequence C S2 from P2 by inserting the 
interconnection edges between consecutive class nodes on P2 and by 
inserting edge (e, x, y) between class nodes 2ec( x) and 2ec(y); 
CS3 := 0 ; 
for all end nodes u, v of consecutive edges in C S2 with 2ec( u) = 2ec( v) 

-+ insert3((e',u,v)), for a temporary edge (e',u,v); 
insert 3ec( u) in C S3; 
if 2ec(u) =F co-+ ReverseRootPath3(3ec(u)) 
~ 2ec( u) = co-+ cco := 3ec( u) 
fi 

(17) rof; 
(18) for all C E P\{2ec(x)} -+ Union2ec(C,2ec(x)) rof; 
(19) father(2ec(x)) := fath; 
(20) make a new cycle r of the class nodes in C S3 in the same cyclic order 
(21) in which they appear in CS3 , where cco is the father of the new cycle 
(22) node r and the father of the class nodes in C S3 \ { cco} is r 
(23) ~ c(x) = c(y) 1\ 2ec(x) = 2ec(y) 
(24) -+ insert3((e,x,y)) 
(25) fi 

30 



4.2.1 Complexity 

Let us look at the time complexity. Note that procedure INSERT operates sim­
ilar to procedure insert2 apart from the computations made because of 3-edge­
connectivity. Therefore we only have to consider these extra computations. 

First we show that the total number of class representatives that exists during the 
entire process of insertions is at most 2n -1 if n is the number of nodes in the graph. 
Note that class representatives (in cycles) are only created when 2-edge-connected 
classes are joined. In particular, one class representative arises per 2-edge-connected 
class that is joined with another class. Since initially in the" empty" graph (with 
no edges) there are n 2-edge-connected classes, it follows that there exist at most 
2n - 1 different 2-edge-connected classes throughout all operations. Hence, there 
exist at most 2n - 1 different class representatives. 

We now compute the time complexity of procedure INSERT for all edge insertions. 

All computations in lines 1-5, 18, 19, 23 and 25 correspond to computations of 
procedure insert2 and hence take altogether O(n log n+e) time for e edge-insertions. 
Moreover, lines 6-10 and 20-22 can be performed within the same time complexity 
as line 5 since they all need time linear to the length of P2. Therefore we charge 
this cost to line 5, what does not increase the order of time complexity of that 
line. Hence, the only computations we need to consider now are those performed in 
lines 11-17 and line 24. 

By Property 4.4 the execution of insert3 takes 0(1 + d) time apart from the time 
needed to join 3-edge-connected classes and to perform Circular Splits, where the 
number of 3-edge-connected classes decreases with d. Firstly note that the number 
of calls of procedure insert3 in line 12 of procedure INSERT is 0(ICS2 1). Therefore 
we can charge 0(1) time per call to line 5 without increasing the order of time 
complexity too. A similar remark can be made for the call of procedure insert3 
in line 24: 0(1) time can be charged to procedure call INSERT. Hence, we only 
need to consider the remaining part O(d) of the cost 0(1 + d) of a call of insert3. 
Since initially there are n 3-edge-connected classes and since the number of classes 
only decreases and never increases, it follows that the remaining time O( d) spent 
by procedure insert3 (where d is the decrease in the number of 3-edge-connected 
classes) adds up to O(n) for all calls together. The Union-Find structure and the 
Circular Split-Find structure take O(n.log n) time for all Unions and Splits, since 
there are O( n) elements occurring in these structures. 

Adding all the above time complexities yields a total time complexity of O( n log n+e) 
altogether for the insertions of e edges. Moreover, only the edges that become 
interconnection edges between 2-edge-connected classes at the time of insertion 
(and hence, for which their end nodes are in two distinct connected components just 
before the insertion) need to be stored. Hence, since there exist at most n - 1 such 
edges during the entire sequence of insertions, the space complexity is O(n). 

31 



We have proved the following theorem. 

Theorem 4.7 Given a graph G, there exists a data structure such that the query 
whether two nodes are 2-edge-connected or 3-edge-connected can be answered in 
0(1) time. Starting from the empty graph G =< V,0 > (i.e., a graph with no edges), 
the insertion of e edges take O(nlog n + e) time altogether, if n is the number of 
nodes in G. Finally, the data structure can be initialised in O( n) time and it uses 
O(n) space. 

4.3 Maintaining complete 3-edge-connected components 

In this subsection we study the maintenance of the actual 3-edge-connected com­
ponents. 

We first state a lemma and a corollary on the relation between the auxiliary edges 
of a 3-edge-connected component H of a graph G (d. Def. 2.8) and the cycles 
in which (the class of nodes of) H is contained in graph 3ec(G). We only need to 
consider 2-edge-connected graphs, since by Lemma 2.10 we may restrict ourselves 
to determining 3-edge-connected components inside 2-edge-connected components 
only. 

Lemma 4.8 Let G =< V, E > be a 2-edge-connected graph. Let class c be an 
equivalence class of V w.r.t. 3-edge-connectivity. Let x and y be nodes in class c. 
Then the maximal number of edge-disjoint paths between x and y that intersect with 
class c at x and y only and that contain nodes outside class c, equals the number of 
cycle nodes s in Cyc(3ec(G)) for which there exist 2 edges (e,x,u) and (e',y,v) in 
G such that (e, 3ec( x ), 3ec( u)) and (e', 3ec(y ), 3ec( v)) are in cycle s in 3ec( G). 

Proof. Consider a maximal set of edge-disjoint paths between x and y in G, that 
intersect with class c in x and y only and that contains nodes outside class c. W.l.o.g. 
these paths are simple. Each such path P contains two unique edges (e, x, u) and 
(e',y,v) that are at the end of it. Hence u,v rt C and therefore (e,3ec(x),3ec(u)) 
and (e',3ec(y),3ec(v)) are edges of a simple cycle in 3ec(G). Because every edge 
in 3ec( G) has exactly one original in G, it follows that each such a path uniquely 
corresponds to a simple cycle. 

On the other hand, consider a cycle s in 3ec( G) with distinct edges (e, c, a) and 
(e', c, b), for which there are two edges (e, x, u) and (e', y, v) in G such that (e, c, a) = 
( e, 3ec( x ), 3ec( u)) and (e', c, b) = (e', 3ec(y), 3ec( v)). Then there is a simple path in 
G that starts in x and ends in y, with edges (e, x, u) and (e', y, v) at the end of these 
paths. For, edges (e, c, a) and (e', c, b) form a cut edge set in 3ec( G) and hence by 
Lemma 2.6 (sub 1 and 2), (e,x,u) and (e',y,v) are a cut edge set in G with x and 
y on the one side and (since a cut edge set of only one edge does not exist in G) u 

32 



and v on the other side: therefore there is a simple path from u to v not using these 
edges. Because of such sets being cut edge sets it follows that all paths constructed 
in this way from the different cycle nodes, are edge disjoint. 0 

Corollary 4.9 Let G be a 2-edge-connected graph. Each edge between a cycle 
node s and class node c in Cyc(3ec( G)) can uniquely be related to an auxiliary edge 
( e, x, y) in class c for which there exist 2 so-called interconnection edges (el, x, u) 
and (e2,y,v) in G such that (eI,3ec(x),3ec(u)) and (e2,3ec(y),3ec(v)) are in cycle 
s in 3ec(G). 

We base our strategy on Corollary 4.9. Each node x contains 4 adjacency lists 
consisting of pointers to edges that have x as an end node as follows: 

• list3.aux containing the auxiliary edges of the 3-edge-connected component 
in which x is contained 

• list3 containing the edges of the 3-edge-connected component in which x is 
contained except for those in list3.aux 

• list2 containing the edges of the 2-edge-connected component in which x is 
contained except for those in list3 (and list3.aux) 

• list! containing the remaining edges 

Moreover, each existing edge contain pointers to its occurrences in adjacency lists. 
It is easily seen how these list can be used to traverse or enumerate components. 

In our algorithms we have the following extensions for the class representatives. A 
class representative repr( c, s) for a class node c and a cycle node s in graph 3ec( G) 
contains in addition pointers to the two interconnection edges in cycle s that are 
incident with class node c and to the auxiliary edge in class c related to cycle s (cf. 
Corollary 4.9). 

The algorithms for insertion of an edge (e, x, y) are adapted as follows. Firstly, 
the edge (e, x, y) is inserted in the proper adjacency list of its end nodes: viz., if 
at the moment of insertion x and y are 2-edge-connected (or 3-edge-connected), 
then (e, x, y) is inserted in the lists list3 (because x and y will be 3-edge-connected 
after the insertion), if they are connected but not 2-edge-connected, then (e, x, y) is 
inserted in list2 and otherwise (e, x, y) is inserted in list!. We have the following 
cases for additional computations for the insertion. 

If 3ec( x) # 3ec(y) 1\ 2ec( x) = 2ec(y), then the splitting of a cycle s, where two classes 
c and d on it are joined into one new class, has two consequences. The auxiliary 
edges in the classes c and d that correspond to the old cycle s disappear. If a 
resulting cycle appears to be a trivial cycle, then the interconnection edge( s) of the 

33 



original cycle that have both end nodes in the new class, become internal edges of 
that class: these edges are moved from list2 to list3. Otherwise, new auxiliary edges 
arise in the new class d according to the resulting nontrivial cycle(s). The end nodes 
of these auxiliary edges can be obtained from the end nodes of the interconnection 
edges in these cycles that are incident with class d. All these adaptations can easily 
be integrated in procedure AdjustCycles by using the appropriate pointers stored in 
the class representatives on which a Circular Split is performed, without increasing 
the order of time complexity. 

If c( x) = c(y) /\ 2ec( x) =F 2ec(y) then a new cycle is created (d. Figure 16). The 
creation of the new cycle (line 20-22) can easily be extended with the computation 
of the pointers in the class representatives to interconnection edges of the cycle. 
Moreover, note that each 3-edge-connected class that is in the new cycle s must 
now have a new auxiliary edge corresponding to s (d. Corollary 4.9). Therefore, for 
each such 3-edge-connected class, a new auxiliary edge needs to be created. Note 
that in fact the collection of temporary edges created in line 12 already satisfies the 
constraints of Corollary 4.9 and hence we may take these edges as auxiliary edges. 
It is easily seen that all these additional computations can be performed without 
increasing the order of time complexity. 

Theorem 4.10 Given a graph G, there exists a data structure such that the query 
whether two nodes are 2-edge-connected or 3-edge-connected can be answered in 
0(1) time and that maintains the 2-edge-connected and 3-edge-connected compo­
nents of G when edges are inserted. Starting from the empty graph G =< V,0 > 
(i. e., a graph with no edges), the insertion of e edges take O( n log n + e) time al­
together, if n is the number of nodes in G. Finally, the data structure can be ini­
tialised in O( n) time and it uses O( n + e) space when the 2-edge-connected or 
3-edge-connected components are maintained and it uses O( n) space otherwise. 

It is easily seen that besides edges, new nodes can be inserted in the graph in O( 1 ) 
time (each inserted node forms a 2-edge-connected and a 3-edge-connected class in 
its own at the moment of insertion). Therefore, the statement in the above theorem 
can be extended with node insertions, where n is the final number of nodes in the 
graph (and n is the initial number regarding the time needed for initialisation). 

5 Conclusion 

In this paper we have presented algorithms for maintaining the 2- and 3-edge­
connected components in a graph under the insertion of edges and vertices. The 
insertion of e edges costs O( n.log n + e) time in total, while at any moment connec­
tivity queries can be answered in time 0(1). The time bounds can be improved to 
O( n + m.o:( m, n)) where m is the total number of queries and edge insertions and 

34 



n is the number of nodes, using a number of sophisticated data structuring tech­
niques. These results will be presented in the accompanying paper [14] since the 
additional data structures are rather complicated. Moreover, the' same time bounds 
can be achieved for 2- and 3-vertex-connectivity. We refer to [14, 15]. In this way in 
[14] and [21] optimal algorithms are obtained for 2-edge/vertex-connectivity (with 
different methods) while [14, 15] also present optimal algorithms for 3-edge/vertex­
connectivity. 1 

References 

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer 
algorithms, Addison-Wesley Publ. Comp., Reading, Massachusets, 1974. 

[2] G. Di Battista and R. Tamassia, Incremental Planarity Testing, Proc. 30th Ann. 
Symp. on Found. of Compo Sci. (FOCS) 1989, 436-441. 

[3] G.N. Frederickson, Data structures for on-line updating of minimum spanning 
trees, with applications, SIAM J. Computing 14 (1985), pp.781-798. 

[4] M.L. Fredman and M.E. Saks, The Cell-Probe Complexity of Dynamic Data 
Structures, Proc. 21th Ann. ACM Symp. on Theory of Comput. (STOC) 1989, 
345-354 

[5] H.N. Gabow, A Scaling Algorithm for Weighted Matching on General Graphs, 
Proc. 26th Ann. Symp. on Found. of Compo Sci. (FOCS) 1985, 90-100. 

[6] H.N. Gabow, Data Structures for Weighted Matching and Nearest Common 
Ancestors with Linking, Proc. pt Ann. ACM-SIAM Symp. on Discrete Algo­
rithms (SODA) 1990, 434-443. 

[7] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mas­
sachusets, 1969. 

[8] G.F. Italiano, Amortized efficiency of a path retrieval data structure, Theoret­
ical Computer Science, 48, (1986), pp. 273-281. 

[9] G.F. Italiano, Finding paths and deleting edges in directed acyclic graphs, In­
formation Processing Letters, 28, (1988), pp. 5-11. 

[10] J.A. La Poutre and J. van Leeuwen, Maintenance of Transitive Closures and 
Transitive Reductions of Graphs, In: H. Gottler, H.J. Schneider (Eds.), Graph­
Theoretic Concepts in Computer Science 1987, Lecture Notes in Computer 
Science Vol. 314, Springer-Verlag, Berlin, pp. 106-120. 

1 Very recently, Galil and Italiano independently obtained such time bounds for a special case 
of 3-edge-connectivity, viz., if the initial graph is connected. 

35 



[11] J.A. La Poutre, New Techniques for the Union-Find Problem, Proc. 16t Ann. 
ACM-SIAM Symp. on Discrete Algorithms (SODA) 1990, 54-63. 

[12] J.A. La Poutre, Lower Bounds for the Union-Find and the Split-Find Prob­
lem on Pointer Machines, Proc. 22th Ann. ACM Symp. on Theory of Comput. 
(STOC) 1990, 34-44. 

[13] J.A. La Poutre, A Fast and Optimal Algorithm for an Extension of the Split­
Find Problem on Pointer Machines, Tech. Rep. RUU-CS-89-20, Utrecht Uni­
versity, 1989. 

[14] J.A. La Poutre, Maintenance of 2- and 3-connected components of graphs, 
Part II: 2- and 3-edge-connected components and 2-vertex-connected compo­
nents, Tech. Rep., Utrecht University, to appear. 

[15] J.A. La Poutre, Maintenance of 2- and 3-connected components of graphs, 
Part III: 3-vertex-connected components, in preparation. 

[16] K. Mehlhorn, Graph Algorithms and NP-completeness, Springer-Verlag, Berlin, 
1984. 

[17] F.P. Preparata and R. Tamassia, Fully Dynamic Techniques for Point Location 
and Transitive Closure in Planar Structures, Proc. 29th Ann. Symp. on Found. 
of Compo Sci. (FOCS) 1988, pp. 558-567. 

[18] H. Rohnert, A dynamization of the all pairs least cost path problem, In: K. 
Mehlhorn (ed.), 2nd Annual Symposium on Theoretical Aspects of Computer 
Science 1985, Lecture Notes in Computer Science Vol. 182, Springer-Verlag, 
Berlin, pp. 279-286. 

[19] R.E. Tarjan, Efficiency of a Good but Not Linear Set Union Algorithm, J. ACM 
22, No.2, April 1975, pp 215-225. 

[20] R.E. Tarjan and J. van Leeuwen, Worst case analysis of set union algorithms, 
J. ACM, 31, (1984), pp. 245-281. 

[21] J. Westbrook and R.E. Tarjan, Maintaining Bridge-Connected and Biconnected 
Components On-Line, Tech. rep. CS-TR-228-89, Princeton University, 1989. 

36 




