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ABSTRACT 

In this report an efficient method is presented for analyzing 

rectangular microstrip antennas with a dielectric cover, using a 

spectral domain moment method. The use of this moment method 

involves the numerical evaluation of slowly decaying 

sommerfeld-type integrals. Several computational problems are 

involved with the evaluation of these integrals. Some methods to 

avoid these problems will be discussed in this report. The most 

interesting method that we developed is the one that accelerates 

the calculation of the infinite integrals over the slowly decaying 

(and strongly oscillating) integrands. This slow convergence is 

caused by the source singularity in the Green's function of the 

dielectric slab. To overcome this disadvantage, we developed a 

method of rewriting the integrals as a sum of a closed form 

expression and a quickly converging integral, resul.ting in a 

reduction of computer time by a factor 20. This is done for 

sinusoidal entire domain basis functions on the patch of the 

microstrip antenna. It should be noted that this method can also 

be applied for other types of basis functions. 
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1. Introduction 

In recent years, many different models for analyzing microstrip 

antennas have been developed and presented in literature. Varying 

from relatively simple and time efficient models (for example the 

cavity model) to sophisticated and time consuming models (for 

example the moment method). with the simple models it is difficult 

to predict the input impedance of a microstrip antenna in an 

accurate way. Therefore we have chosen the moment method to 

analyze microstrip antennas. 

In [1,2,3) a moment method in the spectral domain was presented for 

analyzing rectangular microstrip antennas or microstrip arrays. In 

fig. 1 the geometry of the microstrip structure is shown. The 

patch is located at the z=z' plane, so the antenna can have a 

dielectric cover. It is assumed that the patch is fed by a coaxial 

feed located at the point (xs ' y s) . 

permittivity of the substrate material. 

top view 

is the 

side view 

Fig 1.1: Geometry of a rectangular microstrip antenna 

1 

(complex) 



On the perfectly conducting patch surface of the micros trip 

antenna the total electric field vanishes, i.e.: 

Etotal = ~x + E" = 0 
tan tan tan 

( 1.1) 

Here Eex and E" represents the excitation and scattered fields 
tan tan 

respectively. The scattered fields result from the induced 

currents on the patch and can be written in terms of the vector 

potential A, with: 

(1. 2) 

A(1) = II G(1,1,).Jp (1,) dS' 
pa h 

where k is the wave number of the medium under consideration, 

G(1, 1') is the dyadic Green's function. Applying the method of 

moments, integral equation (1.1) can be transformed into a set of 

linear equations by selecting appropriate expansion and test 

functions for the unknown current on the patch of the micros trip 

antenna. In chapter 2 a brief summary is given of the moment 

method formulation for coaxial-fed microstrip antennas . For more 

details about this formulation, one is referred to [1, chapter 2]. 

In chapter 3 and 4 the use entire domain sinusoidal basis 

functions is discussed. It will be shown that the symmetry 

properties of these functions can be used to reduce the number of 

integrals that have to be evaluated numerically. 

Using the moment method formulation in the spectral domain as 

described in [1], it is necessary to evaluate numerically, time 

consuming infinite integrals over slowly decaying and oscillating 

integrands. Several computational problems are involved with the 

evaluation of these integrals. The problems due to TM- and 

TE-surface waves in the dielectric slab are already outlined in 

reference [l,chapter 3]. The other problems and the corresponding 
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methods to avoid them, will be discussed in chapter 5 and 6 of 

this report. The most interesting method that we developed in 

order to facilitate the numerical evaluation of the integrals, is 

the method that accelerates the (numerical) calculation of the 

infinite integrals over the slowly decaying and 

integrands. This slow convergence is caused by 

singularity in the dyadic Green's function G. 

oscillating 

the source 

The slowly 

converging integrals are rewritten as a sum of a closed form 

expression and a quickly converging integral. This method is 

presented in this report for the case of entire domain sinusoidal 

basis functions to describe the unknown current density on the 

patch. Also a constant surface current density on the coaxial 

probe is assumed. The method can also be used if other types of 

basis functions are used on the patch or probe. 

The software based on [1) is extended with the methods discussed 

here. The time needed to calculate the input impedance is now 

about 20 times less then it was before. 
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2. The moment method formulation for microstrip antennas in the 

spectral domain 

In this chapter a short summary will be given of the moment method 

formulation of Reference [1]. 

The formulation is done in the spectral domain which means that 

all quantities used are Fourier transformed with respect to x and 

y. A general function f(x,y) and his corresponding Fourier 

transform f(kx,ky) are defined as: 

f(x,y) (2.1a) 

II 
'k k = _ f(x,y) e J xX e yy (2.1b) 

In the moment method formulation the Green's function, due to a 

unit current located at a arbitrarily point in the dielectric, is 

needed. Once the Green's function is known, a Galerkin type of 

moment method can be formulated, which results in the matrix 

equation: 

[Z] [I]=[V] (2.2) 

Where the vector [I] contains the N unknown current coefficients 

of the patch current distribution. [V] is the excitation vector 

and [Z] is a NxN matrix. The elements of [Z] and [V] have the form 

[1] : 

Z = 4rr2 II Epn·Jpm mn dS (2.3) 

pa lch 

V = m 4rr2 II J s ' Epm dS (2.4) 

source 

4 



Where J s is the surface current on the probe, which is assumed to 

be constant. The unknown surface current on the patch J p is 

expanded in a set of N basis functions with unknown coefficients 

1m: 

(2.5) 

In this report entire domain sinusoidal basis functions are used. 

These basis functions are discussed in the next chapter. Epm is 

the electric field in the dielectric slab due to a expansion 

current Jpm on the patch. An analytical expression for Epm in the 

spectral domain is known in closed form. 

In [1] it was shown that Zmn and Vm can also be written as: 

II 
"Z "Z* 

Zmn = Epn·Jpm dkxdky 
z=z' 

=II 
- -7 -7 - - -* 

[Q·Jpn]·Jpm dkXdky 
z=z' 

II 
r~ "Z* Vm = Epm·Js dz dkxdky 

0 

= II _"Z "Z* 
[Qv·Jpm]·Js dkxdky 

In (2.6) and (2.7) Q and Qv are dyads 

are given by expression (2.3.8) resp. 

(2.6) 

(2.7) 

in the spectral domain and 

(2.4.17) of reference [1]. 
Z -7 -7 

J pm and 5s are the Fourier transforms of Jpm resp. J s ' where 5
g 

is 

given by (2.4.20) of reference [1]. 

Expression (2.6) and (2.7) are the final forms and will be used in 
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this report. In order to facilitate numerical evaluation of the 

two dimensional integrals, a change to polar coordinates is used, 

such that: 

kx = ko/3cosa 

ky = ko/3sina 

(2.8) 

with k = w.J e: 11 I is the free space wave number and w is the 
o 0 0 

radial frequency. Now an element of the [Z] matrix has the general 

form: 

(2.9) 

-7[ 0 
z=z' 

In chapter 4 the evaluation of the a-integral is discussed for the 

case of sinusoidal entire domain basis functions on the patch. We 

will there use the even and odd properties of the a-integrand. 

The numerical evaluation of the /3 integral is the most difficult 

one. The /3 integral can be divided in three intervals: 

= f[ 
.fCTl 

1 r f(/3,a)d/3 Zmn J f(/3,a)d/3 + 

-7[ 0 1 

with f(/3,a) = and 

z=z' 

permittivity of the substrate. 

co 

) da + J f(/3,a)d/3 (2.10) 

.fCTl 
r 

e:' r is the real part of the 

In chapter 5 the evaluation of the three integrals in (2.10) will 

be discussed. In chapter 6 an similar method will be used for the 

calculation of [V] elements. 
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3. Entire domain sinusoidal basis functions 

In the moment method presented in this report we shall use entire 

domain sinusoidal basis functions in order to describe the unknown 
A 

surface current on the patch. It 

basis function is y-independent 

is assumed that a x-directed 
A 

and that y-directed basis 

functions are x-independent. We shall use the coordinate system of 

fig. 3.1. 

top view 

y 

r 
uppe r 

conductor 

w 
y 

~----------r---~:x 

1 
I~(------~W ------~)I x 

Fig. 3.1: Coordinate system 

The basis functions now have the form: 

A 

i. x-directed basis functions. 

[

-WX/2 ~ x ~ Wx/2 

for 
-Wy/2 ~ Y ~ Wy/2 

In fig. 3.2 the first three basis functions are shown. 

7 
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Jj,(x) 

~------~------~x 

A 

Fig. 3.2: Sinusoidal x-directed basis functions 

A 

ii. y-directed basis functions. 

[

-WX/2 ~ x ~ Wx/2 

for 
-Wy/2 ~ Y ~ Wy/2 

(3.1b) 

Because of the fact that the calculations are performed in the 

spectral domain, we need to know the Fourier transforms of (3.1). 

They are given by: 

Jpmx(kX,ky) = Fs(m,kx,Wx)Fc(m,ky'WY) (3.2a) 

Jpmy(kx,ky) = Fs(m,ky,Wy)Fc(m,kx'Wx) (3.2b) 

with: 

2mrrW cos(k W ~ ----x x-x 
(mrr)2-(k

x
W

x
) 2 m odd 

Fs(m,kx'Wx ) = (3.2c) 

-j2mrrW sin(k W ~ x x-x 
(mrr)2-(k

x
W

x
) 2 

m even 

(3.2d) 
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It should be noted that expression (3.1) is a generalization of 

expression (2.5.2) of reference (1]. Because of the even and odd 

properties of the Fourier transforms of the basis functions, a 

great number of elements of the matrix (Z] are zero. This will be 

discussed in the next chapter. 
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4. Symmetry-properties of the integrands of the matrix elements 

This chapter is a generalization of section 3.2 of reference [1]. 

We here shall use the same method to reduce the computation time 

needed to calculate the stiffness matrix [Z] and the excitation 

vector [V]. In [1] it was shown that using sub domain basis 

functions, many elements of the [Z] matrix have the same value. 

In this case, the value of a Zmn matrix element depends on the 

distance between sub domain m en n. Using entire domain basis 

functions, this Toeplitz-like property of the [Z] matrix doesn't 

exists. Now we can use the even and odd properties of de Fourier 

transforms of the sinusoidal basis functions that are used. 

Because of this even and odd properties, a lot of elements of the 

[Z] matrix will be zero. In this paragraph we shall use these 

properties in order to reduce the computation time needed to 

evaluate the elements of [Z] and [V] and to show which elements of 

[Z] are zero. 
" " If only x- or y-directed basis functions are used in the 

calculations, the matrix [Z] can be written in the following form: 

[Z] = (4.1) 

Where an element of the sub matrix [zji] represents the coupling 
" " between a j- and a i-directed basis function. Now we shall take a 

closer look to each of the four sub matrices. 

According to expression (3.9), an element of the sub matrix [Zxx] 

can be written as: 

10 



., Tr 

z~~ = I I Qxx(~,a)j;mx(~,a)jpnx(~,a)k~~dad~ (4.2) 

a-Tr 

[

k =k ~cosa 
Where the sUbstitution x a is used. 5

pmx 
and 5

pnx 
are the 

ky=ka~sina A 

Fourier transforms of the m-th resp. n-th x-directed basis 

function. Qxx is given by expression (2.3.8) of [1]: 

(4.2a) 

Where Te, Tm, Ne en k are functions of ~ (see [l,Appendix 2A]). 
1 

We shall now divide the problem in four different cases: 

1. m is odd, n is odd 

2. m is odd, n is even 

3. m is even, n is odd 

4. m is even, n is even. 

ad 1.: m is odd, n is odd. 

This situation is already discussed in [1,par.3.2]. So only the 

result will be given here: 

co nl2 

z~~ = 4J J Qxx5;mx5pnx k~lldadll (4.3) 

o a 

ad 2.: m is odd, n is even. 

The a-integration is divided in two intervals: 

11 



Use the sUbstitution a'=-a in the second a-integral and use the 

properties that: 

This results in: 

<XI Tl 

z~~ = 2J J QxxJ;mxJpnx k~~dad~ 
o 0 

substitute a ' =a-Tl/2 in the above expression. This gives: 

co 1l/2 

z~~ = 2J J Qxx(al)J;mx(al)Jpnx(al) k~~dald~ 
O-Tl/2 

= 2 r [JTl

/

2 

Qxx (a ' ) J;mx(a l ) Jpnx(a l ) da ' 

o 0 

Tl/2 ] +J Q ( -a I ) J * ( -a I ) J ( -a ') da I k20~d~ xx pmx pnx 

o 
Now again use the odd and even properties: 

-* J (-a ' ) = pmx 

12 

= -J (a ' ) pnx 



So apparently: 

zXx = 0 
mn 

ad 3.: m is even, n is odd. 

Analog to the previous case. Thus ZXX = 0 mn . 

ad 4.: m is even, n is even. 

Analog to case 1, resulting in: 

m 1112 

z~~ = 4 J J QxxJ;mxJpnx k~~dad~ 
o 0 

An element of this sub matrix has the form: 

co rr 

z~~ = J J QXy(~,a)J;mx(~,a)Jpny(~,a) k~~dad~ 
o-rr 

Where QXY is given by expression (2.3.8) of [ll: 

(4.3) 

(4.4) 

Qxy (~,a) = W~8:~:~~~1 z ') [jNeTm-k~ (Er -1) sin(\ z I)] sin(2a) 

(4.4a) 

Once again the problem is divided in four cases. 

ad 1.: m is odd, n is odd. 

Divide the a-integral in two parts: 

13 



Use the sUbstitution a'=-a in the second a-integral and make use 

of the odd and even properties: 

Which results in: zxy = 0 
mn 

ad 2.: m is odd, n is even. 

Divide the a-integral in two parts: 

Use the sUbstitution a'=-a in the second a-integral and use the 

properties that: 

This results in: 

CD rr 

Z~~ = 2J J QxyJ;mxJpny k~~dad~ 
o 0 

substitute a'=a-rr/2 in the above expression. The above 

14 



expression then takes the form: 

co n/2 

Z~~ = 2 J J Qxy (a') J;mx (a' ) J pny (a') 

0-1l/2 

= 2JOO[JIT/2Qxy(a')J;mx(a')Jpny(a,) da' 

o 0 

+JIT/2 Q (-a' ) J * (-a' ) J (-a') da,) k2tldtl xy pmx pny 0 

o 
Once again use the even and odd properties: 

Q (-a') = -Q (a') xy xy 

-* J (-a') = pmx 

This implies that Zxy = 0 mn 

ad 3.: m is even, n is odd. 
Analog to case 2. Thus zxy = 0 mn • 

ad 4.: m is even, n is even. 
The procedure is the same as in the previous cases. So zxy is mn 
written as: 

+ JOQxyJ;mxJpnyda)k~tldtl 
-IT 

Use the sUbstitution a'=-a in the second a-integral and use the 
properties that: 

15 



Resulting in: 

00 Tl 

Z~~ = 2J J QxyJ;mxJpny 

o 0 

substitute a'=a-Tl/2 in the above expression. This gives: 

co 7l/2 

Z~ = 2J J QXy(a')J;mx(a')Jpny(a') 

o -71 / 2 

= 2 J"[f/2Qxy(a')J;mx(a')Jpny(a,) da' 

o 0 

Tl/2 

+J Q (-a' ) J* (-a' ) J (-a' ) xy pmx pny 

o 

Use the even and odd properties: 

Q (-a') = -0 (a') xy xy 

-* J (-a') = pmx 
-* --J (a') en J (-a') = Jpny(a') pmx pny 

This finally gives: 

00 1l/2 

Z~ = 4 J J oxi;mxJpny k~l3dadl3 (4.5) 

o 0 

iii. [ZYXj. 

The matrix [Z] is symmetrical, i.e. [zyx]=[Zxy ]. 

16 



iv. [zYY). 

The elements of the sub matrix [zYY] have the same form as the 

elements of [Zxx]. Also in this case, an element of [zYY] is not 

equal zero only if both m and n are odd or even. 

The integrals involved in calculating the excitation vector [V] 

can also be reduced by using the odd or even properties of the 

sinusoidal entire domain basis functions. In general, all the 

elements of [V) are unequal zero. 
A A 

If we use x- and y-directed basis functions, the excitation vector 

can be written in the form: 

We will now take a closer look to the elements of the sub matrix 

[vX). The elements of IVY] are treated in a similar way. 

According to expression (2.4.19) of [1] an V~ element can be 

written as: 

co Tl 

V~ = J J ~x(~,a)Jpmx(~,a)J:(~,a)k~~dad~ (4.6) 

O-Tl 

[

k =k ~cosa 
Where we used the sUbstitution x a . Furthermore we shall 

ky=ko~sina 

assume that the surface current density on the 

with radius rois constant, Le. Js=~zI.!2Tlro' 
transform has then the form [l,pp. 29): 

with kxs=ko~xscosa 

kys =ko~y s s ina 

17 
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J o is the Besselfunction of the first kind, order zero. Note that 
~ 

we use the complex conjugate of J s in (4.6). 

Furthermore we have [l,pp. 29]: 

k, ' Te, TIn and Ne are functions of f3 (see [1, App. 2A]). 

We shall divide the problem in two cases, i.e. odd m values and 

even m values. 

ad 1. m odd. 

This situation has already been analyzed in reference [l, par. 

3.2]. It resulted in: 

00 nl2 

v! = -4i J k~f3J 0 ( r okof3) J QvxJpmxsin (kxs ) cos (kys ) dadf3 

o o 
(4.7) 

ad 2. m even. 

We will use the same procedure as we did in the case of the 

elements of the [Z] matrix. So divide the a-integral in two parts 

and sUbstitute a'=-a in the second integral. Using the 

properties: 

Qvx(-a)=~x(a) 

Jpmx(-a)=Jpmx(a) 

results in: 

'" 1£ 

v! =2Jk~f3Jo(rokof3) I QvxJpmxCOS(kys)e-jkxs dadf3 

o o 

18 



substitute a'=a-rr/2 in the above expression and divide the 

a-integral in two parts. 

o -rr/2 

Use the following odd and even properties: 

Q ( -a ' ) =-0 ( a ' ) vx -Vx 

J (-a' ) =-J (a' ) pmx pmx 

k (-a')=-k (a') k (-a')=-k (a') xs xs ys ys 

Finally one gets the expression: 

CQ 1l/2 

~ = 4 J k~f3J 0 ( r okof3) J ~xJpmxCOS (kxs ) cos (~s) dadf3 (4.8) 

o o 
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5.Calculation of the stiffness matrix [Z] 

In the previous section the odd and even properties of the 

a-integrands where used to show which elements of the [Z] matrix 

were unequal zero. In this chapter it will be shown how these 

elements can be calculated in an efficient way. The two 

-dimensional integrals that have to be evaluated numerically have 

according to (2.9) the following general form: 

Tl ClO 

Zmn = J J f(~,a) d~da 
-Tl 0 

(5.1.) 

De infinite ~-integral is divided in three parts, with each part 

having its own numerical problems • 

-Tl 

.fCTl 

Jlf(~,a)d~ + Jr f(~,a)~ 
o 1 

ClO 

+ J f(~,a)d~ 
.fCTl 

r 

(5.2) 

Where c~ is the real part of the permittivity of the substrate. 

In the following three sections a method for evaluating the three 

/3-integrals in a proper way, will be discussed. We will assume 

that the patch is located in the substrate, i. e. in the plane 

z=z' (see fig. 1..1). So the antenna may have a dielectric cover. 

5.1 Calculation of the /3-integral in the region Os/3s1 

The real part of the /3-integrand has an infinite derivative at 

/3=1, which implies that a lot of integration points are needed in 

the vicinity of this point in order to obtain a certain accuracy. 
Fortunately, this infinite derivative can be eliminated using a 

change of variables /3=cost: 

20 



Tl 1 

J J f (13, a) dt3da 

-Tl 0 

1l 1112 

= J J f(cost,a)sint dtda 

-Tl 0 

(5.3) 

The above integral can now be calculated very accurate using a 

simple fixed point integration rule. 

5.2 Calculation of the ~-integral in the region l~t3~~ 

We now have to consider the second t3-integral in (5.2). In this 

interval, two specific numerical problems can be distinguished, 

namely one in which the integrand is almost singular due to 

surface waves and the other in which the imaginary part of the 

integrand has a infinite derivative at ~=1. The first problem is 

already discussed in [1, chap. 3.1]. The infinite derivative can 

be eliminated by using a change of variables t3=cosh(t), which then 

gives: 

-Tl 1 -Tl 

arccosh (~ c~ I ) 

J f(cosht,a)sinht dtda 

o 

21 
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5.3 Calculation of the infinite ~-integral: source term extraction 

The infinite ~ integration is in practice of course terminated at 

a certain value ~=~max. In [1), it was already mentioned that the 

integrand converges very slowly to zero for large values of ~. To 

avoid this problem, a method, called the source term extraction 

method, is proposed in which the asymptotic value of the integrand 

for large ~-values is subtracted from the original integrand. This 

idea was first proposed in reference (4). The integration over 

this new integrand converges much faster. The integration over the 

asymptotic value of the integrand can be calculated analytically. 

The method is called "source term extraction technique", because 
1 

the asymptotic part of the ~-integrand is due to the Ir _ r'l 
singularity in the space domain Green's function [1, chapt. 3.3). 

In [1, chap. 3.3) this technique was used for sub domain rooftop 

basis functions for the case that z'=d (thus patch on top of 

substrate). In this section another method, a more efficient 

method, is presented to calculate the integral over the asymptotic 

value of the original integrand. This new method can be used for 

both sub domain as entire domain basis functions and for an 

arbitrarily location of the patch in the substrate (thus z,~ d). 

In this paragraph we will use entire domain sinusoidal basis 

functions in order to describe the unknown current density on the 

patch. The method can also be used for other types of basis 

functions (for example sub domain rooftop basis functions). 

Using the subtracting technique, an element of the matrix [Z] is 

written as: 

O-IT 

+ rr [Z -Z )+Z mn hmn hmn (5.5) 

O-IT 

Where Qh the asymptotic value of Q is. It can be easily shown 
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,.;.i 

, 
.> 

that the asymptotic value of Q , given by expression (2.3.8) of 

reference [1], takes the following form for large ~: 

QhXX QhXY 0 

Qh = QhYX QhYY 0 (5.5a) 

QhZX QhZY 0 

z'=d: 

-jWf.lo[ 2~2COS2(X] 
2ko~ 1 - (I: r +1) Qhxx = 

QhYX = QhXY 
jWko~sin ( 2(X) 

= 2 (I: +1) ° r 

-jWf.lo[ 2~2sin2(X] 
QhYY 2kotl 1 - (I: r +1) = 

z'<d: 

Where again k =t.H I: f.l I is the free-space wave number and w=21lf is 
° 0 ° the radial frequency. ~ and (X are defined in (2.8). In figure 5.1 

the effect of source term extraction on the tl-integrand is shown 

for an z~~ element. In figure 5.la the original integrand is 

shown, i.e. an z~~ element. In figure 5.lb the integrand with the 
xx xx 

subtracted asymptotic term is drawn, thus of an (Zll-Zh11) 

element. From this figure it is clear that using source term 

extraction, the number of integration points needed to evaluate 
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the ~-integral is much lower then the number of points needed for 
the evaluation of the original integral. It is also clear that the 
original integrand is a strongly oscillating function for large 

values of ~, which implies that a very large number of integration 

points are required in order to obtain a certain level of 

accuracy for the infinite ~-integral. 
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Fig. 5.1: (a) original integrand of an z~~ element 

(b) integrand of z~~ using source term extraction 

Antenna: Wx=Wy=20.1mm d=z'=1.59mm Cr =2.55 

tana=O.002 f=4.4 GHz (first resonance) 
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The derivation of Zh in this chapter will be done for elements 

t ' m~x h tht d th th of the sub ma rl.X [Z ] for t e case a z'=. For e 0 er 

elements of [Z] and for the case that z'<d , the source extraction 

technique can be applied in exact the same manner. 

Now lets consider a Z~~n element, due to a ~-directed entire 
"-

domain sinusoidal basis function m and a x-directed entire domain 

basis function n, both on the patch. It will be shown that the 

infinite ~ integral in Z~~n can be calculated analytically using 

the theory of residues. Note that this is a complete other method 

then that was used in [1, chapt. 3.3] . The remaining 

a-integration can, in the most situations, also be done in closed 

form. In the cases where this is not possible, the numerical 

evaluation of the a-integral is relatively simple. The evaluation 

of the a-integral is not discussed here. Another advantage of the 

method used here, is the fact that the integrals of a Z~~n-element 
are frequency independent, so the only have to be evaluated once. 

From chapter 4 it is clear that we only have to consider the cases 

when m and n are both odd or both even. Because the results for 

these two cases are usually the same, we will only consider the 

case that m and n are both odd. If the results for the case m and 

n both even are different, they will also be given. 

We can distinguish two situations: 

i. m"n 

ii. m=n 

Both situations are discussed in more detail. 

i. m"n, m and n both odd. 

Using expression (3.2), (5.5) and (5.5a), a Z~~n element takes the 

form for z'=d: 

Tl <XI 

xx J 1 J [1_2~2cos2a] cos2(~kx/2)sin2(~kY/2) d~da 
Zh =A ,2 x X X X 2 mn sl.na Cr+l (nTl-~k ) (nTl+~k ) (mTl-~k ) (mTl+~k )~ 

-Tl 0 
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I
IT 1 

=A . 2 
s~n ex 

(5.6) 

-IT 

Where: 

Note that k X and kY differ from the variables kx and ky which were 

used in chapter 2. In expression (5.6) we didn't make use of the 

symmetry in the ex-integrand (see chapter 4), but this is of no 

relevance here. We may write: 

(5.7) 

Note that kX~O and kY~O. 

There are two different situations for which the problem has to be 

solved, namely kX~kY and kX<kY. 

The complex function f(~) can now be written in the form: 

(5.8) 

Because cos
2 (~kX /2) sin

2 (~kY /2) is an even function with respect 

to ~, the integral I~(ex) may be expressed as: 
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The integrand in (5.9) has 5 single valued poles on the real 

~-axis. We can avoid these poles by choosing a proper integration 

'path. This path is shown in figure 5.2. According to the Residue 

theorem of Cauchy [5], the integral over a closed integration 

path is zero if there are no poles within the area which is 

enclosed by the closed integration path. This theorem will be 

used here to calculate the infinite ~-integrals. We shall use the 

notation ~=Re(z). In formula form we now may write: 

(5.10) 

+ 
C P 

Fig. 5.2: Integration path in the complex z-plane, with ~=Re(z) 
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In expression (5.8) all arguments are greater or equal zero. This 

implies that we can use Jordan's Lemma in order to determine the 

integral over c; [5,pp. 71]. This results in: 

lim 
P-+CD J 

P 

g(z) dz = 0 (5.11) 

The only thing left now, is to calculate the five integrals over 

C.s ' C.s ' C.s ' C.s and C.s . If we take the zero-limit for each 
1 2 345 

radius of the five half circles, we can write (5.10) as: 
CD 

= J g(/3)d/3 I/3(IX) 

-CD 

= rr j [ Res g(z)+ Res g(z)+ 
rrm rrn z=-- z=--
k X k X 

Res g(z)+ Res g(z)+ 
z=O 

Res g (z)] 
z_rrm 

k X 

(5. 12) 

Where .si represents the radius of the half circle C.s.' 
l. 

i=1,2,3,4,5 The five integrals in (5.12) can be written in 

residual form, because the poles are single valued. Once these 

residues are known, I/3(IX) is also known. The residues can be 

obtained very easily: 

Res g(z) = lim 
rrm z=--
k X 

(5.13a) 
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Res g(z) = lim 

Res g(z) 
z_rrm 

k X 

Res g(z) 
z_rrn 

k X 

Res g(z) 
z=O 

1 x = lim -kx(mrr-zk )g(z) 

z lrrm 
k

X 

1 x = lim -kx(nrr-zk )g(z) 

z lrrn 
k

X 

= lim zg(z) = 
z~O 

Together with (5.12) this finally results in: 

-3 2-
kX 

2 2_[1_2 (mrr) 2cos
2a] sin (kYmrr) 

1,8 (a) = Sm rr [(nrr) - (mrr)] k X2 (c
r 

+1) k X 

(5.13b) 

(5.13C) 

(5.13d) 

(5.l3e) 

+ -3 2-
kX 

2 ~[1_2(nrr)2cos2(X]sin(kYnrr) + _-::-k
Y-=--= 

an rr [(mrr) -(nrr) ] k X2 (Cr+l) k X sm2n2rr3 

(5.14) 
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From expression (5.6) it is obvious that !!~[Si~2()( I~«)()] must 

exist. It can be easily shown that the above expression fulfills 

this requirement. 

x y a. k <k • 

According to (5.7), f(~) takes the form: 

(5.15 ) 

Similar to the previous case, we may write I~«)() in the form: 

-<XI 

<XI 

= j g(~)d~ (5.9) 

-<XI 

In this case g (~) has only 1 single valued pole at ~=O. The 

procedure we have to follow in order to calculate I~«)(), is the 

same as in the case of kX~kY. We will use the integration path of 

figure 5.2. Using Jordan's Lemma for the integration path 

finally results in: 

<XI 

= j g(~)d~ = I~«)() 

-<XI 

-kx+2kY 

rrj Res g(z) = 
z=O 

rrj lim zg ( z) 
z-+O 

c' p' 

= 8m 2 n 2 rr3 (5.16) 

Note that for kX=kY (5.14) and (5.16) are equal. 

31 



If we take m and n both even and m .. n the result differs from 

(5.16). I~(a) now takes the form: 

Io(a) = 2 2 3 ,., 4m n n m and n even m .. n (5.16a) 

ii. m=n, m odd. 

This situation is discussed apart from the previous one, because 

the ~-integrand now has both single-valued poles as well as double 

valued poles. So we have to be careful in calculating the 

~-integral in the neighborhood of these double-valued poles. Like 

in the previous case· (m .. n) , we shall use Cauchy's theorem of 

residues in order to determine a closed form expression for I~(a). 

For m equal to n, an Z~~n element takes the form: 

n .. 

zxx J 1 J [1_2~2cos2a]cos2 (~kx/2)sin2 (~kY/2) d~da 
hmn = A sin2a C

r
+1 (mn+~kX)2(mn_~kx)2~2 

-n 0 

orr 

with: kX=kocosawx 

kY=k sinaW 
o Y 

We may write: 

8 
. 2 2...2 

- JWIl n m w 
A- a X 

ko 

cos2(~kx/2)sin2(~kY/2) = -~6[f(~)+f(-~)1 
f(~) = _2_2ej~kx+2ej~kY+ej~(kx+kY)+ej~lkX-kYI 

We can distinguish two situations, namely kX~kY en kX<kY. 
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(5.7) 



x y a.k"k. 

This implies that: 

(5.8) 

We shall use the integration path of figure 5.3. The function 

g(~) has two double valued poles at ~=±mrr/kx and one single valued 

pole at ~=O. 

+ 
C P 

Fig. 5.3: Integration path in the complex z-plane, with ~=Re(zl 

Using Cauchy's residual theorem and Jordan's Lemma I~(a) reads: 

" 

'. e.> -J geM "" 
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with: 

Res g(z) 
z=O 

and 

= lim zg(z) = 
z-+O 

(5.18) 

rr rr 

= lim Jg(_mrr+~ ej~l)j~ ej~ld~ +lim Jg(mrr+~ ej~3)j~ ej~3d~ 
~ -+0 kX 1 1 1 ~ -+0 kX 3 3 3 

1 0 3 0 

where the substitutions z=_mrr I ~ ej~l and 
kX 1 

Combining the above two integrals and 

~1'~3-+0, we then find: 

rr 

I~ = J lim[g(_mrr+~ej~) 
~-+O kX 

o 
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The limit for o~o exists: 

Apparently the ,p-integrand is independent of ,p. So 10 can now be 

easily obtained: 

Using this result, 1~(a) then finally reads: 

00 

= J g(~)d~ 1~ (a) 

-00 

2 ) cos a 
[rrmkY] 

sin 0 (5.19) 
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Because of the fact that we want to use Jordan's Lemma on 

the integration path C; (see figure 5. 3), we have to choose an 

f(/3) with all arguments greater of equal zero. Thus f(/3) has 

the form: 

(5.15) 

The /3-integrand has in this case three single-valued poles at 

/3=±mll/kx and /3=0. The procedure to follow is the same as it was 

in the previous situations. We shall choose the integration path 

of figure 5.3. Using Cauchy's theorem and Jordan's Lemma w.e 

finally get: 
co 

1/3(0:) = J g(/3)d/3 

-co 

= ll j [ Res g(z)+ Res g(z)+ 
z=_llm z=o 

k
X 

m odd (5.20) 

Expression (5.20) was derived for the case that m (=n) is odd. In 

the case of an even m (=n) the result is slightly different for 

kX<kY• An element Z~~n has in this case the form: 

-1l 0 

= f' A sin20: 
1/3 (0:) do: (5.21) 

-1l 
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with: kX=kocosaWx 

kY=k sinaW 
o Y 

The method for calculating I~(a) is the same as for the situation 

where m was odd. The result for kX<kY has the form: 

I~(a) = m even (5.22) 
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6. Calculation of the excitation vector [V] 

The method for the efficient evaluation of the excitation vector 

[V], is practically equivalent to the case of calculating [Z]. 

However, due to the presence of a first order Besselfunction in 

the integrand, the calculation of the infinite integral is more 

complicated. The Besselfunction is introduced by the finite probe 

radius ro of the coaxial feed. A constant current density on the 

probe is assumed. 

The two-dimensional integrals that have to be evaluated 

numerically, have according to (2.7) the following general form: 

Tl ., 

Vm = J J f(~,a) d~da 
-Tl 0 

Where we used the change in variables (2.8) 

The ~-integration is divided in three parts: 

= r[ 
-Tl 

1 

J f(~,a)dtl + 

o 

..fCTl r f(tI,a)dtl 

1 

., 

+ J f(tI,a)dtl 

..fCTl 
r 

(6.1) 

(6.2) 

In this paragraph the method for evaluating each of the three 

integrals will be discussed. 

6.1 Calculation of the tI-integral in the region O~tI~1 

Here we have the same situation as discussed in paragraph 5. 1. 

Thus substituting tI=cost in the integral results in: 

r 1 

J f(tI,a)dtlda 

Tl Tll2 

= J J f(cost,a)sint dtda (6.3) 

-Tl 0 -Tl 0 
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This integral can be evaluated numerically without any further 

problems. 

6.2 Calculation of the ~-integral in the region 1~~~~ 

Here we have the same problems as discussed in paragraph 5.2. 

Using the sUbstitution ~=cosht, the numerical problems at ~=l can 

be eliminated. This results in the expression: 

Tl .fCTl 

J r f(~,a)d~ Tl arccosh (~ c~ I ) 

= J J f(cosht,a)sinht dtda (6.4) 

-Tl 1 -Tl 0 

6.3 Calculation of the infinite ~-integral: source term extraction 

The method that we shall use in this paragraph is the same method 

as was previously discussed in paragraph 5.3 for the elements of 

the matrix [Z]. Again, the asymptotic part (~~) of the 

~-integrand is subtracted from the original integrand, ensuring a 

fast convergence. The infinite integration over the subtracted 

part is done analytically. 

Using this source term extraction technique, an element of the 

vector [V] is written as (see (2.7»: 

O-Tl 

+ rr (6.5) 

o -Tl 

Where QhV is the asymptotic value of ~. It can be easily shown 
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that the asymptotic value of Qv' given by expression (2.4.17) of 

reference [1], takes the following form for large ~: 

o o 

o o (6.6) 

o 

z'=d: 
-Wj.L cosa 

QhVZX 
--0--

= k~(Cr+l) 

-Wj.L sina 

QhVZY 
--0--

= k~ (C r +1) 

z'<d: 

The derivation 

the sub vector 

of Vh in this chapter will be done for elements of 
m A 

[VX] for the case that z'=d (thus x-directed entire 

domain sinusoidal basis functions and the patch located on top of 

the substrate). For the other elements of [V] and for the case 

that z ' <d , the source extraction technique can be appl ied in 

exact the same manner. According to (6.5), (4.7) (m odd) and (4.8) 

(m even), an element of [Vx] can be written as: 

i. m odd 

co 1T/2 

V~ = - 4iJ J [QVX-Qhvx]Jpmxsin(~k~)COS(~k~)Jo(roko~)k~~dad~ 
o 0 
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co rr/2 

4 i J J QhvxJpmxsin (Ilk~) cos (Ilk;) J 0 (rokoll) k~lldadll 
o 0 

(6.7a) 

ii. m even 

co 11/2 

v~ = 4J J [~X-Qhvx]JpmxCOS(llk:)COS(llk;)Jo(rokoll)k~lldadll 
o 0 

co fl/2 

+ 4 J J QhvxJpmxCOS (Ilk:) cos (llk;)Jo (rokoll) k~lldadll 
o 0 

(6.7b) 

with: 

(xs'ys) :excitation point probe (fig. 1.1) 

J o is the Besselfunction of the first kind, order o. 
In order to determine the infinite Il-integral in V~m' we will make 
use of cauchy's residue theorem and Jordan's Lemma [5]. The 
derivation is performed for the case that m is odd. For even 
values of m, only the final results are given. 

Combining of (3.2) with (6.6) and (6.7a) results in: 

o 0 

(6.8) 
with: 

kX=kocosawx 
kY=k co saW 

o Y 
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The Besselfunction J o will be used in integral form: 

21T 

J o (rokoM = ~1T J e
j

/3k" d" 

o 

(6.9) 

Furthermore, the cos-sin product in (6.8) is expanded in a series 

of e-powers. 

(6.10) 

with: 

f(/3) 

j/3lkx/2+kY/2-kx+kYI j/3lkx/2+kY/2-kx-kY I -e ss-e ss 

j/3 I k
X
/2-kY/2+kx+kY I j/3Ik

x
/2-kY/2+kx-kY I -e ss-e ss 

j/3lkx/2-kY/2-kx+kYI j/3lkx/2-kY/2-kx-kYI +e ss+e ss 

Using the above expression, it 

the lower /3-integration boundary to -00. 

representation of J o' we then may write: 

is possible to extend 

Together with the integral 

1 ] 
-- f(/3) 

16 J (r k /3)d/3da 
(rrm-kx/3) (rrm+kx/3) 0 0 0 

o o -00 

42 



Tl/2 

AI~ s~na 

2Tl 

~TlI I(3v(a.") d"da (6.11) 

o o 

Our aim is now to calculate the (3-integral with infinite 

boundaries. 

with (;2=0. 

(3-integrand 

We shall choose the integration path of figure 5.3 

because the (3-integrand has no pole at (3=0. The 

has 2 single valued poles in this case at (3=±Tlm/kx . We 

may again use Jordan's Lemma for C; if the arguments of the 

e-powers in (6.11) all are greater or equal o. The easiest way to 

calculate I(3v is to divide the integral in S different parts. 

I(3V1 •..• I(3vS. This then results in: 

8 

I(3v(a.") = :2 I(3vi (a.") 

1=1 

with: 

(
0) j(3lkx/2+kY/2+kX+kY+k~1 

gl ,., =e s s v 

g2«(3)=ej(3lkx/2+kY/2+k~-k~+k,,1 

(
0) j(3lkx/2+kY/2-kx+kY+kAI 

g3 ,., =e s Sv 

j(3lkx/2+kY/2-kx-kY+k I 
g4«(3)=e s s " 

(6.12) 

As an example we shall now calculate I(3Vl. The other 7 integrals 

I(3V2' ..• If3vS' can be evaluated using exact the same strategy. 

In the case of I(3V1' we can distinguish two situations: 
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i. k X
/ .. 2+kY/2+k·X +kY +k >:0 

s s " . 
According to expression (6.12), g1(~) has now the form: 

Because the argument of the above e-power is always greater or 

1 J d ' Lemma on C' equa zero, we may use or an s p. 

I~Vl can be written as: 

_~ -m 

Choosing the integration path of figure 5.3 and using Jordan's 
• Lemma for Cp ' leads to: 

I~Vl (a,") = 1lj [ 

with: Res g(z) 
rrm z=--
k X 

Res g(z) 
z_rrm 

k X 

This finally gives: 

ii. 

Res g(z) + Res 
1lm z=--
k X 

g(z) ] 

(6.13) 

In order to fulfill all conditions concerning Jordan's Lemma, 

g1(~) is written as (see (6.12»: 
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I/lV1 then reads: 

Following the same procedure as in the previous case finally 

results in: 

I/lV1 (a,fr) = (6.14) 

Note that (6.14) and (6.13) only differ by a minus sign. 

Once the remaining 7 integrals, I/lV2 I/lV8 ' are also 

known, I/lv can be determined. For the case that m is odd this 

gives: 
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m odd (6.15) 

For even values of m, the result is slightly different. According 

to (6.7b), (3.2) and (6.6), VX
h is in this case written as: 

m 

o 0 

with: 

kX=kocos<xWx 
kY=k cosaW 

o Y 

J (r k /3) d/3da o 0 0 

(6.16 ) 

J o is given by its integral representation (6.9). Using the same 

method as described above for the case of odd m values, the 
resulting expression for I/3v becomes: 
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m even (6.17) 

47 



7. Conclusion 

The time consuming infinite integrals associated with the spectral 
domain moment method solution for microstrip antennas can be 

computed efficiently by using the methods proposed in the report: 

* use the symmetry of the basis functions to reduce the number 

of integrals that have to be evaluated (chapter 4) 

* eliminate the infinite derivative in the integrands by using 

a proper change of variables (par. 5.1,5.2,6.1 and 6.2) 

* use the source term extraction method, where the asymptotic 
part of the slowly converging integrand is subtracted from 

the original integrand. The integration over the asymptotic 
part can be done in closed form, resulting in a reduced 

computation time. 

Applying these methods, results in a reduction of computation time 
by a factor 20. 
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