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ABSTRACT

In this report an efficient method is presented for analyzing
rectangular microstrip antennas with a dielectric cover, using a
spectral domain moment method. The use of this moment method
involves the numerical evaluation of slowly decaying
Sommerfeld-type integrals. Several computational problems are
involved with the evaluation of these integrals. Some methods to
avoid these problems will be discussed in this report. The most
interesting method that we developed is the one that accelerates
the calculation of the infinite integrals over the slowly decaying
(and strongly oscillating) integrands. This slow convergence is
caused by the source singularity in the Green’s function of the
dielectric slab. To overcome this disadvantage, we developed a
method of rewriting the integrals as a sum of a closed form
expression and a dquickly converging integral, resulting in a
reduction of computer time by a factor 20. This is done for
sinusoidal entire domain basis functions on the patch of the
microstrip antenna. It should be noted that this method can also
be applied for other types of basis functions.
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1. Introduction

In recent years, many different models for analyzing microstrip
antennas have been developed and presented in literature. Varying
from relatively simple and time efficient models (for example the
cavity model) to sophisticated and time consuming models (for
example the moment method). With the simple models it is difficult
to predict the input impedance of a microstrip antenna in an
accurate way. Therefore we have chosen the moment method to
analyze microstrip antennas.

In {1,2,3] a moment method in the spectral domain was presented for
analyzing rectangular microstrip antennas or microstrip arrays. In
fig. 1 the geometry of the microstrip structure is shown. The
patch is located at the z=z’ plane, so the antenna can have a
dielectric cover. It is assumed that the patch is fed by a coaxial
feed 1located at the point (xs,ys). £ is the (complex)

r
permittivity of the substrate material. -
top view side view
1
z
upper dlelectric
T conductor substrate
Yy r L ]
8
H I 4}'1\
Yy x
5
i

Fig 1.1: Geometry of a rectangular microstrip antenna



Oon the perfectly conducting patch surface of the mnicrostrip
antenna the total electric field vanishes, i.e.:

total _ X -
i"1'..1n - i?:an + iiﬁan - 3 ( 1. 1)
Here ﬁ:n and fim represents the excitation and scattered fields

respectively. The scattered fields result from the induced
currents on the patch and can be written in terms of the vector
potential K, with:

B (B) = -juR(P®) - %avw.'ﬁ(?))
(1.2)
R(P) = ” E(?,?*).S‘p(?') ds’
h

pPa

where k is the wave number of the medium under consideration,
E(?,?’) is the dyadic Green’s function. Applying the method of
moments, integral equation (1.1) can be transformed into a set of
linear equations by selecting appropriate expansion and test
functions for the unknown current on the patch of the microstrip
antenna. In chapter 2 a brief summary is given of the moment
method formulation for coaxial-fed microstrip antennas . For more
details about this formulation, one is referred to {1, chapter 2].

In chapter 3 and 4 the use entire domain sinuscidal basis
functions is discussed. It will be shown that the symmetry
properties of these functions can be used to reduce the number of
integrals that have to be evaluated numerically.

Using the moment method formulation in the spectral domain as
described in [1], it is necessary to evaluate numerically, time
consuming infinite integrals over slowly decaying and oscillating
integrands. Several computational problems are involved with the
evaluation of these integrals. The problems due to TM- and
TE-surface waves in the dielectric slab are already outlined in
reference [1,chapter 3]. The other problems and the corresponding



methods to avoid them, will be discussed in chapter 5 and 6 of
this report. The most interesting method that we developed in
order to facilitate the numerical evaluation of the integrals, is
the method that accelerates the (numerical) calculation of the
infinite integrals over the slowly decaying and oscillating
integrands. This slow convergence is caused by the source
singularity in the dyadic Green’s function G. The slowly
converging integrals are rewritten as a sum of a closed form
expression and a quickly converging integral. This method 1is
presented in this report for the case of entire domain sinusoidal
basis functions to describe the unknown current density on the
patch. Also a constant surface current density on the coaxial
probe is assumed. The method can also be used if other types of
basis functions are used on the patch or probe.

The software based on [1] is extended with the methods discussed
here. The time needed to calculate the input impedance is now
about 20 times less then it was before.



2. The moment method formulation for microstrip antennas in the

spectral domain

In this chapter a short summary will be given of the ﬁoment method
formulation of Reference [1].

The formulation is done in the spectral domain which means that
all quantities used are Fourier transformed with respect to x and
Y. A general function f£f(x,y) and his corresponding Fourier
transform f(kx,ky) are defined as:

f(x,y) = z%a[ f(kx,ky) e IKX e—kyy dkxdky (2.1a)

E(x X eXyY ak ax (2.1b)

xrky) =J f(x,y) e y

In the moment methoed formulation the Green’s function, due to a
unit current located at a arbitrarily point in the dielectric, is
needed. Once the Green’s function is known, a Galerkin type of
moment method can be formulated, which results in the matrix

equation:
[Z]1[I)=([V] (2.2)

Where the vecteor {I] contains the N unknown current coefficients
of the patch current distribution. [V] is the excitation vector
and [2] is a NxN matrix. The elements of [Z] and [V] have the form

[1]:

_ 2
2, = 4m J‘ﬁpn.jpm ds (2.3)
p; tch
-
v = 4n J. 3S.§pm das (2.4)

BOUrce



Where 35 is the surface current on the probe, which is assumed to
be constant. The unknown surface current on the patch jp is
expanded in a set of N basis functions with unknown coefficients

Im:

N
5‘p = E I, 3‘pm (2.5)

m=1

In this report entire domain sinusoidal basis functions are used.
These basis functions are discussed in the next chapter. ﬁpm is
the electric field in the dielectric slab due to a expansion
current 3pm on the patch. An analytical expression for Epm in the
spectral domain is known in closed form.

In [1] it was shown that Zmn and Vm can also be written as:

2 2
Zmn = Epn'me dkxdky
= z=z’
[ = 2 i
= [Q.Jpn].me dkxdky (2.6)
= z=z'
[ {é 2
Vm = Epm‘Js dz dkxdk
< o
[ - 2 2
= [Qv.me].Js dkxdky (2.7)
4

In (2.6) and (2.7) Q@ and Q_ are dyads in the spectral domain and
v

are given by expression (2.3.8) resp. (2.4.17) of reference [1}.
-.)

-~

_)
me and JS are the Fourier transforms of 3pm resp. 35, where JS is

given by (2.4.20) of reference [1].

+

Expression (2.6) and (2.7) are the final forms and will be used in



this report. In order to facilitate numerical evaluation of the
two dimensional integrals, a change to polar coordinates is used,
such that:

kx
K
y

k Bcosa (2.8)

kasina

with k0 = uﬂe&k' is the free space wave number and w is the
radial frequency. Now an element of the [Z] matrix has the general

form:

kﬁﬁ dgda (2.9)

z=z'

In chapter 4 the evaluation of the a-integral is discussed for the
case of sinuscidal entire domain basis functions on the patch. We
will there use the even and odd properties of the a-integrand.

The numerical evaluation of the B integral is the most difficult
one. The B integral can be divided in three intervals:

el
k14 1 r [ ]
Zon = J [ J £(B,a)dg + J £(B,a)dR + J £(8,a)dp ] da (2.10)
- o} 1 4€;|
-2 2x
with f(B8,a) = [Q.Jpn].Jpm and e; is the real part of the

z=z'

permittivity of the substrate.

In chapter 5 the evaluation of the three integrals in (2.10) will
be discussed. In chapter 6 an similar method will be used for the
calculation of [V] elements.



3. Entire domain sinuscidal basis functions

In the moment method presented in this report we shall use entire
domain sinusoidal basis functions in order to describe the unknown
surface current on the patch. It is assumed that a ;c-directed
basis function is y-independent and that ;-directed basis
functions are x-independent. We shall use the coordinate system of
fig. 3.1.

top view

upper
conductor

~ e e—

-~
y

Fig. 3.1: Coordinate system
The basis functions now have the form:

A
i. x-directed basis functions.

“Wx/2 = X = Wx/2
1 mn Wx

J (x) = ——sin[——[x+——]] - for (3.1a)
pmx Wy Wx 2 —Wy/2 sy S Wy/2

In fig. 3.2 the first three basis functions are shown.



Jx)

Jn=|

el

Y
Fig. 3.2: Sinusoidal x-~directed basis functions
A
ii. y-directed basis functions.

-Wx/2 s x s Wx/2

_ 1 mr (. Wy
J = f 3.1b
my (Y) = @x Sl“[wy[Y+ 2]] F g2y suyz 0

Because of the fact that the calculations are performed in the
spectral domain, we need to know the Fourier transforms of (3.1).
They are given by:

pmx(kx ky) = Fs(m,kx,wx)Fc(m,ky,Wy) (3.2a)
pmy(k y) = F (m, ky Wy)F {m, k x) (3.2b)
with: i
2mancgs(kxEx/§) = oad
(mm) “= (K W, )
Fs(m,kx,wx) = (3.2¢)
-JZmans:n(kxEx/i) m even
i {mrn) -(kxwx)
251n(k w /2)
Fc(m,ky,wy) = y y (3.24)



It should be noted that expression (3.1) is a generalization of
expression (2.5.2) of reference [1]. Because of the even and odd
properties of the Fourier transforms of the basis functions, a
great number of elements of the matrix [Z] are zero. This will be
discussed in the next chapter.



4. Symmetry-properties of the integrands of the matrix elements

This chapter is a generalization of section 3.2 of reference [1].
We here shall use the same method to reduce the computation time
needed to calculate the stiffness matrix (2] and the excitation
vector [V]}. In [1] it was shown that using sub domain basis
functions, many elements of the [Z] matrix have the same value.
In this case, the value of a zmn matrix element depends on the
distance between sub domain m en n. Using entire domain basis
functions, this Toeplitz-like property of the [Z] matrix doesn‘t
exists. Now we can use the even and odd properties of de Fourier
transforms of the sinusoidal basis functions that are used.
Because of this even and odd properties, a lot of elements of the
[Z2] matrix will be zero. In this paragraph we shall use these
properties in order to reduce the computation time needed to
evaluate the elements of [Z] and [V] and to show which elements of
[2] are zero.

If only %X- or Q—directed basis functions are used in the
calculations, the matrix [Z] can be written in the following form:

XX

[2*%] [2*¥)

(2] (4.1)

(z¥%) [2YY)

Where an element of the sub matrix [Zjl] represents the coupling
between a 3- and a i-directed basis function. Now we shall take a
closer look to each of the four sub matrices.

i. 2.

According to expression (3.9), an element of the sub matrix [Zxx]
can be written as:

10



Zon = J J Oy (Bro) T (B,0)T (B, ) K BdadR (4.2)
o-T
k =kOBcosa - -
Where the substitution is used. mex and Jpnx are the

ky=kasina
Fourier transforms of the m-th resp. n-th ;-directed basis
function. axx is given by expression (2.3.8) of [1]:

- wu _sin(k z’) [: 2. .2 _
Q. (B, @)= e;Teka: j (B°cos®a-e ) NeTm

—Bzcosaakf(cr-ljsin(klz')] (4.2a)

Where Te, Tm, Ne en k1 are functions of B (see [1,Appendix 2A]).
We shall now divide the problem in four different cases:
l. m is odd, n is odd

2. m is odd, n is even
3. m is even, n is odd
4, m is even, n is even.

ad 1.: m is odd, n is odd.

This situation is already discussed in [1,par.3.2). So only the
result will be given here:

o TI/2
b o 4 — -~ ~

= 2
zX% = 4 QxT pmxIpnx XoBdadR (4.3)

[=}
Qo

ad 2,: m is odd, n is even.

The a-integration is divided in two intervals:

11



XX_ - ok
Zmn_J J QxxmexJpnxda + I Qxxmex pnxda k‘BdB

0 4] -n

Use the substitution a’=-a in the second «-integral and use the

properties that:

Qe (m0) = @, (a)
() = 3o () en 3 (ma) = F (@)

This results in:

= 2J J Qxxmex pnx k.BdadB

Substitute a’=x-n/2 in the above expression. This gives:

o T2
XX _ a 5* "I ’ 2 ’
Zmn 2 Qxx(a )mex(a )Jpnx(a ) kada dg
0-T/2
w o TI/2
= ’ I r r
2 J (a )mex(a )Jpnx(a ) da
o o
n/z

+J éxx(—a )mex(-a’)spnx(-a’) da’ kﬁsds

o]
Now again use the odd and even properties:

Quy(—a’) = Q  (af)
F* (~af) = F* (a’) en F___(~a’) = =F___(a’)
pmx pmx pnx pnx

12



So apparently:

XX _
Zmn =0

ad 3.: m is even, n is odd.

Analog to the previous case. Thus Z;E = 0.

ad 4.: m is even, n is even.

Analog to case 1, resulting in:

0 TI/2

XX ~k
2% = ¢ [ Qxxmex pnx k2gdadg (4.3)
[« ]
ii. [2¥¥].

An element of this sub matrix has the form:

o 1T

= 2
(B:G)J (B,G)Jpny(ﬁ,a) k Bdads (4.4)

pmx

—

ny=J
mn
[s)

Where axy is given by expression (2.3.8) of [1]:

|

quB 51n(k z’}
Q Y(B,a) = 2g Teka

[jNeTm-kf(er-l)sin(k‘z')]sin(Za)
(4.4a)

Once again the problem is divided in four cases.

ad 1.: m is odd, n is odd.

Divide the a~integral in two parts:

13



Xy_ ~ ~% ~ ~ -~k
A —J J Qnypmepnyda + J Qnypmx pnyd ledB

0 4] -

Use the substitution a’=-a in the second a-integral and make use
of the odd and even properties:

Q. (~a) = =Q__(«)

Xy Xy
3 =3 5 =3
me( a) = pmx(a) en pny( a) = pny(a)

Which results in: zX¥ = o
mn

ad 2.: m is odd, n is even.

Divide the a-integral in two parts:

XY 8 3 3 au+ | 8.3 7 axlx’sas
xy pmx pny XY pmx pny 4]

0 0 -

Use the substitution a’=-a in the second a-integral and use the
properties that:

Ouy (-0) = =0, ()

-~ % o~
mex(-a) = pmx(a) en Jp y(—a) = -Jpny(a)
This results in:
= 2[ [ Qnypmx pny k;BdadB
Substitute a’=a-n/2 in the above expression. The above

14



expression then takes the form:

W T2
Xy _ P =¥ I ’ 2 ’
Zmn 2 Qxy(a’)mex(a')Jpny(a ) kada dag

0-';1'/2

0, TT/2

= O =k "N ’
2 J Cy (41T oy (@73 (a7) dar?
0 ‘o

ns2
o r =% -y T I _ Fi 2
+J By (@) Ty (m*) 3 (-a) da’ |k7BaR

0
Once again use the even and odd properties:

Gy (%) = =8, (a’)

J~__(-a?) =

pmx (x’) en J

py (7*") = Jpny (*7)

3*
pmx
This implies that Zgi = 0

ad 3.: m is even, n is odd,

Analog to case 2. Thus Ziﬁ = 0.

ad 4.: m is even, n is even.

. . . X .
The procedure is the same as in the previous cases. So Zmﬁ is

written as:
(] V14 0
Xy ~ nk ~ ko 2
Zmn—J J Qnypmepnyda + J Qnypmepnyda kadB
0 ‘o -7

Use the substitution a«’=-a in the second «-integral and use the
properties that:

Qy (=) = -0, (@)

15



-% ~% ~ ~
mex(-a) = mex(a) en Jpny(-a) = —Jpny(a)
Resulting in:
= ZJ [ Qnypmx pny k.BdadB

Substitute a’=a-m/2 in the above expression. This gives:

00 ,.1'[/2
Xy _ = 2
2 2 (a )mex(a')Jpny(a') koBda'dB
b-&/z
0, TT/2
—_ R ’
= 2 J (a )mex(a )Jpny(a') da
o ‘o
/2

+J éxy(—a').'i;mx(—a'):? (~a?) de’ ks.edﬁ

o]

pny

Use the even and odd properties:

Quyf-a’) = -0, (a)

(~a’) = F . (a)

~ % -
-a’) = =J ’ J
(-a’) (x’) en pny pny

J
pmx pmx

This finally gives:

o TI/2

-~ oy ~ 2
ey pmxdpny KoBdads (4.5)

2XY - 4

QO Sy

[=]

iii. [2¥*).
The matrix {Z] is symmetrical, i.e. [Zyx]={zxy].

16



iv. [2¥¥].

The elements of the sub matrix [Zyy] have the same form as the
elements of [Zxx]_ Also in this case, an element of [zyy] is not
equal zero only if both m and n are odd or even.

The integrals involved in calculating the excitation vector [V]
can also be reduced by using the odd or even properties of the
sinusoidal entire domain basis functions. In general, all the
elements of [V] are unequal zero.

If we use x- and §-directed basis functions, the excitation vector
can be written in the form:

[v*)

(V]
[vY]

We will now take a closer look to the elements of the sub matrix
[Vx]. The elements of [VY] are treated in a similar way.

According to expression (2.4.19) of [1] an V; element can be
written as:

® T
v = ” Qyy (B )T (B,0) T (B, 0) K pdads (4.6)
o

-

k =k03cosa
Where we used the substitution X . Furthermore we shall
ky=kOBsina
assume that the surface current density on the coaxial feed
with radius rbis constant, i.e. 3S=3ZIU/2nro. It’s Fourier

transform has then the form [1,pp. 29]:

% «
ES(B,a) = 3zJo(roka)ej(kxs+kys) (4.6a)

with kxs=k63xscosa

kys=kb8y551na

17



Iy is the Besselfunction of the first kind, order zero. Note that
>
we use the complex conjugate of JS in (4.6).

Furthermore we have [1,pp. 29]:

5. (B,x)= wg 'k_s%r?l‘m [(cr-l)sin(kiz')k§¢32+jNe'I‘m]cosa (4.6h)
X [

kl,Te,Tm and Ne are functions of g (see [1,App. 2A]).
We shall divide the problem in two cases, i.e. odd m values and
even m values.

ad 1. m odd.
This situation has already been analyzed in reference [1,par.
3.2]. It resulted in:

© ns2
X

— _asiw2 - .
Vm = 4{P%BJO(rJ%B)J vamex51n(kxs)cos(kys)dadﬁ
0

0
(4.7)

ad 2. m even.

We will use the same procedure as we did in the case of the
elements of the [Z] matrix. So divide the a-integral in two parts
and substitute o«o’=~a in the second integral. Using the

properties:

Qux -a)—va(a)

(~a)=F___(a)

pmx pmx

results in:

o T

X _|q2 ~ -ik

Vm 2kaBJo(rbka)J vamexcos(kys)e xs dadp
o 0

18



Substitute «a’=a-n/2 in the above expression and divide the

a-integral in two parts.

T2

~ ~ - ’
V:=2Jk§BJo(rokoB)J Qux (@ )F py (@) cos (k far))e Iky&®’ ) aarap

0

-ms2

(T2

4]
=ZJ'k215’Jo (r k8) [ B,y (@”)F (@) cos (kL) ye IKxd¥") g
0

‘o
/2
+J 6vx(—a')Epmx('“')cos(kyé-a'))e-]kxé_a')da’ dg

0

Use the following odd and even properties:

Q. (-a’)=-Q, (a’)
J

pmx

(mary==3 ()

pmx

k (-a')=-kxs(a’) k. (—a?)=-k_ _(af)

XS

ys ys

Finally one gets the expression:

vE = 4Jk§330(r0k03)J évxﬁpmxcos(kxs)cos(lws)dade (4.8)
o}

m

o]

/2

19



5.Calculation of the stiffness matrix [Z]

In the previous section the odd and even properties of the
a-integrands where used to show which elements of the [Z] matrix
were unequal zero. In this chapter it will be shown how these
elements can be calculated in an efficient way. The two
-dimensional integrals that have to be evaluated numerically have
according to (2.9) the following general form:

.o

7. = [ [ £(8,0) dBda (5.1)

mn

-n o

De infinite B-integral is divided in three parts, with each part
having its own numerical problems.

n 1 e; ®
Zon = J [ J f(B,x)dap + I f(g,a)dg + J £{B,a)dB | da (5.2)
-Tr o 1 el

r

Where eé is the real part of the permittivity of the substrate.
In the following three sections a method for evaluating the three
B-integrals in a proper way, will be discussed. We will assume
that the patch is located in the substrate, i.e. in the plane
z=z’ (see fig. 1.1). So the antenna may have a dielectric cover.

5.1 Calculation of the g-integral in the region 0=8sl1

The real part of the B-integrand has an infinite derivative at
=1, which implies that a lot of integration points are needed in
the vicinity of this point in order to obtain a certain accuracy.
Fortunately, this infinite derivative can be eliminated using a
change of variables B=cost:
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T .1 Tt

J J f(B,a)dBda = J

-0 -n

T2
J f(cost,a)sint dtda (5.3)
)

The above integral can now be calculated very accurate using a
simple fixed point integration rule.

5.2 Calculation of the 8-integ£§1 in the region 158548;1

We now have to consider the second B-integral in (5.2). In this
interval, two specific numerical problems can be distinguished,
namely one in which the integrand is almost singular due to
surface waves and the other in which the imaginary part of the
integrand has a infinite derivative at pg=1. The first problem is
already discussed in [1, chap. 3.1]. The infinite derivative can
be eliminated by using a change of variables fg=cosh(t), which then

gives:
- 48;1 - arccosh(Jcé')
[ [ f(B,u)dB = [ [ f(cosht,a)sinht dtdax (5.4)
14 1 -1 4]
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5.3 Calculation of the infinite g-integral: source term extraction

The infinite B integration is in practice of course terminated at
a certain value B=ﬁmax. In [1}, it was already mentioned that the
integrand converges very slowly to zero for large values of B. To
avoid this problem, a method, called the source term extraction
method, is proposed in which the asymptotic value of the integrand
for large B-values is subtracted from the original integrand. This
idea was first proposed in reference {4]. The integration over
this new integrand converges much faster. The integration over the
asymptotic value of the integrand can be calculated analytically.
The method is called "source term extraction technique", because
the asymptotic part of the g-integrand is due to the T?“%”?TT
singularity in the space domain Green’s function [1, chapt. 3.3].
In [1, chap. 3.3] this technique was used for sub domain rooftop
basis functions for the case that z’=d (thus patch on top of
substrate). In this section another method, a more efficient
method, is presented to calculate the integral over the asymptotic
value of the original integrand. This new method can be used for
both sub domain as entire domain basis functions and for an
arbitrarily location of the patch in the substrate (thus z’= d).
In this paragraph we will use entire domain sinusoidal basis
functions in order to describe the unknown current density on the
patch. The method can also be used for other types of basis
functions (for example sub domain rooftop basis functions).

Using the subtracting technique, an element of the matrix (2] is
written as:

- :) -_-)* 2
Zn = [(Q-Qp) Jpn]'me k fdadB
0-Tt
e - :.) :?* 2
+ [ [Qh.Jpn].me kadadB = [Zmn-thn]+Zhmn {(5.5)
o-T

Where éh the asymptotic value of @ is. It can be easily shown
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i

that the asymptotic value of Q, given by expression (2.3.8) of
reference [1], takes the following form for large B:

- thx thy 0
thx thy 0

z’=d:
. —Jwu [1 _ 232cosza]
thx - ZROB (er+1)
. - jwu Bsin(2a)
Oyx = Onxy = 2K, (EH1)
N ~jwu [1 - 2825in2a]
thy = 2koB (er+1)
z’<d:
- ~jwu [1 _ Bacosza]
thx - 2koB er

jwue Bsin(2a)
= _ o= _ l_EO
thx B thy = 4k, &y
- —Ju [1 _ stinza]
thy = 2koB Er

Where again kd=w480uo| is the free-space wave number and w=2nf is
the radial frequency. B and o are defined in (2.8). In figure 5.1
the effect of source term extraction on the B-integrand is shown

for an Z§¥ element. In figure 5.la the original integrand is
XX

shown, i.e. an z211 element. In figure 5.1b the integrand with the
subtracted asymptotic term is drawn, thus of an (zf?—zﬁil)

element. From this figure it is clear that using source term
extraction, the number of integration points needed to evaluate
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the B-integral is much lower then the number of points needed for
the evaluation of the original integral. It is also clear that the
original integrand is a strongly oscillating function for large
values of B, which implies that a very large number of integration
points are required in order to obtain a certain 1level of

accuracy for the infinite g-integral.
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Fig. 5.1: (a) original integrand of an Zif element

(b) integrand of Zii using source term extraction

Antenna: Wx=Wy=20.lmm d=z’=1.59mm er=2.55
tand=0.002 f=4.4 GHz (first resonance)
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The derivation of th in this chapter will be done for elements
of the sub matrix [2 x] for the case that z’=d. For the other
elements of [Z] and for the case that z‘’<d , the source extraction
technique can be applied in exact the same manner.

Now lets consider a Zﬁ;n element, due ‘Fo a Q-directed entire
domain sinusoidal basis function m and a x-directed entire domain
basis function n, both on the patch. It will be shown that the
infinite B integral in Zﬁﬁn can be calculated analytically using
the theory of residues. Note that this is a complete other method
then that was used in (1, <chapt. 3.3]. The remaining
a—-integration can, in the most situations, also be done in closed
form. In the cases where this is not possible, the numerical
evaluation of the a-integral is relatively simple. The evaluation
of the a-integral is not discussed here. Another advantage of the

method used here, is the fact that the integrals of a 2 n-element

XX
hm
are fregquency independent, so the only have to be evaluated once.
From chapter 4 it is clear that we only have to consider the cases
when m and n are both odd or both even. Because the results for
these two cases are usually the same, we will only consider the
case that m and n are both odd. If the results for the case m and
n both even are different, they will also be given.
We can distinguish two situations:

i. m#n

ii. m=n
Both situations are discussed in more detail.

i. m#n, m and n both odd.

Using expression (3.2), (5.5) and (5.5a), a Zggn element takes the
form for z’=4:
(i 00
2 2 2 b4 .2 Y
XX _ 12 1 2B cos o . cos (ﬁi /2)51nx(8k /2)x - dpda
hmn sin‘«a e +1 (nm-8k™) (nn+Bk™)} (mr-BK™) (mm+Bk ™) B

- 0
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_ I, (a)da (5.6)
sina R
-7
X -8 jwi nzmnwi
Where: k =kbcosan A= k

0

ky=kbsinaWy

Note that k* and k¥ differ from the variables kx and ky which were
used in chapter 2. In expression (5.6) we didn’t make use of the
symmetry in the a-integrand (see chapter 4), but this is of no
relevance here. We may write:

cos® (BK™/2) sin®(BKY/2) = ~T[£(B)+£(-B)] (5.7)
X couY X..¥ . x_.Y

£(B) = --2-2e:”3k +2e3Fk +e]B(k tk )+e]BIk X |
Note that k*=0 and kY=o0.
There are two different situations for which the problem has to be
solved, namely k*=x¥ and k*<kY.
a. k*=k¥.

The complex function f£(8) can now be written in the form:

e T S JUEVYIE 0 NN

Because cosz(ka/Zz)sinz(Bky/Z) is an even function with respect
to B, the integral IB(a) may be expressed as:

o0

1 1 28°cos’a £(8) ag
IB(a)= 16 €,.+1 (nn-ka)(mHka)(mn-ka)(mrHka)B2

-0
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= | 9(B)AB (5.9)

The integrand in (5.9) has 5 single valued poles on the real
B-axis. We can avoid these poles by choosing a proper integration
‘path. This path is shown in figure 5.2. According to the Residue
theorem of Cauchy [5], the integral over a closed integration
path is zero if there are no poles within the area which is
enclosed by the closed integration path. This theorem will be
used here to calculate the infinite B-integrals. We shall use the
notation B=Re(z). In formula form we now may write:

C Cc
64 85

‘1, S\ %\ | S
oo omn

K* kX k= k=

Fig. 5.2: Integration path in the complex z-plane, with g=Re(z)
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In expression (5.8) all arguments are greater or equal zero. This
implies that we can use Jordan’s Lemma in order to determine the
integral over C; [5,pp. 71]. This results in:

lim g{z)dz = 0 (5.11)
P

C
P

The only thing left now, is to calculate the five integrals over
Cs +Cs +C5 ,Cyg and Ca . If we take the =zero-limit for each

6,778, 783"78, 5

radius of the five half circles, we can write (5.10) as:
o

Ig(x) =] 9(B)aAB

61 62 63 64 85

= nj[ Res g(z)+ Res g(zZ)+ Res g(z)+ Res g(z)+ Res g(z)]
i nn z=0 mn m
z=-—x Z="'—x Z"——x ZH—_X
k k k k

(5.12)
Where ai represents the radius of the half circle C6 ,
i
i=1,2,3,4,5 . The five integrals in (5.12) can be written in
residual form, because the poles are single valued. Once these
residues are known, IB(a) is also known. The residues can be

obtained very easily:

Res g(z) = linm %x(mn+zkx)g(z)
z=-T0 z->-0
k k
X 2 2 Y
2. S 2(mn) “cos alf_ . [k mn]
_ 3—3 2— 2=|1 sin {5.13a)
lémn [ (nm) —(mm) ][ kxz(8r+1) } KX
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Res g(z}) = lim %x(nn+zkx)g(z)

nn mn
Z=—— Zy——
' x*
X 2 2 Yy
Ak 2(nm) "cos"a|_.. [K'nn
- 16n&E‘[(mn)°-(nn)2T[l kxa(e o) sin X (5.13b)
r
1 X
Res g(2z) = linm -ix(mn-zk )9(2)
7 m
z—;; z»;i
L 2(mn)2cosza . (k¥mn
- Terw T (mm) 2-(mn)2']_[1 kxz(c 1) sin X ] (5.13c)
r
1 X
Res g(2) = lim —px (n-zkT) g (2)
_mn nn
z—;i ze;;
. 2 2 Y
K _2(nm) "cos“el . (kinm
- 3?5?53[(mn)2:TﬁﬁTzT[l W (o 1) sin X (5.134)
r
e 4
_ —Jk?
Res g{z) = lim zg(z} = 2_2_4 (5.13e)

z=0 z-0 Sm'nm

Together with (5.12) this finally results in:

-k* [ 2(mn)2coszotT . [kymn]
— F3—2 2— 2=—|1 s1n
IB(a)— 8mm [(rur) - (mm) ]_ kxz(cr+1) ] kX
+ —3 2-k* 2 2= |1 2 (nm) *cos”a sin[kynn] + 3
8nn [ (nmr) =(nm) ]L kxz(e +1) KX 8m?n2n’
r
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1
From expression (5.6) it is obvious that lim[singalﬁ(a)] must

oa->0

exist. It can be easily shown that the above expression fulfills
this requirement.

a. k*<k?,
According to (5.7), £(8) takes the form:
R < s oY s X, .Y 1 X_.Y

(5.15)

Similar to the previous case, we may write IB(a) in the form:

1 1 2B°cos®a £(8) a
X ] B
£,+1 (n-gk®) (nm+Bk™) (mn-gk*) (mm+gx*) 8

=1 g(B)dB (5.9)

In this case g(B8) has only 1 single valued pole at Bg=0. The
procedure we have to follow in order to calculate I (x), is the
same as in the case of k*zkY. We will use the 1ntegrat10n path of
figure 5.2. Using Jordan’s Lemma for the integration path ct

pr
finally results in:
o]
IB(G) = { g(B)dB = nj Res g(z) = nj lim zg(z)
z=0 z-0
-x®+2xY
= gm?n3n’ (5.16)

Note that for k*=k¥ (5.14) and (5.16) are equal.
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If we take m and n both even and m#n the result differs from
(5.16). IB(a) now takes the form:

kX

IB(a) = am?nin® m and n even m#n {5.16a)

ii. m=n, m odd.

This situation is discussed apart from the previous one, because
the g-integrand now has both single-valued poles as well as double
valued poles. So we have to be careful in calculating the
g-integral in the neighborhood of these double-valued poles. Like
in the previous case (m#n), we shall use Cauchy’s theorem of
residues in order to determine a closed form expression for I {a).

For m egual to n, an th element takes the form:
k4 -]
XX _ '12 ZB cos’a|cos® (Bk /2)51n iBE 22) dgdu
hmn sin“o cr+1 (mn+Bk ) (mn BK7) B
-m 0
n
_ == I (o) da (5.17)
sin“a
- 2 2.2
- -8jwu 1 mzwx
with: k =k.ocosocWx A= k

Y_ :
k k.051naWy
We may write:

cos®(BK*/2) sin®(BKY/2) = -1-[£(B)+£(-B)] (5.7)

cor X o ¥ e X Y anin X o Y
f(B) = -Z-ZQJBk +2e}Bk +e]B(k +k )+ejB“{ k l

We can distinguish two situations, namely k¥2xY¥ en k*<kY.

32



a. k¥=k¥,
This implies that:

Ik, 38 (™ +kY) | 38 (k" -KY)

. X
£(8) = -2-2e7B¥ 426 (5.8)

We shall use the integration path of figure 5.3. The function

g(B) has two double valued poles at thmn/kx and one single valued
pole at B=0.

T o+

Fig. 5.3: Integration path in the complex z-plane, with g=Re(z)

Using Cauchy’s residual theorem and Jordan’s Lemma IB(a) reads:

(=]

Ig(a) =] g(B)dB
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g(z)dz+ |g(z)dz+ |g(z)dz

aieo
C C c
61 52 63
= nj Res g(z) - lim g(z)dz+ lg(z)dz (5.18)
z=0 ai»o
Cs Cs
1 3
with:
-jky
Res g(2) = 1lim zg{z) = 4_4
2=0 250 8mm
and
Is = lim g(z)dz+ |g(z)dz
Sieo
C C
81 53
n n
= 1i _n 3¢ y3s oI¢ : mrt Ity 35 o9
lim |g( x+51e 1)361e 1d¢1 +1lim g(—§+83e 3)]63e 3d¢3

6190 k

o

where the substitutions z=-E§+8

k
Combining the above two

61,6390, we then find:
n
I = 1im[g(-EE+ae3¢)
50 k®

o

integrals and

8.0

3 k

e3¢1 and z=EE+8 e3¢3 are used.
kx 3
taking the

1
limit for

+ g(E§+aej¢)]jaej¢d¢
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The limit for &§-0 exists:

lim[g(—g;+6ej¢) + g(EE+8ej¢)]j5ej¢ =
30 X x*

s 2 Y
i i zcgs a 22 kX + (ky-kx)cos nmi
|l6ém 7 8n"m (er+1)k k
f
_ 3k* 2cos’a sin kY
(16m°n° T 16m°m’ (e +1)k" K®

Apparently the ¢-integrand is independent of ¢. So Is can how be
easily obtained:

Ia =T lim[g(-E§+6ej¢) + g(E§+6eJ¢)]j6eJ¢
850 k k

Using this result, IB(a) then finally reads:

00

Ig(a) =1 g(R)dB

Y 2 b4
= E i i 4 - cgs . X K+ (ky-kx)cos Hm§
87 m 6™ m 8nm (cr+1)k k
3k* cos’a . |rmk¥
4_5 — 2. 3 X sin X (5.19)
léemr m 8n°m (er+1)k k '
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p. kX<k¥.

Because of the fact that we want to use Jordan’s Lemma on
the integration path C; (see fiqure 5.3), we have to choose an
f{B) with all arguments greater of equal zero. Thus f(B8) has
the form:

£(B) = -2-2e38K 120 3BKY L IB (K +KT) | =3B (K -KY) (5.15)
The B-integrand has in this case three single-valued poles at
B=tmn/kx and B=0. The procedure to follow is the same as it was
in the previous situations. We shall choose the integration path
of figure 5.3. Using Cauchy’s theorem and Jordan’s Lemma we
finally get:

o0

Ig(a) = 9(B)AB

-0

= nj[ Res g(z)+ Res g(z)+ Res g(z)]

k k
Y_ X X 2 __2
2k X 4 K [y 2(mm cos o n odd (5.20)
8t m lén™m X (er+1)

Expression (5.20) was derived for the case that m (=n) is odd. In
the case of an even m (=n) the result is slightly different for

k*<kY¥. An element 3 n has in this case the form:

XX
hm

7T o
gX% _T}E_ [1 2Bzcosza]sin2(Bi?ﬁZ)sinzisfyéz) dpda
hmn sin‘« er+1 (mr+BK™) " (mm~-BkK")} "B

- 0

m
=a .12 Ig(x)da (5.21)

s51n o

-1
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% -8jwu rrzmzw;
with: k7 =k cosaW A=
o X ko
y_ .
k —kbs1nawy

The method for calculating IB(a) is the same as for the situation
where m was odd. The result for kX<k¥ has the form:

m even

k kX 2(mn)2cosaa
+ [1 (5.22)

IB(a) = ar’nmt 16n°m* kxz(er+1)
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6. Calculation of the excitation vector [V}

The method for the efficient evaluation of the excitation vector
[V], is practically equivalent to the case of calculating ([Z].
However, due to the presence of a first order Besselfunction in
the integrand, the calculation of the infinite integral is more
complicated. The Besselfunction is introduced by the finite probe
radius r, of the ccaxial feed. A constant current density on the
probe is assumed.

The two-dimensional integrals that have to be evaluated
numerically, have according to (2.7) the following general form:

T o0

vV = I [ f(B,a) dpde (6.1)

m

-1 0

Where we used the change in variables (2.8)
The B-integration is divided in three parts:

T 1 Ie; o
Vm = J [ J f(B,a)dg + I f(B,a)dp + [ f(B,a)dg ] da (6.2)
-7 ) B 45:'

In this paragraph the method for evaluating each of the three

integrals will be discussed.

6.1 Calculation of the g-integral in the region 0=g=1

Here we have the same situation as discussed in paragraph 5.1.
Thus substituting B=cost in the integral results in:

|

-n

m 1 4

J f(B,x)dRda = J
Q

-

ns2
[ f(cost,a)sint dtda {6.3)
0
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This integral can be evaluated numerically without any further

problems.

6.2 Calculation of the g-integral in the region 1=g={e’1

Here we have the same problems as discussed in paragraph 5.2.
Using the substitution B=cosht, the numerical problems at 8=1 can

be eliminated. This results in the expression:

1 48;| n arccosh(Je;')
[ J £(B,a)dp = J J f(cosht,a)sinht dtda (6.4)
- 1 |

6.3 Calculation of the infinite g~integral: source term extraction

The method that we shall use in this paragraph is the same method
as was previously discussed in paragraph 5.3 for the elements of
the matrix ([Z2]. Again, the asymptotic part (B-«) of the
B-integrand is subtracted from the original integrand, ensuring a
fast convergence. The infinite integration over the subtracted
part is done analytically.

Using this source term extraction technique, an element of the
vector [V] is written as (see (2.7)):

4

= = 2 2,
[ I [(@y=Gp) - Tppl- T KoBAxdR

é
+ J j [th ].J; KgdadB = [V,-V, 1+V, (6.5)

Where ahv is the asymptotic value of 6v' It can be easily shown
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that the asymptotic value of év, given by expression {2.4.17) of
reference [1], takes the following form for large B:

0 0 0
Qe = |0 0 0 (6.6)
thzx thzy 0
Zz’=d:
Wi Cosa
g = 2,0
hvzx ko(er+1)
- Sina
Brvay = K2 (o
hvzy ko(er+1)
z'«<d:
5 _ -wuécosa
hvzx Zkbcr
5 _ -muzsina
hvzy ~ 2k e

The derivation of Vim in this chapter will be done for elements of
the sub vector [Vx] for the case that z’=d (thus ﬁ—directed entire
domain sinuscidal basis functions and the patch located on top of
the substrate). For the other elements of [V] and for the case
that z’<d , the source extraction technique can be applied in
exact the same manner. According to (6.5}, (4.7) (m odd) and (4.8)
(m even), an element of [Vx] can be written as:

i. m odd

0 J0/2
vi= - 41] [ [y Oy x]ﬁpmxsin(ﬁk:)cos(Bkg)Jo(rokoB)k‘z)BdadB
0 0
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J ahvxjpmxSin(Bk:)cos(Bkz)Jb(rbka)k;BdadB

4]
=vX 4 [v:—vﬁm] (6.7a)

ii. m even

v J
m

o]

w TI/2
[ [va thx pmxcosmk:)cos(ﬁkg).:ro(rokos)kisdads
Q

o T2
= X Y 2
+ 4J vapmxcos (Bks) cos (Bks) J0 (rokoﬁ) koﬂdadB
a
= vX +[v-v ] (6.7Db)
hm hm -
with:
x —
kS = kbxscosa
Y _ : . ; i ; 3
ks = kbyss1na (xs,ys) texcitation point probe (fig. 1.1)

I is the Besselfunction of the first kind, order 0.

In order to determine the infinite g-integral in Vh , Wwe will make
use of Cauchy’s residue theorem and Jordan’s Lemma [5]. The
derivation is performed for the case that m is odd. For even
values of m, only the final results are given.

Combining of (3.2) with (6.6) and (6.7a) results in:

¥ o  cosa T2 s 0s (Bk /2)sln(8ky/2)51n(3k )cos(Bk ) 3, (x K 8) dBaa
hm sina (nm-k B)(nm+k B)
[s] o] :
(6.8)

with:

kx=k.0cosocwx

l6jmmW_wyu
Y_. o X—0
k —kbcosawy A= ko(cr+l)
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The Besselfunction J, will be used in integral form:

21

-1 jBk
Jb(rbka) = 5% I e 9 dé
)
with: kﬁ = rok051nﬂ

Furthermore, the cos~-sin product in (6.8)

of e-powers.

(6.9)

is expanded in a series

cos (BK*/2) sin(BkY/2) sin(Rk}) cos (BkY) = ~Ig[£(B)+E(-B)]  (6.10)
with:
. b4 Yy Xx,.Y . x y X_,Y
£(B) = eIBIKT/24KkT /24K k| | JIB|KT/2+kT/2+k =k |
. X Y o XY . X Y, o X _ Y
- JBlKT/24kT f2-k _+kI| _ 3B|kK7/2+k¥/2-k -k |
; Xio_xY X .Y ! LYDIRN 4 X_ Y
- oJBlk /2= /2+k k| _ JIB|KT/2-kT/2+k -k |
+ B /2-kY2-xZ4xd| | 38|K*/2-kY/2-KE-KY |
Using the above expression, it is possible to extend

the lower B-integration boundary to -«. Together with the integral
representation of Jo, we then may write:

T2 [y
1

CcOosx

-1- £(8)

—_—
sina

4] -0

" 2T o0

cosa 1

(mm-X"g) (mm+k*B)

Jo(rbka)dBda

1 jBk
-1s f(B)e” "9

—_— =
sina 21

o] 0o -w

(mm-k*g) (mm+k*g)

dpddda
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nsa 277

= Al =4¥— =— IBv(a,ﬁ) dodo (6.11)

o
o

Our aim is now to calculate the g-integral with infinite
boundaries. We shall choose the integration path of figure 5.3
with 62=0, because the g-integrand has no pole at g=0. The
B-integrand has 2 single valued poles in this case at B=+mm/k*. We
may again use Jordan’s Lemma for C; if the arguments of the
e-powers in (6.11) all are greater or equal 0. The easiest way to
calculate IBv is to divide the integral in 8 different parts,
IBvl""IBVS‘ This then results in:

gi(B) ae
IBVi(a'ﬂ) - (Hm—ka)(nm+ka) (6.12)
8
IBV(a'ﬂ) = } IBvi(a;‘ﬂ)
1=1
with:
gl(B)=ejBIkx/2+ky/2+k§+k£+kﬁ| gs(B)zejBIkx/z—ky/2+k§+k§+kﬂ|
gz(B)=ejBIkx/2+ky/2+k:—kg+kﬂ| g6(3)=ej3|kx/2'ky/2+k§-k§+kﬁ|
g3(B)=ejB|kx/2+ky/2‘k:+kg+ka' 97(B)=ejBIkx/z—ky/z-k:+k§+kel
. b4 Y /o _1X_1Y ] X o oY o vX_ oY
g4(3)=eJﬁ|k /2+k" f2-k ks+kﬂl g8(8)=e33|k /2-k?/2-kg ks+kﬂl

As an example we shall now calculate I The other 7 integrals

gvl’
IBvZ""IBvs' can be evaluated using exact the same strategy.

In the case of IBvl’ we can distinguish two situations:

. X Y X Y .
i, KX/24kY /24K 54kd 4k 20

. . X ' x,.Y
11. k7 /2+k /2+ks+ks+kﬂ<0
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i. k¥/2+k¥/2+4k3+kY+k 0.
According to expression (6.12), gl(B) has now the form:

. X y X, Y
+ +

gl(B) eJB(k /2+k /2+ks+kS kﬂ)

Because the argument of the above e-power is always greater or

+
equal zero, we may use Jordan’s Lemma on Cp.

IBvl can be written as:

o0

© . X y X, .Y
SIB (K7 /24XF 724K +h +K )

1 < = dg = |h(B)dR
16 (rm-k"B) (tm+k"B)

-w - 03

IBvl(a,G)

Choosing the integration path of figure 5.3 and using Jordan’s
Lemma for C;, leads to:

IBvl(a,ﬂ) = nj[ Res g(z) + Res g(z)]

=-1n z="0
k* x*
_ -1 T —jﬂg(kx/2+ky/2+k:+k§+kﬁ)"
with: Res g(z) = 32mmk | © k
Z=—']:'x'
1 [ jﬂﬁ(kx/2+ky/2+k:+k§+kﬁ) i
Res g(z) x|le k ‘
mm 32nmk |
kx
This finally gives:
Tm
IBvl(“'ﬂ) _ I;;;i 51n[kx[k /2+k /2+ks+ks+kﬂ]] {6.13)

s x Y X, .Y
i1, k% 2+k¥ /243 +kY 4k <0,

In order to fulfill all conditions concerning Jordan’s Lenma,
g, (8) is written as (see (6.12)):
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I X V4 X .Y
IB(K /24K y2+4K_+kl+k,)

g, (B)=e
IBvl then reads:
L X Y X. .Y
e JR(k"/2+k /2+ks+ks+kﬁ
-1 ag
Igyy(®:®) = -3 (Tm-k*B) (mm+k*g)

Following the same procedure as in the previous case finally
results in:

T
[ .% Y X, . Y
kx[k /2+k /2+ks+ks+kﬂ}]

1 . [
_ ——— sin
Typ (@,8) = TonX (6.14)

Note that (6.14) and (6.13) only differ by a minus sign.

Once the remaining 7 integrals, are also

Isz e IBVB'
known, IBV can be determined. For the case that m is odd this

gives:

~TTI0

-1 X Y X, .Y . [—={.x y X, Y. |
IBv(a’ﬂ)=m[Sgn(k /2+k /2+ks+ks+kﬁ)51n -kx k™ /2+k /2""ks"'ks*@‘k’&J

Tm .-
+ sgn(kx/2+ky/2+k’s‘—k§+kﬂ)sinT;i[kx/2+ky/2+k’s‘-kls’+k19

T

kx

sgn(kx/2+ky/2—k:+kg+ko)sin [kx/2+ky/2-k:+kg+kﬁ]

Tm

- sgn(kx/2+ky/2-k:-k§+kﬂ)sin["_

R
kx[k /24xY 721 ks+kﬂ]]

m

sgn(ksz—ky/2+k:+kg+kﬂ)sin[kx

X0 1Y X, Y
[k /2-k /2+ks+ks+k0]]
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T

m
- sgn(kx/z-ky/2+k:-kg+kﬂ)sin[k [k /2-kY /24K kY +k ]]

-m‘n

+ sgn(kx/z-ky/z-k:+k§+k0)sin X

[k /2—ky/2-k +kY+k ]T

L

~TIT -
+ sgn(k*/2-kY/2-kX-kI+k ) sin ;E[kx/z-ky/z-k:—k§+k0]

m odd {(6.15)

For even values of m, the result is slightly different. According

to (6.7b), (3.2) and (6.6), vX is in this case written as:

hm
w0 /2 Y
X =AJ cosal 51n(Bk_12)31n(Bk /2)cos(Bk )cos(Bk l J (r]cB)dBda
hm sinao (nm—k B)(nm+k B)
o 0
(6.16)
with:
kx=k.ocosawx
v lslnmw Wl
k =k.°cosawy k (e +1)

J, is given by its integral representation (6.9). Using the same
method as described above for the case of odd m values, the
resulting expression for I becomes:

Bv

= X

b4 Y X, .Y .
sgn(k”/2+k* /2+k"+ki+k ) sin
IBv(a'ﬂ)"lsmk [ s s 9

(L X Y X,.Y
ka /2+k /2+ks+ks+kﬂ]]

X y X_.Y . X y X .Y i
+ sgn(k”/2+k /2+ks ks+k0)51n xkk /2+Kk /2+kS ks+k0]_

+ sgn(kx/2+ky/2-k:+k§+k0)sin

(X Y o 1bX Y ]
x\k /2+kY /2 ks+ks+k0]_
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‘ X Y jo_vX_1 Y . =, x Y, o 1 X_1 Y
sgn(k™/2+k1 /2 ks ks+kﬁ)51n[kx[k /2+kt /2 kS ks+kﬂ]]

T

sgn(kx/z-ky/2+k§+kg+kﬁ)sin[kx[kx/Z—ky/2+kz+k§+kﬂ]]

r \
sgn(kx/z—ky/2+k:—k§+ko)sin X kx/z—ky/2+k:—kg+ke

\ -

sgn(kx/z—ky/z-k:+k§+kﬁ)sin

(VX 0 Y o X LY
Lk /2-KY /2-K_+kD+k,

F

[ -
sgn (k*/2-k¥/2-K:-k¥+k ) sin| x kx/z-ky/z-k:-k§+kﬂ]

m even (6.17)
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7. Conclusiocn

The time consuming infinite integrals associated with the spectral
domain moment method sclution for microstrip antennas can be
computed efficiently by using the methods proposed in the report:

* use the symmetry of the basis functions to reduce the number
of integrals that have to be evaluated (chapter 4)

* eliminate the infinite derivative in the integrands by using
a proper change of variables (par. 5.1,5.2,6.1 and 6.2)

* use the source term extraction method, where the asymptotic
part of the slowly converging integrand is subtracted from
the original integrand. The integration over the asymptotic
part can be done in closed form, resulting in a reduced

computation time.

Applying these methods, results in a reduction of computation time
by a factor 20.
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