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Abstract 

Identification for the control of MIMO industrial processes 
A.C.P.M. Backx and A.A.H. Damen 

A procedure for the identification of industrial processes with the intention of control 
system design is proposed, discussed and illustrated by an application to a full scale 
production process. The procedure has been developed by directly meeting engineering 
constraints. The various identification steps are motivated, keeping industrial 
applicability of the procedure in mind. 

The MlMO model set used is the common denominator fom) or minimum polynomial 
form. Parameter estimation is performed in several steps, thus adapting to estimation 
and control requirements. 

The proposed general scheme has proved to perform well in various industrial 
applications. As an indicative example of practical results obtained, the identification and 
control of a quartz tube glass process is described. 
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1. Introduction 

Identification has become of age ... also in industrial applications. 

An identification scheme meeting engineering constraints and its 

capabilities are given in the following. 

An industrial production process usually consists of various 

multi-input multi-output (MIMO) subprocesses, which can be characterised by 

a high degree of interrelationship, i.e. each output is dynamically 

influenced by (almost) all inputs. Lower in hierarchy, at the primary 

control level, PID like controllers keep primary process inputs (e.g. flow, 

temperature, humidity, force, speed, power, ... ) at a preset level: the 

setpoint. The control discussed in this paper refers to the supervisory 

control of MIMO subprocesses. Supervisory control implies tuning of the 

primary controller setpoints based on observed outputs of the MIMO sub

process. Presently, control at this secondary level is mostly done by 

operators. This is feasible due to the fact that most subprocesses studied 

show dominating linear and stationary behaviour around their operating 

points by proper choice of inputs and outputs. 

This contribution is focussed on identification 

obtaining a proper model of such industrial subprocesses, 

techniques 

to be used 

for 

for 

automatic and improved supervisory control. Subsequently the concerned 

subprocess will be indicated by process. The characteristics mentioned allow 

liS to perform off-line identification in open loop. 

We concentrate on time invariant controllers, because we generally deal 

with grossly stationary systems. Improvement by automatic supervisory 

process control depends significantly on the quality of the process models 

on which the controller design is based. Conversely, system identification 

techniques, which produce these models, should be geared to the intended use 

in the control system design. Straightforward one step ahead prediction 

models are sufficient, if there is simply a need (and possibility!) for 

correcting the outputs in a time span which is small compared to the 

smallest relevant time constants of the process. These one step ahead 

prediction models can easily be obtained by equation error, least squares 
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methods. Industrial practice, hovever. confronts us vith the indispen

sability of models. vhich perform equally veIl for both high and lov 

frequencies in the relevant process dynamics. Control for fast changeovers 

requires a good fit for the higher frequency range, vhereas disturbance 

reduction by feedback focusses on lov frequencies, because it is almost 

alvays hampered by inevitable time delays. Consequently, models vith 

adequate simulation performance over the full frequency range of the process 

are indispensable and searched for in the proposed identification scheme. 

The full frequency range of the process is being considered as all those 

frequencies, for which output disturbances can reasonably be compensated for 

by proper input signals in the alloved ranges. 

Essentially the full identification procedure includes preliminary 

probing measurements, data acquisition and primary data processing, folloved 

by parameter estimation steps, model validation and, finally, evaluation of 

the modelling purpose i.e. control. The ultimate success of the parameter 

estimation and the application of the obtained model is completely dependent 

on the preparation steps. Although this should be well known, ve neverthe

less experienced some quantitative unbalance in theoretical details and 

treatment of practical protocols in contemporary and past literature and 

even in textbooks. This can easily misguide industrial control engineers 

(e.g. cf. (Ljung, 1987; S6derstr6m and Sto!ca, 1988]). Also in this paper, 

in section 2, we have to confine ourselves to some superficial remarks on 

these topics, although in practice they require the dominant part of project 

time and effort. 

Section 3 motivates and discusses modelling and estimation. In sections 

4 and 5 a case study on a full scale production process shovs the usefulness 

of the proposed method. Finally, section 6 presents the attained improvement 

by a controller designed on the basis of the estimated model. 
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2. Preliminary process measuring, data acquisition and primary signal 

processsing 

After preliminary study of the process and extensive interviews with 

various groups of specialists (process engineers, control engineers, 

maintenance engineers and operators) the first step in the modelling of an 

industrial process is the selection of process inputs, which enable 

sufficiently accurate control of the selected outputs. The set of such 

process inputs has to have the following properties: 

- the inputs must enable sufficient compensation of encountered 

disturbances both in amplitude and in frequency range over the 

permitted operating range; 

- those inputs are preferred which enable more or less independent 

control of the outputs; 

- reliable manipulation of the inputs has to be feasible; 

input/output transfers, possibly including (PIO) control of primary 

process signals, have to be almost linear or linearizable (i.e. 

preferably no thresholds, dead zones, hystereses and the like). We 

were mainly confronted with processes where control 

quality by decreasing product tolerances. In 

had to improve 

these cases the 

assumption with respect to linearity is or can be satisfied. Even if 

processes have to be operated at the intersection of constraints, 

which may not be violated and thus represent non-linearities, the 

reduction of variances in a linear setup may decrease the allowed 

distance between operating point and these constraints (e.g. cf. 
o 

[Astr6m, 1985]) 

When candidate process inputs and outputs have been found, preliminary 

experiments have to be done that are directed to the rough modelling of the 

process. In general three types of experiments are required: 

- experiments designed for finding disturbance characteristics of the 

process outputs; 
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- experiments to test the (range of) 

steady state gains and to get 

linearity of the process, to find 

a rough estimate for the largest 

relevant time constant; 

- experiments to determine the smallest relevant time constant and data 

acquisition for parameter estimation and model validation. 

In the first set of experiments the inputs selected are kept constant. 

Analysis of the spectrum of the measured process outputs gives insight in 

the required bandwidth and in the range the control system has to have in 

order to reduce the disturbances. 

In the second set of 

staircase-type are applied 

experiments, test signals of a symmetric 

to the selected process inputs. Steady state 

responses of the process to these inputs may be used to test steady state 

linearity of the process. Furthermore, rough estimates for the largest 

relevant time constant and steady state gains may be obtained on the basis 

of the measured process responses and an analysis can be done on the 

presence of hysteresis in the various process transfers. 

In the third set of experiments, Pseudo Random Binary Noise Sequence 

(PRBNS) test signals of proper length (defined by the estimated largest time 

constant) and high clock frequency are applied to the process inputs. During 

these experiments 

independent PRBN 

are indispensable 

all inputs are excited simultaneously with mutually 

sequences. These fast, large bandwidth PRBNS experiments 

for the determination of process bandwidth and for the 

estimation of delay times. 

A first impression of the bandwidth of the various process transfers is 

obtained by computation of the ratios of the spectra of the output responses 

and the spectra of the input signals for the large bandwidth PRBNS experi

ments. This information is used to determine the required clock frequency of 

the PRBNS test signals used in the final data acquisition. These final 

experiments are directed to parameter estimation and to model validation. 

Pre-processing of the collected process data involves: 

- peak shaving 
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Removal of outliers, which are mostly caused by measurement errors 

and by induction in sensor leads. 

- trend correction 

Removal of trends, which are caused by all kinds of low frequency 

and tracable disturbances. 

- delay time compensation 

Compensation of delay times by shift of the collected process 

data, as far as possible, preparatory to parameter estimation. The 

delay times are obtained from crosscorrelation estimates between 

inputs and outputs. 

- offset correction 

Subtraction of average signal values in order to enable lineariza

tion arround the selected working point. 

- scaling 

All measured physical quantities should be scaled in order to 

avoid numerical anomalies due to greatly different ranges. 

- filtering 

Prevention of aliasing and improvement of signal to noise ratios 

The trend correction, as an example, deserves more explanation. Very 

low frequency components, characterized by just a few periods in the data 

sets, are filtered out by applying an appropriate low pass filter to the 

data set. This is done consecutively both forwards and backwards in time, 

thereby avoiding phase shifting. These trends are mainly caused by distur

bances. A small fraction, contributed by system transfer, bears too little 

information in the data set to be useful for identification. If not filtered 

out, the disturbance part would highly deteriorate estimation results. This 

requires careful adjustment of the applied trendfilter on the basis of 

a-priori knowledge. An alternative could be the use of CARl MAX models [Box 

and Jenkins, 1976] where input/output data is filtered by 

tiation. Consequently, this is not a flat bandfi1ter 

simple differen

and the higher 

frequencies get disproportionate weight. For that reason we do not choose 

this approach. 
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A more detailed discussion on experiment design and primary signal 

processing can be found in [Backx, 1987; Backx and Damen 1989]. 

3. Estimation of a simulation model 

The procedure, developed for the estimation of a well fitting, compact 

MIMO simulation model, is motivated and elaborated in the next four 

subsections. 

The statements made are based on experience in industrial practice. An 

attempt has been made to present explanation in the context of theories 

familiar from literature. For identification of SISO systems good textbooks 

are available [Ljung and S6derstr6m, 1983; Ljung, 1987; S6derstr6m and 

Stoica, 1988], but MIMO system analysis need extra attention and discussion. 

Concepts of proofs are provided in the Appendices. Further theoretical 

elaboration of the framework is given in [Backx, 1987]. In our opinion the 

nice industrial results obtained so far indicate the applicability and the 

engineering justification of the developed scheme. 

3.1 Rationale 

The causal discrete time model to be estimated will be the basis for 

the control system design. Consequently, the following aspects put con

straints on the characteristics of the estimated model, as will be explained 

in section 6: 

- For shortening the process settling time in startup situations or 

changeovers, feed forward control based on the nominal model charac

teristics is necessary. A feedback solution would be too slow, 

because commonly present delays, in the order of magnitude of at 

least the shortest relevant time constant, prohibit high frequency 

feedback. 

- Often disturbances are caused by effects like changes in properties 

of raw materials and changes in environmental conditions. These 
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effects influence the process outputs; they are hard to be charac-
terized or measured in order to be used for feed forward control. Only 

amplitude bounds on additive output disturbances in the frequency 

domain seems an appropriate description to us. In industrial 

processes studied so far, predominantly flat disturbance spectra have 

been encountered. 

- Disturbance reduction can only be based on a feedback loop which, 

because of the delays, is necessarily low-pass. This feedback loop 

has to enable a maximum compensation of the disturbances acting on 

the controlled process outputs. Consequently the nominal model has to 

fit well for a frequency band, determined by the time delays. 

These control design constraints and disturbance characteristics 

require a good simulation model of the dynamic transfer characteristics of 

the process for the full process frequency band, i.e. for all frequencies 

for which the output disturbances can be compensated by control inputs 

within allowed amplitude ranges. Such a simulation model has to be iden

tified on the basis of data of the process in open loop. Of course primary 

control loops are functioning during these experiments. 

Effectively, system identification ultimately comes down to minimizing 

some error between data sets and model representations; this error accounts 

both for disturbances and for modelling errors. Under favourable cir

cumstances the frequently used ARX models and equation error minimization 

will provide models that are only suited for short horizon prediction [Damen 

et al., 1986, Van den Hof and Janssen, 1987], that show bad behaviour for 

low frequencies [Ljung, 1987] and that are far from well defined for MIMO 

systems [Janssen, 1988, Van den Hof, 1989J. Based on assumptions on 

disturbances prediction error methods are usually proposed as improvement, 

where disturbance characteristics are modelled by noise filters, which are 

to be identified too. In using this approach one has to consider that: 

The noise filters may not be too complicated, otherwise data 

sequences will be too short to render sufficient information, 

resulting in high variances of the estimates. 
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- The disturbances should indeed be of a stochastic character as 

required: i.e. white, gaussian, zero mean, stationary noise filtered 

by time invariant linear filters. 

- Appropriate modelling of both process and noise filters can be 

cumbersome a task for MIMO systems. 

Reliability of the results depends on suitability of the model set in 

describing the process and noise filter dynamics. 

If these conditions are not sufficiently satisfied, reliability of the 

resulting models for both process dynamics and disturbances will be 

questionable. We choose to assume as little as possible concerning the 

disturbances. We only suppose that the disturbances can be modelled as being 

additive to the outputs and that they essentially have a flat spectrum and 

are independent of the inputs. Good experiment design and proper choice of 

the outputs to be used for feedback, choice of sensors and scaling will 

enable disturbances on the various outputs to be, to some extent, mutually 

independent and approximately of the same power after scaling. A priori this 

choice is not restricted to the direct output variables to be controlled, 

but e.g. reasons of easy and reliable measurement may cause other, related 

variables to be preferred. 

Resuming, the noise characteristics, average value and crosscorrelation with 

applied input testsignals, are supposed to tend to zero. Under these 

assumptions adequate simulation behaviour of the system dynamics can be 

estimated by applying an output error Least Squares method if, in addition, 

the inputs have a flat spectrum in the relevant frequency range. 

Least squares minimization of the output error implies minimization of 

the average power of the output error signal. If a Finite Impulse Response 

(FIR) model is chosen, it is easy to prove that the estimated model will 

converge to the actual impulse response for the concerned sample moments, if 

the process under study is indeed linear (see Appendix). If a general linear 

model set is being used, it can be shown that for extensive data sequences a 
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model is obtained, which minimizes the criterion J : 
e 

J 
e 

. T 
trace«F - F) (F - F» (3.1) 

This is the Frobenius norm of a matrix containing the differences 

between the real Markov parameters F and the estimation F in block vector 

form (see Appendix). 

Summarizing, an output error criterion is chosen to be minimized, while 

taking care that the input signals are sufficiently rich compared to the 

frequency band of the transfer dynamics. The resultant output errors, after 

estimation, can be analysed e.g. in the frequency domain. In most cases this 

gave no indication for particular modifications of the low pass feedback 

dictated by the delay times. In fact the inevitable delays restricted the 

frequency band in which suppression of the disturbance could be ac

complished, and in this band the estimated output disturbance was generally 

found to be predominantly flat. 

Having decided to apply Least Squares minimization of output errors, 

the choices for the deterministic model set are now discussed. Model sets 

like finite impulse response (FIR), ARMAX, State Space representations and 

Matrix Fraction Descriptions are all based on difference equations. One can 

distinguish parameters as coefficients of the input differences which, for 

the sake of convenience, will be indicated here by Moving Average (MA) 

parameters and coefficients of the output (state) differences denoted as 

Auto Regressive (AR) parameters. Since the input samples are known, the 

outputs are linearly dependent on the MA parameters, hence such minimization 

of Least Squares of output errors is very straightforward. AR parameters, on 

the contrary, are more difficult to estimate in an output error criterion. 

Consequently we prefer a minimum number of AR parameters in the modelset. 

This consideration would advocate the use of a FIR model, which has no AR 

part. (In this particular case the output error least squares coincides with 

the equation error least squares, ~hich makes the parameter estimation 

extremely simple.) The drawback, however, is a large number of parameters to 
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be estimated and a correspondingly high McMillan degree. Apart from the 

resulting big variance of the estimated model parameters, a high McMillan 

degree is disadvantageous for the design of a low order controller. 

Consequently, a FIR model set is not suitable for a final estimate but, 

nevertheless, we will use the FIR model set for an initial estimate, 

rendering sufficient accuracy in a first step, as explained later. 

Concluding on the requirements for the nominal model we need a low 

order model with good simulating qualities and few autoregressive 

parameters. 

Guided by literature on theoretical basics, one is inclined to start 

with canonical state space representations of low McMillan degree. A severe 

drawback of the use of these model sets is the required structure selection 

procedure. In order to avoid this structure selection overlapping 

parametrizations (multistructural models) have been proposed. For facilitat

ing estimation these overlapping state space representations are transformed 

to matrix fraction descriptions (MFD's) (cf. e.g. [Guidorzi, 1975, 1981; 

Gevers and Wertz, 1984, 1985; Correa and Glover, 1984J). It is claimed that 

any overlapping parameterization can represent almost all MIMO systems of 

the proper order. If the entries of state space matrices are randomly chosen 

then this claim will indeed be fulfilled, because then all states are highly 

interrelated and all outputs depend on all states. Industrial processes, 

however, do not necessarily have this high degree of internal interrelation

ships, but are designed to have some special internal structure, which can 

easily be one of the set of processes that is not covered by the overlapping 

parameterization used. Besides, the MFD model, once estimated, may partly 

represent noncausal systems, which are irrealistic and cannot be 

retransformed to causal state space models again. Consequently heuristic 

retransformation deforms part of the information. The use of a parametrisa

tion suggested by Correa [Correa and Glover, 1984; Janssen, 1987, 1988J 

indeed eliminates the non causal aspects, but in the estimation this leads to 

consecutive steps, which in turn deteriorate the estimation criterion 

originally wanted [Janssen, 1987; Janssen and Damen, 1987J. Consequently, 

output error least squares minimization should then be done with con

straints, which highly complicates the minimization procedure. 
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Apart from the drawbacks mentioned already, both canonical and 

overlapping parametrizations still contain nominally n*q autoregressive 

parameters, where n equals the McMillan degree and q denotes the number of 

inputs or outputs depending on the type of overlapping/canonical form 

chosen. 

There is a way out, where we deal with only r (the degree of the 

minimum polynomial) autoregressive parameters and where we can avoid any 

structure selection. This is offered by a model set indicated as the common 

denominator form [Kailath, 1980] or minimum polynomial form [Gerth, 1972; 

Backx, 1987]. In the sequel we will call this model set the Minimum 

~olynomial and Start ~equence of Markov parameter model abbreviated by 

MPSSM, which is given by the following definition: 

Definition of the MPSSM model set: 

Let the minimum polynomial (cf. [Gantmacher, 1959]) of a discrete time, 

causal system be given by: 

r 
z + o (3.2) 

Let the first r Markov parameters be given by Mj (j=l,2, •.• r) and the 

direct feed through by D. Then the output vector y of p outputs 

generated by an input vector u of m inputs is given by a convolution: 

'" 
Yk L F.uk . 

j=O J -J 
dim[F] pxm (3.3) 

D (3.4) 

F. M. 
J J 

j=1,2, ... ,r (3.5) 

r 
- L. a.F. 
bi 1 J-i 

j>r (3.6) 
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The parameter set such defined consists of the r minimum polynomial 

coefficients and the first r Markov parameters extended with the direct feed 

through term D. This sums up to r+rmp+mp parameters. The majority of these 

parameters, the (r+1)mp entries in M. and D, are in fact moving average 
J 

parameters. 

A disadvantage of the MPSSM model set is the presence of multiplicity 

ot poles, whic.h can be illustrated by transformation of the MPSSM model to 

corresponding state space representations. If p$m the following observ

ability canonical form (A,B,C,D) can easily be verified: 

A 

with: 

C 

with: 

C. 
1 

i .. 

o 

o 

o 0 

0 0 

1 0 

o 0 

o 0 

I r-1,r-1 

0 

0 

0 

0 

0 

dim A: rpxrp (3.7) 

i=1,2, ... ,p 

dim Ai: rxr 

dim C: pxrp (3.8) 

i=l,Z, ... ,p 

dim C. : pxr 
1 
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B 

with: 

B. 
1 

'" , 

M (i,l) 
r 

dim B: rpxm 

i=l,Z, ." ,p 

dim B.: rxm 
1 

M.(j,k): entry (j,k) of Markov parameter M. 
1 1 

(3.9) 

For m$p the controllability canonical form is the appropriate repre

sentation: 

with: 

B 

with: 

A. = 
1 

B. 
1 

o 
o 

o 

o o -a 
r 

I r-1,r-l 

-a 
r-

... , 

i 
010 

000 

000 

o 
o 

o 
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dim A: mrxmr 

i=1,2, ... ,m 

dim A.: rxr 
1 

dim B: rmxm 

i=1,2, ... ,m 

dim B.: rxm 
1 

(3.10) 

(3.11) 



C 

with: M (l,i) 
r 

M (p,i) 
r 

dim C: pxrm 

i=1,2, ... ,ID 

dim C.: pxr 
1 

(3.12) 

For generic values of M. 
1 

i=1,2, .. ,r these representations will be 

minimal. Consequently the McMillan degree equals r*min(m,p). This can easily 

be concluded from the rank of an extensive Hankel matrix built up by Markov 

parameters Fk . Because of (3.7) respectively (3.10) this rank will generi-

cally be equal to r*min(m,p), which is the McMillan degree. 

These state space representations clearly show that all poles, 

indicated by the zeros of the minimum polynomial, have multiplicity 

q=min(m,p). Furthermore, they are all distinct (corresponding to distinct 

Jordan cages; corresponding to different eigenvectors) because the 

off-diagonal blocks A .. of 
1J 

state matrix A are all equal to zero. In 

practical terms one might say that these mul tiplici ties just refer to 

"parallel" modes, which happen to be exactly equal. In industrial practice 

such a coincidence is highly unlikely. Surely multiplicity of poles as e.g. 

in z=O for delays and in z=l for multiple integrations may occur, but these 

kind of multiplicities are not distinct and can be described as "cascaded" 

modes. Of course these "common" multiplicities are incorporated in MPSSM as 

well, but will be reflected in each diagonal block matrix Ai' 

This multiplicity of distinct poles leads to the following effects and 

remedies. The MPSSM model set used for estimation has to have a minimum 

polynomial degree r=n, if the process under estimation is expected to have a 

McMillan degree n. But this implies that the models in the MPSSM model set 

themselves have a McMillan degree equal to r*min(m,p)=n*min(m,p). This 

excess in McMillan degree is due to the unavoidable multiplicity of poles. 
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Very rarely do practical systems show any multiplicity of distinct 

poles in the above sense and, consequentlv. if we adjust the model parameters 

for the fit to a practical data set, this freedom will hardly be needed. 

Consequently this negligibly small part of the estimated model can easily be 

removed afterwards by some model reduction technique as will be indicated in 

subsection 3.4. 

This degression on the allowing of multiplicity of poles in the model 

set and the final elimination by model reduction might seem very detailed, 

but, nevertheless, it is quite crucial as control asks for low order models 

in order not to complicate reliable controller design and implementation. 

Finally, one more problem has to be overcome. Output error criteria 

combined with autoregressive parameters force us to make use of numerical 

optimization techniques for minimization of the criterion function (i.e. an 

output error least squares). In order to avoid local minima and for speeding 

up the minimization process a good initial estimate 

essential. This initial estimate can be obtained 

following steps: 

of the parameters is 

by subsequent use of the 

- Fit a FIR model in an output error criterion to the dataset, which is 

very easy and straightforward 

- Fit an MPSSM model to this FIR model according to the method of Gerth 

as explained in subsection 3.3. In fact this is a kind of model 

reduction technique. 

Then the MPSSM model obtained in the previous step can be used as an 

initial estimate in the final minimization process, which fits an MPSSM 

model to the dataset by minimization of an output error criterion. 

Having motivated and outlined the main steps in the identification we 

will now briefly comment on the various steps in the following subsections. 
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3.2 Estimation of the FIR model 

The length of the FIR model can easily be fixed based on the knowledge 

obtained from the preliminary measurements as described in section 2. 

The least squares estimation of the FIR is very well known and does not 

need any further description (cf. e.g. [Niederlinski and Hajdasinski, 

1979] ) . 

If the dataset is sufficiently large, if the disturbances can be 

considered as independent and zero mean, and if the input signals are white 

(sufficiently rich) then it is easy to prove that the estimated Markov 

parameters are unbiased and that the influence of a truncated tail of the 

impulse responses is negligibly small (see Appendix). As we have many 

independent parameters in the FIR model, the variances of the parameters 

will be relatively big compared to the variances of the succeeding MPSSM 

model parameters. 

3.3 Model reduction of the FIR model to an MPSSM model 

Let the Markov parameters of the estimated FIR model from subsection 

(3.2) be given by Fj' j=1,2, ... ,L, then a sufficiently reliable estimation 

of the degree r of the minimum polynomial can be based on the singular 

values of the following block Hankel matrix: 

vec(F1) vec(F2) vec(F.) 
J 

H = vec(F2) vec(F3) vec (F. 1) (3.13) 
V J+ 

0 0 0 

0 0 0 

vec(F i ) vec(F. 1) 
1+ 

vec(FL) 
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where vec(F.) indicates that all columns of F.are put below one another into 
1 1 

one vector. The reason is that we want to obtain the minimum polynomial 

degree instead of the McMillan degree. Since the vec(Fk) satisfy the minimal 

polynomial equation (3.2) (like Fk), it is easy to see that rank(Hv) is r. A 

sharp decrease and/or stabilization to the noise level in the behaviour of 

the decreasing singular values indicates the appropriate value of r. For 

details see [Damen et al., 19B2]. 

For a rough fit of an MPSSM model to the FIR model a method proposed by 

Gerth [Gerth, 1972J may be used. This method gives initial values for the 

MPSSM model parameters, which are sufficient for the final estimation to 

converge to the global minimum. Gerth's method can briefly be explained as 

follows. If we substitute the estimated Markov parameters F
j 

for F
j 

in eq. 

(3.4), (3.5) and (3.6), we can use these parameters for a least squares 

estimation of the minimum polynomial coefficients a i or more explicitly: 

G a = v (3.14) 

with: vec(F1) vec(F2) vec(F ) 
r 

G = vec(F2) vec(F 3) vec(F 1) (3.15 ) 
r+ 

0 0 0 

0 0 0 

vec(FL_r ) vec(FL 1) -r+ 
vec(F

L
_1) 

-T - T - T - T T (3.16) v [vec(F 1) vec(F 2) vec(FL) ] 
r+ r+ 

T T (3.17) a -[a, a l' , a1] r r-
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So we obtain: 

a (3.18 ) 

If we take this estimate of the minimum polynomial coefficients as 

sufficiently accurate, the start sequence of Markov parameters Mi' i;l 

,2, ... ,r, represented in a column vector form in matrix Ms' has to satisfy 

the following equation: 

H M F (3.19) 
sv v 

with: HT = [I AE A2E Am-rE J (3.20) r r r r 

0 0 -a r 
A ; I r-l,r-l 

(3.21) 

-a1 

E [0 , 0, , 0, 1 J T (3.22) 
r 

MT ; [vec(M1) vec(M2) vec(M )J (3.23) sv r 

-T 
[vec(F1) vec(F2) vec(FL)J (3.24) F v 

Analogously we obtain an estimate M by taking: sv 

M = (HT H)-l HT F 
sv 

(3.25 ) 

The MPSSM given by (3.18), (3.25), and a direct feed through estimate D 

directly obtained from the estimated FIR model, appears to be sufficiently 
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accurate for use as an initial estimate in the iterative fitting process 

described in the next subsection. 

3.4 Adjustment of an MPSSM model to the original dataset 

The criterion J to be minimized is defined as a least squares of the 

output errors. If we apply an MPSSM model, the start sequence of Markov 

parameters M • ( M.; i.l,2, ... ,r) 
s 1 

appears quadratically in the error 

function. This can easily be understood as this Markov sequence Ms appears 

in the canonical forms either in the B or in the C matrix (cf. eq. (3.7) -

(3.12». Consequently, it is very easy to minimize J with respect to M for 
s 

a particular value of a, the set of the minimum polynomial coefficients, and 

the dataset samples: 

d J(a,Ms ) 
--a-M----

s 
o M 

s 
M (a) 

s (3.26) 

Substitution of this solution in the error criterion leaves us with the 

problem of finding the minimum of the criterion only for the r minimum 

polynomial coefficients a.: 
1 

J(a,M (a» 
s Veal (3.27) 

The obtained analytical form J(a,M ) allows us to compute gradients 
s 

with respect to a. so that quasi-Newton methods can be used for minimization 
1 

of J(a,M ). Unfortunately the expression M (a) cannot be obtained in an s s 

explicit analytical form. Therefore minimization of J(a,M) 
s 

is done 

alternately for M and a. This approach is speeding up the iteration process 
s 

considerably. 
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The expressions for the functions and gradients are rather complex and 

do not provide any further insight. As the formulae can be obtained in a 

straightforward derivation, they are not given here. Details about this 

approach can be found in [Backx, 1987]. 

Furthermore, in the Appendix it is shown that the estimated MPSSM model 

will converge asymptotically to the model in the modelset which is optimal 

in the sense of eq. (3.1), and thus to the real process if it is contained 

in the modelset used. Due to the zeroth iteration, available from the 

previous step, the quasi Newton methods converge to the proper minimum in 

all our experiments. This zeroth iteration is close to the proper minimum, 

as it is obtained from a model to model fit on the basis of the earlier 

obtained FIR model, which has been computed as the minimum of a convex 

function. 

Finally, as explained in subsection 3.1 we have to compensate for the 

practically nonexisting multiplicity of the poles. This can be done by 

straightforward model reduction techniques. lie applied the 

Moore-Pernebo-Silverman approximation [Moore, 1981; Pernebo and Silverman, 

1982] which simply deletes the irrelevant (with respect to the noise level) 

singular values in the balanced state space realization. 

4. Description of the industrial process 

The identification approach described in the previous sections has been 

applied to various industrial processes like a feeder of a glass furnace, a 

shaping process of glass bulbs, a telecommunication fiber production 

process, a shaping process of normal glass tubes. 

Here results are presented for the shaping part of a guartz glass tube 

production process. A sketch of this process is given in Fig. 4.1. Shaping 

of the tube takes place at and just below the end of the mandril. The shape 

of the tube is characterized by the average tube diameter and the average 

tube wall thickness; these are defined as the outputs of the process. 

Process parameters that directly influence shaping of the tube, are mandril 

gas pressure, drawing speed, power applied to the furnace, mel ting vessel 
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Fig. 4.1 Outline of the quartz tube glass production process 
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pressure and composition of the raw materials. Some of these have such a 

small bandwidth (power and composition of raw materials), influence the 

glass quality badly (composition of raw materials), or have such extremely 

large delay times involved (power, melting vessel pressure, composition of 

raw materials); so they are not well suited for control of tube dimensions. 

Mandril pressure and drawing speed influence the shaping of the tube in a 

most direct way. Transfers from these inputs to both wall-thickness and 

diameter have the largest bandwidth, the shortest delay times and permit, to 

some extent, independent manipulation of the outputs. The permitted ranges 

for these two process inputs allow a control of tube dimensions over the 

full amplitude range of output disturbances. 

Shaping of the tube truly is a MIMO process with a high degree of 

interaction. Increase of the mandril pressure results in an increase of the 

tube diameter and in a decrease of the wall thickness. Increase of the 

drawing speed causes a decrease of both diameter and wall thickness. 

It is clear that the input/output transfer of this process cannot 

exactly be described with a linear, lumped parameter model as assumed for 

the process identification 

be adequate for finding a 

method developed. However, that method proved to 

simulation model that properly describes the 

process dynamics in the operating range around the working points used. 

5. Identification results for the quartz tube glass process 

The various experiments as indicated in section 2 have been carried 

out. 

The signal to noise ratios have been estimated from 8 data sets of 2500 

samples each of the excited (with a PRBNS) and of the non-excited process. 

The latter columns of Table 5.1 show the results for the ratios of average 

noise power and the average signal power (N/S) in order to enable comparison 

later on with estimation results. Computed standard deviations on the basis 

of the 8 data sets are also shown. 

The FIR model, obtained in the first estimation step, consists of 50 

Markov parameters. This length has been chosen on the basis of responses of 
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the process to applied staircase type input test signals. The estimation has 

been done on the basis of the first 1000 samples of a PRBN experiment. 

An appropriate value r=6 for the degree of the MPSSM model has been 

determined on the basis of the singular values of the finite block Hankel 

matrix of the estimated FIR Markov parameters in vector form (cf. equation 

(3.13) and Fig. 5.1). An estimated noise level, shown in Fig. 5.1, indicates 

the number of relevant Hankel singular values. Note that the MPSSM model set 

contains 34 parameters of which 6 are autoregressive. Overlapping 

parametrization would lead to 28 parameters of which 12 are autoregressive. 

Using the MPSSM model parameters obtained with Gerth's algorithm as 

zero-th iteration, a final MPSSM model has been fitted to the dataset with 

the direct estimation method discussed in section 3. 

Finally, the model reduction technique of Pernebo and Siverman has been 

applied to remove inherently present, irrelevant modes from the model 

obtained so far. An appropriate order n=7 of 

realization of the estimated MPSSM model has 

the approximate state space 

been determined on the basis of 

the Hankel singular values of the balanced state space representation of the 

MPSSM model in relation to the observed signal-to-noise ratios (cf. 

Fig. 5.2). 

Fig. 5.3 shows the various impulse responses obtained in the subsequent 

steps and the various delays, which have been estimated beforehand' by 

crosscorrelation techniques. 

PRBN sequences, with the same characteristics as the sequences used for 

identification, have been used for the first validation experiment. The 

second validation experiment 

frequency of 0.0667 times 

was done with PRBN test 

the clock frequency of 

signals with a clock 

the initially used PRBN 

corresponds with the 

process during normal 

operation. Process responses (Yi) have been compared with outputs simulated 

sequences. The bandwidth of these last input signals 

bandwidth of the input signals applied to the 

-25-



----- final MPSSM model ....... original FIR model 

-- 7-th ord. approx. 

~ 

" " 0. 0 t+------\~--_;~:::;::::~-"'-"'---=""'------1 
E 
~ 

, 
-0,1 r 

i 
_0,,1 

0,' T 

0.1 T 
I 

I 

-0.' 

-0,3 -

o 

" ' , 
V 

25 

pressure to diameter 

J.I&~:~I---------------------i 

pressure to wall thickness 

del .. ';!: H 

speed to diameter 

ael .. ~ :~,--------------______ ~ 

speed to wall thickness 

cl.I .. ~ :~ 

50 
samples 

75 100 

Fig. 5.3 Impulse responses of the estimated FIR model, the final MPSSM 

model and the approximate realization of the MPSSM model 

-0(,-



by the models (Yi) by using a relative output energy measure (E): 

E = 

K '2 
l: (y. _ y.) 

i=l 1 1 
-----iC-

Z
-----

l: y. 
i=l 1 

(5.1) 

Plots show that the simulated output signals are almost indistinguish

able from the real output signals. Differences are within the noise level 

(e.g. cf. Fig. 5.4), which is sustained by the validation values shown in 

Table 5.1. If the models are indeed able to represent the process transfers 

exactly, the presented ratios E have to correspond with the N/S ratios 

considering the standard deviations. Wall thickness results approach this 

limit quite well, while diameter results come close to the limit too, taking 

into account the low noise level. 

Both validation results show that the input/output behaviour of the 

MPSSM model and of its 7-th order approximate realization very well resemble 

the input/output behaviour of the shaping part of the process. 

Generally speaking, it can be stated that the model simulation fit on 

the validation data is about as good as the fit on the estimation data. 

Compared to the computed noise to signal ratios (cf. the latter 2 columns of 

Table 5.1) the results obtained during validation confirm reliability. For 

wall thickness the errors are close to the noise to signal ratio. Diameter 

results are a factor 3 to 5 worse. This may be explained from the fact that 

wall thickness is hard to be measured and as a result noise in the measured 

wall thickness signal is much larger than noise in the measured diameter 

signal. Modelling errors in diameter are therefore expected to be dominant 

over diameter measurement noise. The balance might be improved by further 

adjustment of the energy contents of the applied testsignals during the 

experiments for parameter estimation. 
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output FIR MPSSM MPSSM 7-th ord. average standard 

initial final approx. N/S deviation 

Estimation data 

wall thickness 0.1523 0.2156 0.1257 0.1462 0.1519 0.0671 

diameter 0.0886 0.2327 0.0621 0.0789 0.0196 0.0066 

First set of Validation 

wall thickness 0.1731 0.2536 0.1437 0.1629 0.1519 0.0671 

diameter 0.0996 0.2589 0.0879 0.0997 0.0196 0.0066 

Second set of Validation 

wall thickness 0.2104 0.2967 0.1805 0.1835 0.1519 0.0671 

diameter 0.1121 0.1937 0.0567 0.0581 0.0196 0.0066 

Table 5.1 The relative output energy measure (E) (eq. 5.1) for the 

consecutively estimated models on both estimation and 2 sets 

of validation data. For comparison the last columns show 

estimated N/S ratios and their standard deviations on the 

basis of preliminary measurements. 

6. Control of the quartz tube glass process 

For control of industrial MIMO processes a control system based on an 

internal model has been developed. The next two subsections describe the 

control system and present the results attained on the quartz tube glass 

production process. 
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6.1 Description of the applied control system 

For control of the shaping part of the tube glass production process a 
o 

control system based on an internal model is applied (e.g. cf. [AstrOm, 

1989; Garcia et a1., 1989]). Fig. 6.1 shows the diagram of the MIMO control 

system. 

In the diagram Sp and Sm respectively denote the true MIMO process 

transfer function and the model. Delay times are part of both the true 

process transfer and the model. As indicated before, the delay times 

encountered may be relatively large compared to the process dynamics. 

The control system consists of two parts: 

- A feedforward control system used to modify the dynamic properties of 

the process transfers and to realize an approximate decoupling. The 

feed forward control system involves the blocks S (the model), F (a m 

-1 state feedback controller) and Hcl (the static inverse of the state 

feedback controlled 

is done 

model). Design 

the implicit 

[Tyler, 

by means of 

1964; Kreindler and 

of the state feedback controller F 

model following technique (cf. 

Rothchild, 1976; Backx, 1987]). 

Modification of the system dynamics has to be done such that realized 

dynamics do not need input signal amplitudes which exceed the 

permitted input signal ranges. 

A feedback control system directed to the suppression of disturbances 

on the process outputs (nk). To allow robust control of the distur-

bances the measured process outputs are compensated with the 

simulated deterministic part of the 

control system involves feedback 

process outputs. The feedback 

controller block Sf. Due to the 

compensation of measured process outputs with the outputs simulated 

by the model, loop gains remain small although the full process gains 

are available for noise reduction. 

To cope with large delay times in the process transfers the feedback 

controller Sf needs to have low pass characteristics in order to 
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Fig. 6.1 Diagram of the MIMO control system 



prevent control actions at frequencies exceeding the frequency 

corresponding with 1/2Td (Td is the time delay in a transfer). 

6.2 Performance of the control system 

The control system discussed in section 6.1 has been applied to the 

quartz tube glass production process. 

Before the estimation experiment was done, the delay times due to 

sensor positioning were kept to a minimum. After the estimation experiment, 

some technical overheating problems were overcome and it appeared possible 

to decrease the delay times for control by adjustment of the position of the 

diameter sensor. After repositioning of the sensor the delay times in the 

transfers to the diameter outputs decreased with 50 samples compared to the 

estimation data (cf. Fig. 5.3). 

For design of the feed forward control system a double SISO reference 

transfer function with eigenvalues at 0.7 is used. These eigenvalues lead to 

process inputs within the permitted input signal range. 

Experiments have been done alternately with the standard operator 

setpoint control of both PID controlled mandril pressure and drawing speed 

on the one hand, and the MIMO supervisory control system on the other hand. 

Fig. 6.2 shows the improvement obtained by the MIMO controller. The 

computed distribution of tube wall thicknesses and diameters with the 

standard control system and with the MIMO control system are convincing. For 

computation of the distributions 10000 samples of the controlled process 

have been used. An important improvement of the settling time during 

changeovers and startup situations, from about 2 hours in standard control 

to 2 minutes with the discussed supervisory control, has also been ac

complished! This improvement could be realized due to the smoothening of 

process response characteristics by the internal model based feed forward 

control system. Consequently, the trajectory towards the new operating point 

can be controlled di<ectly and smoothly, only restricted by physical 

constraints on the process inputs. This could not be accomplished by 
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operators before, as they had to use many consecutive small control steps 

due to the large overshoots and settling times encountered, especially in 

diameter responses. 

7. Conclusions 

A description has been given of the identification strategy developed 

for the identification of a simulation model of MIMO industrial processes 

for the purpose of supervisory control system design. For the design of both 

the identification and control procedure assumptions are made with respect 

to industrial process behaviour: 

- Predominantly linear and stationary behaviour 

- Delays of the order of relevant time constants 

- Open loop identification is feasible by temporarily prohibiting 

operator intervention 

- Disturbances cannot be compensated for by feed forward control 

- Zero correlation between the broad band disturbances and the broad 

band input signals 

The processes under study all showed these characteristics, or slight 

modifications could bring about this behaviour. In this respect the 

preliminary study of the process, the orienting measurements, data acquisi

tion and preprocessing appear to be crucial in preparing the conditions for 

successful identification and control. 

Based on available model sets and identification techniques a procedure 

has been outlined and motivated to arrive at an appropriate simulation 

model. The procedure essentially consists of output error minimization for a 

minimum polynomial model, where a zero-th iteration is obtained from the 

Gerth algorithm applied to a FIR model estimated in a first step. 

By adOPting the modelset defined by a minimum polynomial model (MPSSM) the 

following advantages are obtained: 

- No cumbersome structural identification is required 
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- The number of autoregressive parameters is small, being effectively 

equal to the minimum polynomial degree r 

Estimation of this degree r for the MPSSM model is easy on the basis 

of an earlier estimated FIR model 

Estimation of MPSSM model parameters requires a 

tion algorithm for the computation of the 

coefficients only 

numerical minimiza

r minimum polynomial 

The obtained model is used for a MIMO control strategy based on an 

internal model, which enables accurate control for improvement of process 

input/output characteristics as well as for disturbance reduction even with 

(large) time delays involved. 

The presented identification and control procedure has been tested on 

various industrial processes with very positive results indeed. As an 

example a quartz tube glass production process has been discussed. 
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Appendix 

An outline of proofs 

For this proof it is not necessary to assume that the process is in the 

model set e.g. by letting n (McMillan degree) tend to infinity (ct. [Ljung, 

1987]). Assume the true process input/output behaviour to be described by: 

y F Q + F '1 Q '1 + N m m tal tal 
(A.1) 

where: Y - a block vector containing the outputs of the true 

system 

F m 

F '1 tal 

a block row containing the main Markov parameters, 

which have to be estimated 

- a block row containing the Markov parameters in the 

truncated tail 

Q , Q '1 - proper Toeplitz matrices containing the inputs 
m tal 

N - a block vector containing the additive output 

disturbances 

Since we assume that: 

1. The average of the output disturbances N is zero 

2. Cross products between inputs and noise samples scaled on the number 

of samples tend to zero for large datasets, due to the supposed 

independence of inputs and disturbances 
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3. The autocorrelation of the inputs is a
2I (white, sufficiently rich 

input signals), 

for large data sets holds: 

1 n n T ~ (121 
1:;1 "m "m ~ 

1 nT 
1:;1 Sltail "m .. 0 

with: 1 denoting the number of samples used 

For the FIR modelling we get for the simulated outputs: 

y F SI m m 

(A. 2) 

(A.3) 

Consequently by minimization of a least squares output error criterion J: 

J 

we get: 

F m 

(A.4) 

(A. 5) 

For sufficiently large data sets the second term vanishes because of 

assumption 3 and the last term vanishes because of assumption 2. As a result 

the estimated FIR parameters converge to the true system parameters. 

For the MPSSM modelling we get: 

y F(a,M ) SI 
s 
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Here the Qtail is incorporated, because we actually estimate in state 

space form and tail effects can be ignored for large data sets. Minimizing J 

we get: 

min J 
a,M 

s 

min 
a,M 

s 

min 1~1 trace(F Q + N - F(a,M~ Q) (F Q + N _ F(a,M~ Q)T) 
a,Ms 

1 T " " "T T 
1;1 trace(F - F(a,M~) Q Q (F - F(a,M~) + N N + 

(A. 7) 

In this expression the last term vanishes because of assumption 2. The 

second term is irrelevant as it is not a function of the parameters. Since 

1 T 2 
1;1 Q Q converges to rr I (assumption 3), we see that minimization of J for 

large data sets comes down to minimization of J in equation (3.1): 
e 

" " " T 
J e ~ trace(F - F(a,M~) (F - F(a,M~) ) (A.B) 

Therefore the estimated MPSSM model will be as close as possible to the true 

systems impulse response in Frobenius norm. The estimated response converges 

to the true response, if the system is in the model set. 
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