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Abstract. 

Starting with a Hilbert space L
Z 

(JR,ll) we introduce the dense subspace 

R(LZ(JR,ll)) where R is a positive self-adjoint Hilbert-Schmidt operator 

on LZ(JR,lJ). For the space R(LZClR,Jl» a measure theoretical Sobolev lemma 

is proved. The results for the spaces of type R(L
2

(lR,lJ) are applied to 

-tA -tA nuclear analyticity spaces SX,A = U e (X) where e is a Hilbert-
t>O 

Schmidt operator on the Hilbert space X for each t > O. We solve the so-

called generalized eigenvalue problem for a general self-adjoint operator 

T in X. 
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Introduction 

Let L2(~'~) denote the Hilbert space of equivalence classes of square 

integrable functions on ~ with respect to some Borel measure ~. In this 

paper we only consider finite nonnegative Borel measures. The elements of 

L2 (~,~) will be denoted by [. J. 

Consider the orthonormal basis ([q>kJ \EJN in L2 (JR,~). Then every 

[fJ E L2(~'~) . can be written as 

00 

(0.1) 

where (.,.) denotes the inner product of L2 (~,~). The series (0.1) con­

verges in L
2
-sense, i.e. 

(0 .2) f 
N 

11 -I ([fJ,[q>kJ)~kI2d~ + a 
k=1 

as N + 00 

for all 1 E [f] and all ~k E [q>kJ , k E IN. However, in general, not very 

much can be said about the possible convergence of the series (0. I). 

For a positive self-adjoint Hilbert-Schmidt operator R on L2(JR,~), the 

-1 
dense subspace D(R ) of L2(~'~) is defined by 

(0 .3) 
-1 00 -2· 2 

[ f JED (R ).. I Pk I ([ f] , [ q>k J) I < 00 

k=1 

where Pk > 0, kEN, are the eigenvalues of Rand [q>kJ its eigenvectors. 

In [EGIIJ we have shown that for any choice of representants q>k E [q>kJ, 

k E IN, there exists a null set N such that for all [fJ E D(R- I) the series 
~ 

00 

(0.4) 
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'" converges pointwise outside the set N , In the present paper we make the 
]l 

canonical choice 

(0.5) ~k (x) = lim ll([x-h,x+hJ)-1 
h+O 

x+h 

f 
x-h 

It will lead to a measure theoretical version of Sobolev's lemma, 

The first sections of this paper contain the measure theoretical results 

which we need to solve the so-called generalized eigenvalue problem for 

self-adjoint operators. 

In order to get a theory of generalized eigenfunctions we need a theory 

of generalized functions, of course. Here we employ De Graaf's theory [GJ. 

This theory is based on the triplet 

(0.6) 

where A is a nonnegative self-adjoint operator in a Hilbert space X. The 

space Sx A is called an analyticity space and Tx A a trajectory space; they , , 
are each other's strong duals. We give a short summary of this theory in 

the preliminaries. 

Here we look at nuclear analyticity spaces Sx A' We shall prove that to any , 
self-adjoint operator T in the Hilbert space X there can be associated a 

total set of generalized functions in Tx,A which together establish a so­

called Dirac basis. (Cf. [EGIIJ for the terminology.) If T is also a conti-
. 

nuous linear mapping from Sx A into itself, then each element of this Dirac , 
basis is a generalized eigenfunction of T. In addition it follows that to 
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almost each point with multiplicity m in the spectrum there corresponds 

at least m non-trivial independent generalized eigenfunctions. In order 

to obtain this result we employ the commutative multiplicity theory for 

self-adjoint operators. (Cf. [Br] for this theory.) 

Preliminaries 

In a Hilbert space X consider the evolution equation 

(p, 1) du 
dt = -A u t > 0 

where A is a nonnegative unbounded self-adjoint operator. A solution F of 

(p.l) is called a tr~Jectory if F satisfies 

(p.2.i) 

(p.2.ii) 

V t>O : F( t) € X 

v V 
t>O 1:>0 

We remark that lim F(t) does not necessarily exist in X-sense. The complex 
t+O 

vector space of all trajectories is denoted by Tx,A' The space Tx,A is con-

sidered as a space of generalized functions in [G]. The Hilbert space X is 

embedded in TX,A by means of emb : X ~ Tx,A' 

(p.3) emb(w) -tA 
t 1+ e w . W € X • 

The analyticity space SX,A is defined as the dense linear subspace of X 

consisting of smooth elements 

So Sx A = U e -t A (X) = U 
't>O n€lN 

there exis ts T > 0 wi th eTA f 

-1: A 
of the form e w where w € X and T > O. 

1 
e -n

A 
(X). We note that for each f € Sx A , 

€ Sx A and, also, that for.each F € Tx A and , , 
for all t > 0 we have F(t) € SX,A' The space SX,A is the test function 

space in [GJ. 
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In TX,A the topology can be described by the seminorms 

(p.4) F I+- II FC t) II X 

where t > O. The space Tx,A is a Frechet space. In Sx,A we take the induc­

tive limit topology. This inductive limit is not strict. A set of seminorms 

is produced in [G] which generates the inductive limit topology. The pairing 

<','> between Sx A and T X A is defined by , , 

Cp.S) <g,F> "CA 
:= (e g,F("C))x 

Here (.,.) denotes the inner product of X. Definition (p.5) makes sense for 

"C > 0 sufficiently small. Due to the trajectory property it does not depend 

on the choice of "C. The spaces Sx A and Tx A are reflexive in the given to-, , 
pologies. 

The space SX,A is nuclear if and only if A generates a semigroup of Hilbert­

Schmidt operators on X. In this case A has an orthonormal basis of eigen-

vec tors vk ' k E :N, with eigenvalues Ak • In addi tion, for all t > 0 the 
00 

\' e-Ak t series L converges. It can be shown that f E SX,A if and only if 
k=l 

there exis ts "C > 0 such that 

(p.6) 

and F E Tx,A if and only if 

(p.7) 

for all t > O. For examples of these spaces, see [G], [EGI ] , [EGP]. 
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1. A measure theoretical Sobolev lemma 

Let J.l denote a finite nonnegative Borel measure on JR. Let ([Qlk])kEN be 

an orthonormal basis in L2 (JR, J.l) and let (Pk)k€N be an 22-sequence with 

Pk > 0, kEN. Let R denote the Hilbert-Schmidt operator on L2(JR,lJ) which 

-1 
satisfies R[QlkJ = Pk[qlkJ , k € N. Then we define D(R ) c: L2 (JR,J.l) by 

Here (.,.) denotes the inner product of L2 (JR,J.l). The unbounded inverse 

-1 -I R with domain D(R ) is defined by 

-1 R ~s a self-adjoint operator in L2(JR,J.l). The sesquilinear form Co,.) , 
P 

is an inner product in D(R- 1) and thus D(R- 1) becomes a Hilbert space. We 

note that the sequence ([f J) _ converges to [fJ in D(R- 1) if and only 
n n€..L~ 

if (R- 1
[£ J) N converges to R-1[f] in L

2
(JR,J.l). n n€ 

Here we shall prove that in each class [fJ E D(R- 1) there can be chosen a 

canonical representant. This canonical choice takes out the continuous re­

presentant of each member of D(R- 1) if such a representant should exist. 

To this end, we first define the support of a measure. 
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(1.1) Definition. 

The support of ~, denoted by supp(~), is defined by 

supp(~) := {x ~ JR I 'v'h>O: ll([x-h,x+h]) > OJ. 

It is not hard to prove that SUPP(ll) is the complement of the largest open 

set 0 for which ~(O) = O. So the complement of supp(~) is a null set with 

respect to ~. (Cf. [E], p. 11.) 

In the sequel the closed interval [x - h,x + h] is denoted by Qh (x). Consi­

der the following theorem. 

(I .2) Theorem 

Let [wJ € Ll (JR,~) and let w € [wJ. Then there exists a null set N([w]) 

such that the limit 

~ -) 
w(x) = lim ~ (Qh (x» 

h+O 

exists for all x € supp(~)\N([wJ). The function x + ;(x) can be extended 

to an everywhere defined representant of [w] by taking ;(x) = 0 for 

x € N([w]) u supp(~)*. The representant w is independent of the choice,of 

W € [wJ. 

Proof. Cf. [WZ], Theorem 10.49. 

Since ~ is a finite measure it follows that L2(JR,~) c: L) (JR,~). So by the 

previous theorem there exist null sets Nk such that 
,~ 

( 1.3) 

o 
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exists. If we define ;k(x) = 0 for x € supp(~)* u Nk,~' then ;k is an 

everywhere defined representant of the class [~kJ. The definition of ;k 

does not depend on the choice of ~k € [~kJ. 

In order to prove our measure theoretical version of Sobolev's lemma we 

I"" 12 shall extend the null set U Nk • It is clear that the functions~k ' 
kc::N ,~ 

k € :N, and L P~ I;k 12 are integrab Ie. So by Theorem (I. 2) there exis ts 

a null set N
k€:( U Nk ) with the property that for all x € supp(~)\N , 
~ k€:N ,~ ~ 

( 1.4) I'" 2 -I 

f l;k l2 d~ ~k(x) 1 = lim ~(Qh(x» 
hi-O 

Qh(x) 
and 

<Xl 

~(Qh(x»-l f ( I - 2) I 2 1- 2 2 ( 1 .5) Pk ~k(x) 1 = lim Pk 1 ~k 1 d~ • 
k=1 h+O Q

h 
(x) k€:N 

For convenience we take ;k(x) 

wing definition makes sense. 

* ,..., = 0 for x € supp(~) uN. By (1.5) the follo-
~ 

(1.6) Definition 

We define [~ ] € D(R- I ) by 
x 

<Xl 

2 -(; ] = I Pk ~k (x) [CPkJ • x k=l 

Note that [~ ] o for x € * "" = supp(lJ) uN. x j.l 

The following lemma is fundamental for this paper. 



- 9 -

(1 • 7) LeIlll1a • 

For h > 0 and x E supp(~)\N we write 
~ 

[e {h}] 
x 

Then [~ ] satisfies 
x 

[~ ] a lim [e {h}] 
x h+O x 

-1 where the limit is taken in the norm topology of V(R ). 

Proof. Let x E sUPP(~)\N~ and let e > O. Then we first fix kO E E so large 

that 

Next, by the relations (1.3), (1.4) and (1.5) there exists hO > 0 so small 

that for all h, 0 < h < hO 

(**) I;k(x) 
-1 f ;k dlJ 1 k 1 , ••• ,kO - lJ(Qh(x» < e: a 

and, also, 
Qh (x) 

00 

J 
(***) I 2 -1 1- 2 2 Pk ~(Qh(x» qlk l dlJ < 2e: • 

k=kO+! Qh (x) 

Thus we ob tain 

kO 00 

== ( z: + I ) P~ I;k (x) 
k=l k=k +1 o 

- lJ (Qh (x) ) -1 f ;k d]J 12 • 
Q

h 
(x) 
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Now we have the following inequalities for 0 < h < hO' By (**) 

r 

J 
Q
h 

(x) 

00· 

2 f ;k dl.rj2 s; I I;k(x) -
-I 

Pk \l(Qh(x» 
k==kO+l Qh (x) 

00 

2 
l;k(x) 12 + 

00 

2 -1 
f 

"" 2 
S; 2 I 10k 2 I Pk Ill(Qh(x» tpk dl-ll < 

k=ko+l k=kO+l Qh(x) 

2 
00 

f l;k l2 dl-l < 
2 I 2 -I 

< 2£ + 2 Pk l-l(Qh (x») 6£ . 
k==kO +1 Qh(X) 

It leads to the result 

11[;: J - [;: {h}JII
2 

< £2(6 + I Pk2). 
x x P k=1 

Since £ > 0 was taken arbitrarily, the proof 1S complete. 

The previous lemma enaples us to prove the following major theorem. 

(1.8) Theorem (Measure theoretical Sobolev lemma). 

For every element [fJ ~ D(R- I) there can be chosen as representant f ~ [f] 

such that the following properties hold 

(i) f = I ([f] ,[tpk]);k where the series converges pointwise on :JR. 
k=l 

o 
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[f] ~ f(x) is a continuous linear functional 

on the Hilbert space D(R- 1) for all x E JR. Its Riesz representant in 

D(R- I) is [; ]. So each sequence, convergent in the Hilbert space norm x 

of D(R- 1
) is pointwise convergent. 

(iii) If I P~ [iqlk i2 ] E Lex>(JR,].l) , then there exists a null setMll such 
k=I 

that the convergence in (i) is uniform on IR\M • 
].l 

(iv) Let x E supp(]J)\N . Then . ]J 

~ -1 
f(x) = lim ll(Qh(x» 

h+O 

where £ is an arbitrary member of CfJ. 

Proof. 
00 

Let [f] € D(R- 1) and put f = L (CfJ,[qlk J) ~k' 
k=l 

00 

(i) ([fJ, C'; ]) 
x p = 

Thus the assertion follows. 

X E IR. 

(ii) Since f(x) = ([f],[~ J) it follows that the linear functional x p 

CfJ ~ f(x) is continuous. 
ex> 

(iii) The function I P~ i;k i2 is essentially bounded if and only if there 
k=l 

~ 

exists a null setM such that 
].l 

S:= sup 
x€IR\M 

].l 

co • 
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..... 
Thus we ob tain for x € JR\M and all K € N 

il 

-I . 
In addition we note that D(R ) c L (JR,il). 

co 

Let x € SUPP(il)\N • Then we have by Lemma (1.7) 
il 

f(x) = ([f],(e ]) 
x p 

= ([f],lim [e {h}]) 
hi-O x P 

= lim ([f],[e {h}]) = 
h+O x p 

Because of the inequality 

( I J) 1 ([f],[<PkJ) ;kl dil S 

k-I Qh(X) 

= 

S ~ J.1 (Qh (x» kL p~2 I ([f] , [CPkJ) 12 + ± kL P~ f \;k 12 dil 
Q
h 

(x) 

and because of the Fubini-Tonelli theorem, summation and integration 

can be interchanged. It yields the result 

J (, I ([f] ,[CPk]) ;k) dil 
Qh(X) K-l 

~ -\ 
f(x) = lim il(Qh(x» 

h+O 

J f dil . 
Q
h 

(x) 

A posteriori it follows that the limit does not depend on the choice 

of f. o 



- 13 -

The following lemma will be used later. 

(1. 8) Lemma. 
00 ..... ,+ 

The set rO = n ~k(O) is a null set with respect to ~. 
k=1 

Proof. Observe first that rO is a Borel set. Let Xr be the characteristic 
o 

function of the set rOo Then for all k ~ N 

f <!> • XrO d~ 
:: J ;k d].l :: 0 k 

JR. rO 

So [Xr J :: [OJ, i.e. rO is a null set. 
0 

2. a-functions in trajectory spaces 

Let ].I., j ~ N, 
J 

denote finite nonnegative Borel measures on the Borel sets 

in]R and let Y denote the Hilbert space e L2 (JR.,].I.). We recall that for 
. j=l J 

£,g € Y, f = ([£1 J '[£2J ,···), g = ([g1],[g2]"") 

(f,g)y = t 
j=l 

([£·],[g·])L (JR. )' 
J J 2 '~j 

o 

In this section we consider a nuclear analyticity space SY,B and its corres­

ponding trajectory space Ty B' SO we assume that B pas a discrete sp~ctrum , 
O'k I k ~ N} and an orthonormal basis (q>k\~lN of eigenvectors such that 

00 

B <!>k = Ak <ilk' k ~ lN, and L e -Ak t 
< 00 for all t > O. For convenience we 

k=1 
take 0 S A 1 ~ A2 ~ •.•• See the preliminaries. 

Let (jlk have components [q>k,j] ~ L2(JR.,).lj)' Let t> O. Then by assumption 

the series 

00 

'\ -Ak t 
t.. e < 00 

k=l 
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00 

So for each fixed j t E the series I 
k=l 

e -Ak t 1 12 [ ~k' J represents a member 
,J 

of L1 (:JR~].Ij)' As in Section I it follows that there are representants 

;k . t [~k .J and a null set N (t) with the following properties 
.J,J ].I. 

J 

(2.1.i) 

Qh(x) 

(2.I.ii) I;k .(x) 12 = lim ].I. (Qh(x»-l 
,J hiO J 

where we take x t sUPP(].I.)\N (l). 
J ].Ij n 

f ;k • d].l. ,J J 

.... ,... 1 . ,.... 
Now put N (8) = U N (-) and for convenience take ~k .(x) = 0 for 

\l j nEE \l j n , J 

x € supp(].I.)* uN (8). Then similar to Lemma (1.7) we get 
J ].I j 

(2.2) Lemma. 

Le t j t N and let x E: IL Pu t 

.... (j) 
E x 

where the limit has to be taken in the strong topology of Ty 8' , 
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Then l e-2Akt 

keN 

2 
2 --\ ,.. 2 

\;k .(x)1 ~ Len Iqlk .(x)1 for 
,j k€1N ,j 

Proof. Let t> O. 

all n € N with 0 
1 -( .) 

< - < t. Hence it follows that E J (t) € Y. Furthenmore, 
n x 

it is not hard to see that the properties 2.1 (i) - (iii) imply 

as h -I- 0 

1 
for all n € N exactly as in Lemma 0.7). Now for n € 1N with 0 < - ~ t 

n 

We note that the vector E(j){h} corresponds to the characteristic function 
x 

(2.3) Theorem. 

Let j EN. Then for any f E: Sy,8 there can be chosen a representant 

"'" f. E [f.] with the following properties 
J j 

(i) f. = I (f ,«Jk) ~k, J' where the series converges pointwise on JR. 
J k=l 

o 

(ii) The point evaluation 0 (j) : f 1+ f. (x) is a continuous linear functional 
.x J 

on SY,8' Furthemore, o~j) (f) = <f,E~j». 

(iii) For all x E supp(~.)\N (8), 
J ~j 

"'" -I 
f.(x) = lim ~J.(Qh(x» 

J h-l-O 
f f j dll • 

Q
h 

(x) 

The proof of the above theorem is similar to the proof of Theorem (1.8). 

Cf. the preliminaries for the definition of < .•. >. 
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The set {E(j) I x e 'lR, j e :tn is a concrete example of a Dirac basis. (For 
x 

the tenninology we refer to our paper [EGII].) To see this, let M denote 

the disjoint union u 'lR. where each 'lR. is a copy of 'lR. Points in M 
J J j==l 

will be denoted by (x,j). A set B c M is called measurab le if B = u B. 
CX) j==l J 

where each B. is a Borel set in 'lR. The a-finite measure ].1 
J 

defined by 
QQ 

].1 (B) = L 
j=l 

j.! . (B.) 
J J 

= e ].1. on M is 
j==1 J 

QQ 

for all measurable sets B == U B
J
. in M. Put E M + Ty,B : (x,j) + E~j) . 

~ j=1 
Then (M,j.!,E,Ty,B) is a Dirac basis in Ty,B' (See [EGII], Definition (2.1).) 

It now follows from [EGI1] that f e Sy,B can be expanded with respect to this 

Dirac basis. 

(2.4) f = 

By this we mean 

(2.4' ) 

- 1B 
where 1 > 0 has to be taken so small that e f € Sy,B' Relation (2.4') does 

not depend on the choice of 1 > O. 

Furthennore, for 17 € Ty B we obtain , 

F(t) 

with t > 1 > o. 
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In [EGI1] we have written 

in the spirit of Dirac ([DiJ~ p. 64). 

Let Q
j 

denote: multiplication by the identity function in LZ(:lR,llj)' Then the 

operator diag(Q~) defined by 

with domain e D(Qt) is self-adjoint in Y. For the operator diag(Qt) we have 
t=1 

the following result. 

(2.5) Theorem. 

Let j € E and let x € supp(p.)\N (B). Then 
J llj 

lim diag(Q ) CE(j) {h}) = xE(j) 
hi-O !/, x x 

where the limit is taken in the strong topology of Ty,B' 

Proof. We note first that the null set N (B) has been taken such that 
llj 

co 

I 
k=1 

2 --:\ 
n k 

e I"" 12 -1 f ~k .(x) = lim jl·(Qh(x» 
,J h+O J 

for all nEE. Now let t > O. Then 

lim e -t B (diag (Q~) - x n E~j) {h} = 
h+O 

Qh(x) 

2 '·c-. . 

(

CO --:\ ) nk'" 12 I e I CPk .• du. 
k=1 ,J J 

= lim (I 
h.J.O 

f (y-x) ;k,j(Y)dll/Y»)CPk' 

Qh(x) 
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This expression can be treated as follows 

~ 2 
(y - x) Q>k . (y) dlJ. (y) I ::::. 

,J J 

( 
-1 

• llj (Qh (x» 

I for sufficiently small h > 0 and n E IN wi th 0 < -:::: t .. 
n 

(2.6) Corollary. 

Suppose diag(Qt) can be extended to a continuous linear mapping on Ty,B' 

Then diag(Q ) E(j) = xEJ(j) for all j E. IN and all x € SUPP(ll.)\N (B). 
t x x J ll. 

Finally we prove that almost all E(j) are non-trivial. 
x 

(2.7) Lemma. 

J 

The set {x I EJ~j) = O} is a null set with respect to lJj for each j € IN. 

Proof. Let j E :N. We note that {x I E(j) = O} = n q>+. (0). As in the 
x kElN k,J 

proof of Lemma (1.9), it follows that the latter set is a null set with 

respec t to ll .• 
J 

o 

o 
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3. Commutative multiplicity theory 

The commutative multiplicity theory enables us to set up a theory which 

ensures that the notion tmultiplicity of an eigenvalue t also makes sense 

for generalized eigenvalues. We shall summarize the verS10n of multiplicity 

theory given by Reed and Simon in [RS]. This theory is also very well de-

scribed by Nelson in [Ne], ch. VI and by Brown in [BrJ. 

(3.1) Definition. 

The Borel measure v is absolutely continuous with respect to the Borel 

measure ~, notation v « ~. if for every Borel set B with ~(B) = 0 also 

v(B) = O. 

The Borel measure v and ~ are equivalent~ v - ~ if v « ~ and ~ « v. 

It is clear that v ~ ~ implies supp(v) = supp(~). So it makes sense to write 

supp«v» meaning the support of each v € <v>. 

(3.2) Definition. 

The equivalence classes < v> and < ~ > are called disjoint if 

v(supp«v» n supp«~») = ~(supp«v» n supp«~») = o. 

To get a listing of the eigenvalues of a matrix it is natural to list all 

eigenvalues of multiplicity one, cwo, etc. We need a way of saying that 

an operator is of uniform multiplicity one,' two, etc. Therefore we intro-

duce 
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(3.3) Definition. 

A self-adjoint operator T is said to be of uniform mUltiplicity m, J ~ m ~ = 

if T is unitarily equivalent to multiplication by the identity function 

in L2 (lR,]l) e ... e L
Z

(:IR,11) where there are m terms in the sum and where 

11 is a finite nonnegative Borel measure. 

This definition makes sense. If T is also unitarily equivalent to multipli-

cation by the identity function on L
2

(lR,v) eL
2

(JR,v) e ... eL
2

(lR,v) then 

m = n and ]l ..., v, CBr]. 

(3.4) Theorem. 

Let T be a self-adjoint operator in a Hilbert space X. Then there exists a 

decomposition X = X"" e Xl e X
2 

e 

(i) T acts invariantly in each X . . m 

e X e ... such that 
m 

(ii) T r Xm has unifonn mUltiplicity m. 

(iii) The measure classes <]l > associated with the spectral representation 
m 

of T r Xm are mutually disjoint. 

Further, the subspaces X
oo

,X1,X2, .•• (some of which may be zero) and the 

measure classes <]l=>,<11 1 >, ... are uniquely determined by (i), (ii) and 

(iii) • 

4. Generalized eigenfunctions 

Let T be a self-adjoint operator in a Hilbert space X. In the previous 

section we have seen that there exists a unitary operator U which sends 

X into the countable direct sum Y 

(4.1) 
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where some of the finite nonnegative measures l.l can be identically zero. m 

In addition, the self-adjoint operator U T U* acts invariantly in each of 
m 

the sunmands 0 f (4. 1 ); U T U* res tri c ted to e L2 (JR, l.l) equals m- times 
• 1 m J= 

multiplication by the identity function. 

Let A _he a nonnegative self-adjoint operator in X with a discrete spectrum 

{~ I k €::N}. Then there exists an orthonormal (vk)k€E in X such that 
00 

A vk = ~ vk • Oncemore we assume that I 
k=l 

space Sx,A is supposed to be nuclear, 

e- Akt < 00 for all t > O. So the 

* Put S == U A U and qlk = Uv
k

, k € ::N. Then it is not hard to see that 

S qlk = Ak qlk' and further that U(Sx,A) = Sy,S' U(Tx,A) == Ty,S' We denote 

the components of the elements f € Y by [f ~m)] where m € :N u {oo} and 
J 

.... (m) (m) 
1 :s; j < m + 1. Following Section 2 there are representants qlk • € [<Pk .J 

,J ,J 

such that 

(4.2) -(m J') 
G' : x 

is an element of Tx,A' where m € ::N u {oo} and where I :s; j < m + 1. For h > 0 

we put 

(4.3) 

Then as in Section 2 it can be seen that 

G(m,j) {h} € D(T) 
x h > 0 

and 

L 
k==l 

""(m) (y) dllm(y») v
k 

• y qlk,j 
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Following Lemma (2.2), Lemma (2.7) and Theorem (2.5) we have 

(4.4) Theorem. 

Let m e: N u {oo} and let 1 s j < m + 1. Then there exists a null set N~m) (B) 
J 

with respect to <j.l > such that for all x e: supP«j.l »"N~m) (B) 
m ~ m J 

(i) 

(ii) 

(iii) 

lim G(m~j) {h} 
hi-O x 

G(m,j) ". 0 
x • 

= """G(m,j) 
x • 

The limits are taken in the strong topology of Tx,A' 

(4.5) Theorem. 

Let T in addition be a continuous linear mapping on Sx,A' Let m be a number 

in the multiplicity sequence of T. Then there exists a null set N(m) (B) 

with respect to <j.l > such that for all x € sUPP«j.l »\N(m) (B) there are 
m m 

m independent generalized eigenvectors in Tx A' , 

Proof. Since T is symmetric and continuous on Sx A' the linear mapping T , 
can be continuously extended to TX A' cf. [G], Ch. IV. . ..,- . 

Following the previous theorem there exist null sets N~m)(B) such that for 
J 

all x € supp(j.l )\N~m)(B), 1 S j < m+ 1 
m J 

lim TG(m,j) {h} = x G(m,j) 
hi-O x x 
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Thus we find with 

that 

f a(m,j) ... -x a(m,j) l~j<m+I. x x 

m 
u With N(m) (B) = 

j=l 
N~m)(B) the proof is complete, 

J 

It follows from Section 2 that the set {a~m,j) I m E :N u {co}, 1 ~ j < m + 1, 

X E sUPP(~m)\N(m)(B)} produces a Dirac basis in Tx,A' If T happens to be 

continuous on Sx A' this Dirac basis consists of generalized eigenfunctions , 
of T. 

Recapitulated: Let Tx A be a nuclear trajectory space, Then to any sel£-., 
adjoint operator T in X there corresponds a Dirac basis in a canonical way, 

o 

Moreover, if T can be extended to a closed operator in Tx.A then this Dirac 

basis consists of generalized eigenvectors of T. This is the case e.g, if 

T has a continuous extension to Tx,A' 

Finally we note that we have also investigated the case of a finite number 

of commuting self-adjoint operators. Our investigations have led to._.re~ults 

similar to the results of the present paper, They can be found in [EJ. 
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