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Abstract 

Operating Room (OR) departments need to create robust surgical schedules that anticipate urgent 

surgery, while minimizing urgent surgery waiting time and overtime, and maximizing utilization. We 

consider two levels of planning and control to anticipate urgent surgery. At the tactical level, we study 

the allocation of slack for urgent surgery to one or more operating rooms, and at operational off-line 

level, we experiment with the sequencing of elective surgeries in the operating rooms to which slack 

for urgent surgery is allocated.  We try to sequence the elective surgeries such that their completion 

times, which are break-in-moments (BIMs) for urgent surgery, are spread as equally as possible over 

the day. We refer to this problem as BIM optimization problem, which is NP-hard in the strong sense. 

In this paper, we develop and test various heuristics for this sequencing problem. By means of a 

simulation study, we compare five methods of anticipating urgent surgery: (1) concentrating slack for 

urgent surgery in a dedicated operating room,  (2) allocating slack for urgent surgery to a subset of the 

operating rooms without BIM optimization and (3) with BIM optimization, and (4) allocating slack for 

urgent surgery to all operating rooms without BIM optimization, and (5) with BIM optimization. For 
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the test instances, the computational experiments show that urgent surgery can be anticipated best by 

allocating slack for urgent surgery to all available operating rooms, and thus allowing urgent surgeries 

to interfere with the schedule of elective surgeries. Further savings in urgent surgery waiting time can 

be achieved by BIM optimization, especially for the first urgent surgical cases that arrive during a day.  

 

1. Introduction  

In 2003, OECD countries spent on average 8.8% of their GDP on health care, up from 7.1% in 1990 

and just over 5% in 1970. Major factors for this growth are improved methods to prevent, diagnose, 

and treat health conditions, as well as the ageing population (OECD, 2005). In this context, hospitals 

face an increasing public pressure for high quality care and cost effectiveness. Since 60-70% of all 

hospital admissions are caused by surgical interventions, the Operating Room (OR) department is one 

of the key hospital resources and should continuously strive to enhance quality and lower cost. 

Operations Research techniques can contribute to this process (Luss and Rosenwein, 1997). One of the 

fields in the OR department, where Operations Research can be applied to, is OR surgical scheduling, 

see, e.g. Dexter et al. (1999b), Guinet and Chabaane (2003), Hans et al. (2006) and Ozkarahan (2000).   

OR surgical scheduling is one of the challenging issues for the management of the OR 

department. First, multiple stakeholders with conflicting interests are involved (Glouberman and 

Mintzberg, 2001), such as surgeons of various specialties, anesthetists, OR personnel, and, naturally, 

the patients that require surgery. Second, OR surgical scheduling is complex because of the 

uncertainty regarding the occurrence, timing and duration of surgeries. Third, the OR department faces 

conflicting performance criteria: schedules with a high planned utilization may lead to overtime, 

cancelled surgeries and long waiting times for urgent surgery.  

The arrival of urgent surgical cases is one of the uncertainties that occur during the execution 

of surgical schedules. Urgent surgeries have to be scheduled as soon as possible to avoid medical 

complications or mortality. Unlike ‘elective surgeries’ that are planned in advance, we use the term 

‘urgent surgeries’ for surgeries that are not scheduled in advance and turns up unexpectedly on the day 

of surgery (based on Fitzgerald et al., 2005).   

OR departments can anticipate urgent surgery by reserving OR capacity: hours of staffed 

operating rooms in which no elective surgery is planned. This free capacity or so-called planned 

‘slack’ may be concentrated in one or more operating rooms that are entirely dedicated for urgent 

surgery.  However, these ‘dedicated rooms’ tend to result in a low utilization of the OR capacity and 

thus high costs (Barlow et al., 1993; Brasel et al., 1998) and the dedicated room is not immediately 

available if another urgent surgery is taking place in this room. Another option is to allocate the slack 

to a number of operating rooms that are to be used for elective surgeries, allowing urgent surgeries to 

be scheduled in between two elective surgeries. Although this may lead to higher OR utilization, 

elective surgeries may have to be cancelled due to disruptions in the surgical schedule. Besides, an 
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urgent surgery can only be started if an ongoing elective surgery is finished, since surgeries generally 

cannot be interrupted. To our knowledge, this second option is not explored in the literature so far, 

although it is used in practice by various OR departments, for example in the Erasmus MC,  the 

Netherlands.  

If slack for urgent surgery is allocated to operating rooms with elective surgery, urgent surgery 

waiting time may be further decreased by optimizing the sequence of the elective surgeries in the 

operating rooms assigned to deal with urgent surgery. The sequence should be such, that the so-called 

‘break-in-moments’ (BIMs), the moments that an elective surgery is expected to finish and a new 

urgent surgery may thus be started, are distributed as evenly as possible over the day. Sequencing 

methods that aim to minimize the waiting time of urgent surgery seems to be an unexplored field. 

Lebowitz (2003) proposes sequencing methods as well, but thereby focuses on reducing overtime. 

In this paper, we examine the various options for anticipating urgent surgery that are discussed 

above. First, we concentrate on the sequencing aspect, to which we refer as the ‘break-in-moment’ 

(BIM) optimization problem, and we develop various off-line heuristics for this problem. We then use 

a simulation environment to test which option anticipates urgent surgery best with respect to urgent 

surgery waiting time, utilization and overtime: either a dedicated operating room for urgent surgery or 

slack for urgent surgery allocated to several operating rooms. For the latter, we test whether BIM 

optimization can reduce urgent surgery waiting time.  

This paper is organized as follows: Section 2 presents an overview of relevant literature on 

surgical scheduling methods that anticipate urgent surgery. Section 3 gives the formal problem 

definition of the BIM optimization problem and proves that the problem is NP-hard in the strong 

sense. In Section 4 we propose various constructive and improvement heuristics to address the 

problem. Section 5 describes the computational experiments with these heuristics. Section 6 describes 

the simulation study, and Section 7 concludes this paper.  

 

2. Literature 

To describe the research on surgical scheduling that explicitly deals with the unexpected arrival of 

urgent surgical cases, we distinguish between four hierarchical levels of hospital planning and control: 

the strategic, tactical, operational off-line and operational on-line level (Van Houdenhoven et al., 

2006). The decisions taken by the hospital’s board of directors on the long-term strategic level 

influence the amount and variety of urgent surgeries. On the medium-term tactical level, the amount 

of slack for urgent surgery is determined and allocated to the various operating rooms. For the short-

term planning horizon, we distinguish between operational off-line and operational on-line level. On 

the operational off-line level, robust surgical schedules are created. The operational on-line level 

concerns the real time rescheduling due to the arrival of urgent surgeries and other disturbances. In the 

following subsections, we give an overview of previous work on relevant scheduling methods on the 
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tactical, operational off-line, and operational on-line level.  Altogether, these methods should 

contribute to robust schedules: schedules which, when implemented, minimize the effect of 

disruptions on the primary performance measures of the schedule (Aytug et al., 2005). 

  

Tactical level 

To deal with uncertainty during execution of a schedule, a buffer of extra time and/or resources (so-

called slack) can be planned (Davenport and Beck, 2000; Davenport et al., 2001; Herroelen and Leus, 

2005; Wullink et al., 2005). Quantitative research regarding the exact amount of required slack for 

urgent surgery in an OR surgical schedule is scarce. Discussion on this subject is rather complicated, 

as it is not only about cost and efficiency figures, but also about the level of medical care and personal 

preferences: “though utilization of an urgent room will rarely be more than 50%, the political goodwill 

you will buy is probably worth it” (Dexter, 2005).  Three approaches for the allocation of slack for 

urgent surgery can be distinguished (Boer, 2006): (1) no time or operating rooms are reserved for 

urgent surgery, (2) dedicated operating rooms are reserved for urgent surgery, and (3) extra time is 

reserved for urgent surgery in each or some of the operating rooms of a specialty, so that urgent 

surgeries can be performed during or after the schedule of elective surgeries. According to an OR 

benchmarking study in the academic hospitals in the Netherlands (Van Houdenhoven et al., 2005), six 

out of eight considered hospitals choose for option 2: they use one or more dedicated rooms for urgent 

surgery. Lovett and Katchburian (1999) emphasize that dedicated operating rooms can help to the 

decrease overtime and the number of urgent surgeries served after working hours. However, Barlow et 

al. (1993) and Brasel et al. (1998) conclude that this is costly, because of low utilization rates. To our 

knowledge, studies that compare the different approaches for the allocation of slack for urgent surgery 

based on identical surgical case mixes are lacking. This study aims to fill this gap in literature.  

 

Operational off-line level 

On the operational off-line level elective surgeries are assigned to operating rooms. Methods for 

surgical scheduling focus on maximizing expected OR utilization and/or minimizing expected 

overtime, and thus cancelled elective surgeries (Dexter et al., 1999b; Hans et al., 2006; Guinet and 

Chaabane, 2003; Pham and Klinkert, 2005). Some approaches also address other issues, such as 

intensive care capacities and surgeon satisfaction (Ozkarahan, 2000). Gerchak et al. (1996) and Lamiri 

et al. (2005) develop methods that, besides scheduling elective surgeries, schedule individual urgent 

surgeries as well.  Though a substantial work on surgical scheduling has appeared in literature, mostly 

based on Operations Research techniques commonly used in the production literature, none of the 

researched work addresses optimizing the sequence of the elective surgeries in order to minimize 

urgent surgery  waiting time. Both Lebowitz (2003) and Dexter and Traub (2000) are concerned with 
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the sequencing of surgeries, but focus on other objectives. Lebowitz claims that scheduling short 

procedures first can improve on-time performance and decrease staff member overtime expense 

without reducing surgical throughput, while Dexter and Traub use statistical decision theory to 

sequence surgeries to decrease the impact of limitations in equipment or personnel on surgical 

scheduling.   

 

Operational on-line level 

Although this paper does not address queuing and scheduling methods for urgent surgery at 

operational on-line level, for completeness, we mention literature findings regarding this level as well. 

Fitzgerald et al. (2005) conclude that clear objectives and procedures for organizing queues of urgent 

surgeries are lacking in most of the considered OR departments. Dexter et al. (1999a)  proposes to 

queue urgent surgeries (1) in increasing order of expected surgery durations, (2) first come first serve, 

or (3) based on urgency to minimize the chance of a poor patient outcome. Regarding the scheduling 

of the urgent surgery, and the invoked rescheduling of elective surgeries, there are three common 

approaches: right shift rescheduling, partial rescheduling and regeneration or reoptimization (Vieira 

et al., 2003). Right shift rescheduling, that postpones all remaining elective surgeries in case an urgent 

surgery comes in, is the easiest methods and is therefore probably the most common method used in 

OR departments. Dexter et al. (2005) use this approach for various on-line algorithms for surgical 

scheduling add-on elective cases that need to be added to the schedule at execution time. Dexter 

(2000) applies partial rescheduling in deciding whether to move the last surgery of the day in an 

operating room to another operating room to decrease overtime labor costs, but does not address the 

scheduling of urgent surgery explicitly. On-line scheduling of urgent surgery and thereby rescheduling 

the elective surgeries remains an interesting field for further research. 

 

3. Problem description 

This section explores the break-in-moment (BIM) optimization problem in more detail. We first 

discuss the problem context and objective, and then we give a formal problem description. Finally, we 

proof that the problem is NP-hard in the strong sense.  

 

Context description and objective 

For the BIM optimization problem, we focus on sequencing the elective surgeries in the operating 

rooms to which a set of elective surgeries and slack for urgent surgery is assigned. In these operating 

rooms, it is allowed to schedule urgent surgeries during or after the schedule of elective surgeries. We 

define the interval in which all these operating rooms are in use for elective surgeries as the ‘occupied 
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interval’ (see Figure 1). During the occupied interval, an urgent surgery can only be started up upon 

the completion of another ongoing (elective) surgery, since it is not possible to interrupt ongoing 

surgery. We define all moments that can be used to start up urgent surgeries during the occupied 

interval as a ‘break-in-moments’ (BIMs). These moments include the start and end of the occupied 

interval, as well as all completion times of surgeries within the occupied interval. We define the 

interval in between two subsequent BIMs as a break-in-interval (BII). Figure 1 visualizes the occupied 

interval, the BIMs and BIIs for a simplified situation with two operating rooms.  

 

                                                                 slack

Surg 1 Surg 2 Surg 3

Surg 4 Surg 5

slack

t

BIM

occupied interval

BIM BIM BIM BIM

BII

OR 1

OR 2

BIIBIIBII  
Figure 1 BIM, BII and occupied interval  

 

The timing of the BIMs, and thus the length of the BIIs, depends on the sequence of the 

elective surgeries in the operating rooms. In practice, BIMs appear to be scheduled unevenly over the 

occupied interval, which results in relative long BIIs that increase the expected waiting time for urgent 

surgery and thus medical complications or mortality. In this paper, we aim to minimize expected 

waiting time for urgent surgery, by creating a schedule in which surgeries are sequenced in such way 

that the BIMs are spread as evenly as possible over the day. We do so by minimizing the maximum 

BII per day. We refer to this specific problem as the BIM optimization problem.  

 

Formal problem description 

This subsection gives the formal problem description of the BIM optimization problem for a specific 

day.  Let J  = {1,…, N} be the set of available operating rooms. An operating room is indexed by j. In 

these operating rooms J as set I = {1,…,M} of surgeries has to be performed. Surgery   has an 

expected duration . Let  be the set of surgeries that have to be performed in 

operating room j. Since the sets  are a decomposition of the set 

Ii ∈

iP IjjI
jMj ⊂= },...,{ 1

jI I , we have .  ∑
∈

=
Jj

jMM

We assume that all surgeries in an operating room are scheduled successively with no breaks 

in between, as depicted in Figure 1.  denotes the moment that the first surgery  is allowed to 

start in operating room j, and  denotes  the moment that all surgeries in operating room j are 

jS jIi ∈

jE
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expected to be completed, i.e. , for all j=1,…N. Let O be the occupied interval 

, with  and 

∑
∈

+=
jIi

ijj PSE

],[ ESO = jj SS max= jj EE min=  

To describe the sequence of the surgeries in an operating room, we define  as a 

permutation of I

jΠ

j .  denotes the kj
kΠ th surgery in jΠ . It may occur that the position of a surgery is 

fixed at the first of the last position of the day because of diabetis, infections etcetera, which decreases 

the number of possible permutations jΠ . Let  be the completion time of surgery  in 

permutation . It can be calculated as follows:  for all k=1,…,M

j
k

C
Π

j
kΠ

jΠ ∑
=

ΠΠ
+=

k

m
j j

m
j
k

PSC
1

j.  A set 

, including one permutation ),...,( 1 NΠΠ=Π jΠ  per operating room j, defines a schedule of the 

surgeries I in the operating rooms J. 

To describe the maximum BII in the occupied interval O for a given schedule 

, let   be the set of break-in-moments in  within the occupied 

interval O. This set includes the start of the occupied interval S, as well as all completion times of 

surgeries within the occupied interval. Thus,  is given by 

),...,( 1 NΠΠ=Π ΠΩ },...,{ 1 NΠΠ=Π

ΠΩ { }∪S   

{ | }. Let   be the sorted list of , ordered in 

non-descending order. The t

j
k

C
Π jj MkNjECS j

k
,...,1;,...1, ==≤<

Π
sorted
ΠΩ ΠΩ

th element in , , is  the tsorted
ΠΩ )(tsorted

ΠΩ th break-in-moment that we refer to 

as . Let  be the difference between two subsequent BIMs: i.e. , 

. The objective ‘minimize the maximum break-in-interval’ can now be stated as .  

tBIM tBII 1−−= ttt BIMBIMBII

1>t tt BIIMaxMin

 

Problem complexity 

The following theorem shows that the BIM optimization problem is NP-hard in the strong sense and 

that it thus is unlikely to find efficient (polynomial) solution methods which solve the problem to 

optimality.  

Theorem:   The BIM optimization problem is strongly NP-hard for two or more operating rooms. 

Proof:   We prove the theorem by reducing the 3-partition problem to the BIM optimization 

problem.  The 3-partition problem is given by 3t positive integer values  and a value B such 

that . The problem is to decide whether or not a partition of in t sets 

taa 31 ,...,

∑
=

=
t

j
j tBa

3

1
},...,{ 31 taaI =
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tII ,...,1  with for all  exists. The 3-partition problem is proven to be strongly 

NP-hard (Garey and Johnson, 1979).   

∑
∈

=
nIj

j Ba tn ,...,1=

The instance of the BIM optimization problem corresponding to a general instance of 3-

partition problem has 2 operating rooms, where OR 1 has t-1 surgeries with a length of each, and 

3t surgeries with length . OR 2 has 2 surgeries, each with a length of , and   t-2 surgeries 

with a length of  each.  The question is whether this instance of the BIM optimization problem has 

a solution where all BIIs are smaller or equal to 

B4

taa 31 ,..., B3

B5

B2 . 

It is not possible to cover the surgeries of length  in OR 1 with BIIs smaller thanB4 B2 , as 

none of the surgeries in OR 2 is smaller than  (see Figure 2). Therefore B2 B2  is a lower bound on 

 in every solution of the instance. tt BIIMaxMin

 

13/8 B
OR 1

OR 2

4B

3B 5B

2B 2B

 

Figure 2   2B is a lower bound on  tt BIIMaxMin

 

In the following, we show that a solution of the 3-partition problem exists if and only if the 

BIM optimization problem has an optimal value = 2B.  First, we prove the if part. If an 

optimal solution for the 3-partition problem exists, we can create an optimal schedule for the instance, 

as depicted in Figure 3. This schedule consists of t groups of surgeries with total length B and results 

in a solution of the BIM optimization problem with = 2B.  The t groups of surgeries 

with total length B (shaded blocks in Figure 3) correspond to the partitions in the solution of the 3-

partition problem.  

tt BIIMaxMin

tt BIIMaxMin

 

3B

OR 1

OR 2

13/8 B4BB B 4B 13/8 B4B

3B5B

B B4B. . .

. . . 5B5B 5B

B B

 

Figure 3  An optimal schedule for the instance 

 

We now prove the only if part, and show that when 2B is the optimal objective value, all 

optimal solutions have the structure as depicted in Figure 3. OR 1 contains t-1 surgeries of length 

each. These t-1 surgeries all need to be covered by two equal BIIs, in order to B4
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obtain  = . OR 2 contains t surgeries, and thus t-1 moments where one surgery 

finishes and the next surgery starts. Each of these t-1 moments must be scheduled exactly in the 

middle of the surgeries of length  in OR1 to obtain = .  When applied to a 

surgery of length  in OR 2, this means that a ‘gap’ of length 

tt BIIMaxMin B2

B4 tt BIIMaxMin B2

B5 B  occurs in between the two surgeries 

of length 4B in OR 1 (see Figure 4). 

 

OR 1

OR 2

B4B 4B

5B

2B 2B

 

Figure 4  A surgery of length B must be scheduled in between two surgeries of length 2B 

 

When the two smaller surgeries of in OR 2 are scheduled as first and as last surgery in OR 2, a 

‘gap’ of length 

B3

B occurs before the first surgery of  in OR 1, as well as after the last surgery in OR 

1. Note that this is the only way to cover all t-1 surgeries of length 4B with two equal BIIs. Thus, we 

require exactly t groups of surgeries, so that a group with length B is placed before and after each 

surgery with a length of in OR 1. This results in a solution of the 3-partition problem. Thus, the 

BIM optimization problem is strongly NP-hard for two or more operating rooms. ■  

B4

B4

4. Solution approaches  

In this section we propose solution approaches for the BIM optimization problem. We propose both 

constructive heuristics that create initial schedules, and improvement heuristics that iteratively 

improve initial schedules.  

 

Constructive heuristics 

We consider three constructive heuristics that sequence the set of surgeries  for each operating 

room j at a given day. The first heuristic is known as the Shortest Processing Time (SPT) heuristic and 

schedules the surgeries from I

jI

j in increasing order of their expected durations. Furthermore we propose 

two new constructive heuristics, C1 and C2, which aim to sequence the surgeries such that every BII 

approaches lower bound λ , with 
∑
∈

−+
−

=

Jj
jM

SE
)1(1

λ . This lower bound reflects the distance 

between two subsequent BIMs if all surgeries could be completed within in the occupied interval O, 

and all BIMs would be distributed evenly in O so that each BII would be of equal length λ . In the 

following subsections, we explain C1 and C2 in more detail.  

   9



 

Heuristic C1 

Heuristic C1 alternatively schedules surgeries forward and backward, trying to avoid large BIIs either 

at the beginning or at the end of the day. By forward scheduling, we mean the scheduling of surgeries 

in an operating room one after another from the start of the day ( ) towards the end of the day ( ), 

while the reverse holds for backward scheduling. Backward scheduling is possible, since the number 

and the durations of surgeries in an operating room are known, and thus the completion times per 

operating room. The heuristic aims to schedule surgeries such that the interval between subsequent 

completion (starting) times of the forward (backward) scheduled jobs approach 

jS jE

λ .The heuristic 

proceeds as follows:  

 

• Step  0: Calculate λ; 

• Step 1: Forward scheduling move. Select the unscheduled surgery from one of the operating 

rooms j for which the completion time will be closest to the latest completion time of all already 

forward scheduled surgeries plus λ , and schedule this surgery forward in operating room j. If  no 

surgeries are scheduled forward so far, select the unscheduled surgery from one of the operating 

rooms j for which the completion time will be closest to the latest starting time of all operating 

rooms plus λ  (=S+ λ ) and schedule this surgery forward in operating room j; 

• Step 2: Backward scheduling move. Select the unscheduled surgery from one of the operating 

rooms j for which the starting time will be closest to the earliest starting time of all already 

backward scheduled surgeries minus λ , and schedule this surgery backward in operating room j.  

If no surgeries are scheduled backward so far, select the unscheduled surgery from one of the 

operating rooms j for which the starting time will be closest to the earliest closing time of all 

operating rooms minus λ  (=E- λ )  

• Step 3: Repeat step 1 and 2 until all surgeries are scheduled.  

Figure 5 visualizes the decisions to be made for the second iteration of step 1 and step 2, for a 

simplified situation with two operating rooms.  
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Scheduled in first
forward move

OR 1

OR 2

Scheduled in first
backward move

Forward scheduling move:
 find the surgery in OR1 or OR2

that would finish closest to  *

* *
Backward scheduling move:

find the surgery in OR1 or OR2
that would start closest to *

λ 

λ 

 
Figure 5 Scheduling according to C1 

 

Heuristic C2 

Heuristic C2 also strives every BII to approach λ . Heuristic C2 is based on the SPT heuristic, and 

schedules one whole set of surgeries  in an operating room at a time, starting with the operating 

room with the highest number of surgeries, and ending with the operating rooms with the lowest 

number of surgeries.  We iteratively schedule the surgeries for the remaining operating rooms. If 

possible, we try to avoid scheduling a surgery of which the completion time would be too close (< ½ 

jI

λ ) to S and one of the completion times of the already scheduled surgeries. The heuristic proceeds as 

follows:  

 

• Step 0: Calculate λ  

• Step 1: Select the operating room j with the highest number of surgeries. Schedule the surgeries in 

this operating room j according to the SPT rule  

• Step 2: Select the operating room j with the highest number of surgeries out of the remaining 

operating rooms of which the surgeries are not scheduled so far. Schedule the surgeries  in this 

room j according to the SPT rule, unless this would lead to scheduling a surgery of which the 

completion time is within ½ 

jI

λ of S or the completion times of one of the already scheduled 

surgeries in one of the operating rooms. In this case, schedule the first surgery in the SPT list of 

this operating room for which holds that the completion time is not within ½ λ of S or the 

completion times of one of the already scheduled surgeries in one of the operating rooms. If none 

of the remaining surgeries fulfills this requirement, schedule the surgery with the largest absolute 

difference between the completion time of this surgery and S or the nearest completion times of 

one of the already scheduled surgeries. 

• Step 3: Repeat step 2 until all surgeries in all operating rooms are scheduled.  

Figure 6 visualizes the decisions to be made for scheduling the first surgery in operating 

room 2, for a simplified situation with two operating rooms.  

2Ii ∈
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OR 1
(3 surgeries)

Step 1: schedule surgeries in OR 1 SEPT,
because OR 1 has more surgeries to schedule

OR 2
(2 surgeries)

Step 2, first surgery: schedule the shortest surgery of OR 2, unless the
completion time of this surgery has overlap with

½ λ ½ λ ½ λ ½ λ ½ λ ½ λ 

½ λ  
Figure 6 Scheduling according to C2 

The heuristics explained above are few of many possible constructive heuristics that aim to 

minimize the maximum BII of a schedule. We now continue with improvement heuristics.  

 

Improvement heuristics 

Once an initial schedule has been created by a constructive heuristic, we try to improve this solution 

with an improvement heuristic. We propose four heuristics that make use of the 2-change 

neighborhood structure of the problem (Lin, 1965). This structure defines for each schedule a 

neighborhood consisting of the schedules that can be obtained from the given schedule by exchanging 

two surgeries from one single operating room. Notice that it is not allowed changing surgeries from 

two different operating rooms. Three of the heuristics, to which we refer as L1, L2 and L3, are based 

on the steepest descent method, while the fourth heuristic is based on the Simulated Annealing (SA) 

algorithm.  

 

Steepest descent methods 

For a given schedule, the steepest descent method (Luenberger, 1969) evaluates all 2-changes allowed. 

The 2-change that improves the schedule most is then carried out, after which the procedure is 

repeated for the new schedule. This is repeated until no better solution can be found anymore.  

Heuristic L1, L2 and L3 allow the following 2-changes: 

• Heuristic L1:  all possible 2-changes are allowed between 2 surgeries in the same operating room; 

• Heuristic L2: only these 2-changes are allowed that involve a surgery with overlap with  

and another surgery from the same operating room.  

tBIImax

• Heuristic L3: only these 2-changes are allowed that involve a surgery that is scheduled before, and 

a surgery that is scheduled after the surgery with overlap with  in the same operating 

room. However, if the surgery with overlap with  is respectively the first or the last 

tBIImax

tBIImax
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surgery of the day, the surgery with overlap with  is allowed to be involved in the 2-

change, as well as a surgery that respectively takes place after or before this surgery.  

tBIImax

  

Simulated Annealing 

Finally, we consider a fourth local search technique, i.e. Simulated Annealing (SA).  SA (Kirkpatrick 

et al., 1983) has proven to be a successful and widely used algorithm for combinatorial problems. For 

an extensive description of the SA algorithm we refer to (Aarts and Korst, 1989). For the SA 

algorithm, we allow all possible 2-changes. 

 

5. Off-line computational experiments  

This section presents the results of the off-line computational experiments of the heuristics described 

in Section 4. With the off-line experiments, set up with the Borland Delphi 7 programming language, 

we create schedules of elective surgeries for which we minimize max . In the following, we first 

describe the instance generation and the test approach. The section continues with specifying the 

parameter settings of the SA heuristic. We then discuss the computational results of the various 

heuristics, and conclude with a detailed analysis of the results of the best heuristic.  

tBII

 

Instance generation and test approach 

Let an instance represent one day, comprising a given number of operating rooms with a capacity of 

7.5 hours each, and a set of elective surgeries assigned to each operating room. This set of surgeries is 

found by the “First Fit” based algorithm proposed by Hans et al. (2006).  The algorithm basically 

assigns surgeries from the top of the waiting list to an operating room plus an amount of slack to avoid 

for overtime caused by surgery duration variability with 69% probability, until no surgery can be 

found anymore that fits in the remaining capacity of the operating room.  

We distinguish 12 instance types, characterized by a unique combination of values for three 

parameters: the number of operating rooms, the surgical case mix, and the so-called surgery flexibility.  

The number of operating rooms is 4, 8, or 12, while the surgical case mix (see Table 1) contains either 

many surgery types with a relative long and uncertain duration, or few surgery types with a relative 

short and certain duration. These data are derived from 10 years data on surgeries carried out in the 

OR department for inpatients in the Erasmus MC, a large academic hospital in the Netherlands.  

 
Table 1 Surgical case mix 

 Surgical case mix A Surgical case mix B 
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Number of surgery types 328 172 

Average duration of surgeries in minutes 142.1 103.2 

Average standard deviation of all surgeries 45.1 24.1 

 

The third parameter concerns the surgery flexibility regarding the sequencing of surgeries. In 

case of 100% flexibility, all possible surgery sequences per operating room are allowed. In case of 

restricted flexibility, with a probability of N
12
1

 one random surgery per day is fixed at the first 

position of its operating room, with N representing the number of operating rooms per day. With the 

same probability one random surgery per day is fixed at the last position of its operating room (Van 

Kempen, 2005). Table 2 summarizes the parameters and parameter values for the instance types. For 

each instance type, we test 2600 instances, representing a period of 10 years of 52 weeks, with 5 days 

per week.   

 
Table 2   Parameters  and parameter values for the instances types. 

Surgical case mix ∈c {A, B} 

Number of operating rooms ∈N {4, 8, 12} 

Surgery flexibility ∈f {100% flexibility, restricted flexibility} 

 

To test the heuristics, for each instance we create a schedule with SPT, C1, C2, and we 

improve the best of these schedules with L1, L2, L3 and SA. Heuristics will be compared with respect 

to the average realization of  and the computational time. We want to prevent that the 

improvement heuristics stop optimizing when the maximum break-in-interval equals the length of the 

day’s shortest surgery and occurs in the first break-in-interval. Therefore, for all instances, we force 

the shortest surgery of the day at the first position of its operating room and we do not consider the 

first interval when calculating .  

tt BIIMaxMin

tt BIIMaxMin

 

Parameter settings for SA 

We base the settings for SA on preliminary results of 260 instances of the instance type with the 

largest neighborhood structure:  12 operating rooms, surgical case mix A, and 100% surgery 

flexibility. The start temperature should be such that the chance that a  2-change that results in a worse 

solution is accepted, approaches 80% (Busetti, 2003).  This yields a start temperature of 0.2. The 

length of the Markov chain should ideally equal the size of the largest neighborhood structure (Aarts 

and Korst, 1989). For the BIM optimization problem, the size of the neighborhood is given by 
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 possible 2-changes, which for the relevant instance type approximates 150 possible 2-

exchanges. Finally, we set the final temperature at 0.001, and test various values for the decrease 

factor, that typically lies between 0.8 and 0.99 (Aarts and Korst, 1989). We choose a decrease factor 

value of 0.8. Even though  still slightly decreases as the decrease factor increases (see 

Table 3), we consider the accompanying computation times too high.  

tt BIIMaxMin

 

Table 3 Parameter settings for SA(C2) algorithm with a start temperature of 0.2,  
 

a final temperature of 0.0001 and a length of the Markov chain of 150 
 

Decrease factor Average value of 

 

in minutes per 

day 

tt BIIMaxMin

Average of 

computational 

time in seconds 

per instance 

0.8 17.52 8.57 

0.85 17.23 11.52 

0.90 16.98 17.87 

0.95 16.58 36.53 

 

Test results 

Table 4 shows the results of the computational experiments, regarding the realization of the maximum 

interval  per day and the computational time. C2 is the best constructing heuristic, while SA 

based on C2 yields the best results of all heuristics at the cost of a higher computational time. Note 

that the computational times in Table 4 are averages: the computational time depends on the number 

of surgeries in the instance, which is related to the number of operating rooms and the surgical case 

mix of the hospital. 

tBII

Table 4  Computational results of off-line experiments 

Heuristic Average of 

 

in minutes per 

day 

tt BIIMaxMin

Average of 

computational 

time in seconds 

per instance 

SPT 67.02 0.0002 

C1 64.17 0.0002 

C2 48.85 0.0003 

   15



L3 (C2) 42.58 0.0386 

L2 (C2) 41.62 0.0127 

L2 (C2) 39.90 0.0179 

SA (C2) 37.13 1.7035 

Analysis 

Table 5 shows the performance of the SA (C2) heuristic in more detail, by comparing it to the 

performance of schedules found by the randomized First Fit based algorithm. We evaluate the output 

in terms of the average frequency that a break-in-interval larger than 90, 75, 60, 45, 30, and 15 minutes 

occurs in the instance, as we expect these frequencies to be related to the expected waiting time of 

urgent surgery. Table 5 shows that the change in frequency is significant. For the three largest 

intervals measured (90,75 and 60 minutes), the frequency decreases on average 88%. Note that the 

change in frequency depends on the length of the measured interval and the instance: the larger the 

interval, and the smaller the instance in terms of the number of surgeries in an instance, the higher the 

relative decrease of the frequency.  The restricted surgery flexibility has a minor influence on the 

results.  

Thus, computational results show that by a heuristic approach break-in-moments can be spread 

more evenly over the day than is the case for a random surgery sequence, which leads to the 

elimination of large break-in-interval during the day that are responsible for a long waiting times for 

urgent surgery. SA(C2) appears to be the best performing heuristic.  
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Table 5 Computational results of SA (C2): average frequency of interval with random solution compared to 

( ) the average frequency of interval with SA(C2)  solution, and the relative change in frequency 

Case 

mix 

# 

ORs 

Restricted 

flexibility? 

>90 min >75 min >60 min >45 min >30 min >15 min 

A 4 No 1.005 0.294 

-70% 

1.505 0 .670 

-56% 

2.012 1.499 

-25% 

2.717 2.835 

4% 

4.086 5.524 

35% 

5.508 7.113 

29% 

A 4 Yes 
1.006  0.300 

-70% 

1.505  0.743 

51% 

2.003 1.593 

-20% 

2.723 2.849 

5% 

4.095 5.472 

34% 

5.551 7.005 

26% 

A 8 No 
0.481 0.003 

-99% 

0.820  0.013 

-98% 

1.212  0.093 

-92% 

1.965  0.458 

-77% 

3.843 3.751 

-2% 

6.888 10.223 

48% 

A 8 Yes 
0.469  0.001 

-100% 

0.819  0.017 

-98% 

1.225  0.108 

-91% 

1.940  0.556 

-71% 

3.819 3.907 

2% 

6.882- 10.017 

46% 

A 12 No 
0.331 0 

-100% 

0.692 0.002 

-100% 

0.954 0.019 

-98% 

1.473 0.107 

-93% 

3.142 1.351 

-57% 

6.973 10.488 

50% 

A 12 Yes 
0.357 0 

-100% 

0.697 0.001 

-100% 

0.952 0.022 

-98% 

1.456-0.128 

-91% 

3.148-1.575 

-50% 

6.924 10.263 

48% 

B 4 No 
0.287 0.018 

-94% 

0.633 0.065 

-90% 

1.243 0.306 

-75% 

2.128 1.084 

-49% 

4.9 4.775 

-3% 

8.284 10.86 

31% 

B 4 Yes 
0.295 0.024 

-92% 

0.64 0.073 

-89% 

1.233 0.327 

-74% 

2.112 1.127 

-47% 

4.933 4.781 

-3% 

8.249 -10.806 

31% 

B 8 No 
0.018 0 

-100% 

0.119 0 

-100% 

0.354 0 

-100% 

0.732 0.008 

-99% 

3.115 0.43 

-86% 

8.735 11.349 

30% 

B 8 Yes 
0.02 0 

-100% 

0.116 0 

-100% 

0.35 -0.002 

-100% 

0.723 0.007 

-99% 

3.122 0.463 

-85% 

8.725 11.344 

30% 

B 12 No 
0.006 0 

-100% 

0.059 0 

-100% 

0.240 0 

-100% 

0.441 0.002 

-100% 

1.995 0.147 

-93% 

7.521 5.842 

-22% 

B 12 Yes 
0.003 0 

-100% 

0.055 0 

-100% 

0.222 0 

-100% 

0.409 0.002 

-100% 

1.951 0.155 

-92% 

7.528 6.366 

-15% 

 

 

6. On-line simulation experiments 

This section presents the results of the on-line simulation experiments. We examine which method is 

best at anticipating urgent surgery with respect to urgent surgery waiting time, utilization and 

overtime: either a dedicated operating room for urgent surgery or slack for urgent surgery allocated to 

several operating rooms. For the latter method, we test the situation in which the best BIM 

optimization heuristic, SA(C2), determines the surgery sequence, and the situation without BIM 

optimization. We first discuss the instance generation and the simulation model. The remainder of the 

section concerns the results of the simulation study.  
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Instance generation 

Let an instance represent one day, comprising 12 operating rooms with a capacity of 7.5 hours each, 

and a set of elective surgeries assigned to each operating room found by the First Fit based algorithm. 

We assume restricted surgery flexibility, as explained in Section 5. We distinguish 10 instance types, 

characterized by a unique combination of values for the three parameters presented in Table 6. Each 

test instance is either based on the surgical case mix A or surgical case mix B, as explained in Section 

5. The number of urgent surgeries per day differs per case mix, as shown in Table 7. The slack 

required for urgent surgery is based on the total expected capacity required for urgent surgery per day, 

and thus differs per case mix. The second parameter concerns the method for the allocation of slack 

for urgent surgery for an instance. Notice that besides slack for urgent surgery, we also schedule slack 

for the variability of surgery duration, as explained in Section 5. Slack for urgent surgery is either 

concentrated in dedicated operating room(s) or scheduled at the end of the day in 4 or 12 operating 

rooms, equally distributed. The remainder of the capacity of these operating rooms is filled with 

elective surgeries and its slack for the variability of surgery durations. Slack for urgent surgery is 

always scheduled at the end of the day. In case of a dedicated operating room, slack for urgent surgery 

is concentrated in y= ⎥
⎥

⎤
⎢
⎢

⎡
roomoperatingpercapacity

dayperslacktotal  operating room(s). For the yth operating room, 

the remainder of its capacity is filled with elective surgery. Finally, the third parameter concerns the 

methods that determines the sequence of the surgeries in the operating rooms where slack for urgent 

surgery is allocated to: either the First Fit based algorithm or the best BIM heuristic SA(C2).  

 
Table 6  Parameter values for the test instances. 

Surgical case mix  ∈h {surgical case mix A, surgical case mix B}

Number of operating rooms with slack for urgent 

surgery 

 ∈N {dedicated, 4, 12} 

Method that determines surgery sequence within 

the operating rooms with slack 

 ∈b {First Fit,  SA(C2)} | {4, 12} ∈N

 

Table 7  Hospital characteristics for urgent surgery 

Surgical case mix Average no. of 

urgent surgeries 

per day 

Total slack for 

urgent surgery 

A 5.1 743 minutes 

B 2.6 372 minutes 
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Simulation model 

We simulate the execution of a surgical schedule with help of an OR department simulation model 

created in eM-Plant 7.0 (Technomatrix). The surgery durations have a lognormal distribution (Strum 

et al., 2000). Urgent surgical cases arrive according to a Poisson process, i.e. interarrival times 

between urgent surgeries are independent and exponentially distributed. An urgent surgery is started 

first-come-first-serve as soon as one of the operating rooms assigned for urgent surgery is or becomes 

available, i.e. during the period that no (more) elective surgeries are scheduled, or at any break-in-

moment between surgeries. Ongoing surgeries are not interrupted for urgent surgery. When an urgent 

surgery is scheduled to start at a break-in-moment all subsequent elective surgeries are postponed, 

which may result in overtime. We use the sequential procedure of Law and Kelton (2000) to determine 

the number of instances that guarantees a precision of a maximal relative error of 0.10, and a minimal 

confidence level of 90%. We apply this procedure to the performance indicator with the instance type 

in which the output of the performance indicator fluctuates most strongly. This turns out to be the 

waiting time for urgent surgery in case of a dedicated operating room for surgical case mix A. After 

running 708 instances, we obtain the specified precision. As the simulation model handles 260 days at 

a time, we choose to set the number of instances per instance type at 780 days. 

  

Results  

First we compare the various methods for the allocation of slack for urgent surgery in terms of urgent 

surgery waiting time, utilization and overtime. We then discuss the reduction of urgent surgery waiting 

time due to BIM optimization. 

 

Allocation of slack for urgent surgery 

Table 8 compares the three methods for allocating slack for urgent surgery regarding the planned and 

the realized utilization. We define utilization as the ratio of used OR capacity to the allocated OR 

capacity, without considering overtime. From Table 8, we conclude that best utilization figures are 

realized by scheduling slack for urgent surgery in all available 12 operating rooms. Differences in 

planned utilization of the three methods can be explained by the different bin-packing problems. 

Differences in realized utilization can be explained by both the different bin-packing problems and the 

flexibility the methods offer for scheduling urgent surgery. In case urgent surgery is allowed in 12 

operating rooms, all unused capacity can be used, including non-used slack for the variability of 

surgery duration, and several urgent surgeries can take place at the same time. Differences in 

utilization figures of surgical case mix A and surgical case mix B are caused by the required slack to 

deal with surgery duration variability, and the duration of the surgeries itself:  on average, the 

surgeries in surgical case mix B have a shorter duration, which makes it easier to fill the capacity of an 

operating room.  
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Table 8  Planned and realized utilization for surgical case mix A and surgical case mix B 

 Surgical case mix A Surgical case mix B 

Slack for urgent 

surgery allocated to: 

Planned 

utilization 

Realized 

utilization 

Planned 

utilization 

Realized 

utilization 

Dedicated room(s) 67.6% 73.6% 79.7% 81.7% 

4 operating rooms 67.3% 74.9% 79.6% 82.3% 

12 operating rooms 68.6% 76.7% 80.9% 83.2% 

 

Table 9 shows figures on overtime, caused by both urgent surgery and the variability of 

surgery durations. Slack for urgent surgery allocated to 12 operating rooms gives the best results: it 

offers the most flexibility for scheduling urgent surgery. Differences in overtime between surgical case 

mix A and B can be attributed to the difference in average value and variability of the surgery 

durations. 

Table 9  Average overtime and number of operating rooms with overtime per day 

 Surgical case mix A Surgical case mix B 

Slack for urgent 

surgery allocated 

to: 

Average 

overtime per day 

Average no. of 

operating rooms with 

overtime per day 

Average 

overtime per 

day 

Average no. of 

operating rooms with 

overtime per day 

Dedicated room(s) 10.6h 3.6 6.2h 3.0 

4 operating rooms 9.1h 3.9 5.4h 3.2 

12 operating rooms 8.4h 3.8 5.6h 3.3 

 

Finally, Figure 7 and 8 show the percentage of the urgent surgery started within the specified 

interval of time after arrival, as depicted on the x-axis of the graphs. We observe that allocating slack 

for urgent surgery in 12 operating rooms guarantees the shortest waiting time for urgent surgery, for 

both surgical case mix A and surgical case mix B.  
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Figure 7  Cumulative percentages of urgent surgery waiting time for surgical case mix A 
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Figure 8 Cumulative percentages of urgent surgery waiting time for surgical case mix B 

 

From Figures 7 and 8 above we can conclude that regarding the all performance measure used, 

allocation of slack for urgent surgery in 12 or 4 operating rooms outperforms concentrating slack in a 

dedicated operating room. In the following, we study whether adjusting the sequence of elective 

surgeries by BIM optimization can lead to a further decrease of the waiting time for urgent surgery.  

 

Sequence of elective surgeries 

To measure the effect of BIM optimization, we show figures of the waiting time of urgent surgical 

cases that arrive during the occupied interval. We first examine the situation in which slack for urgent 

surgery is allocated to 12 operating rooms, both for surgical case mix A and surgical case mix B. 

Table 11 and 12 show the percentage of the 1st, 2nd and 3rd urgent surgery that is started within 10, 20 

or 30 minutes after arrival. Figures of these three groups of urgent surgeries show the effect of BIM 

optimization most clearly: BIM optimization certainly has impact on the waiting time for urgent 

surgery, although the later the urgent surgical case arrives, the less the impact of BIM optimization is. 

As time goes by, the optimized schedule is increasingly disturbed by surgeries that take more or less 

time then expected, and the arrival of urgent surgeries. Note that, for both BIM optimization and no 

BIM optimization, the later the urgent surgical case arrives, the shorter the waiting time is. This is due 

to the fact that for almost all instances with slack in 12 operating rooms both with and without BIM 

optimization, the length of the first surgery with the shortest duration determines the maximum break-

in-interval. The later the urgent surgical case arrives, the smaller the chance that the urgent surgical 

case arrives in this first interval. Furthermore, Table 10 and 11 show that the waiting time for urgent 

surgeries are shorter for surgical case mix B than for surgical case mix A: shorter surgery durations, 

and thus more surgeries per OR, lead to more BIMs.  
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Table 10 Cumulative percentages of waiting times for urgent surgeries for surgical case mix A and slack in 12 ORs 

 1st urgent surgery 2nd urgent surgery 3rd urgent surgery 

Interval 

(minutes) 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

10 28.8% 48.6% 34.9% 44.9% 40.4% 46.2% 

20 53.0% 75.8% 56.9% 73.6% 63.0% 69.8% 

30 70.5% 90.9% 71.8% 87.2% 76.3% 86.7% 

 
Table 11 Cumulative percentages of waiting times for urgent surgeries for surgical case mix B  and slack in 12 ORs 

 1st urgent surgery 2nd urgent surgery 3rd urgent surgery 

Interval 

(minutes) 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

10 51.7% 66.7% 56.6% 61.0% 60.4% 67.6% 

20 77.2% 90.5% 83.5% 88.4% 83.5% 91.0% 

30 89.4% 97.8% 93.4% 96.5% 93.5% 98.6% 

 

For the situation in which slack for urgent surgery is allocated to 4 operating rooms, Table 12 

and 13 show the cumulative percentages of the urgent surgery waiting times. BIM optimization yields 

better results for the 1st and 2nd urgent surgery, for the third urgent surgery, however, BIM 

optimization results in a longer waiting time. This is explained by the fact that BIM optimization 

schedules BIMs at the beginning of the day, that were first scheduled at the end of the day. Note that, 

in general, the later the urgent surgical case arrives, the longer the waiting time: the first break-in-

interval is not necessarily the longest interval anymore because the small number of surgeries, and 

elective surgeries at the beginning of the day tend to be shorter than (mostly urgent) surgeries at the 

end of the day, as we assigned the slack to operating rooms with surgeries with a relatively short 

duration.  
 

Table 12 Cumulative percentages of waiting times for urgent surgeries for surgical case mix A  and slack in 4 ORs 

 1st urgent surgery 2nd urgent surgery 3rd urgent surgery 

Interval 

(minutes) 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

10 19.4% 29.4% 18.3% 21.4% 18.2% 17.0% 

20 37.4% 50.8% 35.0% 35.4% 37.0% 31.4% 

30 53.2% 67.6% 51.8% 54.8% 51.2% 45.8% 
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Table 13  Cumulative percentages of waiting times for urgent surgeries for surgical case mix B  and slack in 4 ORs 

 1st urgent surgery 2nd urgent surgery 3rd urgent surgery 

Interval 

(minutes) 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

Without BIM 

optimization 

With BIM 

optimization 

10 32.6% 44.3% 34.4% 34.1% 37.9% 31.5% 

20 58.2% 72.2% 59.3% 64.3% 64.9% 51.9% 

30 75.8% 85.4% 76.3% 79.4% 78.2% 67.9% 

 

7. Conclusion  

Computational experiments show that in terms of urgent surgery waiting time, utilization, and 

overtime, urgent surgery can be anticipated best by allocating slack for urgent surgery to all available 

operating rooms, and thus allowing urgent surgery to interfere with the elective surgical schedule. 

Further savings in urgent surgery waiting time can be achieved by sequencing the surgeries such that 

the break-in-moments in the schedule of elective surgeries are spread equally over the day (BIM 

optimization). However, the effect of BIM optimization decreases as time goes by, since the optimized 

schedule is increasingly disturbed by the variability of the surgery durations and the arrival of urgent 

surgeries. Absolute and relative savings in urgent surgery waiting time are largest for a hospital with a 

surgical case mix with relative long surgery durations with a high variability.  

Further research should focus on practical constraints when implementing BIM optimization: 

so far, we did not account for the availability of scarce resources such as microscopes or X-ray 

machines, surgeon’s preferences for the sequence of surgeries, and (variable) set-up times in between 

elective surgeries. We also assumed that urgent surgery can be performed in any of the available 

operating rooms, and should be performed as soon as possible. In practice, part of the urgent surgeries 

can only be performed in a subset of the operating rooms that command specialized resources, and 

some surgeries are more urgent than others. Additional modeling of the BIM optimization problem 

and simulation experiments should clarify the effect of BIM optimization if all these issues are taken 

into account.  Furthermore, it should be investigated whether on-line rescheduling algorithms can 

further reduce urgent surgery waiting time, especially for the urgent surgical cases that arrive once the 

BIM optimized surgical schedule has been disturbed.  
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