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Abstract 

In this note we propose a controller that solves the problem of coordination of 
two (or more) robots, under a master-slave scheme, in the case when only position 
measurements are available. The controller consists of a feedback control law, and 
two nonlinear observers. It is shown that the controller yields ultimate uniformly 
boundedness of the closed loop errors, and a relation between this bound and the gains 
on the controller is established. Simulations results on two two-link robot systems show 
the predicted convergence performance. 

1 Introduction 

Synchronization, coordination, and cooperation are intimately linked subjects, and some- 
times they are used as synonymous to describe the same kind of behavior, mainly in 
mechanical systems. Nowadays, there are several papers related with synchronization of 
rotating bodies and electrical-mechanical systems, see for instance (Blekman et al. 1995), 
(Huijberts et al. 2000), and communication systems (Pecora and Carroll 1990). Rotat- 
ing mechanical structures form a very important and special class of systems that, with 
or without the interaction through some coupling, exhibit synchronized motion. On the 
other hand, for mechanical systems synchronization is of great importance as soon as two 
machines have to cooperate. Typically robot coordination, and cooperation of manipula- 
tors, see (Brunt 1998), (Liu e t  al. 1997), (Liu et al. 1999), form important illustrations of 
the same goal, where it is desired that two or more mechanical systems, either identical 
or different, are asked to work in synchrony. 
In robot coordination the basic problem is to ascertain synchronous motion of two (or 
more) robotic systems. This is obviously a control problem, where at least for one of the 
rnbnts a scitable feedback cnllt,m!!er has tc? be designed, such that this robot (slme) follows 
the other robot (master). This problem is further complicated by the fact that frequently 
only position measurements of both master and slave robots are available. This partial 
access to the state of the system has been the reason to develop model-based observers, 
which are integrated in the feedback control loop. 
In practice, robot manipulators are equipped with high precision position sensors, such as 
encoders. On the other hand the velocity measurements are obtained by means of tachome- 
ters, which are often contaminated by noise, or moreover, velocity sensoring equipment is 
frequently omitted due to the savings in cost, volume, and weight that can be obtained. 
For these reasons, a number of model-based robot control methods have been proposed 
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(Nicosia and Tomei 1990), (Canudas et al. 1992). In these methods a velocity observer is 
integrated in the control loop, although exact knowledge of the nonlinear robot dynamics 
is assumed, which in practice is generally not available. To overcome this drawback, robust 
tracking controllers only based on position measurements have been proposed (Canudas 
and Fixot 1991), (Berghuis and Nijmeijer 1994), (Wong Lee and Khalil 1997). However, 
all the aforementioned papers deal with the tracking control problem, and not with the 
robot coordination problem. 
In this paper we present a novel approach for the coordination of two robot manipulators, 
assuming only position measurements of both robots. This approach is based on the 
design of two nonlinear observers and a state-feedback controller. The general setup to  be 
considered is as follows. 
Consider two fully actuated robot manipulators with n joints each, such that one of these 
robots (master) is driven by an input torque rm(-),  that ensures convergence of the joint 
variables q,, q, E Rn to a desired trajectory qd, qd E Rn. However, the input torque r, is 
unknown, a t  least for the controller design of the second robot (slave), as well as the joint 
velocity and acceleration variables q,, qm. Under these assumptions, the goal is to design 
a control law r,(.) for the slave robot, such that its joint variables q,, q, E Rn synchronize 
with the variables q,, 4;, of the master robot. Also we assume that the joint velocities 
and accelerations q,, q, are not available; therefore from this fact and the assumption 
that &, q, are not available, the control law r,, that is to be designed, can only depend 
on position measurements of both robots, i.e. q,, q,, and estimated values of the joint 
velocities and accelerations q,, q,, q,, &. Notice that the goal is to follow the trajectories 
of the master robot q,, q,, and not the desired trajectories qd, qd; therefore knowledge of 
qd, qd is not necessary to design the control law r, for the slave robot. 
This paper is organized as follows. In Section 2 the dynamic model of the robot and some 
of its properties are presented. The feedback control law and the observers for slave and 
master velocities are proposed in Section 3. In Section 4 the convergence properties of 
the closed loop system are examined. In Section 5 a simulation study shows the predicted 
convergence performance. Sections 6 and 7 present some remarks and general conclusions. 
Throughout this paper standard notation is used, in particular, vector norms are Eu- 
clidean, and for matrices the induced norm 1 1  All = J,Amax (ATA) is employed, with Amax (-) 
the maximum eigenvalue. Moreover, for any positive definite matrix A we denote by A, 
and AM its minimum and maximum eigenvalue respectively. 

2 Dynamic model of the robot manipulators 

Consider a pair of rigid robots, each one with the same number of joints, i.e. qi E Rn, 
where i = m,  s identifies the master (m) and slave (s) robot respectively, and all the joints 
are rotational, actuated and, without loss of generality, frictionless. This does not mean, 
however, that they are identical in their parameters (masses, inertias, etc.) . 
For each of the robots, the kinetic energy is given by Ti(qi, 4) = a q T ~ i ( q i ) k ,  i = m, s ,  
with Mi (qi) E RnXn the symmetric, positive-definite inertia matrix, and the potential 
energy is denoted by Ui(qi). Hence, applying the Euler-Lagrange formalism (Spong and 
Vidyasagar 1989) the dynamic model of the robot is given by 

where gi(qi) = & u , ( ~ ~ )  E Rn denotes the gravity forces, C.( q,, . qi ) q, '. E Rn represents the 
Coriolis and centrifugal forces, and ri denotes the [n x 11 vector of input torques. 
In the subsequent sections we use the following properties. 



If the matrix Ci(qi, qi) E Rnxn is defined using the Christoffel symbols (Spong and 
Vidyasagar 1989), then the matrix - 2Ci(qi, qi) is skew symmetric, i.e. 

In addition, for the previous choice of the matrix Ci(qi, qi), the Coriolis and centrifu- 
gal term Ci(qi, qi) can be written as 

where Cij (qi) E Rnxn j = 1, . . . , n are symmetric matrices (Craig 1988). It  follows 
that 

C i ( q i , x ) ~  = ci(qi, Y)X 

Ci(qi,z + ax)y  = Ci(qi,z)y +aCi(qi,x)y (4) 

for any scalar a and for all qi, x, y, z E Rn. 

The matrices Mi(qi), Ci(qi, 4.i) are bounded with respect to qi, (Lewis et al. 1993), 
SO 

0 < Mi,, I IlMi(qi)ll I M ~ , M  for all qi E Rn ( 5 )  

Ilci(qi,x)II I G,M llxll for all qi, x E R~ . ( 6 )  

3 Feedback controller 

As stated in Section 1, it is assumed that there is no access to (&, q,) and (q,, q,), but 
only joint positions q, and q, can be measured. Therefore, the controller r, can only 
depend on positions measurements (q,, q,) and estimated values for the velocities (q,, q,) 
and accelerations (q,, q,). 

3.1 Feedback control law 

If the variables (qml q,) and (q,, q,, ii,, q,) were available and all the parameters of the 
slave robot were known, then the control law T, can be considered of the form proposed 
by Paden and Panja (1988) 

where the tracking errors e,, e, E Rn are defined by 

Ms (q,), C, (q,, q,), g ,  (4,) are defined as in equation (I), and Kp, Kd E Rnxn are positive 
definite gain matrices. 

With the control law proposed by Paden and Panja (1988) in mind, and under the 
assumptions that the estimated values are available, and the nonlinearities and parameters 
of the slave robot are known, we propose the controller r, for the slave robot as 

A n . .  A 

were q,, E,, q,, q,  E Rn represent the estimates of q,, e,, &,, and qm respectively. 



3.2 An observer for the tracking errors (e,, 6,) 

We denote estimated values for the tracking errors e,, d, (8) by 2,,ZS; these estimated 
values are obtained by the nonlinear Luenberger observer 

where the estimation position aha velocity tracking errors 2,; are defined by 

and A1, A2 E Rnxn are positive definite gain matrices. 

3.3 An observer for the slave joint variables (q, ,  q,) 
A 

Lets rj,, q, denote estimated values for q,, q,, to compute these estimated values, we propose 
the nonlinear observer 

A 

where the estimation position and velocity errors 2, and 6, are defined by 

and Lpl, Lp2 E Rnxn are positive definite gain matrices. 

3.4 Estimated values for q,, q, 

As stated, the master robot variables q,, qm are not available, therefore estimated values 
A 

for q,, qm are used in rS (9). From (8) and the definition of the estimated variables 2,, d,, 
A 

ij,, q,, we can consider that estimated values for q,, q,, q, are given by 

4 Ultimate boundedness of the closed loop system 

In the closed loop system formed by the slave robot (I), the control law (9), and both ob- 
servers (10) and (12), the closed loop errors are the tracking errors (e,, d,), :he estimation 

A 

tracking errors (2, d) ,  and the estimation position and velocity errors (G,, d,), which are 
defined by (8), (ll), and (13). 
To simplify the stability analysis, we make the following assumptions on the positive 
definite gain matrices Kp, Kd, Lpl, Lp2, A1, A2. 

Assumption 1. The gain matrices A1, A2 and Lpl, Lp2 satisfy 



Assumption 2 The gains Kp, Kd, Lpl, Lp2 are symmetric matrices. 

In addition, the following assumption is required. 

Assumption 3 The signals qm(t)  and qm(t) are bounded by VM and AM, i.e. 

In practice, it is often not difficult to obtain on the basis of the desired motion ad@), " ( t )  
and id (t)  of the master robot bounds on qm(t) and qm(t), although due to friction effects, 
tracking errors, etc., the actual motion of the master robot may differ from its desired 
motion. 
Our main result can be formulated as follows. 

Theorem 4 Consider the master and slave robots, which are described by ( I ) ,  and the 
slave robot in  closed loop with the control law (9), and both observers ( lo ) ,  (12). Given 
scalar parameters eo, A,, po, yo, such that 

and i f  the gain matrices Kd, Kp, Lpl, Lp2 are chosen such that 

A A 

then, the errors 6,, e,, 6, G, &,, &, in  the closed loop system are uniformly ultimately 
bounded. Moreover, this bound can be made small, by a proper choose of Kp,m and L p l , ~ .  
The scalars Eq6, L ~ 2 ~ 4 ,  Lp2q5, L ~ 2 ~ 6 ,  Lplq5, Kpq2, Kpq3, Kdql, Kdq3, Kdq5, Kdq6 are given 
in  Appendix A .  

Proof: The proof of the theorem is divided into two steps. First the formulation of the 
closed loop error dynamics is given in Subsection 4.1, and then the stability analysis is 
presented in Subsection 4.2. 

4 Closed leap error dynamics 

To simplify the closed loop error dynamics two coordinate transformations are introduced. 
A 

Lemma 5 Consider the tracking errors (e,, &),-the estimation tracking errors (6,6)  and 
the estimation position and velocity errors (ev,  g v ) ,  which are defined by (8), ( l l ) ,  and 

(13)- 
Introduce the coordinate transformation defined by 

and 



Define the vectors x, y E as 

then x and y are related by 
x = T y  

where 

T =  

- 1 0  1 -Lpl 0  0  
0 1 0  I 0 0  
O O I  0  I 0  
0 0 0  I  O I  
0 0 0  0  I 0  

- 0 0 0  0  O I  

Proof: The proof follows from the definition of the coordinate transformations. 0 

In the new set of error coordinates, the closed loop error dynamics can be formulated as 
follows. 

Lemma 6 Consider the closed loop system formed b y  the slave robot ( I ) ,  the control law 
(g), and both observers (1 0), (12). Then, in  the variables (b, Zr) ,  (i, 4"). and (8, q),  defined 
by (13), (20), and (21), the closed loop error dynamics are given by 

Proof: See Appendix B. 0 

4.2 Stability of the closed loop error dynamics 

First we introduce a result that supports the stability analysis in the following subsec- 
tions. This result is a modified version of a theorem by Chen and Leitmann (1987), (see 
also (Berghuis and Nijmeijer 1994)), which states that a system is uniformly ultimately 
bounded if it has a Lyapunov function whose time-derivative is negative definite in an 
annulus of a certain width around the origin. 



Lemma 7 (Berghuis and Nijmeijer 1994) Consider the function g( . )  : R + R 

where ai > 0 ,  i = 0,1 ,2 .  Then  g ( y )  < 0 i f  yl < y < y2, where 

Proposition 8 Let x ( t )  E Rn be the solution of the diflerential equation 

with f ( x ( t ) ,  t )  Lipschitz and initial condition %(to) = xo, and assume there exists a func t ion  
V ( x ( t ) ,  t )  that satisfies 

V ( x ( t ) , t )  I Ilx(t)ll .g  ( l lx( t ) l l )  < 0 for all Yl  < Ilx(t)ll < Y2 (34)  

with Pm and PM positive constants, g ( . )  as i n  (31), and y l ,  y2 as in (32). Define 6 := 

Js. I f  y2 > 6y1, then x ( t )  is  locally uniformly ultimately bounded, that is, given 
dm = 6y l ,  there exists d E (dm, y2)  such that 

where 

and R = 6-Id. 

Consider the vector y E defined by (23) ,  and take as a candidate Lyapunov function 

1 
V ( Y )  = 5 ~ T p ( ~ ) ~  

where P ( y )  = P ( Y ) ~  is given by 

with po, -yo E R positive constants to be determined, p(q"), y($) are bounded, such that 

7 

-, 

0 0 

0 0 
- 

(36)  
E,, Xo E R are positive constants to be determined, and p(q"), y (gn)  are defined by 

P(Y)  = 0 0 



Sufficient conditions for positive definiteness of P(y)  are 

Therefore, conditions (18-19), with the boundedness from above of /A(@), y(6,), imply that 
there exist constants Pm and PM such that 

1 1 
- p m  2 I I Y I I ~  5 V(Y) 5 ?PM I I Y I I ~ .  (40) 

Along the error dynamics (26-30), and under Assumption 2, the time derivative of (35) 
becomes 

V(Y) = -yT$(y)y + P (Y, is, Gm) (41) 

where 

and Q(y) = Q ( Y ) ~  is given by 

with the block matrices 

To conclude stability of the variable y defined by (23), we require positive definiteness of 
Q(y) and boundedness of the term P(y, q,, q,) along the closed loop error dynamics, these 
two requirements are developed in the following subsections. 



4.2.1 Boundedness of P(y, q,, q,) 

First, from the definition of ~ ( q " ) ,  742,) (37), it follows that 

Then by boundedness of ~ ( q " ) ,  y(2,) (38) we obtain that 

On the other hand, the definition of the tracking errors (8) implies that 

Then, from the definition of h, (21), we obtain a relation between q, and q', which is given 

by 
4s =i + 4 -Lplg + 4;n. (47) 

Finally, the definition of the inertia matrix M(qs) implies that 

hence, by property (5) and since q, appears like argument of sinusoidal functions in M(q,), 
we can conclude that 

M~,prn ICII I Ilnn(qS) I < MSPM II4~ll (48) 

where 

Then, (46-48), properties (5), (6), and taking into account Assumption 3, imply that 
P(y, q,, 4jm) is upperbounded by 

with 



where the vector y~ E is defined as 

4.2.2 Negative definiteness of ~ ( y )  

From the upperbound of P ( y ,  Q,, &) (49) ,  the upperbound of ~ ( q " ) ,  y  ($) (38 ) ,  and con- 
sidering the vector y~ defined by (51) ,  it follows that ~ ( y )  (41)  can be upperbounded 

by 
V ( Y )  5 -Y:QNYN + h ( Y N ,  VM,AM)  (52)  

where the matrix Q N  = QG is given by 

with the block matrices 

If the gains Kd, Kp, Lpl ,  Lp2 and the constants E,, A,, pol yo satisfy conditions (18)  and 
(19 ) ,  then Q N  given by (53)  is positive definite. Therefore (52)  and (54)  imply that 



where QNm > 0 is the minimum eigenvalue of QN, and a o ,  a 2  are given by 

Then the right-hand side in (55) corresponds to (34), and together with (40) and proposi- 
tion 8, allow us to conclude uniformly ultimately boundedness of y~ (51) and consequently 
of y (23), and thus, by (24) we can conclude that the original state x given by (22) is uni- 
formly ultimately bounded. 
Moreover, a 2  depends explicitly on L p l , ~ ,  such that y2 defined as in proposition 8, can 
be made small by a proper chose of L p l , ~ ,  and thus the upperbound for the closed loop 

A A 

errors 6,, e,, 6, E, icq, Eq can be made small. Notice that the minimum value for y2 is given 
by QNm/ (2a2), such that this minimum value depends on the minimum eigenvalue of QN 
(53), which depends on Kp,rn 
On the other hand, a region of attraction is given by 

where T is given by (25), P,, PM are defined by (40), and y2 as in proposition 8, with 
(34) given by (55). The region of attraction B (58) is proportional to  y2, such that the 
region B can be expanded by increasing y2. 

I 

5 Simulations 

The master (m) and slave (s) robots considered in the simulations are planar manipulators 
qi E IR2, i = m, s, with revolute joints, working in the x-z plane. The dynamic model is 
given in Spong and Vidyasagar (1989), and their parameters are listed in the following 
table 

Table 1. Parameters of the master (m) and slave (s) robots. 

The controller for the master robot 7, is the adaptive control law proposed by Slotine 
and Li (1987). The desired trajectory for the master robot is given by 

with w = 0.5. 

I (length) [m] 
1.0 
0.8 
1 

0.8 

link 1 (m) 
link 2 (m) 
link 1 (s) 
link 2 fs) 

m (mass) [Kg] 
10 
7 
12 
5 

1, (mass centre) [m] 
0.54 
0.42 
0.6 
0.5 

i (inertia) [ ~ ~ m ~ ]  
0.02 
0.01 
0.05 
0.03 



The initial conditions for both robots and the observers (lo),  (12) are listed in tables 2 
and 3. 

Table 2. Joint initial conditions. 

Table 3. Initial conditions for observers. 

d o )  [Tad1 
d o )  [radls]  

I ioint 1 joint 2 

0.7 
0.2 

joint 1 (m) 
0.8 
0.4 

The gain matrices, involved in the controller (9), and both observers (lo), (12), are con- 
sidered to be of the form kI,  where k is a scalar and I E The scalars associated with 
these gain matrices are chosen to be 

Table 4. Controller gains. 

joint 2 (m) 
1 
0 

As it is shown in figures 3, 4 the tracking errors are uniformly bounded, as well as the 
estimation errors, which are shown in figures 6 - 9. On the other hand the simulations 
were run for different values of the gains, it was observed that by increasing the gains 
Kp, Lpl, the bound of the closed loop system can be made arbitrarily small, at the same 
time by increasing Kd, the convergence time can be decreased. And thus, we can conclude 
that the performance showed in the simulations agrees with the stability result obtained 
in Section 4. 

Joint positions ql,, q l ,  [rad] Joint positions qz,, 42, [rad] 

jointl(s) 
1.8 
-0.2 

Figure 1: Joint positions ql,, ql, and q2,, q2,. 

joint2 (s) 
0.1 
0.5 



Figure 2: Joint velocities ql,, ql, and q2,, qZm. 

Trackmg pos~t~on errors el,, e?, [rad] 

* 
e, 

-001 - 

-0015 ' " ' ' ' ' ' '  
10 12 14 16 18 zo 22 24 ze 28 a 

0 1 2 3 4 5 6 7 8 9 ? 0  Tme [s] 
Trme [s] 

Figure 3: Tracking position errors el,, e2,. 

Figure 4: Tracking velocity errors &,, 62,. 



Figure 5: Input torques TI,, ~ 2 ~ .  

.,p Master pos. est. errors ql, - ql,, qzm - qzm. 
I I * ,  ' $ ' ' ! I  

Figure 6: Master position estimation errors qIm - ql,, ijZm - qzm. 



.,,% Slave position est~mation errors &I,, &2, [rad] 
, , , / , , , I  

Slave position est~mation errors BI,, dz,, [rad] 

0 1 2 3 1 5 5 7 8 9 4 0  

Time [s] 

Figure 8: Slave position estimation errors GI,, G2,. 

Figure 9: Slave velocity 
" "  

estimation errors &, , e2,. 

6 Remarks and discussion. 

0 It is important to notice that the proposed control law gives rise to coordination in 
the joint space. Coordination in the Cartesian space is obtained only in the case in 
which the length of the links of the slave robot are equal to the corresponding links 
in the master robot. 

0 In the state space representation (69), (TO), the state ql has been partially substi- 
tuted, this is done as to take advantage of the available information in the system, 
i.e. the position measurement q,. 

0 The variables q", 6, defined by (20), can be interpreted as the estimation error in 

the joint variables of the master robot q,, &, and thus, y, 4 give an idea of how 
good the estimation of the master robot variables can be made based on measured 
and estimated variables of the slave robot. So, the slave robot, under the proposed 
controller, can be considered as a physical estimator for the master robot dynamics. 

0 The uniform ultimately boundedness result is of local nature, with region of attrac- 
tion given by (58). This region of attraction and the bound for the closed loop errors 



depend on y2 (see proposition 8 and Subsection 4.2.2) in a proportional way, such 
that by expanding the region of attraction, the upperbound for the closed loop errors 
increases, and thus a compromise has to be done. 

In order to fulfill conditions (18) and (19), some bounds of the slave robot struc- 
ture and the master velocity and acceleration must be determined. Even without 
knowledge of these bounds, the closed loop system can be made uniformly ulti- 
mately bounded, by selecting the control gains large enough. However, such high 
gain implementations are not always desirable in practical circumstances. 

7 Conclusions 

In the present paper we have designed a control scheme for coordination of robot ma- 
nipulators that requires only position measurements. The control scheme is formed by 
a feedback controller, which utilizes estimates for the tracking errors, as well as for the 
velocity and acceleration variables, these estimates are obtain by two nonlinear observers. 
The resulting closed loop system was proved to be uniformly ultimately bounded. Also a 
relation between the bound of the errors and the design parameters was given, which can 
be used to guarantee the desired tracking accuracy. 
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Appendix A 

Consider the matrix QN given by (53); AQi represents the determinant of the i - th  
leading minor of QN. Sufficient conditions for positive definiteness of QN are given by 
( w i g ) ,  with Eq6, Lp2q4, Lp2q5 Lp2q6 Lpiq5 , Kpq2 Kpq3 7 Kdql  Kdq3 7 Kdq5 7 Kdq6 given by 

Kdol = X O M S , ~ ,  

2 
-EJOL$,MM~,M 

Kpq3 = 8P 0 7 

Kdq3: denotes the solution of the equation AQ3 = blKdq3 + b2 = 0, with bl, b2 the 
resultant coefficients in the factorization of Kd,m in AQ3, and Kd,m substituted by Kdq3. 

Lp2q4: denotes the solution of the equation AQ4 = alLp2q4 + a2 = 0, with a l ,  a2 the 
resultant coefficients in the factorization of Lp2,m in AQ4, and LP2,, substituted by Lp2q4. 

8&oXoKp,mPo 
LP1q5 = Jro&,Ms,m 
Kdq5: denotes the solution of the equation AQ5 = C1Kdq5 + c2 = 0, with c1, c2 the 

resultant coefficients in the factorization of Kd,m in AQ5, and Kd,m substituted by Kdq5. 
Lp2q5: denotes the largest solution of the equation cl = do + dlLPaq5 + d2~g2q5  = 0, 

with cl as in Kdq5; do, dl, d2 the resultant coefficients in the factorization of LP2,, in cl, 
and Lp2,m substituted by Lp2q5. 

KdqG: denotes the solution of the equation a&6 = r1Kdq6 + 7-2 = 0, with rl,r2 the 
resultant coefficients in the factorization of Kd,m in AQ6, and Kd,m substituted by Kdq6. 



Eq6: denotes the solution of the equation rl  = S1Eq6 + s2 = 0,  with r1 as in Kdq6; s1, s2 
the resultant coefficients in the factorization of E ,  in r l ,  and E ,  substituted by ~ ~ 6 .  

~ ~ 2 , ~ :  denotes the largest solution of the equation sl = tO+tlLp2q6 +t2Lg2q6 +t3LiZq6 = 

0 ,  with sl as in cq6; to, tl,t2,t3 the resultant coefficients in the factorization of Lp2,m in 
s l ,  and LpP,m substituted by Lpzq6. 

Appendix B 

First, we obtain the error dynaniics in terms of the tracking errors (e,, i s ) L t h e  estimation 
A 

A .  . . A .  tracking errms ( e ,  e )  , and the estimatim p=s:t:m and J ~ ! ~ ~ ~ ~ ~  n ~ + ~ r  nvrnT.a bLLwl, (e,, e,), and secsnd 
we consider the coordinate transformation defined by (20),  (2:). 

Tracking error dynamics 

Substitution of the control law 7, (9) in the slave robot dynamics ( 1 )  yields the closed 
loop error equation 

by adding and subtracting Kd6,  + Ms(qs)qm + Cs(qs,  qs)q,, and considering the tracking 
errors defined by ( 8 ) ,  this equation results in 

From ( 8 ) ,  ( l l ) ,  (13),  and (14) ,  the following equalities can be established 

Considering ( l l ) ,  (13) ,  (60) and property (4), it follows that 

Substitution of (61) in (59) ,  and considering ( l l ) ,  (60),  yields 

Estimation tracking error dynamics 

If the states x l , x2  E Rn are defined as x l  := e,, 2 2  := &,  then (62) has the state space 
representation 



and the estimation tracking errors (11) in XI ,  22, are given by 
A A 

2 = 1 - 2 s ,  e = x 2 - e , .  

Therefore, from (63), (64) and the nonlinear Luenberger observer (lo), the estimation 
tracking error dynamics are given by 

Considering (13), (60), (65) and after a straightforward computation, these equations 
reduce to 

Estimation velocity error dynamics 

From the definition of the tracking errors (8), it follows that 

Therefore, if the states zl, 22 E Rn are defined as zl := q,, z2 := q,, then from (62) we 
obtain the state space representation 

and the estimation velocity errors (13) in zl, z2 are given by 

So, from (69), (70) and observer (12), the estimation position and velocity error dynamics 
are given by 



considering (13),  (60),  and (? I ) ,  these equations reduce to 

Finally, from (67) and (73),  it follows that 

where the fact that 2 2  = q, has been used. 

Coordinate transformations 

Consider the coordinate transformation defined by (20),  subtraction of (67,  74) from (66, 
75) gives rise to the dynamics for q", q" 

where Assumption 1 has been used. 
From (67) ,  (74), it follows that 

And on the other hand, the tracking error dynamics (62) in q", q", q" is given by 

Then, by adding and subtracting Kp4+ C ,  (q,, qs)Lpiq"+ KdLpiq"+ M ( q s ) ( L p i  6 -LpiLplq") 
from (76) ,  and considering the coordinate transformation defined by (21) ,  it results in 
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