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Preface I~ -v--. 

On the ~ got into touch with the Robotics software, provide by McDonnell 
Douglas, Paris. 
Since then a lot of water has flowed under the bridge, and I hope that by now I have 
finished my assignment. Though the Robotics software and the computer associated with it 
were pleasant to work with, I have to admit I'm glad to be able to close the book on this 
part of my live, because I feel that it is time for a change. . 
Though I am the one signing for this report, there is a number of people whom I couldn't 
have done without, and I feel that though it is only of small comfort to them I need to name 
them at this stage. These people were: 

Mr. F.L.M. Delbressine, Mr. J.J.M. Schrauwen, Mr. F.S. Soers and Mr. A.C.H. 
van der Wolf: For their constructive criticism. 
Henk van Rooij: In helping me convince computers of my intentions. 
John Vernooij: By explaining the program to him I got a better grasp at it. ~ 
My parents: For supporting me in getting where I am today. 
The people from the CAD-room. For pleasant company. 

The report is divided into several sections. The appendices A, Band C give an overview of 
the software modules BUILD, SIMULATION and COMMAND. If one is an unexperienced user 
of the Robotics software, it is best to first read the introduction and then read the 
appendices to get a good feeling for the program. "-
This report does not intend to replace the manuals provid~ith the Robotics software, 
but should rather be used as an supplementary to these manuals. 
Though I tried to write a\. consistent and informative report, the reader might still have 
any questions concerning the software or this report. If so I will be more than willing to 
try and provide him/her with an answer. 

Hein-Jan van Veldhoven 
7th of june 1991, Eindhoven. 
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It was my assignment to evaluate the seventh release of the Robotics software by 
McDonnell Douglas with regard to its capabilities and flaws. As a test case it was decided 
upon a Flexible Welding Automation Cell. 
The assignment meant: modelling the cell. simulating it with the software, and then 
perform the off-line programming with the aid of the software. 
Stepping through all this I would be able to get a good feeling for the program. 
Having worked with the program for several months now I feel that it can be a powerful 
aid in performing off-line programming for robots. 
The major advantage of the program is its ability to simulate in a correct way a number 
of largely differing situations. This may range from a welding cell to a transfer-line, but 
also from a machining-centre to a human ergonomics simulation. 
The only major drawback to the program is its unability to simulate devices with less 
then six degrees of freedom in an easy and correct manner. 
All in all, however, I feel that this does not weight-up to the advantages the program can 
provide. 
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Prof. Dr. Ir A.C.H. van der Wolf 

Dr. Ir F.L.M. Delbressine 
Ing. J.J.M. Schrauwen 
F.S. Soers 

Robotics 7.0 software 

In a modern day production environment, with short series and large ranges of products, 
robots are a necessity in trying to produce these products in a competitive way. However, 
it takes a lot of time to reprogram these robots if an other range of products is being 
made. Reprogramming these robots off-line was rather difficult until now, because the 
off-line programming system was not graphically based. The Robotics software from 
McDonnell Douglas is a graphically based off-line programming and simulation system. 

Assignment: 

Examine and evaluate the Robotics 7.0 software from McDonnell Douglas. 

The examination will be done in a number of phases: 

Getting to know the program. 
Simulating a welding cell currently being present at the University, and 
consisting of: 

- A Kuka Robot with welding equipment 
- A Kuka manipulator. 

Perform off-line programming of the robot and the manipulator, including 
the writing and or testing of the post-processor for the welding cell. 

During this assignment it is understood that McDonnell Douglas will be notified of any 
bugs found in the Robotics 7.0 software. 
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Reviewing the work of the past months I have been working on this assignment, it has 
become clear to me that though the cell I have been simulating may not have been ,; 
representative for the cells which normally would be simulated with the aid of this 
software, it nevertheless provided the same problems which might occur in trying to 
simulate a cell which might be more representative. 
The cell may be seen as a typical example. Their may ~ two sorts of industrial k ~ 

companies interested in this software, one sort of company which has a lot of robots that 
all need reprogramming in a relative short amount of time e.g. car-manufacturers, and 
one sort of company which may not have all that much robots, but uses these robots in a 
flexible way and in complex cell layouts e.g. small flexible automated cells. 
The cell I used to test this software on, clearly falls into the last category. 
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The Robotics software is a set of separate programs provided by McDonnell Douglas. for 
the development of a computer based simulation- and off-line programming 
environment. To provide these functions the Robotics software consists of a number of 
separate programs, communicating with each other via a small number of files. These 
programs are: 

1. BUILD 
2. PLACE 

- SIMULATION 
3. COMMAND 
4. ADJUST 
5. Cycle Time Analyzer (CTA) 

Though these programs make up the complete Robotics package, it is not necessary to use 
all of them in a typical Robotics session. 

The Robotics software can be used for more than one purpose, but it was originally 
designed as a computer based graphically off-line programming system for robots. The 
system is relatively unique in its kind, as most off-line programming systems are text
based. The system was developed independent of any type or make of robot, and in that way 
the system can provide its services independent of any type or make of robot. This may be 
especially useful if more than one type or make of robot has to be simulated and 
programmed. 

In a production environment where more and more CAD-systems are being used to 
integrate the design and manufacturing process, it may be worth while to check upon a 
system which can integrate the programming of the robots into this process. Of course 
such a system should be able to address any data already created on the CAD/CAM systems. 

As this was our first experience with the Robotics software, I have concentrated myself 
on the three most important programs. to me, namely: BUILD, SIMULATION, and 
COMMAND. Underneath you will find an introduction into these programs. a more 
extensive description of these programs can be found in appendices A. B, and C. The way 
the programs cooperate with each other can be seen in figure 1, the robotics system 
overview. 
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The actual cell I used as a test case for the Robotics software is found in the photo 
underneath: 

Photo 1: The actual cell 
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The model created of this actual cell can be found in the photo underneath, noted should be 
that I left out most of the welding equipment apart from the torch, and that I left out the 
transportation system related to the cell. This was done because I felt that it would not be 
important, and would cause more inconvenience than benefit. 

Photo 2: The model of the welding cell. 
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The BUILD Robotic Applications Software Module [11 is one of the Robotics products sold 
by McDonnell Douglas. BUILD enables the user to quickly describe new robots or other 
kinematic motion devices in high-level terms. Using BUILD, the geometric model of a 
robot or device is automatically combined with its unique kinematic description for 
animation in SIMULATION. With only a minimal knowledge of robot kinematics, You will 
be able to add new robots or devices to the SIMULATION library. The data output files 
from BUILD eliminate the need to perform custom kinematic analysis. 
BUILD is capable of automatically generating the forward- and inverse kinematic 
equations for devices which have up to 6 degrees of freedom. 
Forward kinematics is an algorithm that, given a set of joint angles, computes the 
position and orientation of the tool and/or the faceplate of the robot. 
Inverse kinematics is an algorithm that, given a position and orientation of a tool or 
faceplate, computes the matching joint angles of the robot. 
BUILD supports devices with up to 12 degrees of freedom, but it does not automatically 
generate the inverse kinematic control equations. The BUILD user may optionally write a 
program which defines the kinematic equations for any device with up to 12 degrees of 
freedom. To obtain complete functionality, the device must be separable into arm and 
wrist components. This functionality is discussed in more detail later in section A.2.0.0. 
"Device Types Suitable for BUILD". 
The software for the BUILD module uses the same type of menus as SIMULATION. The user 
must fill in each menu item in order to fully describe the characteristics of the device. 
Once all of the information has been entered, you may direct BUILD to create the files 
which contain the description of the device. Then you will be able to use the new robot or 
device in SIMULATION. 
The steps required for creating a robot or device are as follows: 

1 . The user creates the geometric description or model or a robot or device on a 
CAD system. (Preferably UG-II) +-

2. The user collects the input data needed for the BUILD module. 
3. The user transfers the CAD data to the SIMULATION data-base. 
4. ,The user inputs the parameters which define the device, into BUILD. 
S. The BUILD software generates the kinematic data which is used to simulate 

the motion of the robot or device in SIMULATION. 
6. The use" tests the robot in the SIMULATION model. 

BUILD directs the user to de'fine the kinematic model of a device, which is used by 
SIMULATION to drive the simulation. Additional controller information is supplied which 
is used by COMMAND to provide for off-line programming. BUILD will allow the user to 
define robot type devices as well as probe devices. A Probe is a special type of device 
which may be used with the ADJUST module for cell calibration. 
BUILD places restrictions on the types of linkages which may be automatically modeled 
with complete forward and inverse kinematic solutions. If a device does not meet these 
restrictions, it may still be modeled. but in a much more limited way, BUILD will not be 
able to support the inverse kinematic solutions and therefore only simple joint motions I' 
will be supported. The user may retain complete functionality by writing a program 
which supplies the inverse kinematic algorithms needed for simulation. 

1 1 
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SIMULA liON (21 is a software package designed to create, analyze, and modify robotic 
cells graphically through the use of a high speed, vector refresh or raster colour 
graphics display station. SIMULATION allows one to determine if required motions can be 
accomplished by the robot and if estimated cycle times can be met. 
To accomplish this. SIMULATION offers: 

1 . Kinematic equations that simulate the motion of individual robots 
2. Continuous readout of joint angle data that tracks the path of the robot's 

motion 
3. Hierarchical definition of connected parts 
4. Computer aided design data that geometrically describes cell components 
5. Powerful 3-0 colour graphics for manipulation and placement of cell 

components 
6. Hardware controlled dynamic 3-0 scaling. translating, and rotating of a view 
7. Definition of motion sequences for cell analysis and collision detection 
8. An expanding library of more than 130 of the most common robots V 
9. An optional cycle time package that provides more accurate timing of robot 

moves in SIMULATION by compensating for acceleration and deceleration 
1 O. Simulation of two or more independent robots or objects moving at the same 

time on the screen (parallelism) 
11. Explicit synchronization of the motion of two or more devices (compound 

device) 
1 2. Metric support 
13. Simulation of sending. receiving, and testing signals by a robot controller 
14. Insertion of robot-dependent commands directly into motion sequences for 

simplifying off-line programming 
1 5. Automatic collision detection. 

SIMULATION uses wire frame and facet-faced graphic display models to represent robots. 
equipment, workpieces, and tooling within a manufacturing cell. The user can easily 
position these graphic models within the cell either individually. as in the case of a 
workpiece, or together, as in the case of a multi-segmented robot. 
SIMULATION utilizes the concept of a generalized tool tip called the WORKING TPOINT. You 
command a robot to a desired location in terms of this WORKING TPOINT. The system 
determines robot joint angles so that you need not be concerned with the lOW-level details 
of robot motion. In addition, SIMULATION has a tracking option that allows you to analyze 
the path of the robot's motion for specific applications such as a conveyor line. 
The SIMULATION software displays equipment positioning and robot motion trajectories 
smoothly at the robotics design station. SIMULATION continually monitors joint limits 
for the particular robot performing motion. In addition to joint errors, proximity of the 
robot to a joint limit is also recorded. 
Visual collision detection is available with SIMULATION. You can change views of the cell 
smoothly from any angle or use the zoom feature to get a closer look. With these powerful 
viewing capabilities, collisions between various items within the cell can be identified 
quickly and avoided. 
Automatic collision detection is also available. SIMULATION computes the convex hulls of 
the parts. Interference checking during any kind of motion is done on those convex hulls. 
After a cell has been laid out to your satisfaction, various design data can be requested 
from SIMULATION. The complete spatial relationship between any two points, two 
frames, or between a point and a frame is readily accessible to the user. 

12 



Robotics Hein..Jan van Veldhoven 
10: 221176 

To accommodate a varied set of robotic applications, SIMULATION maintains a library of 
commercially available robots. You can request any robot in the robot library for 
evaluation and motion analysis on the robotics terminal. If you have a robot that is not in 
the library or have a completely new robot ( or "n" degree of freedom manipulator). 
then that new robot must be inserted into the SIMULATION library before it can be used. 
This can be accomplished using the BUILD program and a CAD-package, for instance 
Unigraphics II. 
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COMMAND [3) is a software module used for programming robots off-line. It is used in 
conjunction with SIMULATION and a specific robot translator to generate a complete robot 
program that can be loaded and executed on a particular robot's control unit. 
To accomplish this. COMMAND: 

1 . Utilizes sequence-files created with SIMULATION for robot motion. 
2. Utilizes sequence-files created with SIMULATION for robot I/O. 
3. Provides full use of the robot's functions in its native language. 
4. Provides full program annotation. 

The user directs COMMAND to merge a SIMULATION sequence with a complete robot 
program via a file known as the 'User Program File' or User File. The user file is 
created with a standard text editor. It may include robot language instructions which are 
specific to the target robot, and it may include Sequence Access Commands. Sequence 
access commands are used to direct COMMAND to include SIMULATION sequences into the 
robot program. 
In order to generate a meaningful and complete robot program. the user must have access 
to all features, functions and options that a particular robot controller supports. The 
User File gives you this capability by allowing you to work in the native language of your 
robot. Motion and I/O can then be extracted from SIMULATION sequences and added to the 
program. Optionally you may include robot specific instructions in the SIMULATION 
sequences, SIMULATION will ignore these instructions, while COMMAND will include 
them in the robot program. 
A powerful feature of COMMAND permits the user to associate groups of logic 
instructions with specific robot positions generated by SIMULATION sequences. For 
example, the user may define a subroutine in the robot's native language, to open and 
close a gripper. This subroutine is identified by an operation name, and easily referenced 
in SIMULATION sequences by tagging the desired robot motion commands with that 
operation name. This will result in the gripper being opened or closed at the correct 
location in the program. 

14 
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The first item one encounters when one starts simulating cells in Robotics is having to 
create the simulation environment. If one is lucky it is possible to merge one of the 
robots from the robot system library supplied with the Robotics software. If, however, 
one has to create one's own robot or manipulator the following steps have to be taken: 

1. The gathering of data on the device, such as joint-types, joint speeds, distance 
between joints etc. 

2. Creating a model of the device. 
3. Converting the device model to Robotics. 
4. Creating a device description using BUILD. 
S. Checking the device. 

3.0.1. Gathering device data: 

The required device data can usually be obtained from the device instruction manuals, or 
from the device manufacturer. Most of the data will be in the right format for 
incorporation in the device description, some of the data, however, may have to 
recomputed before it can be incorporated in the device description. 

3.0.2. Device model creation: 

In order to be able to simulate a device in a proper manner, a device model should be 
accessible to the Robotics software. The device model is made accessible to the Robotics 
software through a conversion utility. 
The device model has to be created before it can be converted. The creation of the device 
model is done preferably in UNIGRAPHICS II. This is because though there is an IGES to 
SIMULATION conversion utility, documentation shows it to be a more limited conversion 
utility than the UNIGRAPHICS II to SIMULATION utility. However, I have not been able to 
test the IGES to SIMULATION utility. 
The device is modeled, link by link, with each consecutive link modeled in such a way that 
the axis of motion coincides with one of the axis of the absolute coordinate system. The 
easiest way of creating this effect is by modelling the complete device with each separate 
link on a separate layer. and later translating these links to the absolute coordinate 
system. BUILD expects the device to be created in this manner, so the transformation 
between the consecutive links can be done by BUILD and can be incorporated into the 
forward- and inverse kinematic algorithms. 
When modelling the device the user should be cautious in using wire-frame elements, the 
conversion routine will not convert wire-frame elements into solid shaded images, there 
is however, a possibility to convert certain surface into solid shaded images. 

3.0.3. Converting the device model: 

After the device has been completely modeled, it has to be converted. The conversion may 
be done with, for instance, the UNIGRAPHICS II to SIMULATION utility. The user should be 
aware that wire frame drawings cannot be converted into solid shaded images, if the user 
wants solid shaded images, the device should be modeled with solids or certain types of 
surfaces, instead of wire frames. 
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A second pitfall in converting devices is the facet tolerance. The user may easily be 
tempted to create parts with too many facets (a small facet tolerance). If the user tries to 
merge such a part or device into a cell, the program may bomb out and create an out of 
memory error. The easiest solution to this is reconverting the parts with a larger facet 
tolerance. (Less facets). 
The technique used to create the solid shaded image is as follows: 
The surface of the part is divided into facets, a light source is placed in a certain position 
and direction. The normal vector of the facet and the normal vector of the light source are 
computed. The two vectors are compared and a value for shading is derived. 
The drawback of this method is that it doesn't take any other parts into account which 
might obstruct or reflect the light beam. The advantage of course is that it is relatively 
quick in computing the images. 

3.0.4. Creating a device description using BUILD: 

The device description for SIMULATION is created with the aid of BUILD. Here all the data 
collected in 3.0.1. is structured and used to create a unique device description. 
All the kinematic transformations, arm configurations, allowable motion modes, tool 
tpoints, off-line programming coordinate systems and sources of inverse kinematics are 
generated or selected in order to create an as accurate as possible model of the robot. 

3.0.5. Testing the device: 

The frst step in testing the device is merging it into the cell, the user will than be able to ~i II 
see whether all the constant transformation were correctly inputted. 
After it has passed this initial test, the user may invoke the Goto Joint Position function 
to check whether all the joints move in the correct manner. This will mean the forward 
kinematics is correctly defined. 
Testing the inverse kinematics is a lot more difficult: An indication can be obtained by 
creating an arbitrary tpoint, and have the robot align with this arbitrary tpoint, by 
means of a Goto Tpoint command. This will indicate whether the inverse kinematics is II 
correct or not. It will. however, not provide a 100% guarantee of complete functionality 
of the device. Further testing will not improve this functionality, so after these initial 
test the device is ready for incorporation into the desired cell environment. 

3.1.0. Device with less than six degrees of freedom 

If a device with less than six degrees of freedom has to be modelled, a problem might 
occur in trying to simulate this device in Robotics. 
An example of a device with less than six degrees of freedom is a manipulator for welding-
operations. 

The problem with the inverse kinematic algorithms used by SIMULATION is that they 
expect the first three joints of a device to be for reaching a certain position. and the last 
three joints of a device for obtaining a certain orientation. 
This means that the distance between the first three joints of a device may not be zero if 
they are rotational joints. 
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In the case of the welding manipulator, the manipulator and the mounted parts assume a 
certain orientation, and in that way simplify the control of the welding process. This is 
not a position but an orientation, but as the manipulator only has two joints, the inverse 
kinematic algorithms will use these joints to reach a position. The program will bomb 
out leaving a rather useless error. 
The way to solve this problem is to create a device with six joints, for instance three 
translational joints, and three rotational joints which has great similarity with the two 
joint device. The number of links should be the same as well as the fixed and variable 
translations. What one really does is insert a number of joints into the device description 
until the device contains six independent joints (Six degrees of freedom). 
The next step is to modify the two-joint-device description so that it gets its inverse 
kinematics from the six-joints-device by ways of a so called 'Joint Mapping Coordinate 
System File'. This file selects which joint from the six-joint-device should be mapped 
onto the two-joint-device and vice-versa. 
Now SIMULATION will compute the correct joint angles for the six-joint-device, and use 
these on the two-joint-device. The user should be careful that translational joints can 
only be used as the first three joints. See also section A.2.2.0. Device Requirements for 
more information. 
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The technique used in computing the Forward- and Inverse Kinematic Algorithms in 
SIMULATION is a technique known as homogeneous transformations. The technique is 
based on vector and matrix mathematics. For more information on this subject see [4]. 

4.0.1. A vector: 

A vector can be represented as a column matrix. 

A point vector 
v=ai+bj+ck 

Where i,j, and k, are unit vectors along the x, y, and z coordinate axes, respectively is 
represented in homogeneous coordinates as a column matrix 

where 

V= [i] 

a=x/w 
b=y/w 
c=z/w 

4.0.2. The dot- and cross product: 

Two products are defined: the dot- and cross products. 
Given two vectors: 

a=axi+ayj+azk 
b=bxi+byj+bzk 

The dot product is indicated by a dot '.' and defined as follows: 

The dot product of two vectors is a scalar. The cross product, indicate by a 'x' is another 
vector perpendicular to the plane formed by the vectors of the product and is defined by: 

18 



Robotics 

4.0.3. A plane: 

A plane is represented as a row matrix: 

1'=[a,b,c,d] 

such that if a point v lies in a plane l' the matrix product 

1'v=O 

or in a expanded form 

(a,b,c,d( m =xa+yb+zc+wd+=O 

4.1.0. Transformations 

Hein-Jan van Veldhoven 
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A transformation of the space H is a 4*4 matrix and can represent translation, rotation, 
stretching, and perspective transformations. Given a point u, its transformation v is 
represented by the matrix product: 

v=Hu 

4.1.1. General Transformations: 

In general a transformation T will look something like: 

T= x 
· · · · ~Y · · · · --- ... --_ ...... -.-

o 0 0: 1 

with X being the rotational part of the translation: 

[

nx Ox Px] 
x= ny Oy Py 

nz Oz Pz 

and Y being the translational part of the transformation: 

the bottom row of the transformation can be used for transformations such as 
perspective, but this is not used in robot kinematics. 
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4.1.2. Translation Transformations: 
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The transformation H corresponding to a translation by a vector ai+bj+ck is 

[

100aJ o 1 0 b 
H=Trans(a,b,c)= 001 c 

000 1 

4.1.3. Rotation Transformations: 

The transformation corresponding to rotations about the x, y, or z axes by an angle 0 are: 

[~ 
0 0 

~] cosn -sinO 
Rot(x.O)= SinO cosO 

0 0 

[~ 
0 0 

~l cosn -sinO 
Rot(x,O)= sinO cosn 

0 0 

Rot(x,O)~ [~ 
0 0 

~l cosO -sinO 
sinO cosO 
0 0 

4.2.0. Coorginate Fram~s 

We can interpret the elements of the homogeneous transformation as four vectors 
describing a second coordinate frame. The transformation matrix describes the three axis 
directions and the position of the origin of a coordinate frame rotated and translated away 
from the reference coordinate frame. 

4.2.1. Relative Transformations: 

The rotations and translations I have been describing have all been made with respect to 
the fixed reference coordinate frame. If we post-multiply a transformation representing 
a frame by a second transformation describing a rotation and/or translation. we make 
that translation and or rotation with respect to the frame axes described by the first 
transformation. If, however, we pre-multiply the frame transformation by a 
transformation representing a rotation and/or translation. then that translation and/or 
rotation is made with respect to the base reference coordinate frame. 
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Now the inverse transformation can be defined as the transformation which carries the 
transformed coordinate frame back to the original coordinate frame. It is simply the 
description of the reference coordinate frame with respect to the transformed frame. 
In general. given a translation with the elements: 

nx Ox px ~ 

T= ny Oy Py ay 
nz Oz pz az 
0 0 0 1 

Then the inverse transformation is: 

nx ny nz - a.n 

T- Ox Oy Oz - a.o 

Px Py Pz - a.p 

0 0 0 1 

Where n,o,p, and a are the four column vectors and "." represents the dot product. 

As the 4th row of the transformation in rotation and/or translation transformations is 
always 0 0 0 1 it is left out. 

SIMULATION knows two transformation 3*4 matrices. being: 
1 . TptoBs. Tool with respect to Base matrix. 
2. FptoTp. Faceplate with respect to Tool matrix 

The first matrix, the TptoBs, is computed.. by post-multiplying each successive lA," 
translation and/or rotation. If, for instance, a robot has six links and each 
transformation from link n-1 to link n can be described by a matrix An then the TptoBs 
can be defined as: 

The second matrix, FptoTp, is defined as the faceplate with respect to the tool. 

I think this separation has been made to simplify computations. The users wants the robot 
to align to a certain tpoint with its tool, and therefor the TptoBs transformation needs to 
be evaluated. To compute the joint angles of the robot the position and orientation of the 
faceplate needs to be know, and can be compute with the aid of the FptoTp 
transformation. 

The matrices we have used until now can be used in forward kinematics, this means, 
given a set of joint angle computing the position of the tool and/or the faceplate of the 
robot. 
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Forward kinematics is the easy part, but inverse kinematics, computing the joint angles 
of the robot given a position and orientation, is a bit more difficult. It is not my intention V 
to go into this to deep as I don't know which algorithms exactly are used by SIMULATION. f-

~ 

Obtaining a solution for e joint coordinates requires intuition and is one of the most 
difficult problems. "[ e joint coordinate solutions can be obtained by equating 
transformation eXQ sSions. For each transformation expression we obtain 12 non
trivial equations nd it is these equations which will yield the required solution. The 
solutions' obtained in a sequential manner, isolating each variable by /L.." '1 V' 
pre-multiplication by a number of the transformations in each equation. 
The solution is basically trigonometric in its nature. The method makes use of 
homogeneous transformations which provide equations for all rectangular components, 
both sin and cosine of all angles. These component equations are then combined with the 
exclusive use of the arc tangent function in order to avoid problems of angle quadrant 
ambiguity inherent in trigonometry. 
The whole solution process is further complicated with the configuration solution. A 
robot may be able reach a certain position and orientation with a limited number of arm ~ q V 
configurations. T user however wishes the robot to reach a certain position and 
orientation with on one arm configuration valid. This of course puts a further 
restriction on the way he joint angle are computed. 
The user should be ext emely aware of the fact that the kinematic solutions calculated by 
SIMULATION may not incide with the way the robot controller solves these kinematic tV 
equations. Caution has to e taken in assuming that the algorithms, used by SIMULATION 
and the robot controller, ways yield similar results. 
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In performing off-line programming the first thing that is needed is an accurate cell 
description. This includes a accurate device description and correct placements of parts. 
The procedure for creating a robot specific program is fairly simple: 

1. Using SIMULATION create the tpoints (positions and orientations) later 
needed in the program to perform the correct robot motions. 

2. Using SIMULATION create a sequence describing the process that needs to be 
programmed. 

3. Start the COMMAND module, and perform the translation from sequence to 
robot specific languages. 

After all this has been a final check of the robot program is advisable, and it can then be 
loaded onto the robots controller. 

5.1.0. Creating Tpoints 

The tpoints that are needed to create the off-line programming need to be defined first. 
This is done in the SIMULATION module. There are several ways of creating the tpoints, 
for instance by creating it at the World Coordinate Frame and then translating and 
rotating it to a desired position, but I prefer a method in which joint values are dictated 
to the robot, and once it has reached a deSirable pOSition, a Tpoint is created in that 
position. This last method will prevent one from creating tpoints a robot might not be 
able to reach. 

5.2.0. Creating sequences 

After the tpoints have been created SIMULATION can be used to create a sequence. A 
sequence is a series 0VSIMUlATION commands needed to perform a complex operation. As t..,. t v' 
this sequence will later be used to create the robot program the user should take care that 
it performs the exact motions required for a certain operation. 

5.3.0. Converting sequences to robot programs 

In converting sequences to robot programs a small problems occurs at the installation k ~ V 
present at Eindhoven, University of Technology. Though we are currently working will 
the 7.0 release off the Robotics software, running on a UNIX based system, we are not yet 
in the possession of a translator for SRCl for a UNIX based system. 
In trying to perform off-line programming for the KUKA robot and its manipulator we 
need a translator for SRCl, luckily it was present on the VAx/DCl system. 
The route I had to take was as follows: 

First I had to create the tpoints and sequences as described above. 
Then I had to start the COMMAND module on the HP (UNIX system). Using the 
COMMAND module I had to create a so called .CSP file (Command Source 
Program file). This file contains all positions and orientations and all 
instruction to carry the operation. It is, however, still in a robot independent 
language. 
Having created this .CSP file I had to transfer it to the VAX/DCl system, in 
order to be able to perform the next part of the conversion. 
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After having transferred the .CSP file to the VAX/DCl system I started 
COMMAND on the VAXIDCl system, and perform the conversion form .CSP
file to robot specific file .SRC 

The procedure is in fact relatively simple and I have to admit it was easier then I 
expected it to be. 
For readers with interest in the mapping of sequence commands onto robot specific 
commands (SRCl) I include't\ a superficial mapping and a list which explaining the SRCl ~ v' 
commands, in appendices D and E. 

A photo of the cell during execution of a sequence file can be found underneath: 

Photo 3: The cell in operation. 

24 



Robotics 

6.0.0. Conclusions 

Hein-Jan van Veldhoven 
ID: 221176 

After having worked with the Robotics software for something like several months, I have 
grown accustomed to it being available to solve certain problems, but also to it being 
around to cause them. 
I tested the software in its 7.0 th release on a HP 9832 SRX computer, any other 
specifications of the software or of the computer may lead to different results. 
I feel it would not be productive, at this stage, to given a summary of the mistakes I 
found, or made. I feel that it would be more productive to report on the advantages, and 
drawbacks of the Robotics software, so I will do just that underneath. 
It should be stressed that as this program is relatively unique in its kind, this is not a 
comparison of this software with any other software, but solely an evaluation of the 
software. 

6.1 .0. Advantages 

As the program is graphically based, it is very clear exactly what the robot is 
being programmed to perform, so a more unambiguous robot off -line 
program can be created. 
As the robot programmer only has to concern himself with creating the 
sequences needed to program the robot, he doesn't have to worry about what 
language is needed to program the robot-controller. [The Robotics software is 
controller-language independent.) 
As most of the programming can be done off-line the robot can be productive, 
while new programming is being created. 
As a whole cell can be taken into account when programming the robot, most 
problems. such as trying to reach an impossible pOSition or orientation, can 
be prevented. 
CoUision detection can be used to prevent them from really happening. 
The excellent possibilities of simulating the parallel execution of programs 
and the signals between the devices, of the software allow one to fully model 
and program even such a complex thing as a transfer-line. 
The program has a menu driven command structure, so there is no need for 
long command strings to be entered by the user. 
As it is possible to create joints which may be dependent on or restricted by 
other joints, virtually any device can be modeled. 
The use of the software is not limited to robots, but it can be used for 
modelling mechanism, performing ergonomics simulations (accessability 
and/or human motion) and assembly Simulations (can a certain part be 
manoeuvred into position). Or, for instance simulating a five axiS machining
centre as is currently being done at the University. 
When creating the off-line programming, errors and warnings are flagged. 
The software is robot manufacturer independent. so a large number of robots 
can be simulated and off-line programmed with the systems as long as a 
translator for the robot can be obtained. 
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6.2.0. Drawbacks 
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The software seems to have a number of problems in trying to create a device \ 
with less than six degrees of freedom. Though no problems are signalled by t/ 
BUILD, SIMULATION bombs out in trying to move some of these types of 
devices. The error it leaves gives no clue as to what action can be taken to 
prevent these error from happening. 
The BUILD module seems to be polluting its own files. After have made a 
number of changes in a device description, the files still contain "old" data 
which has not been erased properly, this data cause problems in the 
SIMULATION module. 
In some parts of the program (for instance Colour Frame/Tpoints) the 
Terminate Operation button restores the original situation, but in other parts 
of the program (such as Create Tpoint), it exits the function but doesn't 
restore the original situation. 
The graphics seem to fill up the computers memory rather fast. Trying to 
perform high-definition graphics of a number of frames is not possible. The 
user should be aware of these problems. 
The UNIX structure in combination with the X11 window system, do not allow 
the user to input data or use function buttons, if the pointer is not located in 
the Menu Window. This can be a nuisance sometimes. 
The computer capacity needed to run the software is big. The system requires 
a large investment. 

6.3.0. Comments on the assignment 

I feel that the system could best be used by a company which has a lot of robots that all 
simultaneously need reprogramming in a short amount of time. This is for instance the 
case with transfer lines for welding car bodies. The system may also prove beneficial in a 
situation where a relatively small number of robots in a complex environment need a lot 
of reprogramming. 
The situation I used to test this program, a welding cell which should be flexible, is 
rather different from the first situation I have just indicated, but is relatively similar to 
the second situation. 
It may be clear that using this program for only one robot installation could be 
considered as overkill, by this 1 mean that the systems is far to powerful to be dedicated 
to only installation. However, I feel that most of the problems I ran into are not all that 
different from the problems anyone would run into trying to simulate any other 
environment, including transfer lines. I feel that in trying to asses the quality of the 
program the situation I used would do as good as any other. 
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6.4.0. General conclusions 
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The program did live up to the expectations it raised with me. It can definitely be a useful 
aid in off-line programming of robots and other simulation exercises. Though I feel its 
main attraction lies in the off-line programming, once a software package like this has 
been acquired by a company other might be run on the system. 
The most important drawback to the system I found its unability to easily simulate device 
with less than six degrees of freedom (such as manipulators). 
I was in the pleasant position of being able to test the program without being bothered by 
the cost of it. In my analyses of the program I did not incorporate the cost aspect. 
I tried to evaluate the program on its abilities, not on its cost effectiveness. It is up to a 
company to asses whether it is useful or not to buy this program. 
All in all I have to admit I am pleasantly surprised by the Robotics software, and its 
usefulness. 

27 



7.0.0. Literature 

{1] BUI LD User Guide 

I 2 ] PLACE User Guide 

[ 3 ] COMMAND User Guide 

[4] Robot Manipulators 

Robotics 

by McDonnell Douglas 

Hein-Jan van Veldhoven 
10: 221176 

Manufacturing & Engineering Systems Company 

by McDonnell Douglas 
Manufacturing & Engineering Systems Company 

by McDonnell Douglas 
Manufacturing & Engineering Systems Company 

by Richard P. Paul 
ISBN 0-262-16082-X 

28 



Robotics 

Appendix A: BUILD 

A.O.O.O. INDEX 

Hein-Jan van Veldhoven 
10: 221176 

A.O.O.O. INDEX ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 

A.1.0.0. BUILD concepts ...................................... 2 
A.1.1.0. BUILD File Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 
A.1.2.0. Data required for Device Modelling. . . . . . . . . . . . . . . . . . . . . . . . .. 3 
A.1.3.0. Part File Creation for BUILD ............................. 4 
A.1.4.0. Device Kinematics for BUILD ............................. 4 
A.1.5.0. Joint Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

A. 1.5. 1. Constraints as functions of other joints: . . . . . . . . . . . . . . . . . .. 5 

A.2.0.0. Device Types suitable for BUILD ...... . . . . . . . . . . . . . . . . . . .. 6 
A.2.1.0. Open Loop Mechanism .................................. 6 
A.2.2.0. Device Requirements .................................. 6 

A.2.2.1. Offset Wrist Robots: ............................... 7 
A.2.2.2. Devices with no Inverse Kinematics: ................... " 7 

A.2.3.0. Dependent Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 

A.3.0.0. Sources of Inverse Kinematics ........................... 8 
A.3.1.0 Devices with standard BUILD Kinematics ...................... 8 
A.3.2.0. Devices with no Inverse Kinematics ......................... 8 
A.3.3.0. Devices with External Inverse Kinematics .. . . . . . . . . . . . . . . . . . .. 8 
A.3A.O. Similar Device Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

A.1 



Robotics 

Appendix A: BUILD: A functional overview. 

A.1.0.0. BUILD Concepts 

A.1.1.0. BUILD File Types 
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There are three file type which are created by BUILD. Some of these are the file types used 
by SIMULATION (as well as COMMAND and ADJUST) to describe a robot or device. 

1. BUILD File (.BLD on VAXIVMS and UNIX). The BUILD file contains the basic 
device description. It essentially keeps a record of all the information which has 
been entered into BUI LD. This file is an input file as well as an output file. When 
used as an input file. BUILD may be used to edit the parameters of an existing 
device or BUILD may simply be used as a means of displaying the device 
parameters. The BUILD file is not used by SIMULATION. COMMAND or ADJUST. 

2. DEVICE File (.DEV on VAXlVMS and UNIX). The device file contains the connection 
tree which describes the device along with the link names and the associated part 
names. The Device file points to the Device Control Information file. The Device 
file is created by BUILD. When a cell is saved in SIMULATION the information in 
the Device file is transferred to the Cell file. 

3. DEVICE CONTROL INFORMATION File (.DCI on VAXlVMS and UNIX). The Device 
Control Information file defines device characteristics for the device. Such 
information as the kinematic attributes of the device, the allowable motion 
modes. the maximum joint speeds and acceleration, and more are stored in this 
file. This file is created by BUILD. SIMULATION, COMMAND, and ADJUST obtain 
their kinematic information from this file. This file is not in a human readable 
format. 

The following file types are referenced to by BUILD but not actually used by BUILD. 
1. PART File (.PAR on VAX/VMS and UNIX). The Part file contains the graphical 

display data for each link of the device. BUILD only references to the names of 
these files. It does not actually read the files. The Part file is created by the 
UNIGRAPHICS to SIMULATION or the IGES to SIMULATION utilities the 
SIMULATION. 

2. COORDINATE SYSTEM INFORMATION File (.CRD on VAXNMS and UNIX) Coordinate 
System Information define the attributes of particular "coordinate systems" that 
are used to represent robot arm positions. tool tip position constraints, etc. CRD 
files are also used for Dependent Joint mapping and Similar Device Kinematics 
mapping. Coordinate System information files are associated with the device by 
using BUILD. These files are defined by the user, using a UNIX text editor such as 
the vi-editor. BUILD only references to these files, it doesn't actually read them. 
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A.1.2.0. Data required for Device Modelling 
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Before a user can model a new device, a certain amount of information must be obtained. In 
many cases, this information may be obtained from the manufacturer of the robot or the 
device. Not all information may be required for all devices. If a device is being modeled for 
simulation only, many of the parameters which affect off-line programming will not be 
needed. Keep in mind that the more accurate the model needs to be the more accurate the 
information needs to be. 

1 . Device Drawings. The user should have access to accurate drawings of the device 
being modeled. These drawing are needed to created the CAD representation of the 
device. 

2. Link Dimensions. The translational and rotational offsets between each joint. 
3. Joint Data. The motion for each joint must be known, this consists of the 

following data: 
a) Type of Joint. A joint may either be rotational or translational. If a joint is 

both, for instance a screw, two separate joint will have to be defined and 
later connected with the dependent joint function. 

b ) Joint Limits. The range of each joint. 
c} Joint Dependencies. Does the motion of one joint affect the limits of the 

other joint? 
d) Joint Speeds. The maximum joint speeds. 
e) Joint Accelerations. The acceleration rate associated with the maximum 

joint speeds. 
f) Home Position. The initial position of each joint. 

4. Allowable Arm Configurations. How does the controller handle situations in which 
the device can reach the same position with multiple joint solutions? 

5. Allowable Motion Modes. The types of motion the controller supports. 
6. Default Motion Mode. The default motion mode used by the controller. 
7. Allowable Tool Points. Tool positions or orientations which are not allowed should 

be defined. 
8. Tool Speed. The maximum allowable tool speed. 
9. Tool Acceleration. The maximum allowable acceleration and deceleration of the 

tool. 
1 O. Coordinate Systems. Definitions of the coordinate system used to program the 

device. This information is only needed if the device will be programmed off-line 
by COMMAND. 

11 . Device Absolute Coordinate System. The location of the origin of the coordinate 
system used to program the device. This information may be less important for 
some devices, for example, devices which are controlled with joint values. Again 
this information is only necessary for off-line programming. 

1 2. Inverse Kinematics Algorithm. If the user plans to define a device which will not 
be supported by the standard inverse kinematics algorithm, the user will need to 
supply BUILD and SIMULATION with an inverse kinematics algorithm which will 
support the device. The user will have to write a program which will interface 
with SIMULATION and BUILD and will solve the inverse kinematics of the device. 
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A.1.3.0. Part File Creation for BUILD 
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The creation of a device in BUILD is accomplished by specifying a series of transformations 
which describe the relationships between the links of the device. The geometry for each link 
must be created on a CAD system ( for instance UNIGRAPHICS II) as a separate part. Each of 
these parts is modeled in a certain position relative to the absolute coordinate system. BUILD 
assumes that each part is modeled such that the axis of motion of the link is located at the 
absolute coordinate system. This allows the motion of each link to be defined as a rotation 
about or translation along its absolute coordinate system. 
BUILD is used to define the relationship between the absolute coordinate systems of each 
consecutive link. 

A.1.4.0. Device Kinematics for BUILD 

Once the location of each link coordinate system is known. the transformations between these 
coordinate systems may be defined. This series of transformations, from the base of the 
device to its faceplate, define the forward kinematics of the device. Given the joint values. 
forward- or direct kinematics is the process capable of describing the position of the 
faceplate or tool of a device in relation to its base. 

The user must determine the relationship between each consecutive link coordinate system. 
This relationship must be described as a series of constant and/or variable transformations. 
A constant transformation describes either a translational or rotational offset that never 
changes, regardless of positioning of the joints of the device. This definition would include 
such values as link lengths, joint offsets, or constant angular offsets. A variable 
transformation defines the motion of a joint. It is called variable because the amount of the 
transformation changes as the device moves through its motions. Variable transformations 
may either be translations (prismatic joint) or rotations (revolute joint). A third type of 
transformation is called a dependent transformation. A dependent joint is a special kind of 
variable transformation. The amount of this transformation is derived from the value of 
some other joints within the device. Since the joint value is not independent of other joints, 
it does not add a degree of freedom. 

All transformations are defined using the right-hand rule. 

BUILD is used to define a series of transformations which define the relationships between 
each successive link coordinate system, starting at the base. The user must define the 
transformations which describe how to get from one link coordinate system to the next. These 
transformations show how to completely align the coordinate system on one link with the 
coordinate system of the next link. 

All constant transformations must have a specified amount of translation or rotation. If the 
transformation is a translation. the amount may be expressed in either units of inches or 
millimeters. Build allows the user to change units at any time. If the transformation is a 
rotation, the amount must be expressed in degrees. 

All variable transformations must have special joint information supplied. This includes the 
name of the joint, the constraints or limits on the motion of the joint. the joint'S maximum 
speed and acceleration, and the joint's home position. The same rules for units which apply to 
constant transformations also apply to variable joint information. 
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A.1.S.0. Joint Constraints 
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For each variable transformation or joint a joint-limit must be specified. These constraints 
define the working range of each joint. These values are used by SIMULATION to compute the 
joint limit percentages which are shown on the Joints display. These values will also affect 
the Joint alarm feature of Simulation. 

A.1.S.1. Constraints as functions of other joints: 

While limits of the type described above will accurately define the constraints on most 
joints, other joints constraints are more complicated. The limits of some joints change as the 
position of other joints in the device change. This type of constraint may be due to couple 
linkages or gear ratios. 

In addition to the normal high and low joint values, BUILD allows the user to define an 
equation which describes the joint limits as a function of some other joint values. If a robot 
has a coupled drive linkage such as a parallelogram, it most likely needs to make use of this 
type of joint constraint. 
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A.2.0.0. Device Types suitable for BUILD 
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BUILD will accommodate the inverse kinematics of most of the current commercially 
available robots. However, BUILD users should be familiar with the basic requirements a 
device must meet to be analyzed by BUILD. It is possible to simulate devices which do not use 
the standard inverse kinematics, however, it is than necessary for the user to write the 
custom kinematics algorithms. 

A.2.1.0. Open Loop Mechanism 

The device must be an open loop mechanism. This means that one end of the device must be 
fixed while the other end of the device is free to move in a 3-0 environment. It is on this free 
end that the Working Tpoint will be created. On a robot, this free end is the faceplate or tool 
tip. 
It is possible to create some Closed Loop Mechanisms by using the Dependent Device feature 
in SIMULATION. The mechanism is divided into smaller devices. Generally, there is one 
device for each part of the mechanism which is connected to the ground. The mechanism is 
then assembled in SIMULATION in such a way that the motion of each device is dependent on 
some other device. 

A.2.2.0. Device Requirements 

In order for a device to use the kinematic algorithms automatically generated by BUILD, the 
device must have no more than 6 degrees of freedom, and must be built of various 
components: 

1 . The arm of the device may be composed of up to three joints that may be revolute 
(rotational) or prismatic (translational). 

2. The wrist of the device may be made up of no more than three joints which must 
be revolute. 

3. The main function of the arm is to position the end of the device while the wrist is 
used in attaining the correct orientation. 

4. Generally, the wrist joints must occur after the arm joints. The exception to this 
rule occurs when the last arm joint is prismatic, the first wrist joint is 
revolute and both move along the same axis. 

5. A 3-degree-of-freedom arm must consist of no more than two joints that move in 
one plane. The remaining joint either rotates or translates that plane into a third 
dimension. One restriction is that this plane must not be perpendicular to the x 
axis of the world or base coordinate system. That is, this plane must not move in 
the yz plane. 

6. The wrist joint axis may intersect at one or two points. If They intersect at one 
point, any combination of wrist joints may be used. If the wrist joint axes 
intersect at two points, then the first wrist segment must move in the same plane 
as the arm joints as described above. Generally, the wrist should be defined in 
such a way that the axis pointing out of the end of the device is the X-axis. 

A rule of thumb is that if the last segment of the wrist and one portion of the arm is ignored, 
the rest of the device must lie in one plane or several parallel planes. 
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Some six axis robots which have offsets between the wrist axes may be modeled by BUILD 
even though they don't adhere to rule 6. These robots cannot make use of the exact kinematic 
algorithm used by SIMULATION. These offset wrist robot will be handled by a special 
iterative kinematic algorithm if they are defined as follows. Joint 4 (the first wrist axis) 
must be a rotation about the x-axis. The next joint must be a rotation about the same axis as 
the offset. The last joint must be defined as a rotation about the x-axis. 

A.2.2.2. Devices with no Inverse Kinematics: 

If a device does not meet the above requirements, it can still be simulated in SIMULATION. 
Unless another source for the kinematics is supplied, these devices will not have the 
required "Inverse Kinematics" parameters. BUILD will warn the user in the event of such a 
situation. This type of device may be simulated in SIMULATION but in a very limited fashion. 

A.2.3.0. Dependent Joints 

BUILD allows devices to be created which contain joints whose values are dependent on other 
joints within the device. A dependent joint should be defined when the motion of a single 
degree of freedom is performed by more than one physical joint. A dependent joint does not 
add an additional degree of freedom to the device. No joint limit or velocity limit check is 
performed on dependent joints. In addition a dependent joint may not be controlled 
independently by the Goto Joints command in SIMULATION. 
Because of the great number of functional relationships which may be defined for dependent 
joints, BUILD will not attempt to derive an inverse kinematics algorithm for such devices. 
Either an external kinematics program or similar device kinematics must be used for 
dependent joint devices. 

A simple example of the use of dependent joints is in the modelling of a telescoping joint. The 
telescoping joint performs motion in only one direction, but is actually composed of three 
segments which move together in the same direction. Each segment moves one third of the 
total distance of the move. This system would be modeled in BUILD by adding two dependent 
joints following the variable joint transformation. The two dependent joints represent the 
last two segments of the telescoping joint. The values of these joints are functions of the 
value of the total length of the move. The all adhere to the rule: 

local translation = (total translation)/3 
A Coordinate system File is necessary to define the above equation which will map the set of 
joint values which SIMULATION computes to the joint values used to display the graphics. The 
CRD file must cause the joint values to be output in units of inches and radians. The use of 
any other units will cause incorrect motion simulation. The SIMULATION Joints Display will 
only show the limit percentage of one joint. If the first joint exceeds a limit, the other two 
joints, by definition,will also exceed their limits. If an interactive Goto Joints command is 
attempted only the first joint may be controlled. but all three joints will move. 
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Inverse Kinematics is the process used to convert a position and orientation (Le. a tpoint) 
into joint values of a device. Although SIMULATION uses built-in algorithms that will 
support most robots, it is possible to obtain the kinematics analysis form other (external) 
sources. 

A.3.1.0 Devices with standard BUILD Kinematics 

The normal mode for device modelling is to use BUILD to automatically generate the inverse 
kinematic parameters to be used by the SIMULATION kinematic analyzer. The device must 
adhere to the rules listed in section A.2.2.0. for BUILD to be able to generate these 
parameters. 

A.3.2.0. Devices with no Inverse Kinematics 

If BUILD for some reason, can not generate the inverse kinematic parameters for a 
particular device, the SIMULATION kinematic analyzer will not be able to perform the 
inverse kinematics. Such a device may be simulated in only a very limited manner. A device 
without inverse kinematics cannot be directed to move to a tpoint. For this reason the 
following commands will not be supported in SIMULATION: Goto Tpoint, Goto Position, Goto 
Circle, and Define Dependent Device. This leaves only Goto Joints and Goto Home as supported 
motion specifiers. There is, however, a restriction on their use. These commands can only be 
used with Joint Interpolated or Slew Motion, as Straight Line Motion requires inverse 
kinematics. Coordinated Motion has the same restrictions as single device motion, only Goto 
Joints or Goto Home is supported in Joint Interpolated or Slew Motion Mode. 

A.3.3.0. Devices with External Inverse Kinematics 

A device which obtains its inverse kinematics algorithms from an external program, may be 
defined. When this option is used, the inverse kinematics algorithms which BUILD generates 
automatically will not be used. This capability may be useful when the SIMULATION 
kinematic analyzer does not give the desired results. For example, this may be required when 
a particular robot handles singularities in a non standard way, or when a four axis device 
does not align properly. An external kinematics program may be the only way to simulate 
some robots which BUILD would not normally handle, for example, a seven axis robot. 
The external program must be able to solve the inverse kinematics of the device in question. 
This means that it should be able to compute joint angles or joint displacements when given a 
position and orientation with which to align. 
SIMULATION and BUILD communicate with the external program by sending and receiving 
message blocks of packed data 
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A.3.4.0. Similar Device Kinematics 
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There is one other source for the inverse kinematics algorithms for a particular device. 
Similar Device Kinematics allows the inverse kinematics for a device to come from the 
definition of a different device. During a simulation, whenever SIMULATION needs an inverse 
kinematics solution, it will use the kinematics solution (either internal or external) defined 
for the similar device. The results of the inverse kinematics are then mapped to a new set of 
joint values via a coordinate system file. All joint limits and velocities will be checked 
against the new set of values. 
The automatic kinematic algorithms derived 
by BUILD occasionally do not yield the desired 
alignment results for devices with less than 
six degrees of freedom. In many of these cases, 
it is possible to add joints to the definition of 
the device which will cause it to work 
properly (a three axes device may be modeled 
as a six axes device). Simulation will be able 
to compute the desired joints and a coordinate 
system mapping will remove the unwanted 
joints. The coordinate system mapping must 
output joint values in units of inches and 
radians. The use of any other units will result 
in incorrect motion simulation. 
Similar device kinematics are also useful 
when dependent joints are used. BUILD will 
not generate an automatic similar device 
algorithm when a device has at least one 
dependent jOint. The inverse kinematics for 
such a device can sometimes be obtained from 
a similar device which does not have dependent 
joints. Figure A.1 gives an overview of the 
flow of Joint Value Data. 
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Appendix B: Simulation: A functional overview. 

B.1.0.0. SIMULATION Concepts 

B.1.1.0. The SIMULATION Database 
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SIMULATION maintains a database with the following major "file entity" types: 

1. Cell 
2. Device 
3. Sequerce 
4. Part 
5. Device Control Information 
6. Coordinate System Information 
7. IGES 
8. Timing Data 

In addition to the above major "file entity" types, SIMULATION maintains the following data 
entities associated with each cell: 

1. Frame 
2. Tpoint 
3. Connection Tree 

8.1.1.1. Data base entity naming conventions: 

All SIMULATION database entity names follow the same naming convention except for the 
tpoint data entity. The tpoint naming convention will be discussed at the end of this section. A 
SIMULATION entity name is defined to be one to nine alphanumeric characters long. The first 
character is an alpha character from A to Z. Lower-case characters may be used but 
SIMULATION will convert them into uppercase. 

All SIMULATION file entity types and cell entity types follow the SIMULATION naming 
convention. In addition, following items also adhere to this naming convention: 

1 . Operation Names 
2. Segment Names 
3. Variable Names 

The tpoint naming is different than all other names in that it is composed of two names: the 
tpoint father frame name, followed by the tpoint name. The frame qualifier on a tpoint name 
is required because tpoint names by themselves are not unique within a cell. There may be 
two tpoints called TP1. But there can only be one tpoint named TP1 connected to any frame. 
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B.1.1.2. File entity type descriptions: 
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1 . Cell. A SIMULATION cell contains all the information related to a cell, including 
the frames in the cell, the connectivity relationships among the frames, the parts 
associated with the frames and the tpoints connected to the frames. The cell also 
contains pointers to Device Control Information file entities for each device in 
the cell. Cells are created by the user using cell editing commands. Cells can be 
saved for later recovery. 

2. Device. A SIMULATION device is a special kind of cell that contains the connection 
tree to describe a particular device, as well as part, frame, and tpoint 
information associated with the device. The device points to a Device Control 
Information file entity for that device. A user can create a new device with the 
BUILD program. The devices provided by McDonnell Douglas reside in the 
SIMULATION system library. 

3. Sequence. A SIMULATION sequence consists of a series of statements that control 
the execution of a SIMULATION working session. Sequences are created by the 
user during an edit sequence session. Most of the SIMULATION interactive 
functions have a corresponding sequence statement. 

4. Part - A SIMULATION part contains the geometric definition of a single rigid 
body. Part geometry is defined with a CAD-modeller such as UNIGRAPHICS II. 
SIMULATION parts are created by converting CAD defined models into 
SIMULATION parts using the following geometry conversion utility: 
UNIGRAPHICS II to SIMULATION. A SIMULATION part may contain only splines, 
arcs, lines, and tpoints (coordinate systems). The spline type is an open periodiC 
cubic spline, which is the same spline type the UNIGRAPHICS II uses. The 
UNIGRAPHICS II Geometry ConverSion Utility in SIMULATION can transfer the 
spline data between UNIGRAPHICS and SIMULATION. Parts are associated with 
SIMULATION frames using the SIMULATION "Create Frame" function. A frame 
may have no part or one part associated with it. 

5. Device Control Information • The Device Control Information file entity defines 
device characteristics for a particular device. Such information as the kinematic 
attributes of the device, the allowable motion modes for the device, and the 
maximum joint speed allowable for the device are stored in the Device Control 
Information file entity. Device Control Information file entities are created with 
the BUILD program. 

6. Coordinate System Information. Coordinate System Information file entities 
define the attributes of particular ·coordinate systems" that are used to 
represent robot arm positions, tool tip positions constraints, etc. Coordinate 
System Information files are associated with the devices and are defined by the 
user using a text editor. Coordinate System Information file entities are 
associated with Device Control Information file entities using the BUILD 
program. 

7. IGES. IGES file entities are the output from the SIMULATION to IGES geometry 
conversion utility and the input to the IGES to SIMULATION geometry conversion 
utility. IGES file entities can also be created by some CAD modelling systems such 
as UNIGRAPHICS. SIMULATION supports the IGES version 2.0 format. 
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8. Timing Data. A timing file contains the parameters for the timing model of a 
robot. The timing model accounts for acceleration and deceleration during robot 
moves. The timing file is generated by optional Cycle Time Analyzer software, 
which is not a standard part of ROBOTICS software. However, CTA (Cycle Time 
Analyzer) is available at the site in Eindhoven, University of Technology. See also 
section B.2.0.0. Motion Simulation. 

B.1.1.3. Cell entity type description: 

1. Frame. Frames are the major building blocks for SIMULATION cells. A frame has 
the following information associated with it: 

a) One or no parts. 
b) One connection to a father-frame and a matrix that relates the position of 

the frame to its father. 
c) Mayor may not have connection(s) to son frames. 
d) Mayor may not have connection(s) to tpoints. 
e) A colour assigned to its part. 
f ) A colour assigned to its tpoints. 
g) A display tolerance. 

2. Tpoints. Tpoints are the positioning entities in a SIMULATION cell. A tpoint is a 
coordinate system that fully defines six degrees of freedom in space. 

3. Connection Tree. The connection tree reveals the connection of the frames to each 
other and to the world frame. See section B.l.3.0. for more details. 

B.1.2.0. The SIMULATION User and System Libraries 

SIMULATION file entities may reside in either one or more SIMULATION user libraries or in 
the SIMULATION system library. 

The allocation of SIMULATION user libraries is dependent on the machine implementation of 
SIMULATION; but in the case of the Eindhoven University of Technology, user libraries are 
physical directories associated with a validated user logon. When one creates a sequence, 
saves a cell or a part, they are stored in ones user library. 

The SIMULATION system library was created when the SIMULATION software was installed. 
All SIMULATION devices installed with SIMULATION and their associated Device Control 
Information, Coordinate System Information and Part file entities are stored in the 
SIMULATION system library. In addition to devices, certain cells and parts provided by 
McDonnell Douglas for its tutorials and installation checkout are also stored in the system 
library. 
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SIMULATION functions that need to access file entities use a "file entity search" hierarchy. 
SIMULATION uses a well-defined set of rules to determine where the file entity exists and 
whether it should be loaded from the user library or the system library. These rules are: 

1. The user library is searched first for the specific file entity. 
2. If the file entity does not exist on the user library, then the system library is 

searched. 
3. If the file entity is not found on the system library, the user is informed that the 

file entity does not exist. 
4. If the file entity exists on both the user and the system libraries, SIMULATION 

will use the file entity from the user library. 

To access file entities from another user library the "Change Search Directory" function is 
available. 

B.l.3.0. The Connection Tree 

The concept of a connection tree is useful in describing and communicating information about 
the frames in a cell and their connectivity relationships. 

When a frame is connected to another frame, the connected frame is called a "son" frame, and 
the frame that the son is connected to is called the frame's "father". 

Connectivity relationships represented by connection trees follow certain rules: 
1 . Only the WORLD frame has no father. 
2. A frame can have any number of sons. 
3. When a frame moves, all descendants of that frame move. 
4. When a frame moves, no ancestors of that frame move. 

Tpoints have connectivity relationships to frame that can also be represented in a connection 
tree, but tpoints follow slightly different connectivity rules: 

A tpoint can have no sons frames or tpoints; in other words. a tpoint can only be a 
"leaf" in a connection tree. 
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The SIMULATION function "Display Connection Tree", will display the connection tree for the 
current working cell. A textual method is used to represent the connection tree, indentation 
is used to illustrate connectivity relationships. See figure B.1 for an example. 

o WORLD:AXIS 
1 KUKAWPAOO:KUKAOO 
2 KUKAWPA01:KUKA01 
3 KUKAWPA02:KUKA02 
4 KUKAWPA03:KUKA03 
5 KUKAWPA04:KUKA04 
6 KUKAWPA05:KUKA05 
7 KU KAWPA06: KUKA06 
1 MANWPAO:MANXZXOO 
2 MANWPA1:MANXZX01 
3 MANWPA2:MANXZX02 
4 MANWPA3: 

Figure B.1: An example of a connection tree. 
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During SIMULATION interactive and sequence "Goto" and "Move Frame" functions, the 
SIMULATION software is controlling the simulation of motion that appears on the graphics 
display. The simulator determines how often new positions of the robot arms and moving 
workpieces are computed and how often these new positions are displayed. The parameter that 
determines how often new positions are recomputed is called the "simulation interval". The 
parameter that determines how often new positions are displayed is call.ed the "display 
interval". By default. both the simulation interval and display interval parameters are set to 
1 second. 

The amount of time required to display N arm positions is dependent on many factors. It is 
dependent on the simulation interval, the display interval, the load on the computer, and it is 
dependent on how many robots and moving frames are being displayed. 
The display time interval is not a real time interval. It is true, however, that the smaller the 
display interval and or the simulation interval, the slower the motion animation will appear. 
If the display interval is set lower than the simulation interval, the simulation interval is 
automatically reduced to be equal to the display interval. If the display interval is set higher 
than the simulation interval, the simulation interval remains unchanged. 
The simulation interval can be changed with the "Set Simulation Interval" function; The 
display interval can be changed with the "Set display Interval" function. 
Both intervals will be affected by the "Faster" and "Slower" functions. The "Faster" button 
will have the effect of doubling both intervals, the "Slower" button will halve both the 
simulation and display interval. 

If real-time synchronization is on, then the time SIMULATION takes to Simulate robot motion 
more closely approximates the actual real time for that motion. How close the 
approximations is depends on whether a timing file (created by the Cycle Time Analyzer 
software) is being used to compute the cycle times for the robot motion. 
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In addition to the graphical data representing the cell components, the monitor also has a 
maximum of seven informational displays relating to the cell simulation. 
Following are these seven informational displays: 

1 . The "MENU" Display 
2. The "MOVE TEXT" display 
3. The "COLOUR PARTfTPOINT'display 
4. The "STOPWATCH" display 
5. The "SEQUENCE" Display 
6. The "DIALS" Display 
7. The "JOINTS" Display 

Most of these informational displays may be optionally removed from the monitor with the 
"Blank Text" function and can be redisplayed with the "Unblank Text" function. 

B.3.1.0. The "MENU" display 

Through the "MENU" display SIMULATION communicates with the user, the user is 
confronted with a menu which either lets him execute a function or select another menu. 
During execution of a function the user is informed of the status of that SIMULATION function 
through the menu display. For more details see the Using SIMULATION menus section, section 
B.4.0.0. 

8.3.2.0. The "MOVE TEXT" display. 

The "MOVE TEXT" display is used to indicate the position of a frame or tpoint during a "Move 
Frame" or "Move Tpoint" function. The display illustrates the position of the moving frame 
or tpoint with respect to the "father" frame of the frame or tpoint. The translational 
information is the distance the moving frame is from its father, the rotational information 
consists of the angels in degrees that the frame is rotated with respect to its father. 
The "Set Distance Units" function allows one to work in either millimeters or inches. The 
current distance unit is displayed to the right of the "TRANSLATION" header, no units 
displayed indicates inch units. 

8.3.3.0. The "COLOLIR PARTfTPOINT' display 

The "COLOUR PARTfTPOINT" display is displayed if the function "COLOUR PARTfTPOINTS" is 
invoke, it lets the user select the colour for a frame, or the tpoints connected to a frame. A 
frame may have only one colour, the tpoints connected to a frame have only one colour. The 
default colour is White. 

8.3.4.0. The "STOPWATCH" display 

The "STOPWATCH" displays the estimate cycle time that the SIMULATION simulator computes 
for a series of SIMULATION robot motion commands and sequence Move Frame commands. The 
SIMULATION commands that can affect the stopwatch value are interactive. The stopwatch 
units are minutes to the left of the If:", and seconds to the right of the ":". 
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B.3.5.0. The "SEQUENCE" display 
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The "Sequence" display is used to display the current sequences. See the "Sequence and 
sequence editing" section (B.5.0.0.) for more details. 

B.3.6.0. The "DIALS" display 

The "DIALS" display, displays the functions the HP-9000 dials have at the current state in 
the program. 

B.3.7.0. The "JOINTS" display 

During robot motion, the "JOINTS" display gives a continuous readout of the state of the joint 
values for each of the devices in the cell. The limit on the number of devices which may be 
displayed is a function of the joint display mode and the number of joints in the devices. The 
state of a joint is a percentage that represents how far the joint is from its limit. If a joint 
exceeds its limit, its reading will exceed 100% by the corresponding amount. The joint 
display will indicate a joint limit error by placing the character "j" next to the percentage of 
the joint with the error. 
The Joints display will also signal the user when a joint velocity limit has been exceeded. If a 
joint exceeds its maximum velocity, the character "v" will be displayed next to the 
percentage of the corresponding joint. The joint velocity checking may be turned off with the 
"Device Joint Velocity Check On/Off" function. 
In addition to the current state of the joint values, the joints display has a second column of 
information that displays the maximum values for the joints since the last "Reset Joint Data" 
function was executed. 

The joints display will indicate the current active device. An arrow (-» will point to the 
active device. 

The current state of alignment of the active device with respect to the last commanded goto is 
also represented on the JOINTS display. The state of alignment is at the end of the joints 
display and will be blank if the device is aligned with the goto tpoint. The alignment state will 
say "NOT ALIGNED" otherwise. The alignment state reflects the state of alignment at the end of 
a goto tpoint. The alignment state will be blank while a goto tpoint is in progress unless the 
device cannot follow the prescribed path. 

If a device passes through a singularity position, the joint display will read "SINGULARITY". 
A singularity is a position with which the device can align with an infinite number of joint 
solutions. Because all robot controllers treat these cases differently, singularities should be 
avoided if possible. If it is not possible to avoid a singularities, the user should take extreme 
caution. 

The SIMULATION "Set Joint Display Mode" function is used to change the type of information 
displayed in the joints display. In addition to displaying only joint percentages, location 
values may be displayed along with the percentages. These locations values may be joint 
angels, cartesian coordinates, or some other device specific values. 
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The Joints display may also be set to only display the "worst" current joint angle percentage 
and the "worst" maximum jOint angle percentage. This abbreviated display should be used 
when the joint display of several devices is needed or when the animation rate is to be 
maximized. 
The time needed to update a full joints display is NOT negligible, especially if there is more 
than one device in the cell. If a high animation rate is essential, the user should consider 
turning off the joints display. This may be done either with the "Set Devices Monitored" 
function, or the "Blank" function. 
The joints display may also be used to show the value of any user defined ports on a 
device.The name of the port along with its current value is shown at the end of the joints 
display. 
The position and layout of some of the most used information windows can be found in the 
photo underneath, taken during a typical working session. 

Photo B.1: A typical working session of SIMULATION. 
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This section explains how to use the SIMULATION hierarchical menu system to select the 
SIMULATION functions one wants to execute, and how to enter function parameters. 

8.4.1.0. SIMULATION Menu Types 

SIMULATION uses a hierarchical menu system. This means that as one chooses menu options, 
one is traversing a hierarchy of more and more specific menu options until one has hopefully 
reached the desired SIMULATION function. When all the parameters for the SIMULATION 
function are entered, the function will be executed and one will be able to see the result. 
There are several types of SIMULATION menus. The first type one encounters is a so-called 
"choose 1" menu, because one may only choose one option out of a number of options, the 
Main Menu is an example of such a menu. See figure B.2 for an example of a "choose 1" menu. 

* * * * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * • * * .. .. 
.. Main Menu .. 
.. 1 Cell Editing .. 
.. 2 Device Motion Control .. 
.. 3 Move FramelTpoint .. 
.. 4 I/O and variables .. 
.. 5 Branching and Conditional Execution .. 
.. 6 View and Display Control .. 7 Sequence Editing and Control .. 
.. 8 Dimensional Analysis .. 
'" 9 COllision Detection .. 
.. 1 0 File Management .. 
.. 1 1 Time Control .. 
* 12 File CelllTerminate .. 
* .. 
* * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * 

Figure B.2: The main menu. 

A second type of menu is a "data entry" menu, a "data entry" menu is distinguished from a 
choose 1 menu by the equal (=) signs one sees behind the menu items. The Merge Cell menu 
is an example of a data entry menu. See figure B.3 for an example of a "data entry" menu. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * .. 
Merge Cell .. 1> Cell Name = .. 2 Father Frame = 

TEMP 
WORLD 

.. 

.. 

.. 

.. 

.. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Figure B.3: The Merge Cell Menu. 
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Another type of SIMULATION menu is the "choose n" menu. This kind of menu allows one to 
choose multiple items from the menu instead of just one. The "List" option under the File 
Management function uses a menu of the choose n type. See figure B.4 for an example of a 
"choose n" menu. 

* .. * * * « * • .. '* * * '* '* .. * '* '* * '* « * * .. '* * .. '* .. * * * '* .. * * * 
,. .. 
.. List .. 
,. 

Select Type .. 
* 1> Cell * .. 2 Device .. 
.. 3> Part .. 
.. 4> Sequences 

,. 
.. 5 IGES * .. 6 Device Control * 
.. 7 All .. 
.. ,. 

'* ... **** ** **** .. *** **"** * .... '* ** ** ** ** ** ** 

Figure B.4: The list menu. 

B.4.2.0. The Function Buttons 

On the function keyboard there is a number of buttons which perform a special function in 
SIMULATION, these button are: 

1) View Control 
2) Faster 
3) Slower 
4) Interrupt/Resume 
5 ) Single Step 
6 ) Entry Complete 
7 ) Reject 
8) Terminate Operation 

The "View Control" button allows access to the same menus as the main menu item "View 
Control". 

The "Faster" button is used to multiply the display rate and simulation rate by two. The 
display and simulation intervals control how often the position of robot arms and frames are 
updated on the graphics monitor during motion Simulation. 

The "Slower" button has the effect of dividing the display rate and simulation interval by two. 
See section B.2.0.0. for a more thorough description of the simulation interval and display 
interval parameters. . 

The "Interrupt/Resume" button is used after initiating sequence execution with the "Run 
Sequence". "Edit Sequence", or "Call Sequence" functions to start (Resume) sequence 
execution. Off course it is also used to interrupt the sequence which is executing. 
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The "Single Step" button is used to execute sequence statements one at the time. This is 
especially used when running sequences for the first time making it easy to trace any, if any, 
mistakes in the sequence being executed. 

The "Entry Complete" button is used to indicate the end of a parameter entry. This button will 
only be displayed (and thus functional) when it has a meaning for the function being 
executed. 

The "Reject" button is used for two purposes: to go back to the previous menu or to cancel the 
effect of an action just taken. The "Reject" button will perform one or the other, or both of 
these action, depending on the context of the function. 

The "Terminate Operation" button also has two meanings. If one is in the middle of entering 
parameters for a function and has decided one does not want to execute the function after all, 
pressing the "Terminate Operation" button will exit the function completely without 
executing the function at all. 
Some functions allow one to execute the function over and over again with different 
parameters until one presses the "Terminate Operation" button to exit the function. 
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A SIMULATION sequence is a stored series of SIMULATION functions that may be played back 
to simulate a robotic workcell process. Most interactive SIMULATION functions have a 
corresponding sequence statement. See appendix E for a list of all the valid sequence 
statements. 
During sequence editing, whenever a SIMULATION function is successfully executed, a 
sequence statement is generated for that function and is written to the sequence output 
window. The user may see the statements as they are generated in the sequence output 
window. When a sequence editing session is completed, the contents of the sequence output 
window may be saved in the user database and later "played back" with the "Run Sequence" 
function. 
Sequences may be used effectively during cell layout to create a workcell process simulation 
that may be replayed for each new trial layout. When the cell layout is complete, the 
sequence can be used as an input file to the COMMAND module to generate native mode robot 
programs for those robot languages that are supported by COMMAND. 
The sequence display window contains information about the current sequence being edited 
with the "Edit Sequence" function or played back with the "Run Sequence" or "Call Sequence" 
functions. Section B.5.1.0. "The Sequence Display Window", describes the information 
presented in the display window in some detail for editing and running sequences. Section 
B.5.2.1. describes how the display window is used to monitor the execution of parallel 
sequences. 

B.5.1.0. The Sequence Display Window 

The sequence display window is used to display the sequence statements from the sequence 
currently being edited, run, or called, and to give certain information about the state of 
sequence execution. The sequence window is located at the bottom of the graphics screen, and 
may be displayed with the "Display Sequence On/Off" function or automatically displayed 
when sequence editing is activated. 
The sequence display window is composed of three parts: 

1. The sequence information line 
2. The sequence output window 
3. The sequence input Window 

The top line of a sequence window is the sequence information line. The output window 
appears immediately below, followed by the input window. A line in the middle of the 
sequence display window divides the output window from the input window. 
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The sequence information line contains information reflecting the state of sequence execution 
and or sequence editing. This information is displayed in fields separated by colons (:). 
Following is a description of these fields from left to right: 

1 . Sequence execution state. The sequence execution state indicates whether sequence 
execution is active and, if sequence execution is active, whether a sequence is 
being edited or just executed. The execution state may be: 
a) "No Active sequence" 
b) "RUN". A sequence is active and has been executed with the "Run Sequence" 

function. 
c) "EDIT". A sequence is active and has been activated with the "Edit Sequence" 

function. 
d ) "CALL". A sequence is active and has been executed with the "Call Sequence" 

function. 
2. Primary sequence name. When initiating sequence execution, the first sequence 

that is specified on a "Run Sequence" or on a "Edit Sequence" function is the 
primary sequence. Any other sequence executed on a "Run Sequence" is called a 
secondary sequence. 

3. Sequence stack depth. Every time a sequence is run without terminating execution 
of the previous sequence, the new sequence is initiated as the "active sequence" 
and the previous sequence is saved onto a sequence stack. The number of sequences 
on the stack is the sequence stack depth. When one creates a brand new sequence 
with the "Edit Sequence" function, there will be no sequence on the stack because 
all the sequence statement will be added by the execution of interactive functions. 

4. Source of sequence statements added to the output sequence during sequence 
editing. There may be three sources of sequence statements added to a sequence: 
a) "User Action". User inserted SIMULATION commands 
b) "Paste Buffer". The current contents of the paste buffer. During sequence 

editing cut and paste functions are supported 
c) "[sequence name]". The sequence that is at the top of the sequence stack. 

5, The state of the sequence execution. If sequence statements are being executed 
from the active sequence, the following two conditions are possible: 
a) "Running". The user pressed the "Interrupt/Resume" button and the 

sequence is being executed. 
b) "Single Step". The user pressed the "Single Step" button. 
If sequence execution is interrupted, the following three conditions are possible: 
a) "Sequence Stack Empty" 
b) "Paste Buffer Interrupted" 
c) "[sequence] Interrupted" 

6. The mode of sequence editing. This field indicates which of the sequence editing 
functions is active: 
a) "Insert". 
b) "Delete", 
c) "Cut", 

7 , The current "find" string. This field contains the last string the user specified on 
the "Find" function. 

B.16 



Robotics 

B.5.1.2. The sequence input window: 

Hein-Jan van Veld hoven 
10: 221176 

The sequence input window displays the sequence statements that are to be executed when the 
user presses the "Interrupt/Resume" or "Single Step" buttons. 

B.5.1.3. The sequence output window: 

The sequence output window has a different meaning depending on the state of sequence 
execution: Edit or Run. 
In the "Run" mode, the sequence statements are scrolled from the sequence input window to 
the sequence output window as soon as they are executed. No sequence statements from a 
"Called" sequence ever occur in the sequence output window. 
In the "Edit" mode, only those sequence statements added to the sequence are scrolled to the 
sequence output window. These sequence statements may come from the active sequence, from 
the Paste Buffer, or as a result of the user executing interactive SIMULATION functions. 

B.5.2.0. Parallel Sequences 

Parallelism provides a general simulation mechanism for showing more than one robot or 
frame doing independent motion on the screen. For example, two robots can be shown spot 
welding the two sides of a car body simultaneously. 
The low level unit of parallelism is the sequence. Two or more sequences can execute in 
parallel, but every record within a particular sequence is executed sequentially. 
In addition, functions in the 1/0 and Variables and in the Conditional Execution menus can 
provide signalling between sequences within a parallel sequence. 
Parallelism is a useful Simulation tool for: 

a) Cycle time determination 
b) Visualization of a process (for instance two synchronised robots) 
c ) Visual collision detection 

B.5.2.1. Sequence display window for parallelism: 

If the sequence window is on, the input window is dedicated to displaying the records of the 
sequences being executed in parallel. Thus, any data lines residing in the input window are 
erased before the Call Sequence function is executed. These lines will be restored after the 
Call Sequence has completed. 
Two lines are dedicated for each sequence that is executing in parallel. If numerous sequences 
are executing in parallel, the input window size may need enlarging. The two-line window 
displays the sequence name, the sequence file line number, and the sequence record that is 
being executed, or is about to be executed, for that sequence. 
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1 . Because of the enormous coding complexity and confusion to the user, editing a 
parallel sequence is not allowed. All sequences must be edited one at the time 
using the normal editing procedures and function as they are proscribed by 
SIMULATION. The sequences can of course be executed in parallel. It is possible 
the user uses a normal text editor and in that way edits the sequences in a 
parallel session. 

2. A parallel sequence can, however, be interrupted to permit one to issue user 
level commands before restarting the parallel sequence execution. 

3. A sequence can effect the execution of another sequence. This is both a blessing 
and a curse. The blessing lies in the freedom and extra capability afforded by 
letting, for example. a sequence change the feed-rate of a robot that is being 
controlled by another sequence. The curse is that one can get into tremendous 
trouble with the extra freedom one is given. The problem here is the user not the 
software. 

4. The execution of the Single Step function with regard to parallel sequences is 
similar to that for sequentially executing sequences. 
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In most cases the SIMULATION user will pick tpoints, the robot will move to the selected 
tpoint, and the joint display will indicate whether final and intermediate positions can be 
reached. 
However, some applications require that the SIMULATION users understands HOW the robot 
aligns with the working tpoint and the goto tpoint. Also how the robot prorates the working 
tpoint orientation during straight line or circular move is important. The description below 
indicates the algorithm that SIMULATION uses. 

Terminology varies greatly in robotics. 
Here, "wrist" refers generally to the last two or three joints of a robot, they are generally 
used in achieving a prerequired orientation. 
"Arm" refers generally to the first three joints, may they be prismatic or rotational, 
starting at the base of the robot. These first three joints are generally used in reaching a 
certain position. 

8.6.1.0. Simple Alignment 

In going to a tpoint,SIMULATION always tries to align the orientation and the roll vectors of 
the goto and working tpoint first. It is assumed that the arm will be able to align the x,y,z, 
coordinates of the goto and the working tpoint. Of course some of the goto tpoints require that 
the wrist of the robot bends in a peculiar way in order to align orientation and roll vectors. 
The resulting wrist configuration may then prevent the arm from being able to align x,y,z, 
coordinates without disconnecting the links in the robot. 

8.6.2.0. Straight Line Motion 

During straight line motion, the tool point of the robot is constrained to follow a straight line 
with respect to the robot base while the working tpoint proceeds towards alignment with the 
goto tpoint. 
Only one equation (a straight line) exists for describing the path of the tool point from start 
to the end of the move. Unfortunately, an infinite number of algorithms exist for describing 
how the orientation and roll at the tool point can vary during straight line motion, while still 
keeping the tool point x,y,z, on a line. Not surprisingly, every robot that can do straight line 
motion will use a different (and often proprietary) algorithm for moving the orientation and 
roll to their final values at the goto tpoint. 
The algorithm that SIMULATION uses is as follows. SIMULATION computes where the tool and 
orientation and roll will be at the end of the move. SIMULATION 'knows' where the starting 
values are. Eulers theorem then states that given two coordinate systems with the same 
origin but different axes directions, one of the coordinate systems can be rotated into the 
other by rotating around a line through the origin of both coordinate systems. SIMULATION 
calculates this angle and line before the move starts. The tool axes are rotated about this 
"Euler" line. At the start of the move the rotation change is zero, at the end of the move the 
rotation change has reached the full Euler angle. 

8.19 



Robotics Hein-Jan van Veldhoven 
10: 221176 

This proration algorithm is used for all types of robots. In many cases, the SIMULATION 
algorithm for wrist proration is close to what the real robot controller will do. However, the 
user must be careful, some large discrepancies between the real robot and the simulated 
robot move may occur when very large angular changes in the tool orientation and roll 
vectors occur. For moves with small tool axes rotation, the SIMULATION algorithms 
generally will accurately describe the path of the arm and the wrist. 

B.6.3.0. Joint Interpolation 

During joint interpolated motion, the robot will move all of its joints in such a way that each 
of the joints starts and ends the motion at the same time. The set of joint values that the robot 
moves toward are determined at the beginning of the move. If there is more than one joint 
solution which will cause the robot to align, SIMULATION will attempt to determine one that 
is within the limits of the joints. If the robot was set to be in Automatic Wrist Configuration 
mode in BUILD, then SIMULATION will choose the "best" wrist configuration, i.e. the one 
which will causes the joints to move the smallest angles. 

B.6.4.0. Slew Motion 

Slew motion is very similar to joint interpolated motion. The only difference is that each 
joint will move independently at a constant speed. It will accelerate to its highest speed and 
will continue to travel at this speed until it has to decelerate to reach its destination. Some of 
the joints may complete their motion before others. 

B.6.5.0. Circular Motion 

Circular interpolation causes the tool tpoint of the robot to move in a Circular path. The path 
is formed by three points, the current tool point, an intermediate tpoint, and a destination 
tpoint. 
Circular Interpolation has the same problems as straight line motion There is an infinite 
number of algorithms which could be used to control the tool orientation and roll as it follows 
the circular path. SIMULATION uses the same algorithms as straight line motion for Circular 
interpolation. The Euler angle as described in the previous section is computed between the 
beginning tpoint and the ending tpoint and the orientation is prorated evenly throughout the 
entire move. The orientation of the intermediate tpoint is not taken into consideration. 

B.6.6.0. Velocities and Accelerations 

The Simulated path of a device will use acceleration and velocity information either from a 
Timing file or from the robot DCI file. The robot will accelerate to the constant velocity and 
then decelerate to stop at the end of the move. If the continuous path option is On, the device 
will not decelerate at the end of the move. For either straight line or circular motion the tool 
tpoint will use the tool tpoint speed and tool tpoint acceleration values to define the motion. 
For either joint or slew motion the joints will move according to the joint velocities and 
accelerations. For most robots, the time for acceleration and deceleration may not be visually 
noticeable to the user. If there is no Timing File or there is acceleration data in the DCI file, 
SIMULATION will simulate the motion as if there are infinite accelerations and decelerations 
at the beginning and end of the move. 
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5-axis robots present a special problem. In general a 5-axis robot cannot align position, 
orientation and roll vectors. In fact, 5-axis robots cannot always align even just position and 
orientation vectors. The question for 5-axis moves is not how does a robot reach a given 
tpoint. but how close can the robot reach. 
Just as is the case with a 6-axis robot, SIMULATION tries to align the orientation and roll 
vectors. while assuming that the x.y.z, coordinates of the working tpoint and goto tpoint can 
be aligned exactly. However, in the five axis case SIMULATION will select the wrist position 
that will minimize the misalignment of the orientation and roll vectors of the working tpoint 
and the goto tpoint. Moreover, the orientation vector alignment is weighted much more 
heavily than the roll vector alignment. When two or more of the wrist positions yield 
approximately the same orientation alignment, then the wrist configuration which creates 
the best roll vector alignment is used. 
For the 5-axis robot user, some tips for more effectively using SIMULATION are: 

a) Select the ideal goto tpoint orientation vector first. (Remember that alignment 
may not be possible exactly, but SIMULATION calculates the nearest solution.) 
Then move the roll vector by rotating the goto tpoint about the orientation vector 
to determine the best overall robot position for reaching the desired goto tpoint 
position and orientation. 

b ) Try generating the goto tpoints very crudely by using the Create Tpoint function 
in Goto Joints. Then translate these newly created tpoints to the desired location. 
The robot should be able to align well with the goto orientation. since the 
working/goto tpoint alignment was perfect where the goto tpoint was created. Of 
course the translated goto tpoint should be as close as possible its creation 
location. 

B.6.S.0. Devices with no Inverse Kinematics 

Another special class of devices are those which do not have a supported inverse kinematics 
algorithm. Inverse kinematics is the process used by SIMULATION to convert a position and 
orientation (Le. a tpoint) into the joint value of the device. Although SIMULATION will use 
build in algorithms that wili support most robots, it is possible to use BUILD to define 
devices which SIMULATION's inverse kinematic analyzer cannot handler. Build will warn the 
user in the event of such a situation. Devices without inverse kinematics may be simulated in 
SIMULATION, but only in a very limited way. 
A device without inverse kinematics cannot be directed to move to a tpoint. For this reason 
the following commands will not be supported in such a situation: Goto Tpoint. Goto Position. 
Goto Circle. and Define Dependent Device. This leaves only Goto Joints and Goto Home as 
supported motion specifiers. There is, however, a restriction on their use. These commands 
must only be used with Joint Interpolated or Slew motion. Straight Line motion requires 
inverse kinematics and therefore it is not supported. Coordinated Motion has the same 
restrictions as single device motion, only Goto Joints or Goto Home in Joint Interpolated or 
Slew motion is supported. If the user attempts to make an unsupported move, an error 
message will be displayed. 
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There are times when there will be problems with the alignment of a device with its goto 
tpoint. These cases will only occur when using commands such as Goto Tpoint, Goto Circle and 
Goto Position. These commands instruct the device to go to a certain position and orientation 
in space. Errors occur when the device cannot align with the desired tpoint or path. In 
commands like Goto Joint Position or Goto Home, the device is instructed to go to a predefined 
set of joint values, so the alignment will not cause any trouble. 
The Joints Display will signal an alignment error if the device could not align with the goto 
tpoint at the end of a move or could not follow the desired path during the move. The most 
common example of this problem is when the goto tpoint is to far away from the base of the 
device. In such a case th~ device will generally reach toward the tpoint and place the 
orientation of its working tpoint to be parallel with the orientation of the goto tpoint. A 
second example is a device which has less than 6 degrees of freedom, and therefore cannot 
align with the goto tpoint. A third example is when the beginning tpoint and ending tpoint 
yield good alignment, but a straight line path between them may pass through an area where 
alignment is not possible. 
Another common alignment problem is caused when a device is instructed to align with a 
singularity position. This means that there is a infinite number of kinematic solutions which 
will cause alignment with the goto tpoint. In many cases this is caused when two or more 
joints become parallel at such a location. Because all robot controllers use different 
heuristics to select a joint solution, there is the possibility of inaccurate simulation. For 
This reason singularities should be avoided if possible. The joints display will indicate 
whenever a device is at or near a singularity. 
If a device is performing either straight line or circular motion, the speed setting 
determines the speed at which the device will follow this path. It is possible that in 
attempting such a move, one or more of the joints of the device would have to move faster 
than their maximum joint speed. SIMULATION will warn the user of this situation by placing 
the character "v" behind the affected jOint. in the joints display. Because all robot 
controllers handle such a cause differently the user should be extremely cautious in perform 
these moves. 
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Simple Kinematic Device. A simple kinematic device is any device which may be created with 
BUILD. The device must be open looped (Le. one fixed end, and one free end). be made up of 
revolute and or prismatic joints, have no more than six joints. Each simple device is 
described in its own Device Control Information file. 

Compound Device. A compound device is a general term which describes a device composed of 
two or more simple kinematic devices. Each compound device is a named entity. 

Sub-Device. A sub Device is a simple kinematic device which is a part of a compound device. 

Coordinated Motion Device. A coordinated motion device is a compound device composed of two 
or more sub devices, which coordinate in such a way that their motions begin and end at the 
same time. 

Dependent Motion Device. A dependent motion device is a compound device which specifies 
that the joint solution for one device is dependent on the joint solution of another device. 
Dependent motion devices allow for the simulation of closed loop mechanisms and the driving 
linkages of robots. 

B.7.1.0. Coordinated Motion Devices 

Coordinated motion devices allow for the simulation and programming of more than one 
device using simultaneous motion. Many robot controllers have the capability to control not 
only the axes of the robot in question, but also a number of external axes.These other axes 
might be used to control the robot's position on a track, a positioning table which is used in 
conjunction with the robot, or perhaps even to control more than six axes of the robot arm. 
The real world devices must be definable as separate simple kinematic devices as modeled in 
SIMULATION. Each device is separated to the extent that each device has its own kinematic 
description (.DCI-file) and has separate motion parameters. (Speed, motion mode, goto 
tpoint, etc). 
The define coordinated motion device command is used to create the list of sub-devices of 
which the coordinated motion device will consist. The coordinate motion device may be 
thought of as a logical definition of the controller, where the sub-devices would normally 
represent the robot and its external axes. 
The coordinated goto command is used to cause all of the sub-devices of the coordinated motion 
device to move. The motion of each sub-device will be prorated so that each sub-device will 
start and stop at the same time. 
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A dependent moti~n device is one whose joint solution is always dependent on the position of 
some other device in the cell. This capability allows for the simulation of closed loop 
mechanisms an the driving linkages of robots. 
A dependent motion device is controlled by giving it a working tpoint and a goto tpoint by 
using the Define Dependent Device command. The device will work in a manner similar to 
that of the Tracking option. The working tpoint will always attempt to align with the goto 
tpoint. Once a dependent motion device has been defined, it may not be made the active device. 
The user has no control over some of the motion parameters such as speed and motion mode. 
This restriction occurs because the motion of the device is dependent on that of some other 
device. 
The Disable Dependent Motion Device command is used to convert a dependent motion device 
back into a "normal" device. 
It a dependent motion compound device is defined in the workcell when the save cell function 
is executed, the definition for that device will be saved. At a later time when the cell is 
merged, the compound device will be retained. 
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Within SIMULATION there is a possibility of simulating simple sensors and their effect on 
the robots programming. A simple sensor is a device that returns a single value for a sensed 
property such as distance, proximity, or pressure. 
Five simple sensors are provided with SIMULATION. Some sensors return values derived 
directly from geometric properties, some others just return "random" values within the 
legal limits of the sensor. The five sensor provided are: 

1 . A sensor for measuring distance. that returns the distance from the end of the 
sensor to the nearest tpoint. 

2. A proximity sensor that returns a TRUE if an tpoint is sensed within 25.4 
millimeters (one inch) of the sensor. 

3. A proximity sensor that returns a TRUE if an tpoint is sensed within one meter of 
the sensor. 

4. A pressure sensor which returns a random number. 
5. A temperature probe which returns a random number. 

If so desired the user can override the automatically generated sensor values by putting the 
sensor's port into "Manual Receive Mode". 
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Appendix C: COMMAND: A functional overview. 

C.1.0.0. COMMAND File types 
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There are seven major file types used and created by COMMAND, namely: 
1. The Cell file. (.CEl extension on VAX and HP) The cell file contains all the 

graphical information related to the SIMULATION cell. The cell file is created 
by SIMULATION. 

2. The Sequence file. (.SEQ extension on VAX. and HP) The sequence file is created 
by using SIMULATION. This file contains a sequence of SIMULATION commands 
which together with the cel file simulate a certain cell. 

3. The User file. (.USR extension on V AX. and HP) The user file is created by the 
user using a normal UNIX text editor such as the vi-editor. This file serves as 
the base for sequence and program processing as well as a source for 
commands native to a particular robot controller. 

4. The COMMAND Source Program file. (.CSP extension on VAX. and HP) The 
COMMAND source program file contains both robot motion and logic 
instructions in a robot independent language. This file is created and used by 
COMMAND. 

5. The Source Robot Program file. (.SRC extension on VAX. and HP) This file 
contains all the robot direct commands in the robot's native language. If a 
robot does not have a native language, this file will contain a language 
emulating the teach commands. 

6. The Robot Program File. (.rfile extension on VAX and HP) This file contains 
the robot direct commands and can be transported to the robot controller 
either by means of floppy disk or tape, or by means of a network link. 

7. The Error Message File. (.L1S extension on VAX. and HP) The error message 
file contains a list of errors which occurred during translation. 

C.2 
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Program Flow Simulation 

Figure 1 shows the flow of data 
from SIMULATION through 
COMMAND. The first step in 
creating a complete robot 
program requires the creation 
of a cell and sequence. After that 
a User file must be generated 
containing the appropriate 
sequence access commands and 
robot specific instructions. Once 
these steps have been completed 
the user enters the COMMAN D 
module and is prompted for the 
names of the Cell and User files. 
As processing begins COMMAND 
expands the sequence access 
commands in order to extract 
the specified SIMULATION 
sequence statements. These 
sequence statements are 
translated into robot 
independent commands, and 
interspersed with robot logic 
instructions as specified in the 
user file. This results in a 
COMMAND source program file 
containing both robot motion and 
logic instructions. During this 
process, COMMAND internally 
runs the SIMULATION sequences 
referenced to by the user file 
and calculates robot positions 
based on the SIMULATION 
computations. The command 
source program output from the 
COMMAND sequence processing 
stage is then translated by a 
specific Robot Program 
Translator. The Robot Program 
Translator will produce a 
complete robot program in the 
native language of the robot. 

.USR 
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File 

.LIS 

Error 
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File 
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The user may expect to receive three or four types of output (depending on the selected 
robot) from the translation. First, an error message file will be generated if any errors 
are found. If COMMAND executes without error a robot program source file and robot 
program output file may be created. On robots that execute their own Hbuilt-in" source 
language, these two files may be identical. However, on robots that do not have their own 
language, these two files may be considerably different. The source file for non language 
driven robots will contain a language emulating the teach commands. The output file will 
contain the binary dat formatted for a particular robot's controller. 
To complete the process, the COMMAND module also provides the user with the capability 
of transmitting the robot program directly to the robot·controller or outputting it to an 
appropriate media (Le. floppy disk or tape cassette). The means and possibilities of 
communication vary with each translator. 
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C.3.0.0. The user file. 
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As the user file is the most important file to command, it will be explored a little 
further. The user file may contain any of the following types of commands: 

1 . Operation macro. The operational macros allow a user to define robot language 
commands that will be executed at specific positions identified by a 
SIMULATION sequence. 

2. Sequence Mapping Commands. The sequence mapping commands allow a user to 
map sequence parameters onto the robot controller's parameters 

3. Sequence Access Commands. The sequence access commands alow a user to 
access and process sequences in a particular manner. 

4. Robot Language Commands. Any native robot language command may be input 
to this file for execution on the robot. 

C.3.1.0 Operation Macros 

Operation macros are most often used to execute logic and 110 related functions on the 
robot controller. The most common of these include: 

1 . Opening and closing grippers. 
2 . Turning physical sensors on and off. 
3. Sending and receiving signals from peripheral equipment. 

C.3.2.0. Sequence Mapping Commands 

The parameters of the sequence functions, variables, ports, and labels must be mapped to 
the robot controller for these functions to operate correctly. The mapping for these 
functions will take place automatically unless the user defines the mapping. The resulting 
translation will not contain references to the sequence parameters, but to the mapping 
(robot controller) parameters. 

C.3.2.1. Automatic Mapping: 

A default list of parameter names for variables, ports, and labels have been defined for 
each robot translator. As a function is encountered in the sequence during execution of 
COMMAND, the next available parameter name is pulled from the default list unless, the 
sequence parameter name is the same as a mapping name and it has not been assigned, 
then that assignment is made. 

C.3.3.a. Sequence Access Commands 

Sequence access commands allow the user to include portions of a sequence, an entire 
sequence, or multiple sequences in a robot program. When a sequence access command is 
encountered during processing, the appropriate sequence file is opened and becomes 
known as the active sequence. The processing position in the active sequence is maintained 
by a sequence pointer. Whenever this pointer is advanced, the sequence commands are 
processed to update the state of the cell model. Sequence processing takes place in a 
forward direction only. Therefore, the pointer may be advanced through the sequence but 
not "backed up" through commands already processed. 
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C.3.4.0. Robot Language Commands 
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In a user file it is possible to insert a number of robot direct commands, which can then 
perform certain functions which might not be incorporated into the SIMULATION 
sequence commands. This option is often used inside the operation macros. (See section 
C.3.1.0. for more details). 
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Appendix D: SIMULATION sequence commands to SRel-commands. 

0.1.0.0. Syntax Rules 

lower case indicate syntatic categories 
::= 'to be written as" symbol 

< > 

[ 1 
( ) 
{ } .. .. 

vertical bar to separate choices 
choose 1 of the enclosed items 
repeat the enclosed items 0 or more times 
repeat the enclosed items 1 or more times 
optional items 
the item appears exactly as shown 

OTHER ITEMS terminal symbols 
NRS No Resulting Statement 

Frequently Used items: 

<alpha> 
<digit> 
<name> 
<device> 
<frame name> 
<frame> 
<framepair> 
<integer> 
<operation> 
<part> 
<port> 
<real> 
<tpointname> 
<tpoint> 
<units> 
<variable> 

::=<AIBICI .. ·IXIYIZlalblcl···lxlylz> 
: :=<0111213141516171819> 
::=<alpha> [<alpha>l<digit>] -- maximum of nine characters 
::=<name> 
::=<name> 
::=«framename>l<variable» 
::=<frame>. <frame> 
: :=any integer 
::=<name> 
::=<name> 
::=<name> 
::=any real number 
::=<name> 
: :=«frame>. <tpointname>l<variable» 
::=<"(IN)"I"MM"> 
::=<name> 
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D.2.0.0. Program sequence instructions 

SIMULATION command: 

JUMP_TO: <label>; 

DELAY: <real>; 

WAIT_UNTIL: <expression>; 

IF <expression> THEN JUMP_TO: <label>; 

If <expression> THE EXIT _CURRENT_SEQUENCE:; 

PAUSE:; 

D.3 
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SReL-command (german): 

SFG HP 
KJ 
vz. 
UP 
'Z:( 

WRT 

WRT E H/L (Wait until input) 

SAW (Under conditions) 

SAW (Under conditions) 

HLT U\J 
Unconditional Halt 

HLT UN 
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0.3.0.0. Movement instructions 

ACTIVE_DEVICE: <device>; 

SET _DEVlCE_LOCA TlON_REPRESENTATION: <crdsys>; 
possible) 

Hein..Jan van Veldhoven 
10: 221176 

Initialize instruction set. 

N.R.S. (just one solution 

SET _DEVICE_CONFIGURATION: <configname>; ? ? ? ? 
where: 

<configname>::= any valid configuration string (defined by BUILD) 

SET _DEVICE_MOTION_MODE: 
<STRAIGHTIINTERPOLATEISLEW>; 

SET_DE VICE_SPEED: <units>,<real>; 

WORKING_ TPOINT: <tpoint>; 

FRAME_MAXI MUM_SPEED: <frame>, <real>; 

GOTO_CIRCLE: <tpoint>,<tpoint>,<operation>; 

GOTO_CRD: «real>.)<operation>; 

GOTO _HOME: <operation>; 

GOTO _JOINTS: <units>. <jntval> , <operation>; 

0.4 

L1N/PTP 

1??1 

???? 

(E3 BAN 
ALL 
PO; 

01 

lES BAN 0% 
PTP 0 

lES BAN 1-100% 
PTP 1-9 

WZK 

WZK 

N.R.S.lGES BAN 
ALL 
PO; 

01 

ZR 

LIN 
PTP 

LIN 
PTP 

LIN 
PTP 
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GOTO_POSITION: <frameortpt>,<frameortpt>, LIN 
<INCIABS>, <units>, <posvec>, <rotangs>, <operation>; PTP 

GOTO_TPOINT: <tpoint>,<operation>; LIN 
PTP 

MOVE_ASS: <frameortpt>, <frameortpt>, <frameortpt>, LI N 
<rotvec>, <ratamnt>, <units>. <posvec>; PIP 

where: 
<frameortpt> 
<ratvec> 
<ratamnt> 
<posvec> 

::=«frame>,!<tpoint» 
: :=<real>, <real>. <real> 
::=<real> 
: :=<real>, <real>, <real> 

MOVE_RE L: <frameortpt>, <frameortpt>, <frameortpt>, LI N 
<ratvec>, < rotamnt> ,<units>, <posvec>; PTP 

EXTERNAL_JOINTS_OFF:; 

DEFINE_COORD_MOTJON_DEVICE: 
<crddevice>[,device}; 

COORDINATED_GOTO: 
<crddevice> .«device>, <gotomode> ,)<operation>; 

N.R.S.IZAC 

N.R.S./ZAC AUS 

N.R.S.JZACEINS 

ZAC EINS 
LIZ (linear) 
ZRZ (circle) 

EINS 

PPZ (point-point) 
where: 

<crddevice> 
~anode> 

<gOtp> 
<gojt> 
~> 
<goer> 

~ 

<frameortpt> 
<posvec> 
<rotang> 

::=<name> 
::=«gotp>l<gojt>l<gohm>\<gocr>J<gopo>l<nomv» 
::= TPOINT,<tpoint> 
::=JOINTS,<units>,«real>,) 
::=HOME 
: :=CI RC LE, <tpoint>, <tpoint> 
::=POSITION ,<frameortpt> , <frameortpt>. 
<INCREMENTALIABSOLUTE>, <units> .<posvec>, <rotangs> 
::=«frame>,J<tpoint» 
: :=<real>, <real>, <real> 
::=<real>, <real>, <real> 

0.5 
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0.4.0.0. Text Instructions 

BEGIN_SEGMENT: <segment>; 

; <comment> 

INTERFERENCE_DETECTION:; 

EXAMINE_VARIABLES: <variable>(.variable]; 

END_SEGMENT: <segment>; 

0.6 
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N.R.S. Used by COMMAND 

KOM 

??? 

??? 

N .R.S. (Used by COMMAND) 
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0.5.0.0. Memory, variable and calculation instructions 

SET_VARIABLES: <variable>, <constant>[, <variable>, <constant>]; LAD Px xxx 

DE LETE_ VAR IABLES: <variable>[. variable]; 

CALCULATE: <variable> = <expression>; 

RECEIVE_FROM: {<device>}(,<recvpair»; 
where: 

<recvpair> ::= <port>.<variable> 

SEND_TO: «device>)(, <sendpair>}; 
where: 

<sendpair> ::= <port>,<variable> 

RS 

RS 

ARI (UNDER CONDITIONS) 

LAD Px Axx 

LAD Ax xxx 

ROC: <command>; ROBOT DIRECT COMMAND 

D.7 
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0.6.0.0. SIMULATION instructions with no equivalent SRCL-instruction 
(N.S.A. stands for No Resulting Statement) 

ADVANCE_STOPWATCH: <real>; 

ALlGN_ TPOINTS: <tpoint>, <tpoint>; 

ALLOW_COLLISIONS: <framepair>; 

BLANK_FRAMES: <frame>[,frame]; 

BLANK_PARTS: <frame>[, frame]; 

BLANK_SOLIDS: 
<SPHERESIBOXESIHULLSIALL_SOLI OS>; 

BLANK_SUBTREE: 
<FRAMESITPOINTSIPARTS>.<frame>; 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

BLANK_TEXT: N.R.S. 
<ALLI(STOPWATCHIJOINTSISEQWINDOWIMOVETEXT»; 

BLANK_ TPOINTS: <frame>[,frame]; N.R.S. 

BLANK_UP _TO_WORLD: N.R.S. 
<FRAMESITPOINTSIPARTS>, <frame>; 

BOTTOM_VIEW:; N.R.S. 

CALL_SEQUENCE: <sequence>[, <sequence>]; N.R.S. 

CHANGE_DIRECTORY: <directory>; N.R.S. 

CHANGE_DISPLAY_TOLERANCE: <part>,<reaJ>; N.R.S. 

CLEAR_CELL:; N.R.S. 

COLLISION_DETECTION_METHOD: N.R.S. 
<FIXED_I NTERVALIVELOCITY_DISTANCE_BOUN 0>; 

COLLISION_DETECTION_OFF:; N.R.S. 

COLLISION_DETECTION_ON:; N.R.S. 

~ N.R.S. 
<frame>,<PARTITPOINTS>,<color>,<hue>,<sat>,<int>; 

CONNECT JRAMES: <framepair>; N.R.S. 
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CONNECT_PORTS: {<device>}, <port> .{<device>},<port>; N.R.S. 

CONNECT YORTS_EXTERNAL:(<device», <port>; N.R.S 

CONNECT_TPOINT: <tpoint>,<frame>; N.R.S 

CREATE_FRAME: N.R.S. 
<framename>, <part>, <frame>, <units>, <matrix>; 

where: 
<matrix> 
<xvec> 
<yvec> 
<zvec> 
<pasvec> 

::=<xvec>. <yvec> t <zvec> t <posvec> 
: :=<real>, <real>, <real> 
: :=<real>, <real> I <real> 
: :=<real> t <real> I <real> 
::=<real>, <real> t <real> 

CREATE_TPOINT: 
<frame>, <tpointname>, <un its>. <matrix>; 

DEFINE_DEP _MOTION_DEVICE: 
<device>, <tpoint>, <tpoint>; 

N.R.S. 

N.R.S. 

DEFINE_PORT: N.R.S. 
{<device>},<port>,<REALIINTEGERIBOOLEAN>,<INPUTIOUTPUTIINOUTP>; 

DEFINE_SOLIDS: «frame>[,framellALL_FRAMES>; N.R.S 

DELETE_DEVICE: <device>; N.R.S. 

DELETE_FRAME: <frame>{,frame); N.R.S. 

DELETE_PORT: {<device>}, <port>; N.R.S. 

DELETE_ TPOINT: <tpoint>[,tpoint]; N.R.S. 

DEPTH_CLIPPING_OFF:; N.R.S. 

DEPTH_CUPPING_ON:; N.R.S. 

DISABLEJ)EP _MOTION_DEVICE: <device>; N.R.S. 

DISALLOW_COLLISIONS: N.R.S. 
«framepair>[.framepairlIALL_FRAMES> 

DISCONNECT_FRAMES: <frame>[.frameJ; N.R.S. 

DISCONNECT_PORTS: N.R.S. 
{<device>}. <port> ,{<device>}, <port>; 
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DISPLAY _CONNECTION_TREE:; 

DISPLAY _W1REFRAME_FRAMES:; 

EXTERNAL_PORTS_ON:<message>; 

EXTERNAL_PORTS_OFF:; 

FASTER:; 

FRAME_TO _FRAME: <framepair>; 

FRONT_VIEW:; 

HIDDEN_LlNE_REMOVAL:; 

N.R.S. 

N.R.S 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

Hein-Jan van Veldhoven 
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IF <expression> THE CALL_SEQUENCE: <sequence>[.sequence]; N.R.S. 

JOINT _ALARM_OFF:; N.R.S. 

JOINT_ALARM_ON:; N.R.S. 

JOINT_VELOCITY _CHECK_OFF:; N.R.S. 

JOINT_VELOCITY _CHECK_ON:; N.R.S. 

LEFT _SIDE_VIEW:; N.R.S. 

LIST _FRAMES_ WITH_SOLIDS:; N.R.S. 

MERGE_CEL: <cell>,<frame>; N.R.S. 

MERGE_DEVICE: <device> ,<frame>; N.R.S. 

MOVE_TPOINT _GROUP: <8LENDEDISIMPLE>,<frame>, N.R.S. 
{tpointnamelvariable}, {tpointnamelvariable}, 
{tpointnamelvariable}, <rotvec>, <rotamnt>. <units>, <posvec>; 

PERSPECTIVE_OFF:; N.R.S. 

PERSPECTIVE_ON:; N.R.S 

POL YGOt-CEDGES_OFF:; N.R.S. 

POLYGON_EDGES_ON:; N.R.S. 

REAL_TIME_SYNC_OFF:; N.R.S. 

REAL_TIME_SYNC_ON:; N.R.S. 
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REAR_VIEW:; N.R.S. 

RESET _JOINT_DATA:; N.R.S 

RESET_STOPWATCH:; N.R.S. 

RESTORE_WIRE FRAME_DISP LA V:; N.R.S. 

RIGHT _SIDE_VIEW:; N.R.S. 

SAVE_CEll: <cell>; N.R.S. 

SET_DEVICE-.MONITORED: <device>[,device] N.R.S. 

SET_DISPLAY_INTERVAL: <real>; N.R.S. 

SET_DISTANCE_UNITS: <units>; N.R.S. 

SET_JOINT _DISPLAY: <PERCENTS_ONl YI N.R.S. 
PERCENTSj.ND_VALUESIWORST_JOINT_ONLY> 
{,<PORTSINOPORTS>}; 

SET_RECEIVE_MODE: {<device>},<poft>,<MANUAlIAUTOMATIC>;N.R.S. 

SET _SEND _MODE: {<device>}, <port>, <MANUALIAUTOMATIC>; N.R.S. 

SET_SIMULATION_INTERVAL: <real>; N.R.S. 

SET_TIMING_FILE: <timingfile>; N.R.S. 

SET_TPOINT_DISPLAY_SIZE: <units>,<real>; N.R.S. 

SET_TRACE_ON: <frameortpt>,<frame>,<frame>; N.R.S. 

SET _TRACE_OFF: <frame>,{part}; N.R.S. 

SET_VARIABLES: <variable>, <framename>, <tpointname>; N.R.S. 

SlOWER:; 

SMOOTH_SHADING:; 

STOPWATCH_OFF:; 
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TPOINT_TO_FRAME: <tpoint>,<frame>; 

TPOINT _TO _ TPOINT: <tpoint>, <tpoint>; 

TRIMETRIV _VIEW:; 

UNBLANK_FRAMES: <frame>[,frame]; 

UNBLANK_PARTS: <frame>(.frame]; 

UNBLANK_SOLlDS: 
<SPHERESIBOXESIHULLSIALL_SOLlDS>; 

UN BLANK_SUBTREE: 
<FRAMESITPOINTSIPARTS>. <frame>; 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

N.R.S. 

UNBLANK_TEXT: N.R.S. 
<ALLI(STOPWATCHIJOINTSISEQWINDOWIMOVETEXT»; 

UNBLANK_TPOINTS: <frame>[.frame]; 

UN BLANK_UP _TO_WORLD: 
<FRAMESITPOINTSIPARTS>, <frame>; 

VIEW_CENTER_TPOINT: <frameltpoint>; 

0.12 
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0.7.0.0. Important SRCl-command used when initializing 
(they will have to be generated by command when starting the postprocessing) 

DEF HP define main program 
PO 
VZ 
UP 
zy 

adress 
branch 
subprogram 
cycle 

D.S.O.O. SRCl-commands not incorporated in this mapping 

as conveyer synchronization 
GfF gripper, will probably be set by ROC or at end of movement. 
NOP no operation 
NPK zero-offset correction 
ORI orientation (wrist-rotation during path or at end point.) 
PAU Output to periphery 
ROl remaining loops cancelled 
TV tranfer results of binairy operation 
TXT text 
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Appendix E: SRCL commands. 

E.O.O.O. INDEX 
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E.O.O.O. INDEX .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
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E.4.0.0. Input/Output Memory Instructions ........................ 7 
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Command description: 

E.1.0.0. Program Sequence Instructions 

Definition 
Main Program 
Address 
Branch 
Subprogram 
Cycle 
Sensor Function 
Space Point Data 
Variable Data 
Technology Table 

Jump 
Main Program 
Address 
Branch 
Subprogram 
Cycle 

Sensor Function 
01 
Off 

Wait 
Time 
Input 

Conditional 
Greater 
Less Than 
Equal 
Not Equal To 
True 
False 

Halt 
Unconditional 
Conditional 

Remaining Loops Cancel 

Interrupt 
01 
Off 
Execute 
Not Execute 
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English Command: German Command: 

DEF DEF 
MP HP 
PD PD 
BR VZ 
SP UP 
or 'Z:( 

SF SF 
SO RD 
VI) VI) 

TET TEC 

.. IMP SR3 
MP HP 
PD PD 
BR VZ 
SP UP 
or 'Z:( 

SF SF 
OJ EIN 
(ff" AUS 

WAI WRT 
T Z 
I E 

a:N BAW 
CR CR 
LE KL 
EO G. 
NE U3 
T W 
F F 

HLT HLT 
UN UN 
<D BE 

RLC RDL 

INT UNT 
(}J EIN 
(ff" AUS 
EX SEA 
NX NBE 
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E.2.0.0. Movement Instructions 

Linear Movement LIN 
Positions 
Orientations 

Auxiliary Axes NiX 
01 
Off 

Linear Aux Axis Move LIN 
Positions 
Orientations 
AuxAxes 

Circular Movement 
Positions Point 1 
Positions Poi nt 2 
Orientations 

Circular Aux Axes Move CIA 
Positions Point 1 
Positions Point 2 
Orientations 
AuxAxes 

Point To Point Movement PTP 
Positions 
Orientations 

Point To Point Aux Axes PPA 
Positions 
Orientations 
AuxAxes 

Velocity VEL 
Linear 
All Axes 
Specific Axis 
Override 
One Additional Axis 
All Additional Axes 

Acceleration Kr, 

Linear Motion 
All Axes 
Specific Axis 

E.4 
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LIN 
XYZ XYZ 
ABC ABC 

ZPC 
Q\I EIN 
OFF AUS 

LIN 
XYZ XYZ 
ABC ABC 
A1 - A6 Z1 - Z6 

ZR 
XYZ XYZ 
XYZ XYZ 
ABC ABC 

ZRZ 
XYZ XYZ 
XYZ XYZ 
ABC ABC 
A1 - A6 Z1 - Z6 

PTP 
XYZ XYZ 
ABC ABC 

PPZ 
XYZ XYZ 
ABC ABC 
A1 - A6 Z1 • Z6 

(E) 

CPA BAN 
ALL ALL 
/VlS PCH 
01 01 
Jl.X;( ZPC 
AAA ZAL 

EES 
CPA BAN 
ALL ALL 
/VlS PCH 



Robotics 

Orientation ORt 
Fixed 
Variable 

Approximate Positioning PfQ 
Linear 
Point To Point 

Zero Offset ZOF 

Tool Offset TOF 
Position 

E.S 

FIX 
VAA 

CPA 
PTP 

TLO 
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ORI 
K()\J 

VAA 

LES 
BAN 
PTP 

NPK 

WZK 
TLO 
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E.3.0.0. Binary Logic Instructions 

And A 
Marker 
Not Marker 
Input 
Not Input 
Bit Store 
Not Bit Store 

Or 0 
Marker 
Not Marker 
Input 
Not Input 
Bit Store 
Not Bit Store 

E.6 

M 
NM 
I 
NI 
B 
NB 

M 
NM 
I 
NI 
B 
NB 
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U 
M 
NM 
E 
NE 
B 
NB 

0 
M 
NM 
E 
NE 
B 
NB 
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E.4.0.0. Input/Output Memory Instructions 

Transfer Results TR 
Output 
Marker 
Bit Store 

Set S 
Output 
Marker 
Impulse Output 
Bit Store 

Reset RS 
Output 
Marker 
Bit Store 

load LAD 
Parameter 
Output 
Variable Memory 
Variable 
Space Point 

Gripper GAP 
Current Position Store 
Open 
Close 

Output to Periphery our 
P-Word 
M-Word 
H-Word 

E.7 

0 
M 
B 

0 
M 
10 
B 

0 
M 
B 

P 
0 
VPJ./I 
V 
S 

Fa) 

CFN 
a.. 

PW 
MW 
HW 

Hein-Jan van Veldhoven 
ID: 221176 

1V 
A 
M 
B 

S 
A 
M 
IA 
B 

RS 
A 
M 
B 

LAD 
P 
A 
VSP 
V 
R 

GRF 
Fa) 

AUF 
ZU 

PAU 
PW 
MW 
HW 
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E.S.O.O. Arithmetic Instructions 

Arithmetic 
Addition 
Substraction 
M ultipl ication 
Division 
Compare 

ARI 

E.a 

ADO 
SUB 
MLT 
DIV 
CMP 

Hein-Jan van Veldhoven 
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ARI 
ADO 
SUB 
MLT 
DIV 
va 
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E.6.0.0. Special Instructions 

Analog Output tNJ 
Offset 
Velocity 
Analog Table 
Integration Time 

Technology Table TET 
01 
Off 

Conveyor Synchronization 01 
Switch On 
Switch Off 
Interrupt 

Time Distance Function TDF 
01 
Off 

Pendulum Motion PNO 
Axis 6 
Cartesian 

E.g 

0 
VEL 
AT 
ITE 

OJ 
a=F 

s::l\I 
a=F 
INT 

OJ 
a=F 

/J?IS 
CAR 
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/INA 
0 
G:S 
AT 
IZT 

lEG 
EIN 
AUS 

BS 
ANF 
END 
UNT 

TDF 
OJ 
a=F 

PNO 
N?£ 
KAR 
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E.7.0.0. Sensor Function Instructions 

Sensor Analog Interface SAl 
01 
Off 

Sensor Control SCI 

Sensor Read SRI 
Cb;e 

01 
Off 

Sensor Data Request SDR 
Once 
Cyclic 
Cyclic Off 

Load Sensor List SLT 
Variable Memory 
Control Variable 

Sensor Compare SOv1 
Greater 
Less 
Equal 
Not Equal 

Sensor Arithmetic SAR 
Addition 
Substraction 
Multiplication 
Division 
Square Root 
Sine 
Cosine 

Sensor Binary Logic s:o 
And 
Or 
Exclusive Or 
Not 

Sensor Load SLA 
Variable Memory 
Variable 
Space Point 

E.10 

OJ 
aT 

O\C 
OJ 
aT 

O\C 
Gte 
aT 

VAM 
OJA 

~ 
LE 
to 
NE 

/JOO 
SUB 
MUL 
DIV 
OCR 
SIN 
a::s 

A 
0 
>m 
N 

VAM 
V 
S 
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SAS 
EIN 
AUS 

SST 

SOL 
EML 
EIN 
AUS 

SOA 
EML 
lYK 
AUS 

SLT 
VSP 
FKN 

S\G 
~ 
KL 
G.. 
N3 

SAR 
/JOO 
SUB 
MUL 
DIV 
WRZ 
SIN 
a::s 

VKM 
U 
0 
>m 
N 

SLA 
VSP 
V 
R 
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Comparator a:M 
Input Memory 
Variable Memory 

Binary Velocity Control BVC 
Bit Memory 
Input 

Binary Path Control BCP 
Bit Memory 
Input 

Analog Path Control PCP 
Input Memory 
Variable Memory 

Analog Velocity Control Av:::, 
Input Memory 
Variable Memory 

E.11 

INM 
VNIt 

B 
I 

B 
I 

INM 
VNIt 

INM 
VNIt 

Hein-Jan van Veldhoven 
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KMP 
ESP 
VSP 

GFB 
B 
E 

BKB 
B 
E 

BKA 
ESP 
VSP 

(?FA 
ESP 
VSP 
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E.8.0.0. Text display Instructions 

No Operation 

Remark 

Text 

E.12 

NOP 

REM 

TXT 
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KOM 
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