

An evaluation of the McDonnell Douglas robotics 7.0 software

Citation for published version (APA):
Veldhoven, van, H-J. (1991). An evaluation of the McDonnell Douglas robotics 7.0 software. (TH Eindhoven.
Afd. Werktuigbouwkunde, Vakgroep Produktietechnologie : WPB; Vol. WPA1098). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/10889c74-c34b-40e2-ba4f-96e800ff947d

Robotics Hein-Jan van Veldhoven
ID: 221176

An evaluation of the McDonnell Douglas
Robotics 7.0 software.

Wpa nr: 1098

Professor: Prof. Dr. Ir. A.C.H. van der Wolf

t
Coaches: Dr. Ir. FA':M. Delbressine

Ing. J.J.M. Schrauwen
F.Soers

Author: Hein-Jan van Veldhoven
Heezerweg 256f
Eindhoven
Id nr: 221176

o

Robotics

Index

Hein-Jan van Veldhoven
10: 221176

Index .. 1

Preface .. 3

0.0.0. Summary 4

1.0.0. Assignment .. 5
1.1.0. Comments 6

2.0.0. Introduction 7
2.1.0. BUILD .. 11
2.2.0. SIMULATION 12
2.3.0. COMMAND 14

3.0.0. Creating devices in Robotics 15
3.0.1. Gathering device data: 15
3.0.2. Device model creation: .. 15
3.0.3. Converting the device model: 15
3.0.4. Creating a device description using BUILD: 16
3.0.5. Testing the device: .. 16

3.1.0. Device with less than six degrees of freedom 16

4.0.0. Forward- and Inverse Kinematic Algorithms 18
4.0.1. A vector: 18
4.0.2. The dot- and cross product: .. 18
4.0.3. A plane: 19

4.1.0. Transformations 19
4.1.1. General Transformations: .. 19
4.1.2. Translation Transformations: 20

4.2.0. Coordinate Frames 20
4.2.1. Relative Transformations: .. 20

4.3.0. Inverse Transformations 21

5.0.0. Off-line Programming 23
5.1.0. Creating Tpoints 23
5.2.0. Creating seguences .. 23
5.3.0. Converting sequences to robot programs 23

6.0.0. Conclusions .. 25
6.1.0. Advantages .. 25
6.2.0. Drawbacks .. 26
6.3.0. Comments on the assignment . 26
6.4.0. General conclusions 27

7.0.0. Literature ... 28

1

Robotics Hein-Jan van Veldhoven
10: 221176

Appendix A: BUILD .. A.1

Appendix B: SIMULATION B.1

Appendix C: COMMAND C.1

Appendix 0: SIMULATION and SRCL commands 0.1

Appendix E: SRCL commands .. E.1

2

Robotics Hein-Jan van Veld hoven
10: 221176

Preface I~ -v--.

On the ~ got into touch with the Robotics software, provide by McDonnell
Douglas, Paris.
Since then a lot of water has flowed under the bridge, and I hope that by now I have
finished my assignment. Though the Robotics software and the computer associated with it
were pleasant to work with, I have to admit I'm glad to be able to close the book on this
part of my live, because I feel that it is time for a change. .
Though I am the one signing for this report, there is a number of people whom I couldn't
have done without, and I feel that though it is only of small comfort to them I need to name
them at this stage. These people were:

Mr. F.L.M. Delbressine, Mr. J.J.M. Schrauwen, Mr. F.S. Soers and Mr. A.C.H.
van der Wolf: For their constructive criticism.
Henk van Rooij: In helping me convince computers of my intentions.
John Vernooij: By explaining the program to him I got a better grasp at it. ~
My parents: For supporting me in getting where I am today.
The people from the CAD-room. For pleasant company.

The report is divided into several sections. The appendices A, Band C give an overview of
the software modules BUILD, SIMULATION and COMMAND. If one is an unexperienced user
of the Robotics software, it is best to first read the introduction and then read the
appendices to get a good feeling for the program. "-
This report does not intend to replace the manuals provid~ith the Robotics software,
but should rather be used as an supplementary to these manuals.
Though I tried to write a\. consistent and informative report, the reader might still have
any questions concerning the software or this report. If so I will be more than willing to
try and provide him/her with an answer.

Hein-Jan van Veldhoven
7th of june 1991, Eindhoven.

3

(

Robotics

0.0.0. Summary

Hein-Jan van Veldhoven
10: 221176

It was my assignment to evaluate the seventh release of the Robotics software by
McDonnell Douglas with regard to its capabilities and flaws. As a test case it was decided
upon a Flexible Welding Automation Cell.
The assignment meant: modelling the cell. simulating it with the software, and then
perform the off-line programming with the aid of the software.
Stepping through all this I would be able to get a good feeling for the program.
Having worked with the program for several months now I feel that it can be a powerful
aid in performing off-line programming for robots.
The major advantage of the program is its ability to simulate in a correct way a number
of largely differing situations. This may range from a welding cell to a transfer-line, but
also from a machining-centre to a human ergonomics simulation.
The only major drawback to the program is its unability to simulate devices with less
then six degrees of freedom in an easy and correct manner.
All in all, however, I feel that this does not weight-up to the advantages the program can
provide.

4

1.0.0. Assignment

Eindhoven University of Technology
Den Dolech 2

Robotics

5612 AZ Eindhoven, The Netherlands
Faculty of Mechanical Engineering
Production Engineering and Automation

Thesis

Chair

Coaches

Subject

Background:

Hein-Jan van Veldhoven
ID: 221176

Eindhoven, 30 october 1990.

H.J.M. van Veld hoven

Prof. Dr. Ir A.C.H. van der Wolf

Dr. Ir F.L.M. Delbressine
Ing. J.J.M. Schrauwen
F.S. Soers

Robotics 7.0 software

In a modern day production environment, with short series and large ranges of products,
robots are a necessity in trying to produce these products in a competitive way. However,
it takes a lot of time to reprogram these robots if an other range of products is being
made. Reprogramming these robots off-line was rather difficult until now, because the
off-line programming system was not graphically based. The Robotics software from
McDonnell Douglas is a graphically based off-line programming and simulation system.

Assignment:

Examine and evaluate the Robotics 7.0 software from McDonnell Douglas.

The examination will be done in a number of phases:

Getting to know the program.
Simulating a welding cell currently being present at the University, and
consisting of:

- A Kuka Robot with welding equipment
- A Kuka manipulator.

Perform off-line programming of the robot and the manipulator, including
the writing and or testing of the post-processor for the welding cell.

During this assignment it is understood that McDonnell Douglas will be notified of any
bugs found in the Robotics 7.0 software.

5

Robotics

1.1.0. Comments

Hein-Jan van Veldhoven
10: 221176

Reviewing the work of the past months I have been working on this assignment, it has
become clear to me that though the cell I have been simulating may not have been ,;
representative for the cells which normally would be simulated with the aid of this
software, it nevertheless provided the same problems which might occur in trying to
simulate a cell which might be more representative.
The cell may be seen as a typical example. Their may ~ two sorts of industrial k ~

companies interested in this software, one sort of company which has a lot of robots that
all need reprogramming in a relative short amount of time e.g. car-manufacturers, and
one sort of company which may not have all that much robots, but uses these robots in a
flexible way and in complex cell layouts e.g. small flexible automated cells.
The cell I used to test this software on, clearly falls into the last category.

6

2.0.0. Introduction

Robotics

Robotics Hein-Jan van Veldhoven
10: 221176

The Robotics software is a set of separate programs provided by McDonnell Douglas. for
the development of a computer based simulation- and off-line programming
environment. To provide these functions the Robotics software consists of a number of
separate programs, communicating with each other via a small number of files. These
programs are:

1. BUILD
2. PLACE

- SIMULATION
3. COMMAND
4. ADJUST
5. Cycle Time Analyzer (CTA)

Though these programs make up the complete Robotics package, it is not necessary to use
all of them in a typical Robotics session.

The Robotics software can be used for more than one purpose, but it was originally
designed as a computer based graphically off-line programming system for robots. The
system is relatively unique in its kind, as most off-line programming systems are text
based. The system was developed independent of any type or make of robot, and in that way
the system can provide its services independent of any type or make of robot. This may be
especially useful if more than one type or make of robot has to be simulated and
programmed.

In a production environment where more and more CAD-systems are being used to
integrate the design and manufacturing process, it may be worth while to check upon a
system which can integrate the programming of the robots into this process. Of course
such a system should be able to address any data already created on the CAD/CAM systems.

As this was our first experience with the Robotics software, I have concentrated myself
on the three most important programs. to me, namely: BUILD, SIMULATION, and
COMMAND. Underneath you will find an introduction into these programs. a more
extensive description of these programs can be found in appendices A. B, and C. The way
the programs cooperate with each other can be seen in figure 1, the robotics system
overview.

7

Geometric
data

CAD-System

Robotics

-
.DEV

Device
fi Ie

,~~~~
.DCI

Hein-Jan van Veldhoven
10: 221176

.SlD

Build
File

G
e
o

~~

d
y

L Device I.L

I SIMULATION I -~.... Control .I'~"'I
• Information

L!:::;:~~====~::;:~::!J J ~',...........,;,,;,f i_I e ",

B
U
I
l
o

t
r
i
c

and
n a a
d m t

i a
c

,~ ,~

.SEQ

Sequence
fi Ie

,
COMMAND

Robot
controller

.CEl

Cell
fi Ie

.TIM

... Timing
fi I e

ADJUST

" ,

Figure 1: Robotics system overview.

8

L

CYCLE TIME
ANALYZER

Robotics Hein-Jan van Veldhoven
ID: 221176

The actual cell I used as a test case for the Robotics software is found in the photo
underneath:

Photo 1: The actual cell

9

Robotics Hein-Jan van Veldhoven
ID : 221176

The model created of this actual cell can be found in the photo underneath, noted should be
that I left out most of the welding equipment apart from the torch, and that I left out the
transportation system related to the cell. This was done because I felt that it would not be
important, and would cause more inconvenience than benefit.

Photo 2: The model of the welding cell.

1 0

Robotics

2.1.0. BUILD

Hein-Jan van Veldhoven
10: 221176

The BUILD Robotic Applications Software Module [11 is one of the Robotics products sold
by McDonnell Douglas. BUILD enables the user to quickly describe new robots or other
kinematic motion devices in high-level terms. Using BUILD, the geometric model of a
robot or device is automatically combined with its unique kinematic description for
animation in SIMULATION. With only a minimal knowledge of robot kinematics, You will
be able to add new robots or devices to the SIMULATION library. The data output files
from BUILD eliminate the need to perform custom kinematic analysis.
BUILD is capable of automatically generating the forward- and inverse kinematic
equations for devices which have up to 6 degrees of freedom.
Forward kinematics is an algorithm that, given a set of joint angles, computes the
position and orientation of the tool and/or the faceplate of the robot.
Inverse kinematics is an algorithm that, given a position and orientation of a tool or
faceplate, computes the matching joint angles of the robot.
BUILD supports devices with up to 12 degrees of freedom, but it does not automatically
generate the inverse kinematic control equations. The BUILD user may optionally write a
program which defines the kinematic equations for any device with up to 12 degrees of
freedom. To obtain complete functionality, the device must be separable into arm and
wrist components. This functionality is discussed in more detail later in section A.2.0.0.
"Device Types Suitable for BUILD".
The software for the BUILD module uses the same type of menus as SIMULATION. The user
must fill in each menu item in order to fully describe the characteristics of the device.
Once all of the information has been entered, you may direct BUILD to create the files
which contain the description of the device. Then you will be able to use the new robot or
device in SIMULATION.
The steps required for creating a robot or device are as follows:

1 . The user creates the geometric description or model or a robot or device on a
CAD system. (Preferably UG-II) +-

2. The user collects the input data needed for the BUILD module.
3. The user transfers the CAD data to the SIMULATION data-base.
4. ,The user inputs the parameters which define the device, into BUILD.
S. The BUILD software generates the kinematic data which is used to simulate

the motion of the robot or device in SIMULATION.
6. The use" tests the robot in the SIMULATION model.

BUILD directs the user to de'fine the kinematic model of a device, which is used by
SIMULATION to drive the simulation. Additional controller information is supplied which
is used by COMMAND to provide for off-line programming. BUILD will allow the user to
define robot type devices as well as probe devices. A Probe is a special type of device
which may be used with the ADJUST module for cell calibration.
BUILD places restrictions on the types of linkages which may be automatically modeled
with complete forward and inverse kinematic solutions. If a device does not meet these
restrictions, it may still be modeled. but in a much more limited way, BUILD will not be
able to support the inverse kinematic solutions and therefore only simple joint motions I'
will be supported. The user may retain complete functionality by writing a program
which supplies the inverse kinematic algorithms needed for simulation.

1 1

Robotics

2.2.0. SIMULATION

Hein-Jan van Veldhoven
10: 221176

SIMULA liON (21 is a software package designed to create, analyze, and modify robotic
cells graphically through the use of a high speed, vector refresh or raster colour
graphics display station. SIMULATION allows one to determine if required motions can be
accomplished by the robot and if estimated cycle times can be met.
To accomplish this. SIMULATION offers:

1 . Kinematic equations that simulate the motion of individual robots
2. Continuous readout of joint angle data that tracks the path of the robot's

motion
3. Hierarchical definition of connected parts
4. Computer aided design data that geometrically describes cell components
5. Powerful 3-0 colour graphics for manipulation and placement of cell

components
6. Hardware controlled dynamic 3-0 scaling. translating, and rotating of a view
7. Definition of motion sequences for cell analysis and collision detection
8. An expanding library of more than 130 of the most common robots V
9. An optional cycle time package that provides more accurate timing of robot

moves in SIMULATION by compensating for acceleration and deceleration
1 O. Simulation of two or more independent robots or objects moving at the same

time on the screen (parallelism)
11. Explicit synchronization of the motion of two or more devices (compound

device)
1 2. Metric support
13. Simulation of sending. receiving, and testing signals by a robot controller
14. Insertion of robot-dependent commands directly into motion sequences for

simplifying off-line programming
1 5. Automatic collision detection.

SIMULATION uses wire frame and facet-faced graphic display models to represent robots.
equipment, workpieces, and tooling within a manufacturing cell. The user can easily
position these graphic models within the cell either individually. as in the case of a
workpiece, or together, as in the case of a multi-segmented robot.
SIMULATION utilizes the concept of a generalized tool tip called the WORKING TPOINT. You
command a robot to a desired location in terms of this WORKING TPOINT. The system
determines robot joint angles so that you need not be concerned with the lOW-level details
of robot motion. In addition, SIMULATION has a tracking option that allows you to analyze
the path of the robot's motion for specific applications such as a conveyor line.
The SIMULATION software displays equipment positioning and robot motion trajectories
smoothly at the robotics design station. SIMULATION continually monitors joint limits
for the particular robot performing motion. In addition to joint errors, proximity of the
robot to a joint limit is also recorded.
Visual collision detection is available with SIMULATION. You can change views of the cell
smoothly from any angle or use the zoom feature to get a closer look. With these powerful
viewing capabilities, collisions between various items within the cell can be identified
quickly and avoided.
Automatic collision detection is also available. SIMULATION computes the convex hulls of
the parts. Interference checking during any kind of motion is done on those convex hulls.
After a cell has been laid out to your satisfaction, various design data can be requested
from SIMULATION. The complete spatial relationship between any two points, two
frames, or between a point and a frame is readily accessible to the user.

12

Robotics Hein..Jan van Veldhoven
10: 221176

To accommodate a varied set of robotic applications, SIMULATION maintains a library of
commercially available robots. You can request any robot in the robot library for
evaluation and motion analysis on the robotics terminal. If you have a robot that is not in
the library or have a completely new robot (or "n" degree of freedom manipulator).
then that new robot must be inserted into the SIMULATION library before it can be used.
This can be accomplished using the BUILD program and a CAD-package, for instance
Unigraphics II.

13

Robotics

2.3.0. COMMAND

Hein-Jan van Veldhoven
ID: 221176

COMMAND [3) is a software module used for programming robots off-line. It is used in
conjunction with SIMULATION and a specific robot translator to generate a complete robot
program that can be loaded and executed on a particular robot's control unit.
To accomplish this. COMMAND:

1 . Utilizes sequence-files created with SIMULATION for robot motion.
2. Utilizes sequence-files created with SIMULATION for robot I/O.
3. Provides full use of the robot's functions in its native language.
4. Provides full program annotation.

The user directs COMMAND to merge a SIMULATION sequence with a complete robot
program via a file known as the 'User Program File' or User File. The user file is
created with a standard text editor. It may include robot language instructions which are
specific to the target robot, and it may include Sequence Access Commands. Sequence
access commands are used to direct COMMAND to include SIMULATION sequences into the
robot program.
In order to generate a meaningful and complete robot program. the user must have access
to all features, functions and options that a particular robot controller supports. The
User File gives you this capability by allowing you to work in the native language of your
robot. Motion and I/O can then be extracted from SIMULATION sequences and added to the
program. Optionally you may include robot specific instructions in the SIMULATION
sequences, SIMULATION will ignore these instructions, while COMMAND will include
them in the robot program.
A powerful feature of COMMAND permits the user to associate groups of logic
instructions with specific robot positions generated by SIMULATION sequences. For
example, the user may define a subroutine in the robot's native language, to open and
close a gripper. This subroutine is identified by an operation name, and easily referenced
in SIMULATION sequences by tagging the desired robot motion commands with that
operation name. This will result in the gripper being opened or closed at the correct
location in the program.

14

Robotics

3.0.0. Creating devices in Robotics

Hein-Jan van Veldhoven
10: 221176

The first item one encounters when one starts simulating cells in Robotics is having to
create the simulation environment. If one is lucky it is possible to merge one of the
robots from the robot system library supplied with the Robotics software. If, however,
one has to create one's own robot or manipulator the following steps have to be taken:

1. The gathering of data on the device, such as joint-types, joint speeds, distance
between joints etc.

2. Creating a model of the device.
3. Converting the device model to Robotics.
4. Creating a device description using BUILD.
S. Checking the device.

3.0.1. Gathering device data:

The required device data can usually be obtained from the device instruction manuals, or
from the device manufacturer. Most of the data will be in the right format for
incorporation in the device description, some of the data, however, may have to
recomputed before it can be incorporated in the device description.

3.0.2. Device model creation:

In order to be able to simulate a device in a proper manner, a device model should be
accessible to the Robotics software. The device model is made accessible to the Robotics
software through a conversion utility.
The device model has to be created before it can be converted. The creation of the device
model is done preferably in UNIGRAPHICS II. This is because though there is an IGES to
SIMULATION conversion utility, documentation shows it to be a more limited conversion
utility than the UNIGRAPHICS II to SIMULATION utility. However, I have not been able to
test the IGES to SIMULATION utility.
The device is modeled, link by link, with each consecutive link modeled in such a way that
the axis of motion coincides with one of the axis of the absolute coordinate system. The
easiest way of creating this effect is by modelling the complete device with each separate
link on a separate layer. and later translating these links to the absolute coordinate
system. BUILD expects the device to be created in this manner, so the transformation
between the consecutive links can be done by BUILD and can be incorporated into the
forward- and inverse kinematic algorithms.
When modelling the device the user should be cautious in using wire-frame elements, the
conversion routine will not convert wire-frame elements into solid shaded images, there
is however, a possibility to convert certain surface into solid shaded images.

3.0.3. Converting the device model:

After the device has been completely modeled, it has to be converted. The conversion may
be done with, for instance, the UNIGRAPHICS II to SIMULATION utility. The user should be
aware that wire frame drawings cannot be converted into solid shaded images, if the user
wants solid shaded images, the device should be modeled with solids or certain types of
surfaces, instead of wire frames.

15

Robotics Hein-Jan van Veldhoven
10: 221176

A second pitfall in converting devices is the facet tolerance. The user may easily be
tempted to create parts with too many facets (a small facet tolerance). If the user tries to
merge such a part or device into a cell, the program may bomb out and create an out of
memory error. The easiest solution to this is reconverting the parts with a larger facet
tolerance. (Less facets).
The technique used to create the solid shaded image is as follows:
The surface of the part is divided into facets, a light source is placed in a certain position
and direction. The normal vector of the facet and the normal vector of the light source are
computed. The two vectors are compared and a value for shading is derived.
The drawback of this method is that it doesn't take any other parts into account which
might obstruct or reflect the light beam. The advantage of course is that it is relatively
quick in computing the images.

3.0.4. Creating a device description using BUILD:

The device description for SIMULATION is created with the aid of BUILD. Here all the data
collected in 3.0.1. is structured and used to create a unique device description.
All the kinematic transformations, arm configurations, allowable motion modes, tool
tpoints, off-line programming coordinate systems and sources of inverse kinematics are
generated or selected in order to create an as accurate as possible model of the robot.

3.0.5. Testing the device:

The frst step in testing the device is merging it into the cell, the user will than be able to ~i II
see whether all the constant transformation were correctly inputted.
After it has passed this initial test, the user may invoke the Goto Joint Position function
to check whether all the joints move in the correct manner. This will mean the forward
kinematics is correctly defined.
Testing the inverse kinematics is a lot more difficult: An indication can be obtained by
creating an arbitrary tpoint, and have the robot align with this arbitrary tpoint, by
means of a Goto Tpoint command. This will indicate whether the inverse kinematics is II
correct or not. It will. however, not provide a 100% guarantee of complete functionality
of the device. Further testing will not improve this functionality, so after these initial
test the device is ready for incorporation into the desired cell environment.

3.1.0. Device with less than six degrees of freedom

If a device with less than six degrees of freedom has to be modelled, a problem might
occur in trying to simulate this device in Robotics.
An example of a device with less than six degrees of freedom is a manipulator for welding-
operations.

The problem with the inverse kinematic algorithms used by SIMULATION is that they
expect the first three joints of a device to be for reaching a certain position. and the last
three joints of a device for obtaining a certain orientation.
This means that the distance between the first three joints of a device may not be zero if
they are rotational joints.

16

Robotics Hein-Jan van Veldhoven
ID: 221176

In the case of the welding manipulator, the manipulator and the mounted parts assume a
certain orientation, and in that way simplify the control of the welding process. This is
not a position but an orientation, but as the manipulator only has two joints, the inverse
kinematic algorithms will use these joints to reach a position. The program will bomb
out leaving a rather useless error.
The way to solve this problem is to create a device with six joints, for instance three
translational joints, and three rotational joints which has great similarity with the two
joint device. The number of links should be the same as well as the fixed and variable
translations. What one really does is insert a number of joints into the device description
until the device contains six independent joints (Six degrees of freedom).
The next step is to modify the two-joint-device description so that it gets its inverse
kinematics from the six-joints-device by ways of a so called 'Joint Mapping Coordinate
System File'. This file selects which joint from the six-joint-device should be mapped
onto the two-joint-device and vice-versa.
Now SIMULATION will compute the correct joint angles for the six-joint-device, and use
these on the two-joint-device. The user should be careful that translational joints can
only be used as the first three joints. See also section A.2.2.0. Device Requirements for
more information.

17

Robotics

4.0.0. Forward- and Inverse Kinematic Algorithms

Hein-Jan van Veldhoven
ID: 221176

The technique used in computing the Forward- and Inverse Kinematic Algorithms in
SIMULATION is a technique known as homogeneous transformations. The technique is
based on vector and matrix mathematics. For more information on this subject see [4].

4.0.1. A vector:

A vector can be represented as a column matrix.

A point vector
v=ai+bj+ck

Where i,j, and k, are unit vectors along the x, y, and z coordinate axes, respectively is
represented in homogeneous coordinates as a column matrix

where

V= [i]

a=x/w
b=y/w
c=z/w

4.0.2. The dot- and cross product:

Two products are defined: the dot- and cross products.
Given two vectors:

a=axi+ayj+azk
b=bxi+byj+bzk

The dot product is indicated by a dot '.' and defined as follows:

The dot product of two vectors is a scalar. The cross product, indicate by a 'x' is another
vector perpendicular to the plane formed by the vectors of the product and is defined by:

18

Robotics

4.0.3. A plane:

A plane is represented as a row matrix:

1'=[a,b,c,d]

such that if a point v lies in a plane l' the matrix product

1'v=O

or in a expanded form

(a,b,c,d(m =xa+yb+zc+wd+=O

4.1.0. Transformations

Hein-Jan van Veldhoven
10: 221176

A transformation of the space H is a 4*4 matrix and can represent translation, rotation,
stretching, and perspective transformations. Given a point u, its transformation v is
represented by the matrix product:

v=Hu

4.1.1. General Transformations:

In general a transformation T will look something like:

T= x
· · · · ~Y · · · · --- ... --_ -.-

o 0 0: 1

with X being the rotational part of the translation:

[

nx Ox Px]
x= ny Oy Py

nz Oz Pz

and Y being the translational part of the transformation:

the bottom row of the transformation can be used for transformations such as
perspective, but this is not used in robot kinematics.

1 9

Robotics

4.1.2. Translation Transformations:

Hein-Jan van Veldhoven
ID: 221176

The transformation H corresponding to a translation by a vector ai+bj+ck is

[

100aJ o 1 0 b
H=Trans(a,b,c)= 001 c

000 1

4.1.3. Rotation Transformations:

The transformation corresponding to rotations about the x, y, or z axes by an angle 0 are:

[~
0 0

~] cosn -sinO
Rot(x.O)= SinO cosO

0 0

[~
0 0

~l cosn -sinO
Rot(x,O)= sinO cosn

0 0

Rot(x,O)~ [~
0 0

~l cosO -sinO
sinO cosO
0 0

4.2.0. Coorginate Fram~s

We can interpret the elements of the homogeneous transformation as four vectors
describing a second coordinate frame. The transformation matrix describes the three axis
directions and the position of the origin of a coordinate frame rotated and translated away
from the reference coordinate frame.

4.2.1. Relative Transformations:

The rotations and translations I have been describing have all been made with respect to
the fixed reference coordinate frame. If we post-multiply a transformation representing
a frame by a second transformation describing a rotation and/or translation. we make
that translation and or rotation with respect to the frame axes described by the first
transformation. If, however, we pre-multiply the frame transformation by a
transformation representing a rotation and/or translation. then that translation and/or
rotation is made with respect to the base reference coordinate frame.

20

4.3.0. Inverse Transformations

Robotics Hein..Jan van Veldhoven
10: 221176

Now the inverse transformation can be defined as the transformation which carries the
transformed coordinate frame back to the original coordinate frame. It is simply the
description of the reference coordinate frame with respect to the transformed frame.
In general. given a translation with the elements:

nx Ox px ~

T= ny Oy Py ay
nz Oz pz az
0 0 0 1

Then the inverse transformation is:

nx ny nz - a.n

T- Ox Oy Oz - a.o

Px Py Pz - a.p

0 0 0 1

Where n,o,p, and a are the four column vectors and "." represents the dot product.

As the 4th row of the transformation in rotation and/or translation transformations is
always 0 0 0 1 it is left out.

SIMULATION knows two transformation 3*4 matrices. being:
1 . TptoBs. Tool with respect to Base matrix.
2. FptoTp. Faceplate with respect to Tool matrix

The first matrix, the TptoBs, is computed.. by post-multiplying each successive lA,"
translation and/or rotation. If, for instance, a robot has six links and each
transformation from link n-1 to link n can be described by a matrix An then the TptoBs
can be defined as:

The second matrix, FptoTp, is defined as the faceplate with respect to the tool.

I think this separation has been made to simplify computations. The users wants the robot
to align to a certain tpoint with its tool, and therefor the TptoBs transformation needs to
be evaluated. To compute the joint angles of the robot the position and orientation of the
faceplate needs to be know, and can be compute with the aid of the FptoTp
transformation.

The matrices we have used until now can be used in forward kinematics, this means,
given a set of joint angle computing the position of the tool and/or the faceplate of the
robot.

21

Robotics Hein-Jan van Veld hoven
ID: 221176

Forward kinematics is the easy part, but inverse kinematics, computing the joint angles
of the robot given a position and orientation, is a bit more difficult. It is not my intention V
to go into this to deep as I don't know which algorithms exactly are used by SIMULATION. f-

~

Obtaining a solution for e joint coordinates requires intuition and is one of the most
difficult problems. "[e joint coordinate solutions can be obtained by equating
transformation eXQ sSions. For each transformation expression we obtain 12 non
trivial equations nd it is these equations which will yield the required solution. The
solutions' obtained in a sequential manner, isolating each variable by /L.." '1 V'
pre-multiplication by a number of the transformations in each equation.
The solution is basically trigonometric in its nature. The method makes use of
homogeneous transformations which provide equations for all rectangular components,
both sin and cosine of all angles. These component equations are then combined with the
exclusive use of the arc tangent function in order to avoid problems of angle quadrant
ambiguity inherent in trigonometry.
The whole solution process is further complicated with the configuration solution. A
robot may be able reach a certain position and orientation with a limited number of arm ~ q V
configurations. T user however wishes the robot to reach a certain position and
orientation with on one arm configuration valid. This of course puts a further
restriction on the way he joint angle are computed.
The user should be ext emely aware of the fact that the kinematic solutions calculated by
SIMULATION may not incide with the way the robot controller solves these kinematic tV
equations. Caution has to e taken in assuming that the algorithms, used by SIMULATION
and the robot controller, ways yield similar results.

22

5.0.0. Off-line Programming

Introduction.

Robotics Hein-Jan van Veldhoven
10: 221176

In performing off-line programming the first thing that is needed is an accurate cell
description. This includes a accurate device description and correct placements of parts.
The procedure for creating a robot specific program is fairly simple:

1. Using SIMULATION create the tpoints (positions and orientations) later
needed in the program to perform the correct robot motions.

2. Using SIMULATION create a sequence describing the process that needs to be
programmed.

3. Start the COMMAND module, and perform the translation from sequence to
robot specific languages.

After all this has been a final check of the robot program is advisable, and it can then be
loaded onto the robots controller.

5.1.0. Creating Tpoints

The tpoints that are needed to create the off-line programming need to be defined first.
This is done in the SIMULATION module. There are several ways of creating the tpoints,
for instance by creating it at the World Coordinate Frame and then translating and
rotating it to a desired position, but I prefer a method in which joint values are dictated
to the robot, and once it has reached a deSirable pOSition, a Tpoint is created in that
position. This last method will prevent one from creating tpoints a robot might not be
able to reach.

5.2.0. Creating sequences

After the tpoints have been created SIMULATION can be used to create a sequence. A
sequence is a series 0VSIMUlATION commands needed to perform a complex operation. As t..,. t v'
this sequence will later be used to create the robot program the user should take care that
it performs the exact motions required for a certain operation.

5.3.0. Converting sequences to robot programs

In converting sequences to robot programs a small problems occurs at the installation k ~ V
present at Eindhoven, University of Technology. Though we are currently working will
the 7.0 release off the Robotics software, running on a UNIX based system, we are not yet
in the possession of a translator for SRCl for a UNIX based system.
In trying to perform off-line programming for the KUKA robot and its manipulator we
need a translator for SRCl, luckily it was present on the VAx/DCl system.
The route I had to take was as follows:

First I had to create the tpoints and sequences as described above.
Then I had to start the COMMAND module on the HP (UNIX system). Using the
COMMAND module I had to create a so called .CSP file (Command Source
Program file). This file contains all positions and orientations and all
instruction to carry the operation. It is, however, still in a robot independent
language.
Having created this .CSP file I had to transfer it to the VAX/DCl system, in
order to be able to perform the next part of the conversion.

23

Robotics Hein-Jan van Veldhoven
ID: 221176

After having transferred the .CSP file to the VAX/DCl system I started
COMMAND on the VAXIDCl system, and perform the conversion form .CSP
file to robot specific file .SRC

The procedure is in fact relatively simple and I have to admit it was easier then I
expected it to be.
For readers with interest in the mapping of sequence commands onto robot specific
commands (SRCl) I include't\ a superficial mapping and a list which explaining the SRCl ~ v'
commands, in appendices D and E.

A photo of the cell during execution of a sequence file can be found underneath:

Photo 3: The cell in operation.

24

Robotics

6.0.0. Conclusions

Hein-Jan van Veldhoven
ID: 221176

After having worked with the Robotics software for something like several months, I have
grown accustomed to it being available to solve certain problems, but also to it being
around to cause them.
I tested the software in its 7.0 th release on a HP 9832 SRX computer, any other
specifications of the software or of the computer may lead to different results.
I feel it would not be productive, at this stage, to given a summary of the mistakes I
found, or made. I feel that it would be more productive to report on the advantages, and
drawbacks of the Robotics software, so I will do just that underneath.
It should be stressed that as this program is relatively unique in its kind, this is not a
comparison of this software with any other software, but solely an evaluation of the
software.

6.1 .0. Advantages

As the program is graphically based, it is very clear exactly what the robot is
being programmed to perform, so a more unambiguous robot off -line
program can be created.
As the robot programmer only has to concern himself with creating the
sequences needed to program the robot, he doesn't have to worry about what
language is needed to program the robot-controller. [The Robotics software is
controller-language independent.)
As most of the programming can be done off-line the robot can be productive,
while new programming is being created.
As a whole cell can be taken into account when programming the robot, most
problems. such as trying to reach an impossible pOSition or orientation, can
be prevented.
CoUision detection can be used to prevent them from really happening.
The excellent possibilities of simulating the parallel execution of programs
and the signals between the devices, of the software allow one to fully model
and program even such a complex thing as a transfer-line.
The program has a menu driven command structure, so there is no need for
long command strings to be entered by the user.
As it is possible to create joints which may be dependent on or restricted by
other joints, virtually any device can be modeled.
The use of the software is not limited to robots, but it can be used for
modelling mechanism, performing ergonomics simulations (accessability
and/or human motion) and assembly Simulations (can a certain part be
manoeuvred into position). Or, for instance simulating a five axiS machining
centre as is currently being done at the University.
When creating the off-line programming, errors and warnings are flagged.
The software is robot manufacturer independent. so a large number of robots
can be simulated and off-line programmed with the systems as long as a
translator for the robot can be obtained.

25

Robotics

6.2.0. Drawbacks

Hein-Jan van Veld hoven
ID: 221176

The software seems to have a number of problems in trying to create a device \
with less than six degrees of freedom. Though no problems are signalled by t/
BUILD, SIMULATION bombs out in trying to move some of these types of
devices. The error it leaves gives no clue as to what action can be taken to
prevent these error from happening.
The BUILD module seems to be polluting its own files. After have made a
number of changes in a device description, the files still contain "old" data
which has not been erased properly, this data cause problems in the
SIMULATION module.
In some parts of the program (for instance Colour Frame/Tpoints) the
Terminate Operation button restores the original situation, but in other parts
of the program (such as Create Tpoint), it exits the function but doesn't
restore the original situation.
The graphics seem to fill up the computers memory rather fast. Trying to
perform high-definition graphics of a number of frames is not possible. The
user should be aware of these problems.
The UNIX structure in combination with the X11 window system, do not allow
the user to input data or use function buttons, if the pointer is not located in
the Menu Window. This can be a nuisance sometimes.
The computer capacity needed to run the software is big. The system requires
a large investment.

6.3.0. Comments on the assignment

I feel that the system could best be used by a company which has a lot of robots that all
simultaneously need reprogramming in a short amount of time. This is for instance the
case with transfer lines for welding car bodies. The system may also prove beneficial in a
situation where a relatively small number of robots in a complex environment need a lot
of reprogramming.
The situation I used to test this program, a welding cell which should be flexible, is
rather different from the first situation I have just indicated, but is relatively similar to
the second situation.
It may be clear that using this program for only one robot installation could be
considered as overkill, by this 1 mean that the systems is far to powerful to be dedicated
to only installation. However, I feel that most of the problems I ran into are not all that
different from the problems anyone would run into trying to simulate any other
environment, including transfer lines. I feel that in trying to asses the quality of the
program the situation I used would do as good as any other.

26

Robotics

6.4.0. General conclusions

Hein-Jan van Veldhoven
10: 221176

The program did live up to the expectations it raised with me. It can definitely be a useful
aid in off-line programming of robots and other simulation exercises. Though I feel its
main attraction lies in the off-line programming, once a software package like this has
been acquired by a company other might be run on the system.
The most important drawback to the system I found its unability to easily simulate device
with less than six degrees of freedom (such as manipulators).
I was in the pleasant position of being able to test the program without being bothered by
the cost of it. In my analyses of the program I did not incorporate the cost aspect.
I tried to evaluate the program on its abilities, not on its cost effectiveness. It is up to a
company to asses whether it is useful or not to buy this program.
All in all I have to admit I am pleasantly surprised by the Robotics software, and its
usefulness.

27

7.0.0. Literature

{1] BUI LD User Guide

I 2] PLACE User Guide

[3] COMMAND User Guide

[4] Robot Manipulators

Robotics

by McDonnell Douglas

Hein-Jan van Veldhoven
10: 221176

Manufacturing & Engineering Systems Company

by McDonnell Douglas
Manufacturing & Engineering Systems Company

by McDonnell Douglas
Manufacturing & Engineering Systems Company

by Richard P. Paul
ISBN 0-262-16082-X

28

Robotics

Appendix A: BUILD

A.O.O.O. INDEX

Hein-Jan van Veldhoven
10: 221176

A.O.O.O. INDEX 1

A.1.0.0. BUILD concepts 2
A.1.1.0. BUILD File Types. .. 2
A.1.2.0. Data required for Device Modelling. .. 3
A.1.3.0. Part File Creation for BUILD 4
A.1.4.0. Device Kinematics for BUILD 4
A.1.5.0. Joint Constraints .. 5

A. 1.5. 1. Constraints as functions of other joints: 5

A.2.0.0. Device Types suitable for BUILD 6
A.2.1.0. Open Loop Mechanism 6
A.2.2.0. Device Requirements 6

A.2.2.1. Offset Wrist Robots: 7
A.2.2.2. Devices with no Inverse Kinematics: " 7

A.2.3.0. Dependent Joints .. 7

A.3.0.0. Sources of Inverse Kinematics 8
A.3.1.0 Devices with standard BUILD Kinematics 8
A.3.2.0. Devices with no Inverse Kinematics 8
A.3.3.0. Devices with External Inverse Kinematics 8
A.3A.O. Similar Device Kinematics .. 9

A.1

Robotics

Appendix A: BUILD: A functional overview.

A.1.0.0. BUILD Concepts

A.1.1.0. BUILD File Types

Hein-Jan van Veldhoven
10: 221176

There are three file type which are created by BUILD. Some of these are the file types used
by SIMULATION (as well as COMMAND and ADJUST) to describe a robot or device.

1. BUILD File (.BLD on VAXIVMS and UNIX). The BUILD file contains the basic
device description. It essentially keeps a record of all the information which has
been entered into BUI LD. This file is an input file as well as an output file. When
used as an input file. BUILD may be used to edit the parameters of an existing
device or BUILD may simply be used as a means of displaying the device
parameters. The BUILD file is not used by SIMULATION. COMMAND or ADJUST.

2. DEVICE File (.DEV on VAXlVMS and UNIX). The device file contains the connection
tree which describes the device along with the link names and the associated part
names. The Device file points to the Device Control Information file. The Device
file is created by BUILD. When a cell is saved in SIMULATION the information in
the Device file is transferred to the Cell file.

3. DEVICE CONTROL INFORMATION File (.DCI on VAXlVMS and UNIX). The Device
Control Information file defines device characteristics for the device. Such
information as the kinematic attributes of the device, the allowable motion
modes. the maximum joint speeds and acceleration, and more are stored in this
file. This file is created by BUILD. SIMULATION, COMMAND, and ADJUST obtain
their kinematic information from this file. This file is not in a human readable
format.

The following file types are referenced to by BUILD but not actually used by BUILD.
1. PART File (.PAR on VAX/VMS and UNIX). The Part file contains the graphical

display data for each link of the device. BUILD only references to the names of
these files. It does not actually read the files. The Part file is created by the
UNIGRAPHICS to SIMULATION or the IGES to SIMULATION utilities the
SIMULATION.

2. COORDINATE SYSTEM INFORMATION File (.CRD on VAXNMS and UNIX) Coordinate
System Information define the attributes of particular "coordinate systems" that
are used to represent robot arm positions. tool tip position constraints, etc. CRD
files are also used for Dependent Joint mapping and Similar Device Kinematics
mapping. Coordinate System information files are associated with the device by
using BUILD. These files are defined by the user, using a UNIX text editor such as
the vi-editor. BUILD only references to these files, it doesn't actually read them.

A.2

Robotics

A.1.2.0. Data required for Device Modelling

Hein-Jan van Veldhoven
10: 221176

Before a user can model a new device, a certain amount of information must be obtained. In
many cases, this information may be obtained from the manufacturer of the robot or the
device. Not all information may be required for all devices. If a device is being modeled for
simulation only, many of the parameters which affect off-line programming will not be
needed. Keep in mind that the more accurate the model needs to be the more accurate the
information needs to be.

1 . Device Drawings. The user should have access to accurate drawings of the device
being modeled. These drawing are needed to created the CAD representation of the
device.

2. Link Dimensions. The translational and rotational offsets between each joint.
3. Joint Data. The motion for each joint must be known, this consists of the

following data:
a) Type of Joint. A joint may either be rotational or translational. If a joint is

both, for instance a screw, two separate joint will have to be defined and
later connected with the dependent joint function.

b) Joint Limits. The range of each joint.
c} Joint Dependencies. Does the motion of one joint affect the limits of the

other joint?
d) Joint Speeds. The maximum joint speeds.
e) Joint Accelerations. The acceleration rate associated with the maximum

joint speeds.
f) Home Position. The initial position of each joint.

4. Allowable Arm Configurations. How does the controller handle situations in which
the device can reach the same position with multiple joint solutions?

5. Allowable Motion Modes. The types of motion the controller supports.
6. Default Motion Mode. The default motion mode used by the controller.
7. Allowable Tool Points. Tool positions or orientations which are not allowed should

be defined.
8. Tool Speed. The maximum allowable tool speed.
9. Tool Acceleration. The maximum allowable acceleration and deceleration of the

tool.
1 O. Coordinate Systems. Definitions of the coordinate system used to program the

device. This information is only needed if the device will be programmed off-line
by COMMAND.

11 . Device Absolute Coordinate System. The location of the origin of the coordinate
system used to program the device. This information may be less important for
some devices, for example, devices which are controlled with joint values. Again
this information is only necessary for off-line programming.

1 2. Inverse Kinematics Algorithm. If the user plans to define a device which will not
be supported by the standard inverse kinematics algorithm, the user will need to
supply BUILD and SIMULATION with an inverse kinematics algorithm which will
support the device. The user will have to write a program which will interface
with SIMULATION and BUILD and will solve the inverse kinematics of the device.

A.3

Robotics

A.1.3.0. Part File Creation for BUILD

Hein-Jan van Veldhoven
10: 221176

The creation of a device in BUILD is accomplished by specifying a series of transformations
which describe the relationships between the links of the device. The geometry for each link
must be created on a CAD system (for instance UNIGRAPHICS II) as a separate part. Each of
these parts is modeled in a certain position relative to the absolute coordinate system. BUILD
assumes that each part is modeled such that the axis of motion of the link is located at the
absolute coordinate system. This allows the motion of each link to be defined as a rotation
about or translation along its absolute coordinate system.
BUILD is used to define the relationship between the absolute coordinate systems of each
consecutive link.

A.1.4.0. Device Kinematics for BUILD

Once the location of each link coordinate system is known. the transformations between these
coordinate systems may be defined. This series of transformations, from the base of the
device to its faceplate, define the forward kinematics of the device. Given the joint values.
forward- or direct kinematics is the process capable of describing the position of the
faceplate or tool of a device in relation to its base.

The user must determine the relationship between each consecutive link coordinate system.
This relationship must be described as a series of constant and/or variable transformations.
A constant transformation describes either a translational or rotational offset that never
changes, regardless of positioning of the joints of the device. This definition would include
such values as link lengths, joint offsets, or constant angular offsets. A variable
transformation defines the motion of a joint. It is called variable because the amount of the
transformation changes as the device moves through its motions. Variable transformations
may either be translations (prismatic joint) or rotations (revolute joint). A third type of
transformation is called a dependent transformation. A dependent joint is a special kind of
variable transformation. The amount of this transformation is derived from the value of
some other joints within the device. Since the joint value is not independent of other joints,
it does not add a degree of freedom.

All transformations are defined using the right-hand rule.

BUILD is used to define a series of transformations which define the relationships between
each successive link coordinate system, starting at the base. The user must define the
transformations which describe how to get from one link coordinate system to the next. These
transformations show how to completely align the coordinate system on one link with the
coordinate system of the next link.

All constant transformations must have a specified amount of translation or rotation. If the
transformation is a translation. the amount may be expressed in either units of inches or
millimeters. Build allows the user to change units at any time. If the transformation is a
rotation, the amount must be expressed in degrees.

All variable transformations must have special joint information supplied. This includes the
name of the joint, the constraints or limits on the motion of the joint. the joint'S maximum
speed and acceleration, and the joint's home position. The same rules for units which apply to
constant transformations also apply to variable joint information.

A.4

Robotics

A.1.S.0. Joint Constraints

Hein-Jan van Veldhoven
10: 221176

For each variable transformation or joint a joint-limit must be specified. These constraints
define the working range of each joint. These values are used by SIMULATION to compute the
joint limit percentages which are shown on the Joints display. These values will also affect
the Joint alarm feature of Simulation.

A.1.S.1. Constraints as functions of other joints:

While limits of the type described above will accurately define the constraints on most
joints, other joints constraints are more complicated. The limits of some joints change as the
position of other joints in the device change. This type of constraint may be due to couple
linkages or gear ratios.

In addition to the normal high and low joint values, BUILD allows the user to define an
equation which describes the joint limits as a function of some other joint values. If a robot
has a coupled drive linkage such as a parallelogram, it most likely needs to make use of this
type of joint constraint.

A.S

Robotics

A.2.0.0. Device Types suitable for BUILD

Hein-Jan van Veld hoven
10: 221176

BUILD will accommodate the inverse kinematics of most of the current commercially
available robots. However, BUILD users should be familiar with the basic requirements a
device must meet to be analyzed by BUILD. It is possible to simulate devices which do not use
the standard inverse kinematics, however, it is than necessary for the user to write the
custom kinematics algorithms.

A.2.1.0. Open Loop Mechanism

The device must be an open loop mechanism. This means that one end of the device must be
fixed while the other end of the device is free to move in a 3-0 environment. It is on this free
end that the Working Tpoint will be created. On a robot, this free end is the faceplate or tool
tip.
It is possible to create some Closed Loop Mechanisms by using the Dependent Device feature
in SIMULATION. The mechanism is divided into smaller devices. Generally, there is one
device for each part of the mechanism which is connected to the ground. The mechanism is
then assembled in SIMULATION in such a way that the motion of each device is dependent on
some other device.

A.2.2.0. Device Requirements

In order for a device to use the kinematic algorithms automatically generated by BUILD, the
device must have no more than 6 degrees of freedom, and must be built of various
components:

1 . The arm of the device may be composed of up to three joints that may be revolute
(rotational) or prismatic (translational).

2. The wrist of the device may be made up of no more than three joints which must
be revolute.

3. The main function of the arm is to position the end of the device while the wrist is
used in attaining the correct orientation.

4. Generally, the wrist joints must occur after the arm joints. The exception to this
rule occurs when the last arm joint is prismatic, the first wrist joint is
revolute and both move along the same axis.

5. A 3-degree-of-freedom arm must consist of no more than two joints that move in
one plane. The remaining joint either rotates or translates that plane into a third
dimension. One restriction is that this plane must not be perpendicular to the x
axis of the world or base coordinate system. That is, this plane must not move in
the yz plane.

6. The wrist joint axis may intersect at one or two points. If They intersect at one
point, any combination of wrist joints may be used. If the wrist joint axes
intersect at two points, then the first wrist segment must move in the same plane
as the arm joints as described above. Generally, the wrist should be defined in
such a way that the axis pointing out of the end of the device is the X-axis.

A rule of thumb is that if the last segment of the wrist and one portion of the arm is ignored,
the rest of the device must lie in one plane or several parallel planes.

A.6

Robotics

A.2.2.1. Offset Wrist Robots:

Hein-Jan van Veldhoven
10: 221176

Some six axis robots which have offsets between the wrist axes may be modeled by BUILD
even though they don't adhere to rule 6. These robots cannot make use of the exact kinematic
algorithm used by SIMULATION. These offset wrist robot will be handled by a special
iterative kinematic algorithm if they are defined as follows. Joint 4 (the first wrist axis)
must be a rotation about the x-axis. The next joint must be a rotation about the same axis as
the offset. The last joint must be defined as a rotation about the x-axis.

A.2.2.2. Devices with no Inverse Kinematics:

If a device does not meet the above requirements, it can still be simulated in SIMULATION.
Unless another source for the kinematics is supplied, these devices will not have the
required "Inverse Kinematics" parameters. BUILD will warn the user in the event of such a
situation. This type of device may be simulated in SIMULATION but in a very limited fashion.

A.2.3.0. Dependent Joints

BUILD allows devices to be created which contain joints whose values are dependent on other
joints within the device. A dependent joint should be defined when the motion of a single
degree of freedom is performed by more than one physical joint. A dependent joint does not
add an additional degree of freedom to the device. No joint limit or velocity limit check is
performed on dependent joints. In addition a dependent joint may not be controlled
independently by the Goto Joints command in SIMULATION.
Because of the great number of functional relationships which may be defined for dependent
joints, BUILD will not attempt to derive an inverse kinematics algorithm for such devices.
Either an external kinematics program or similar device kinematics must be used for
dependent joint devices.

A simple example of the use of dependent joints is in the modelling of a telescoping joint. The
telescoping joint performs motion in only one direction, but is actually composed of three
segments which move together in the same direction. Each segment moves one third of the
total distance of the move. This system would be modeled in BUILD by adding two dependent
joints following the variable joint transformation. The two dependent joints represent the
last two segments of the telescoping joint. The values of these joints are functions of the
value of the total length of the move. The all adhere to the rule:

local translation = (total translation)/3
A Coordinate system File is necessary to define the above equation which will map the set of
joint values which SIMULATION computes to the joint values used to display the graphics. The
CRD file must cause the joint values to be output in units of inches and radians. The use of
any other units will cause incorrect motion simulation. The SIMULATION Joints Display will
only show the limit percentage of one joint. If the first joint exceeds a limit, the other two
joints, by definition,will also exceed their limits. If an interactive Goto Joints command is
attempted only the first joint may be controlled. but all three joints will move.

A.7

Robotics

A.3.0.0. Sources of Inverse Kinematics

Hein-Jan van Veldhoven
10: 221176

Inverse Kinematics is the process used to convert a position and orientation (Le. a tpoint)
into joint values of a device. Although SIMULATION uses built-in algorithms that will
support most robots, it is possible to obtain the kinematics analysis form other (external)
sources.

A.3.1.0 Devices with standard BUILD Kinematics

The normal mode for device modelling is to use BUILD to automatically generate the inverse
kinematic parameters to be used by the SIMULATION kinematic analyzer. The device must
adhere to the rules listed in section A.2.2.0. for BUILD to be able to generate these
parameters.

A.3.2.0. Devices with no Inverse Kinematics

If BUILD for some reason, can not generate the inverse kinematic parameters for a
particular device, the SIMULATION kinematic analyzer will not be able to perform the
inverse kinematics. Such a device may be simulated in only a very limited manner. A device
without inverse kinematics cannot be directed to move to a tpoint. For this reason the
following commands will not be supported in SIMULATION: Goto Tpoint, Goto Position, Goto
Circle, and Define Dependent Device. This leaves only Goto Joints and Goto Home as supported
motion specifiers. There is, however, a restriction on their use. These commands can only be
used with Joint Interpolated or Slew Motion, as Straight Line Motion requires inverse
kinematics. Coordinated Motion has the same restrictions as single device motion, only Goto
Joints or Goto Home is supported in Joint Interpolated or Slew Motion Mode.

A.3.3.0. Devices with External Inverse Kinematics

A device which obtains its inverse kinematics algorithms from an external program, may be
defined. When this option is used, the inverse kinematics algorithms which BUILD generates
automatically will not be used. This capability may be useful when the SIMULATION
kinematic analyzer does not give the desired results. For example, this may be required when
a particular robot handles singularities in a non standard way, or when a four axis device
does not align properly. An external kinematics program may be the only way to simulate
some robots which BUILD would not normally handle, for example, a seven axis robot.
The external program must be able to solve the inverse kinematics of the device in question.
This means that it should be able to compute joint angles or joint displacements when given a
position and orientation with which to align.
SIMULATION and BUILD communicate with the external program by sending and receiving
message blocks of packed data

A.S

Robotics

A.3.4.0. Similar Device Kinematics

Hein-Jan van Veldhoven
10: 221176

There is one other source for the inverse kinematics algorithms for a particular device.
Similar Device Kinematics allows the inverse kinematics for a device to come from the
definition of a different device. During a simulation, whenever SIMULATION needs an inverse
kinematics solution, it will use the kinematics solution (either internal or external) defined
for the similar device. The results of the inverse kinematics are then mapped to a new set of
joint values via a coordinate system file. All joint limits and velocities will be checked
against the new set of values.
The automatic kinematic algorithms derived
by BUILD occasionally do not yield the desired
alignment results for devices with less than
six degrees of freedom. In many of these cases,
it is possible to add joints to the definition of
the device which will cause it to work
properly (a three axes device may be modeled
as a six axes device). Simulation will be able
to compute the desired joints and a coordinate
system mapping will remove the unwanted
joints. The coordinate system mapping must
output joint values in units of inches and
radians. The use of any other units will result
in incorrect motion simulation.
Similar device kinematics are also useful
when dependent joints are used. BUILD will
not generate an automatic similar device
algorithm when a device has at least one
dependent jOint. The inverse kinematics for
such a device can sometimes be obtained from
a similar device which does not have dependent
joints. Figure A.1 gives an overview of the
flow of Joint Value Data.

A.9

Inverse
Kinematics

Solution

, " Similar Device
Joint Mapping

CRD

,
'" Joint limit

Checking

~ ,
Dependent

Joints Mapping
CRD

, ~
Graphics

Fig A.1: Flow of Joint Value Data.

B.O.O.O. INDEX

Robotics

Appendix B: SIMULATION

Hein·Jan van Veldhoven
ID: 221176

B.O.O.O. INDEX .. 1

B.l.0.0. SIMULATION Concepts 3
B.l.1.0. The SIMULATION Database 3

B.1.1.1. Data base entity naming conventions: ., 3
B.1.1.2. File entity type descriptions: 4
B.l.1.3. Cell entity type description: 5

B.l.2.0. The SIMULATION User and System Libraries 5
B.l.3.0. The Connection Tree .. 6

B.2.0.0. Motion Simulation 8

B.3.0.0. SIMULATION Informational Displays 9
B.3.1.0. The "MENU" display .. 9
8.3.2.0. The "MOVE TEXT" display. 9
B.3.3.0. The "COLOUR PARTrrpOINT" display, .. 9
B.3.4.0. The "STOPWATCH" display 9
B.3.5.0. The "SEQUENCE" display .. 10
B.3.6.0. The "DIALS" display. .. 10
B.3.7.0. The "JOINTS" display 10

8.4.0.0. Using SIMULATION Menus
B.4.1.0. SIMULATION Menu Types ,
B.4.2.0. The Function Buttons

B.S.O.O. Sequences and Sequence Editing
B.5.1.0. The Sequence Display Window

B.5.1.1. The sequence information line: ,
B.5.1.2. The sequence input window: .
B.5.1.3. The sequence output window: .

B.5.2.0. Parallel Sequences
B.5.2.1. Sequence display window for parallelism:
B.5.2.2. Notes on parallelism:

B.6.0.0. Robot Motion and Alignment
B.6.1.0. Simple Alignment
B.6.2.0. Straight Line Motion
B.6.3.0. Joint Interpolation
B.6.4.0. Slew Motion '
B.6.5.0. Circular Motion
8.6.6.0. Velocities and Accelerations '"
B.6.7.0. 5·axis Special Case
B.6.8.0. Devices with no Inverse Kinematics
B.6.9.0. Alignment Problems

B.l

12
12
13

15
15
16
17
17
17
17
18

19
19
19
20
20
20
20
21
21
22

I

•

I

Robotics Hein-Jan van Veldhoven
10: 221176

B.7.0.0. Compound devices .. 23
B.7.0.1. Definitions: 23

B.7.1.0. Coordinated Motion Devices 23
B.7.2.0. Dependent Motion Devices 24

B.8.0.0. Simple sensor 25

B.2

Robotics

Appendix B: Simulation: A functional overview.

B.1.0.0. SIMULATION Concepts

B.1.1.0. The SIMULATION Database

Hein..Jan van Veldhoven
10: 221176

SIMULATION maintains a database with the following major "file entity" types:

1. Cell
2. Device
3. Sequerce
4. Part
5. Device Control Information
6. Coordinate System Information
7. IGES
8. Timing Data

In addition to the above major "file entity" types, SIMULATION maintains the following data
entities associated with each cell:

1. Frame
2. Tpoint
3. Connection Tree

8.1.1.1. Data base entity naming conventions:

All SIMULATION database entity names follow the same naming convention except for the
tpoint data entity. The tpoint naming convention will be discussed at the end of this section. A
SIMULATION entity name is defined to be one to nine alphanumeric characters long. The first
character is an alpha character from A to Z. Lower-case characters may be used but
SIMULATION will convert them into uppercase.

All SIMULATION file entity types and cell entity types follow the SIMULATION naming
convention. In addition, following items also adhere to this naming convention:

1 . Operation Names
2. Segment Names
3. Variable Names

The tpoint naming is different than all other names in that it is composed of two names: the
tpoint father frame name, followed by the tpoint name. The frame qualifier on a tpoint name
is required because tpoint names by themselves are not unique within a cell. There may be
two tpoints called TP1. But there can only be one tpoint named TP1 connected to any frame.

B.3

Robotics

B.1.1.2. File entity type descriptions:

Hein-Jan van Veldhoven
ID: 221176

1 . Cell. A SIMULATION cell contains all the information related to a cell, including
the frames in the cell, the connectivity relationships among the frames, the parts
associated with the frames and the tpoints connected to the frames. The cell also
contains pointers to Device Control Information file entities for each device in
the cell. Cells are created by the user using cell editing commands. Cells can be
saved for later recovery.

2. Device. A SIMULATION device is a special kind of cell that contains the connection
tree to describe a particular device, as well as part, frame, and tpoint
information associated with the device. The device points to a Device Control
Information file entity for that device. A user can create a new device with the
BUILD program. The devices provided by McDonnell Douglas reside in the
SIMULATION system library.

3. Sequence. A SIMULATION sequence consists of a series of statements that control
the execution of a SIMULATION working session. Sequences are created by the
user during an edit sequence session. Most of the SIMULATION interactive
functions have a corresponding sequence statement.

4. Part - A SIMULATION part contains the geometric definition of a single rigid
body. Part geometry is defined with a CAD-modeller such as UNIGRAPHICS II.
SIMULATION parts are created by converting CAD defined models into
SIMULATION parts using the following geometry conversion utility:
UNIGRAPHICS II to SIMULATION. A SIMULATION part may contain only splines,
arcs, lines, and tpoints (coordinate systems). The spline type is an open periodiC
cubic spline, which is the same spline type the UNIGRAPHICS II uses. The
UNIGRAPHICS II Geometry ConverSion Utility in SIMULATION can transfer the
spline data between UNIGRAPHICS and SIMULATION. Parts are associated with
SIMULATION frames using the SIMULATION "Create Frame" function. A frame
may have no part or one part associated with it.

5. Device Control Information • The Device Control Information file entity defines
device characteristics for a particular device. Such information as the kinematic
attributes of the device, the allowable motion modes for the device, and the
maximum joint speed allowable for the device are stored in the Device Control
Information file entity. Device Control Information file entities are created with
the BUILD program.

6. Coordinate System Information. Coordinate System Information file entities
define the attributes of particular ·coordinate systems" that are used to
represent robot arm positions, tool tip positions constraints, etc. Coordinate
System Information files are associated with the devices and are defined by the
user using a text editor. Coordinate System Information file entities are
associated with Device Control Information file entities using the BUILD
program.

7. IGES. IGES file entities are the output from the SIMULATION to IGES geometry
conversion utility and the input to the IGES to SIMULATION geometry conversion
utility. IGES file entities can also be created by some CAD modelling systems such
as UNIGRAPHICS. SIMULATION supports the IGES version 2.0 format.

B.4

Robotics Hein..Jan van Veldhoven
10: 221176

8. Timing Data. A timing file contains the parameters for the timing model of a
robot. The timing model accounts for acceleration and deceleration during robot
moves. The timing file is generated by optional Cycle Time Analyzer software,
which is not a standard part of ROBOTICS software. However, CTA (Cycle Time
Analyzer) is available at the site in Eindhoven, University of Technology. See also
section B.2.0.0. Motion Simulation.

B.1.1.3. Cell entity type description:

1. Frame. Frames are the major building blocks for SIMULATION cells. A frame has
the following information associated with it:

a) One or no parts.
b) One connection to a father-frame and a matrix that relates the position of

the frame to its father.
c) Mayor may not have connection(s) to son frames.
d) Mayor may not have connection(s) to tpoints.
e) A colour assigned to its part.
f) A colour assigned to its tpoints.
g) A display tolerance.

2. Tpoints. Tpoints are the positioning entities in a SIMULATION cell. A tpoint is a
coordinate system that fully defines six degrees of freedom in space.

3. Connection Tree. The connection tree reveals the connection of the frames to each
other and to the world frame. See section B.l.3.0. for more details.

B.1.2.0. The SIMULATION User and System Libraries

SIMULATION file entities may reside in either one or more SIMULATION user libraries or in
the SIMULATION system library.

The allocation of SIMULATION user libraries is dependent on the machine implementation of
SIMULATION; but in the case of the Eindhoven University of Technology, user libraries are
physical directories associated with a validated user logon. When one creates a sequence,
saves a cell or a part, they are stored in ones user library.

The SIMULATION system library was created when the SIMULATION software was installed.
All SIMULATION devices installed with SIMULATION and their associated Device Control
Information, Coordinate System Information and Part file entities are stored in the
SIMULATION system library. In addition to devices, certain cells and parts provided by
McDonnell Douglas for its tutorials and installation checkout are also stored in the system
library.

B.5

Robotics Hein-Jan van Veldhoven
10: 221176

SIMULATION functions that need to access file entities use a "file entity search" hierarchy.
SIMULATION uses a well-defined set of rules to determine where the file entity exists and
whether it should be loaded from the user library or the system library. These rules are:

1. The user library is searched first for the specific file entity.
2. If the file entity does not exist on the user library, then the system library is

searched.
3. If the file entity is not found on the system library, the user is informed that the

file entity does not exist.
4. If the file entity exists on both the user and the system libraries, SIMULATION

will use the file entity from the user library.

To access file entities from another user library the "Change Search Directory" function is
available.

B.l.3.0. The Connection Tree

The concept of a connection tree is useful in describing and communicating information about
the frames in a cell and their connectivity relationships.

When a frame is connected to another frame, the connected frame is called a "son" frame, and
the frame that the son is connected to is called the frame's "father".

Connectivity relationships represented by connection trees follow certain rules:
1 . Only the WORLD frame has no father.
2. A frame can have any number of sons.
3. When a frame moves, all descendants of that frame move.
4. When a frame moves, no ancestors of that frame move.

Tpoints have connectivity relationships to frame that can also be represented in a connection
tree, but tpoints follow slightly different connectivity rules:

A tpoint can have no sons frames or tpoints; in other words. a tpoint can only be a
"leaf" in a connection tree.

B.6

Robotics Hein-Jan van Veldhoven
ID: 221176

The SIMULATION function "Display Connection Tree", will display the connection tree for the
current working cell. A textual method is used to represent the connection tree, indentation
is used to illustrate connectivity relationships. See figure B.1 for an example.

o WORLD:AXIS
1 KUKAWPAOO:KUKAOO
2 KUKAWPA01:KUKA01
3 KUKAWPA02:KUKA02
4 KUKAWPA03:KUKA03
5 KUKAWPA04:KUKA04
6 KUKAWPA05:KUKA05
7 KU KAWPA06: KUKA06
1 MANWPAO:MANXZXOO
2 MANWPA1:MANXZX01
3 MANWPA2:MANXZX02
4 MANWPA3:

Figure B.1: An example of a connection tree.

B.7

Robotics

B.2.0.0. Motion Simulation

Hein..Jan van Veldhoven
ID: 221176

During SIMULATION interactive and sequence "Goto" and "Move Frame" functions, the
SIMULATION software is controlling the simulation of motion that appears on the graphics
display. The simulator determines how often new positions of the robot arms and moving
workpieces are computed and how often these new positions are displayed. The parameter that
determines how often new positions are recomputed is called the "simulation interval". The
parameter that determines how often new positions are displayed is call.ed the "display
interval". By default. both the simulation interval and display interval parameters are set to
1 second.

The amount of time required to display N arm positions is dependent on many factors. It is
dependent on the simulation interval, the display interval, the load on the computer, and it is
dependent on how many robots and moving frames are being displayed.
The display time interval is not a real time interval. It is true, however, that the smaller the
display interval and or the simulation interval, the slower the motion animation will appear.
If the display interval is set lower than the simulation interval, the simulation interval is
automatically reduced to be equal to the display interval. If the display interval is set higher
than the simulation interval, the simulation interval remains unchanged.
The simulation interval can be changed with the "Set Simulation Interval" function; The
display interval can be changed with the "Set display Interval" function.
Both intervals will be affected by the "Faster" and "Slower" functions. The "Faster" button
will have the effect of doubling both intervals, the "Slower" button will halve both the
simulation and display interval.

If real-time synchronization is on, then the time SIMULATION takes to Simulate robot motion
more closely approximates the actual real time for that motion. How close the
approximations is depends on whether a timing file (created by the Cycle Time Analyzer
software) is being used to compute the cycle times for the robot motion.

B.8

Robotics

B.3.0.0. SIMULATION Informational Displays

Hein-Jan van Veld hoven
ID: 221176

In addition to the graphical data representing the cell components, the monitor also has a
maximum of seven informational displays relating to the cell simulation.
Following are these seven informational displays:

1 . The "MENU" Display
2. The "MOVE TEXT" display
3. The "COLOUR PARTfTPOINT'display
4. The "STOPWATCH" display
5. The "SEQUENCE" Display
6. The "DIALS" Display
7. The "JOINTS" Display

Most of these informational displays may be optionally removed from the monitor with the
"Blank Text" function and can be redisplayed with the "Unblank Text" function.

B.3.1.0. The "MENU" display

Through the "MENU" display SIMULATION communicates with the user, the user is
confronted with a menu which either lets him execute a function or select another menu.
During execution of a function the user is informed of the status of that SIMULATION function
through the menu display. For more details see the Using SIMULATION menus section, section
B.4.0.0.

8.3.2.0. The "MOVE TEXT" display.

The "MOVE TEXT" display is used to indicate the position of a frame or tpoint during a "Move
Frame" or "Move Tpoint" function. The display illustrates the position of the moving frame
or tpoint with respect to the "father" frame of the frame or tpoint. The translational
information is the distance the moving frame is from its father, the rotational information
consists of the angels in degrees that the frame is rotated with respect to its father.
The "Set Distance Units" function allows one to work in either millimeters or inches. The
current distance unit is displayed to the right of the "TRANSLATION" header, no units
displayed indicates inch units.

8.3.3.0. The "COLOLIR PARTfTPOINT' display

The "COLOUR PARTfTPOINT" display is displayed if the function "COLOUR PARTfTPOINTS" is
invoke, it lets the user select the colour for a frame, or the tpoints connected to a frame. A
frame may have only one colour, the tpoints connected to a frame have only one colour. The
default colour is White.

8.3.4.0. The "STOPWATCH" display

The "STOPWATCH" displays the estimate cycle time that the SIMULATION simulator computes
for a series of SIMULATION robot motion commands and sequence Move Frame commands. The
SIMULATION commands that can affect the stopwatch value are interactive. The stopwatch
units are minutes to the left of the If:", and seconds to the right of the ":".

B.9

Robotics

B.3.5.0. The "SEQUENCE" display

Hein-Jan van Veldhoven
ID: 221176

The "Sequence" display is used to display the current sequences. See the "Sequence and
sequence editing" section (B.5.0.0.) for more details.

B.3.6.0. The "DIALS" display

The "DIALS" display, displays the functions the HP-9000 dials have at the current state in
the program.

B.3.7.0. The "JOINTS" display

During robot motion, the "JOINTS" display gives a continuous readout of the state of the joint
values for each of the devices in the cell. The limit on the number of devices which may be
displayed is a function of the joint display mode and the number of joints in the devices. The
state of a joint is a percentage that represents how far the joint is from its limit. If a joint
exceeds its limit, its reading will exceed 100% by the corresponding amount. The joint
display will indicate a joint limit error by placing the character "j" next to the percentage of
the joint with the error.
The Joints display will also signal the user when a joint velocity limit has been exceeded. If a
joint exceeds its maximum velocity, the character "v" will be displayed next to the
percentage of the corresponding joint. The joint velocity checking may be turned off with the
"Device Joint Velocity Check On/Off" function.
In addition to the current state of the joint values, the joints display has a second column of
information that displays the maximum values for the joints since the last "Reset Joint Data"
function was executed.

The joints display will indicate the current active device. An arrow (-» will point to the
active device.

The current state of alignment of the active device with respect to the last commanded goto is
also represented on the JOINTS display. The state of alignment is at the end of the joints
display and will be blank if the device is aligned with the goto tpoint. The alignment state will
say "NOT ALIGNED" otherwise. The alignment state reflects the state of alignment at the end of
a goto tpoint. The alignment state will be blank while a goto tpoint is in progress unless the
device cannot follow the prescribed path.

If a device passes through a singularity position, the joint display will read "SINGULARITY".
A singularity is a position with which the device can align with an infinite number of joint
solutions. Because all robot controllers treat these cases differently, singularities should be
avoided if possible. If it is not possible to avoid a singularities, the user should take extreme
caution.

The SIMULATION "Set Joint Display Mode" function is used to change the type of information
displayed in the joints display. In addition to displaying only joint percentages, location
values may be displayed along with the percentages. These locations values may be joint
angels, cartesian coordinates, or some other device specific values.

B.10

Robotics Hein-Jan van Veldhoven
ID: 221176

The Joints display may also be set to only display the "worst" current joint angle percentage
and the "worst" maximum jOint angle percentage. This abbreviated display should be used
when the joint display of several devices is needed or when the animation rate is to be
maximized.
The time needed to update a full joints display is NOT negligible, especially if there is more
than one device in the cell. If a high animation rate is essential, the user should consider
turning off the joints display. This may be done either with the "Set Devices Monitored"
function, or the "Blank" function.
The joints display may also be used to show the value of any user defined ports on a
device.The name of the port along with its current value is shown at the end of the joints
display.
The position and layout of some of the most used information windows can be found in the
photo underneath, taken during a typical working session.

Photo B.1: A typical working session of SIMULATION.

B.11

Robotics

B.4.0.0. Using SIMULATION Menus

Hein-Jan van Veldhoven
10: 221176

This section explains how to use the SIMULATION hierarchical menu system to select the
SIMULATION functions one wants to execute, and how to enter function parameters.

8.4.1.0. SIMULATION Menu Types

SIMULATION uses a hierarchical menu system. This means that as one chooses menu options,
one is traversing a hierarchy of more and more specific menu options until one has hopefully
reached the desired SIMULATION function. When all the parameters for the SIMULATION
function are entered, the function will be executed and one will be able to see the result.
There are several types of SIMULATION menus. The first type one encounters is a so-called
"choose 1" menu, because one may only choose one option out of a number of options, the
Main Menu is an example of such a menu. See figure B.2 for an example of a "choose 1" menu.

* • * * * * * * * * • * *
.. Main Menu ..
.. 1 Cell Editing ..
.. 2 Device Motion Control ..
.. 3 Move FramelTpoint ..
.. 4 I/O and variables ..
.. 5 Branching and Conditional Execution ..
.. 6 View and Display Control .. 7 Sequence Editing and Control ..
.. 8 Dimensional Analysis ..
'" 9 COllision Detection ..
.. 1 0 File Management ..
.. 1 1 Time Control ..
* 12 File CelllTerminate ..
* ..
* • * * * * * * * * * * * * *

Figure B.2: The main menu.

A second type of menu is a "data entry" menu, a "data entry" menu is distinguished from a
choose 1 menu by the equal (=) signs one sees behind the menu items. The Merge Cell menu
is an example of a data entry menu. See figure B.3 for an example of a "data entry" menu.

* ..
Merge Cell .. 1> Cell Name = .. 2 Father Frame =

TEMP
WORLD

..

..

..

..

..
*

Figure B.3: The Merge Cell Menu.

B.12

Robotics Hein-Jan van Veldhoven
10: 221176

Another type of SIMULATION menu is the "choose n" menu. This kind of menu allows one to
choose multiple items from the menu instead of just one. The "List" option under the File
Management function uses a menu of the choose n type. See figure B.4 for an example of a
"choose n" menu.

* .. * * * « * • .. '* * * '* '* .. * '* '* * '* « * * .. '* * .. '* .. * * * '* .. * * *
,. ..
.. List ..
,.

Select Type ..
* 1> Cell * .. 2 Device ..
.. 3> Part ..
.. 4> Sequences

,.
.. 5 IGES * .. 6 Device Control *
.. 7 All ..
.. ,.

'* ... **** ** **** .. *** **"** * '* ** ** ** ** ** **

Figure B.4: The list menu.

B.4.2.0. The Function Buttons

On the function keyboard there is a number of buttons which perform a special function in
SIMULATION, these button are:

1) View Control
2) Faster
3) Slower
4) Interrupt/Resume
5) Single Step
6) Entry Complete
7) Reject
8) Terminate Operation

The "View Control" button allows access to the same menus as the main menu item "View
Control".

The "Faster" button is used to multiply the display rate and simulation rate by two. The
display and simulation intervals control how often the position of robot arms and frames are
updated on the graphics monitor during motion Simulation.

The "Slower" button has the effect of dividing the display rate and simulation interval by two.
See section B.2.0.0. for a more thorough description of the simulation interval and display
interval parameters. .

The "Interrupt/Resume" button is used after initiating sequence execution with the "Run
Sequence". "Edit Sequence", or "Call Sequence" functions to start (Resume) sequence
execution. Off course it is also used to interrupt the sequence which is executing.

B.13

Robotics Hein-Jan van Veldhoven
10: 221176

The "Single Step" button is used to execute sequence statements one at the time. This is
especially used when running sequences for the first time making it easy to trace any, if any,
mistakes in the sequence being executed.

The "Entry Complete" button is used to indicate the end of a parameter entry. This button will
only be displayed (and thus functional) when it has a meaning for the function being
executed.

The "Reject" button is used for two purposes: to go back to the previous menu or to cancel the
effect of an action just taken. The "Reject" button will perform one or the other, or both of
these action, depending on the context of the function.

The "Terminate Operation" button also has two meanings. If one is in the middle of entering
parameters for a function and has decided one does not want to execute the function after all,
pressing the "Terminate Operation" button will exit the function completely without
executing the function at all.
Some functions allow one to execute the function over and over again with different
parameters until one presses the "Terminate Operation" button to exit the function.

B.14

Robotics

8.5.0.0. Sequences and Sequence Editing

Hein-Jan van Veldhoven
ID: 221176

A SIMULATION sequence is a stored series of SIMULATION functions that may be played back
to simulate a robotic workcell process. Most interactive SIMULATION functions have a
corresponding sequence statement. See appendix E for a list of all the valid sequence
statements.
During sequence editing, whenever a SIMULATION function is successfully executed, a
sequence statement is generated for that function and is written to the sequence output
window. The user may see the statements as they are generated in the sequence output
window. When a sequence editing session is completed, the contents of the sequence output
window may be saved in the user database and later "played back" with the "Run Sequence"
function.
Sequences may be used effectively during cell layout to create a workcell process simulation
that may be replayed for each new trial layout. When the cell layout is complete, the
sequence can be used as an input file to the COMMAND module to generate native mode robot
programs for those robot languages that are supported by COMMAND.
The sequence display window contains information about the current sequence being edited
with the "Edit Sequence" function or played back with the "Run Sequence" or "Call Sequence"
functions. Section B.5.1.0. "The Sequence Display Window", describes the information
presented in the display window in some detail for editing and running sequences. Section
B.5.2.1. describes how the display window is used to monitor the execution of parallel
sequences.

B.5.1.0. The Sequence Display Window

The sequence display window is used to display the sequence statements from the sequence
currently being edited, run, or called, and to give certain information about the state of
sequence execution. The sequence window is located at the bottom of the graphics screen, and
may be displayed with the "Display Sequence On/Off" function or automatically displayed
when sequence editing is activated.
The sequence display window is composed of three parts:

1. The sequence information line
2. The sequence output window
3. The sequence input Window

The top line of a sequence window is the sequence information line. The output window
appears immediately below, followed by the input window. A line in the middle of the
sequence display window divides the output window from the input window.

B.15

Robotics

B.5.1.1. The sequence information line:

Hein-Jan van Veldhoven
ID: 221176

The sequence information line contains information reflecting the state of sequence execution
and or sequence editing. This information is displayed in fields separated by colons (:).
Following is a description of these fields from left to right:

1 . Sequence execution state. The sequence execution state indicates whether sequence
execution is active and, if sequence execution is active, whether a sequence is
being edited or just executed. The execution state may be:
a) "No Active sequence"
b) "RUN". A sequence is active and has been executed with the "Run Sequence"

function.
c) "EDIT". A sequence is active and has been activated with the "Edit Sequence"

function.
d) "CALL". A sequence is active and has been executed with the "Call Sequence"

function.
2. Primary sequence name. When initiating sequence execution, the first sequence

that is specified on a "Run Sequence" or on a "Edit Sequence" function is the
primary sequence. Any other sequence executed on a "Run Sequence" is called a
secondary sequence.

3. Sequence stack depth. Every time a sequence is run without terminating execution
of the previous sequence, the new sequence is initiated as the "active sequence"
and the previous sequence is saved onto a sequence stack. The number of sequences
on the stack is the sequence stack depth. When one creates a brand new sequence
with the "Edit Sequence" function, there will be no sequence on the stack because
all the sequence statement will be added by the execution of interactive functions.

4. Source of sequence statements added to the output sequence during sequence
editing. There may be three sources of sequence statements added to a sequence:
a) "User Action". User inserted SIMULATION commands
b) "Paste Buffer". The current contents of the paste buffer. During sequence

editing cut and paste functions are supported
c) "[sequence name]". The sequence that is at the top of the sequence stack.

5, The state of the sequence execution. If sequence statements are being executed
from the active sequence, the following two conditions are possible:
a) "Running". The user pressed the "Interrupt/Resume" button and the

sequence is being executed.
b) "Single Step". The user pressed the "Single Step" button.
If sequence execution is interrupted, the following three conditions are possible:
a) "Sequence Stack Empty"
b) "Paste Buffer Interrupted"
c) "[sequence] Interrupted"

6. The mode of sequence editing. This field indicates which of the sequence editing
functions is active:
a) "Insert".
b) "Delete",
c) "Cut",

7 , The current "find" string. This field contains the last string the user specified on
the "Find" function.

B.16

Robotics

B.5.1.2. The sequence input window:

Hein-Jan van Veld hoven
10: 221176

The sequence input window displays the sequence statements that are to be executed when the
user presses the "Interrupt/Resume" or "Single Step" buttons.

B.5.1.3. The sequence output window:

The sequence output window has a different meaning depending on the state of sequence
execution: Edit or Run.
In the "Run" mode, the sequence statements are scrolled from the sequence input window to
the sequence output window as soon as they are executed. No sequence statements from a
"Called" sequence ever occur in the sequence output window.
In the "Edit" mode, only those sequence statements added to the sequence are scrolled to the
sequence output window. These sequence statements may come from the active sequence, from
the Paste Buffer, or as a result of the user executing interactive SIMULATION functions.

B.5.2.0. Parallel Sequences

Parallelism provides a general simulation mechanism for showing more than one robot or
frame doing independent motion on the screen. For example, two robots can be shown spot
welding the two sides of a car body simultaneously.
The low level unit of parallelism is the sequence. Two or more sequences can execute in
parallel, but every record within a particular sequence is executed sequentially.
In addition, functions in the 1/0 and Variables and in the Conditional Execution menus can
provide signalling between sequences within a parallel sequence.
Parallelism is a useful Simulation tool for:

a) Cycle time determination
b) Visualization of a process (for instance two synchronised robots)
c) Visual collision detection

B.5.2.1. Sequence display window for parallelism:

If the sequence window is on, the input window is dedicated to displaying the records of the
sequences being executed in parallel. Thus, any data lines residing in the input window are
erased before the Call Sequence function is executed. These lines will be restored after the
Call Sequence has completed.
Two lines are dedicated for each sequence that is executing in parallel. If numerous sequences
are executing in parallel, the input window size may need enlarging. The two-line window
displays the sequence name, the sequence file line number, and the sequence record that is
being executed, or is about to be executed, for that sequence.

B.17

Robotics

B.5.2.2. Notes on parallelism:

Hein-Jan van Veldhoven
ID: 221176

1 . Because of the enormous coding complexity and confusion to the user, editing a
parallel sequence is not allowed. All sequences must be edited one at the time
using the normal editing procedures and function as they are proscribed by
SIMULATION. The sequences can of course be executed in parallel. It is possible
the user uses a normal text editor and in that way edits the sequences in a
parallel session.

2. A parallel sequence can, however, be interrupted to permit one to issue user
level commands before restarting the parallel sequence execution.

3. A sequence can effect the execution of another sequence. This is both a blessing
and a curse. The blessing lies in the freedom and extra capability afforded by
letting, for example. a sequence change the feed-rate of a robot that is being
controlled by another sequence. The curse is that one can get into tremendous
trouble with the extra freedom one is given. The problem here is the user not the
software.

4. The execution of the Single Step function with regard to parallel sequences is
similar to that for sequentially executing sequences.

B.18

Robotics

8.6.0.0. Robot Motion and Alignment

Hein-Jan van Veldhoven
ID: 221176

In most cases the SIMULATION user will pick tpoints, the robot will move to the selected
tpoint, and the joint display will indicate whether final and intermediate positions can be
reached.
However, some applications require that the SIMULATION users understands HOW the robot
aligns with the working tpoint and the goto tpoint. Also how the robot prorates the working
tpoint orientation during straight line or circular move is important. The description below
indicates the algorithm that SIMULATION uses.

Terminology varies greatly in robotics.
Here, "wrist" refers generally to the last two or three joints of a robot, they are generally
used in achieving a prerequired orientation.
"Arm" refers generally to the first three joints, may they be prismatic or rotational,
starting at the base of the robot. These first three joints are generally used in reaching a
certain position.

8.6.1.0. Simple Alignment

In going to a tpoint,SIMULATION always tries to align the orientation and the roll vectors of
the goto and working tpoint first. It is assumed that the arm will be able to align the x,y,z,
coordinates of the goto and the working tpoint. Of course some of the goto tpoints require that
the wrist of the robot bends in a peculiar way in order to align orientation and roll vectors.
The resulting wrist configuration may then prevent the arm from being able to align x,y,z,
coordinates without disconnecting the links in the robot.

8.6.2.0. Straight Line Motion

During straight line motion, the tool point of the robot is constrained to follow a straight line
with respect to the robot base while the working tpoint proceeds towards alignment with the
goto tpoint.
Only one equation (a straight line) exists for describing the path of the tool point from start
to the end of the move. Unfortunately, an infinite number of algorithms exist for describing
how the orientation and roll at the tool point can vary during straight line motion, while still
keeping the tool point x,y,z, on a line. Not surprisingly, every robot that can do straight line
motion will use a different (and often proprietary) algorithm for moving the orientation and
roll to their final values at the goto tpoint.
The algorithm that SIMULATION uses is as follows. SIMULATION computes where the tool and
orientation and roll will be at the end of the move. SIMULATION 'knows' where the starting
values are. Eulers theorem then states that given two coordinate systems with the same
origin but different axes directions, one of the coordinate systems can be rotated into the
other by rotating around a line through the origin of both coordinate systems. SIMULATION
calculates this angle and line before the move starts. The tool axes are rotated about this
"Euler" line. At the start of the move the rotation change is zero, at the end of the move the
rotation change has reached the full Euler angle.

8.19

Robotics Hein-Jan van Veldhoven
10: 221176

This proration algorithm is used for all types of robots. In many cases, the SIMULATION
algorithm for wrist proration is close to what the real robot controller will do. However, the
user must be careful, some large discrepancies between the real robot and the simulated
robot move may occur when very large angular changes in the tool orientation and roll
vectors occur. For moves with small tool axes rotation, the SIMULATION algorithms
generally will accurately describe the path of the arm and the wrist.

B.6.3.0. Joint Interpolation

During joint interpolated motion, the robot will move all of its joints in such a way that each
of the joints starts and ends the motion at the same time. The set of joint values that the robot
moves toward are determined at the beginning of the move. If there is more than one joint
solution which will cause the robot to align, SIMULATION will attempt to determine one that
is within the limits of the joints. If the robot was set to be in Automatic Wrist Configuration
mode in BUILD, then SIMULATION will choose the "best" wrist configuration, i.e. the one
which will causes the joints to move the smallest angles.

B.6.4.0. Slew Motion

Slew motion is very similar to joint interpolated motion. The only difference is that each
joint will move independently at a constant speed. It will accelerate to its highest speed and
will continue to travel at this speed until it has to decelerate to reach its destination. Some of
the joints may complete their motion before others.

B.6.5.0. Circular Motion

Circular interpolation causes the tool tpoint of the robot to move in a Circular path. The path
is formed by three points, the current tool point, an intermediate tpoint, and a destination
tpoint.
Circular Interpolation has the same problems as straight line motion There is an infinite
number of algorithms which could be used to control the tool orientation and roll as it follows
the circular path. SIMULATION uses the same algorithms as straight line motion for Circular
interpolation. The Euler angle as described in the previous section is computed between the
beginning tpoint and the ending tpoint and the orientation is prorated evenly throughout the
entire move. The orientation of the intermediate tpoint is not taken into consideration.

B.6.6.0. Velocities and Accelerations

The Simulated path of a device will use acceleration and velocity information either from a
Timing file or from the robot DCI file. The robot will accelerate to the constant velocity and
then decelerate to stop at the end of the move. If the continuous path option is On, the device
will not decelerate at the end of the move. For either straight line or circular motion the tool
tpoint will use the tool tpoint speed and tool tpoint acceleration values to define the motion.
For either joint or slew motion the joints will move according to the joint velocities and
accelerations. For most robots, the time for acceleration and deceleration may not be visually
noticeable to the user. If there is no Timing File or there is acceleration data in the DCI file,
SIMULATION will simulate the motion as if there are infinite accelerations and decelerations
at the beginning and end of the move.

B.20

Robotics

B.6.7.0. 5-axis Special Case

Hein-Jan van Veldhoven
10: 221176

5-axis robots present a special problem. In general a 5-axis robot cannot align position,
orientation and roll vectors. In fact, 5-axis robots cannot always align even just position and
orientation vectors. The question for 5-axis moves is not how does a robot reach a given
tpoint. but how close can the robot reach.
Just as is the case with a 6-axis robot, SIMULATION tries to align the orientation and roll
vectors. while assuming that the x.y.z, coordinates of the working tpoint and goto tpoint can
be aligned exactly. However, in the five axis case SIMULATION will select the wrist position
that will minimize the misalignment of the orientation and roll vectors of the working tpoint
and the goto tpoint. Moreover, the orientation vector alignment is weighted much more
heavily than the roll vector alignment. When two or more of the wrist positions yield
approximately the same orientation alignment, then the wrist configuration which creates
the best roll vector alignment is used.
For the 5-axis robot user, some tips for more effectively using SIMULATION are:

a) Select the ideal goto tpoint orientation vector first. (Remember that alignment
may not be possible exactly, but SIMULATION calculates the nearest solution.)
Then move the roll vector by rotating the goto tpoint about the orientation vector
to determine the best overall robot position for reaching the desired goto tpoint
position and orientation.

b) Try generating the goto tpoints very crudely by using the Create Tpoint function
in Goto Joints. Then translate these newly created tpoints to the desired location.
The robot should be able to align well with the goto orientation. since the
working/goto tpoint alignment was perfect where the goto tpoint was created. Of
course the translated goto tpoint should be as close as possible its creation
location.

B.6.S.0. Devices with no Inverse Kinematics

Another special class of devices are those which do not have a supported inverse kinematics
algorithm. Inverse kinematics is the process used by SIMULATION to convert a position and
orientation (Le. a tpoint) into the joint value of the device. Although SIMULATION will use
build in algorithms that wili support most robots, it is possible to use BUILD to define
devices which SIMULATION's inverse kinematic analyzer cannot handler. Build will warn the
user in the event of such a situation. Devices without inverse kinematics may be simulated in
SIMULATION, but only in a very limited way.
A device without inverse kinematics cannot be directed to move to a tpoint. For this reason
the following commands will not be supported in such a situation: Goto Tpoint. Goto Position.
Goto Circle. and Define Dependent Device. This leaves only Goto Joints and Goto Home as
supported motion specifiers. There is, however, a restriction on their use. These commands
must only be used with Joint Interpolated or Slew motion. Straight Line motion requires
inverse kinematics and therefore it is not supported. Coordinated Motion has the same
restrictions as single device motion, only Goto Joints or Goto Home in Joint Interpolated or
Slew motion is supported. If the user attempts to make an unsupported move, an error
message will be displayed.

B.21

Robotics

B.6.9.0. Alignment Problems

Hein-Jan van Veldhoven
ID: 221176

There are times when there will be problems with the alignment of a device with its goto
tpoint. These cases will only occur when using commands such as Goto Tpoint, Goto Circle and
Goto Position. These commands instruct the device to go to a certain position and orientation
in space. Errors occur when the device cannot align with the desired tpoint or path. In
commands like Goto Joint Position or Goto Home, the device is instructed to go to a predefined
set of joint values, so the alignment will not cause any trouble.
The Joints Display will signal an alignment error if the device could not align with the goto
tpoint at the end of a move or could not follow the desired path during the move. The most
common example of this problem is when the goto tpoint is to far away from the base of the
device. In such a case th~ device will generally reach toward the tpoint and place the
orientation of its working tpoint to be parallel with the orientation of the goto tpoint. A
second example is a device which has less than 6 degrees of freedom, and therefore cannot
align with the goto tpoint. A third example is when the beginning tpoint and ending tpoint
yield good alignment, but a straight line path between them may pass through an area where
alignment is not possible.
Another common alignment problem is caused when a device is instructed to align with a
singularity position. This means that there is a infinite number of kinematic solutions which
will cause alignment with the goto tpoint. In many cases this is caused when two or more
joints become parallel at such a location. Because all robot controllers use different
heuristics to select a joint solution, there is the possibility of inaccurate simulation. For
This reason singularities should be avoided if possible. The joints display will indicate
whenever a device is at or near a singularity.
If a device is performing either straight line or circular motion, the speed setting
determines the speed at which the device will follow this path. It is possible that in
attempting such a move, one or more of the joints of the device would have to move faster
than their maximum joint speed. SIMULATION will warn the user of this situation by placing
the character "v" behind the affected jOint. in the joints display. Because all robot
controllers handle such a cause differently the user should be extremely cautious in perform
these moves.

B.22

8.7.0.0. Compound devices

B.7.0.1. Definitions:

Robotics Hein-Jan van Veldhoven
ID: 221176

Simple Kinematic Device. A simple kinematic device is any device which may be created with
BUILD. The device must be open looped (Le. one fixed end, and one free end). be made up of
revolute and or prismatic joints, have no more than six joints. Each simple device is
described in its own Device Control Information file.

Compound Device. A compound device is a general term which describes a device composed of
two or more simple kinematic devices. Each compound device is a named entity.

Sub-Device. A sub Device is a simple kinematic device which is a part of a compound device.

Coordinated Motion Device. A coordinated motion device is a compound device composed of two
or more sub devices, which coordinate in such a way that their motions begin and end at the
same time.

Dependent Motion Device. A dependent motion device is a compound device which specifies
that the joint solution for one device is dependent on the joint solution of another device.
Dependent motion devices allow for the simulation of closed loop mechanisms and the driving
linkages of robots.

B.7.1.0. Coordinated Motion Devices

Coordinated motion devices allow for the simulation and programming of more than one
device using simultaneous motion. Many robot controllers have the capability to control not
only the axes of the robot in question, but also a number of external axes.These other axes
might be used to control the robot's position on a track, a positioning table which is used in
conjunction with the robot, or perhaps even to control more than six axes of the robot arm.
The real world devices must be definable as separate simple kinematic devices as modeled in
SIMULATION. Each device is separated to the extent that each device has its own kinematic
description (.DCI-file) and has separate motion parameters. (Speed, motion mode, goto
tpoint, etc).
The define coordinated motion device command is used to create the list of sub-devices of
which the coordinated motion device will consist. The coordinate motion device may be
thought of as a logical definition of the controller, where the sub-devices would normally
represent the robot and its external axes.
The coordinated goto command is used to cause all of the sub-devices of the coordinated motion
device to move. The motion of each sub-device will be prorated so that each sub-device will
start and stop at the same time.

B.23

Robotics

8.7.2.0. Dependent Motion Devices

Hein-Jan van Veldhoven
ID: 221176

A dependent moti~n device is one whose joint solution is always dependent on the position of
some other device in the cell. This capability allows for the simulation of closed loop
mechanisms an the driving linkages of robots.
A dependent motion device is controlled by giving it a working tpoint and a goto tpoint by
using the Define Dependent Device command. The device will work in a manner similar to
that of the Tracking option. The working tpoint will always attempt to align with the goto
tpoint. Once a dependent motion device has been defined, it may not be made the active device.
The user has no control over some of the motion parameters such as speed and motion mode.
This restriction occurs because the motion of the device is dependent on that of some other
device.
The Disable Dependent Motion Device command is used to convert a dependent motion device
back into a "normal" device.
It a dependent motion compound device is defined in the workcell when the save cell function
is executed, the definition for that device will be saved. At a later time when the cell is
merged, the compound device will be retained.

8.24

Robotics

B.8.0.0. Simple sensor

Hein-Jan van Veld hoven
10: 221176

Within SIMULATION there is a possibility of simulating simple sensors and their effect on
the robots programming. A simple sensor is a device that returns a single value for a sensed
property such as distance, proximity, or pressure.
Five simple sensors are provided with SIMULATION. Some sensors return values derived
directly from geometric properties, some others just return "random" values within the
legal limits of the sensor. The five sensor provided are:

1 . A sensor for measuring distance. that returns the distance from the end of the
sensor to the nearest tpoint.

2. A proximity sensor that returns a TRUE if an tpoint is sensed within 25.4
millimeters (one inch) of the sensor.

3. A proximity sensor that returns a TRUE if an tpoint is sensed within one meter of
the sensor.

4. A pressure sensor which returns a random number.
5. A temperature probe which returns a random number.

If so desired the user can override the automatically generated sensor values by putting the
sensor's port into "Manual Receive Mode".

B.25

Robotics

Appendix C: COMMAND

C.O.O.O. INDEX

Hein-Jan van Veldhoven
10: 221176

C.O.O.O. INDEX .. 1

C.1.0.0. COMMAND File types , 2

C.2.0.0. COMMAND Program Flow .. 3

C.3.0.0. The user file. .. 5
C.3.1.0 Operation Macros .. 5
C.3.2.0. SeQuence Mapping Commands 5

C.3.2.1. Automatic Mapping: .. 5
C.3.3.0. SeQuence Access Commands .. 5
C.3.4.0. Robot Language Commands 6

C.l

-

...

Robotics

Appendix C: COMMAND: A functional overview.

C.1.0.0. COMMAND File types

Hein-Jan van Veld hoven
10: 221176

There are seven major file types used and created by COMMAND, namely:
1. The Cell file. (.CEl extension on VAX and HP) The cell file contains all the

graphical information related to the SIMULATION cell. The cell file is created
by SIMULATION.

2. The Sequence file. (.SEQ extension on VAX. and HP) The sequence file is created
by using SIMULATION. This file contains a sequence of SIMULATION commands
which together with the cel file simulate a certain cell.

3. The User file. (.USR extension on V AX. and HP) The user file is created by the
user using a normal UNIX text editor such as the vi-editor. This file serves as
the base for sequence and program processing as well as a source for
commands native to a particular robot controller.

4. The COMMAND Source Program file. (.CSP extension on VAX. and HP) The
COMMAND source program file contains both robot motion and logic
instructions in a robot independent language. This file is created and used by
COMMAND.

5. The Source Robot Program file. (.SRC extension on VAX. and HP) This file
contains all the robot direct commands in the robot's native language. If a
robot does not have a native language, this file will contain a language
emulating the teach commands.

6. The Robot Program File. (.rfile extension on VAX and HP) This file contains
the robot direct commands and can be transported to the robot controller
either by means of floppy disk or tape, or by means of a network link.

7. The Error Message File. (.L1S extension on VAX. and HP) The error message
file contains a list of errors which occurred during translation.

C.2

C.2.0.0. COMMAND

Robotics Hein-Jan van Veldhoven
ID: 221176

Program Flow Simulation

Figure 1 shows the flow of data
from SIMULATION through
COMMAND. The first step in
creating a complete robot
program requires the creation
of a cell and sequence. After that
a User file must be generated
containing the appropriate
sequence access commands and
robot specific instructions. Once
these steps have been completed
the user enters the COMMAN D
module and is prompted for the
names of the Cell and User files.
As processing begins COMMAND
expands the sequence access
commands in order to extract
the specified SIMULATION
sequence statements. These
sequence statements are
translated into robot
independent commands, and
interspersed with robot logic
instructions as specified in the
user file. This results in a
COMMAND source program file
containing both robot motion and
logic instructions. During this
process, COMMAND internally
runs the SIMULATION sequences
referenced to by the user file
and calculates robot positions
based on the SIMULATION
computations. The command
source program output from the
COMMAND sequence processing
stage is then translated by a
specific Robot Program
Translator. The Robot Program
Translator will produce a
complete robot program in the
native language of the robot.

.USR

User
File

.LIS

Error
Message

File

C.3

c
o
M
M
A
N
o

.CEl .SEQ

Simulation
Cell

Simulation
Sequence

"
Pre-processing

.CSP

Command
Source

File

Robot Program
Translator

WI' ~

.SRC .RFllE

Source Robot
Robot Program

Program File

L ~
Robot

controller I ~

---------....",."
Fig. C.1: COMMAND program flow.

Robotics Hein-Jan van Veldhoven
10: 221176

The user may expect to receive three or four types of output (depending on the selected
robot) from the translation. First, an error message file will be generated if any errors
are found. If COMMAND executes without error a robot program source file and robot
program output file may be created. On robots that execute their own Hbuilt-in" source
language, these two files may be identical. However, on robots that do not have their own
language, these two files may be considerably different. The source file for non language
driven robots will contain a language emulating the teach commands. The output file will
contain the binary dat formatted for a particular robot's controller.
To complete the process, the COMMAND module also provides the user with the capability
of transmitting the robot program directly to the robot·controller or outputting it to an
appropriate media (Le. floppy disk or tape cassette). The means and possibilities of
communication vary with each translator.

C.4

•

•

•

I

Robotics

C.3.0.0. The user file.

Hein-Jan van Veldhoven
10: 221176

As the user file is the most important file to command, it will be explored a little
further. The user file may contain any of the following types of commands:

1 . Operation macro. The operational macros allow a user to define robot language
commands that will be executed at specific positions identified by a
SIMULATION sequence.

2. Sequence Mapping Commands. The sequence mapping commands allow a user to
map sequence parameters onto the robot controller's parameters

3. Sequence Access Commands. The sequence access commands alow a user to
access and process sequences in a particular manner.

4. Robot Language Commands. Any native robot language command may be input
to this file for execution on the robot.

C.3.1.0 Operation Macros

Operation macros are most often used to execute logic and 110 related functions on the
robot controller. The most common of these include:

1 . Opening and closing grippers.
2 . Turning physical sensors on and off.
3. Sending and receiving signals from peripheral equipment.

C.3.2.0. Sequence Mapping Commands

The parameters of the sequence functions, variables, ports, and labels must be mapped to
the robot controller for these functions to operate correctly. The mapping for these
functions will take place automatically unless the user defines the mapping. The resulting
translation will not contain references to the sequence parameters, but to the mapping
(robot controller) parameters.

C.3.2.1. Automatic Mapping:

A default list of parameter names for variables, ports, and labels have been defined for
each robot translator. As a function is encountered in the sequence during execution of
COMMAND, the next available parameter name is pulled from the default list unless, the
sequence parameter name is the same as a mapping name and it has not been assigned,
then that assignment is made.

C.3.3.a. Sequence Access Commands

Sequence access commands allow the user to include portions of a sequence, an entire
sequence, or multiple sequences in a robot program. When a sequence access command is
encountered during processing, the appropriate sequence file is opened and becomes
known as the active sequence. The processing position in the active sequence is maintained
by a sequence pointer. Whenever this pointer is advanced, the sequence commands are
processed to update the state of the cell model. Sequence processing takes place in a
forward direction only. Therefore, the pointer may be advanced through the sequence but
not "backed up" through commands already processed.

C.5

Robotics

C.3.4.0. Robot Language Commands

Hein.Jan van Veldhoven
10: 221176

In a user file it is possible to insert a number of robot direct commands, which can then
perform certain functions which might not be incorporated into the SIMULATION
sequence commands. This option is often used inside the operation macros. (See section
C.3.1.0. for more details).

C.6

Robotics Hein-Jan van Veldhoven
ID: 221176

Appendix D: SIMULATION and SRCL commands.

0.0.0.0. INDEX

0.0.0.0. INDEX ,... .. 1

0.1.0.0. Syntax Rules ,........ 2

0.2.0.0. Program sequence instructions 3

0.3.0.0. Movement instructions 4

0.4.0.0. Text instructions 6

0.5.0.0. Memory, variable and calculation instructions 7

0.6.0.0. SIMULATION instructions with no equivalent SRCL-instruction ... a

0.7.0.0. Important SRCL-command used when initializing 13

0.8.0.0. SRCL-commands not incorporated in this mapping 13

D.1

Robotics Hein-Jan van Veldhoven
ID: 221176

Appendix D: SIMULATION sequence commands to SRel-commands.

0.1.0.0. Syntax Rules

lower case indicate syntatic categories
::= 'to be written as" symbol

< >

[1
()
{ }

vertical bar to separate choices
choose 1 of the enclosed items
repeat the enclosed items 0 or more times
repeat the enclosed items 1 or more times
optional items
the item appears exactly as shown

OTHER ITEMS terminal symbols
NRS No Resulting Statement

Frequently Used items:

<alpha>
<digit>
<name>
<device>
<frame name>
<frame>
<framepair>
<integer>
<operation>
<part>
<port>
<real>
<tpointname>
<tpoint>
<units>
<variable>

::=<AIBICI .. ·IXIYIZlalblcl···lxlylz>
: :=<0111213141516171819>
::=<alpha> [<alpha>l<digit>] -- maximum of nine characters
::=<name>
::=<name>
::=«framename>l<variable»
::=<frame>. <frame>
: :=any integer
::=<name>
::=<name>
::=<name>
::=any real number
::=<name>
: :=«frame>. <tpointname>l<variable»
::=<"(IN)"I"MM">
::=<name>

D.2

Robotics

D.2.0.0. Program sequence instructions

SIMULATION command:

JUMP_TO: <label>;

DELAY: <real>;

WAIT_UNTIL: <expression>;

IF <expression> THEN JUMP_TO: <label>;

If <expression> THE EXIT _CURRENT_SEQUENCE:;

PAUSE:;

D.3

Hein-Jan van Veldhoven
ID: 221176

SReL-command (german):

SFG HP
KJ
vz.
UP
'Z:(

WRT

WRT E H/L (Wait until input)

SAW (Under conditions)

SAW (Under conditions)

HLT U\J
Unconditional Halt

HLT UN

Robotics

0.3.0.0. Movement instructions

ACTIVE_DEVICE: <device>;

SET _DEVlCE_LOCA TlON_REPRESENTATION: <crdsys>;
possible)

Hein..Jan van Veldhoven
10: 221176

Initialize instruction set.

N.R.S. (just one solution

SET _DEVICE_CONFIGURATION: <configname>; ? ? ? ?
where:

<configname>::= any valid configuration string (defined by BUILD)

SET _DEVICE_MOTION_MODE:
<STRAIGHTIINTERPOLATEISLEW>;

SET_DE VICE_SPEED: <units>,<real>;

WORKING_ TPOINT: <tpoint>;

FRAME_MAXI MUM_SPEED: <frame>, <real>;

GOTO_CIRCLE: <tpoint>,<tpoint>,<operation>;

GOTO_CRD: «real>.)<operation>;

GOTO _HOME: <operation>;

GOTO _JOINTS: <units>. <jntval> , <operation>;

0.4

L1N/PTP

1??1

????

(E3 BAN
ALL
PO;

01

lES BAN 0%
PTP 0

lES BAN 1-100%
PTP 1-9

WZK

WZK

N.R.S.lGES BAN
ALL
PO;

01

ZR

LIN
PTP

LIN
PTP

LIN
PTP

Robotics Hein..Jan van Veldhoven
10: 221176

GOTO_POSITION: <frameortpt>,<frameortpt>, LIN
<INCIABS>, <units>, <posvec>, <rotangs>, <operation>; PTP

GOTO_TPOINT: <tpoint>,<operation>; LIN
PTP

MOVE_ASS: <frameortpt>, <frameortpt>, <frameortpt>, LI N
<rotvec>, <ratamnt>, <units>. <posvec>; PIP

where:
<frameortpt>
<ratvec>
<ratamnt>
<posvec>

::=«frame>,!<tpoint»
: :=<real>, <real>. <real>
::=<real>
: :=<real>, <real>, <real>

MOVE_RE L: <frameortpt>, <frameortpt>, <frameortpt>, LI N
<ratvec>, < rotamnt> ,<units>, <posvec>; PTP

EXTERNAL_JOINTS_OFF:;

DEFINE_COORD_MOTJON_DEVICE:
<crddevice>[,device};

COORDINATED_GOTO:
<crddevice> .«device>, <gotomode> ,)<operation>;

N.R.S.IZAC

N.R.S./ZAC AUS

N.R.S.JZACEINS

ZAC EINS
LIZ (linear)
ZRZ (circle)

EINS

PPZ (point-point)
where:

<crddevice>
~anode>

<gOtp>
<gojt>
~>
<goer>

~

<frameortpt>
<posvec>
<rotang>

::=<name>
::=«gotp>l<gojt>l<gohm>\<gocr>J<gopo>l<nomv»
::= TPOINT,<tpoint>
::=JOINTS,<units>,«real>,)
::=HOME
: :=CI RC LE, <tpoint>, <tpoint>
::=POSITION ,<frameortpt> , <frameortpt>.
<INCREMENTALIABSOLUTE>, <units> .<posvec>, <rotangs>
::=«frame>,J<tpoint»
: :=<real>, <real>, <real>
::=<real>, <real>, <real>

0.5

Robotics

0.4.0.0. Text Instructions

BEGIN_SEGMENT: <segment>;

; <comment>

INTERFERENCE_DETECTION:;

EXAMINE_VARIABLES: <variable>(.variable];

END_SEGMENT: <segment>;

0.6

Hein-Jan van Veld hoven
10: 221176

N.R.S. Used by COMMAND

KOM

???

???

N .R.S. (Used by COMMAND)

Robotics Hein..Jan van Veldhoven
ID: 221176

0.5.0.0. Memory, variable and calculation instructions

SET_VARIABLES: <variable>, <constant>[, <variable>, <constant>]; LAD Px xxx

DE LETE_ VAR IABLES: <variable>[. variable];

CALCULATE: <variable> = <expression>;

RECEIVE_FROM: {<device>}(,<recvpair»;
where:

<recvpair> ::= <port>.<variable>

SEND_TO: «device>)(, <sendpair>};
where:

<sendpair> ::= <port>,<variable>

RS

RS

ARI (UNDER CONDITIONS)

LAD Px Axx

LAD Ax xxx

ROC: <command>; ROBOT DIRECT COMMAND

D.7

Robotics Hein-Jan van Veldhoven
10: 221176

0.6.0.0. SIMULATION instructions with no equivalent SRCL-instruction
(N.S.A. stands for No Resulting Statement)

ADVANCE_STOPWATCH: <real>;

ALlGN_ TPOINTS: <tpoint>, <tpoint>;

ALLOW_COLLISIONS: <framepair>;

BLANK_FRAMES: <frame>[,frame];

BLANK_PARTS: <frame>[, frame];

BLANK_SOLIDS:
<SPHERESIBOXESIHULLSIALL_SOLI OS>;

BLANK_SUBTREE:
<FRAMESITPOINTSIPARTS>.<frame>;

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

BLANK_TEXT: N.R.S.
<ALLI(STOPWATCHIJOINTSISEQWINDOWIMOVETEXT»;

BLANK_ TPOINTS: <frame>[,frame]; N.R.S.

BLANK_UP _TO_WORLD: N.R.S.
<FRAMESITPOINTSIPARTS>, <frame>;

BOTTOM_VIEW:; N.R.S.

CALL_SEQUENCE: <sequence>[, <sequence>]; N.R.S.

CHANGE_DIRECTORY: <directory>; N.R.S.

CHANGE_DISPLAY_TOLERANCE: <part>,<reaJ>; N.R.S.

CLEAR_CELL:; N.R.S.

COLLISION_DETECTION_METHOD: N.R.S.
<FIXED_I NTERVALIVELOCITY_DISTANCE_BOUN 0>;

COLLISION_DETECTION_OFF:; N.R.S.

COLLISION_DETECTION_ON:; N.R.S.

~ N.R.S.
<frame>,<PARTITPOINTS>,<color>,<hue>,<sat>,<int>;

CONNECT JRAMES: <framepair>; N.R.S.

0.8

Robotics Hein-Jan van Veldhoven
10: 221176

CONNECT_PORTS: {<device>}, <port> .{<device>},<port>; N.R.S.

CONNECT YORTS_EXTERNAL:(<device», <port>; N.R.S

CONNECT_TPOINT: <tpoint>,<frame>; N.R.S

CREATE_FRAME: N.R.S.
<framename>, <part>, <frame>, <units>, <matrix>;

where:
<matrix>
<xvec>
<yvec>
<zvec>
<pasvec>

::=<xvec>. <yvec> t <zvec> t <posvec>
: :=<real>, <real>, <real>
: :=<real>, <real> I <real>
: :=<real> t <real> I <real>
::=<real>, <real> t <real>

CREATE_TPOINT:
<frame>, <tpointname>, <un its>. <matrix>;

DEFINE_DEP _MOTION_DEVICE:
<device>, <tpoint>, <tpoint>;

N.R.S.

N.R.S.

DEFINE_PORT: N.R.S.
{<device>},<port>,<REALIINTEGERIBOOLEAN>,<INPUTIOUTPUTIINOUTP>;

DEFINE_SOLIDS: «frame>[,framellALL_FRAMES>; N.R.S

DELETE_DEVICE: <device>; N.R.S.

DELETE_FRAME: <frame>{,frame); N.R.S.

DELETE_PORT: {<device>}, <port>; N.R.S.

DELETE_ TPOINT: <tpoint>[,tpoint]; N.R.S.

DEPTH_CLIPPING_OFF:; N.R.S.

DEPTH_CUPPING_ON:; N.R.S.

DISABLEJ)EP _MOTION_DEVICE: <device>; N.R.S.

DISALLOW_COLLISIONS: N.R.S.
«framepair>[.framepairlIALL_FRAMES>

DISCONNECT_FRAMES: <frame>[.frameJ; N.R.S.

DISCONNECT_PORTS: N.R.S.
{<device>}. <port> ,{<device>}, <port>;

0.9

Robotics

DISPLAY _CONNECTION_TREE:;

DISPLAY _W1REFRAME_FRAMES:;

EXTERNAL_PORTS_ON:<message>;

EXTERNAL_PORTS_OFF:;

FASTER:;

FRAME_TO _FRAME: <framepair>;

FRONT_VIEW:;

HIDDEN_LlNE_REMOVAL:;

N.R.S.

N.R.S

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

Hein-Jan van Veldhoven
ID: 221176

IF <expression> THE CALL_SEQUENCE: <sequence>[.sequence]; N.R.S.

JOINT _ALARM_OFF:; N.R.S.

JOINT_ALARM_ON:; N.R.S.

JOINT_VELOCITY _CHECK_OFF:; N.R.S.

JOINT_VELOCITY _CHECK_ON:; N.R.S.

LEFT _SIDE_VIEW:; N.R.S.

LIST _FRAMES_ WITH_SOLIDS:; N.R.S.

MERGE_CEL: <cell>,<frame>; N.R.S.

MERGE_DEVICE: <device> ,<frame>; N.R.S.

MOVE_TPOINT _GROUP: <8LENDEDISIMPLE>,<frame>, N.R.S.
{tpointnamelvariable}, {tpointnamelvariable},
{tpointnamelvariable}, <rotvec>, <rotamnt>. <units>, <posvec>;

PERSPECTIVE_OFF:; N.R.S.

PERSPECTIVE_ON:; N.R.S

POL YGOt-CEDGES_OFF:; N.R.S.

POLYGON_EDGES_ON:; N.R.S.

REAL_TIME_SYNC_OFF:; N.R.S.

REAL_TIME_SYNC_ON:; N.R.S.

D.10

Robotics Hein-Jan van Veldhoven
ID: 221176

REAR_VIEW:; N.R.S.

RESET _JOINT_DATA:; N.R.S

RESET_STOPWATCH:; N.R.S.

RESTORE_WIRE FRAME_DISP LA V:; N.R.S.

RIGHT _SIDE_VIEW:; N.R.S.

SAVE_CEll: <cell>; N.R.S.

SET_DEVICE-.MONITORED: <device>[,device] N.R.S.

SET_DISPLAY_INTERVAL: <real>; N.R.S.

SET_DISTANCE_UNITS: <units>; N.R.S.

SET_JOINT _DISPLAY: <PERCENTS_ONl YI N.R.S.
PERCENTSj.ND_VALUESIWORST_JOINT_ONLY>
{,<PORTSINOPORTS>};

SET_RECEIVE_MODE: {<device>},<poft>,<MANUAlIAUTOMATIC>;N.R.S.

SET _SEND _MODE: {<device>}, <port>, <MANUALIAUTOMATIC>; N.R.S.

SET_SIMULATION_INTERVAL: <real>; N.R.S.

SET_TIMING_FILE: <timingfile>; N.R.S.

SET_TPOINT_DISPLAY_SIZE: <units>,<real>; N.R.S.

SET_TRACE_ON: <frameortpt>,<frame>,<frame>; N.R.S.

SET _TRACE_OFF: <frame>,{part}; N.R.S.

SET_VARIABLES: <variable>, <framename>, <tpointname>; N.R.S.

SlOWER:;

SMOOTH_SHADING:;

STOPWATCH_OFF:;

D.11

N.R.S.

N.R.S

N.R.S.

N.R.S.

Robotics

TPOINT_TO_FRAME: <tpoint>,<frame>;

TPOINT _TO _ TPOINT: <tpoint>, <tpoint>;

TRIMETRIV _VIEW:;

UNBLANK_FRAMES: <frame>[,frame];

UNBLANK_PARTS: <frame>(.frame];

UNBLANK_SOLlDS:
<SPHERESIBOXESIHULLSIALL_SOLlDS>;

UN BLANK_SUBTREE:
<FRAMESITPOINTSIPARTS>. <frame>;

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

N.R.S.

UNBLANK_TEXT: N.R.S.
<ALLI(STOPWATCHIJOINTSISEQWINDOWIMOVETEXT»;

UNBLANK_TPOINTS: <frame>[.frame];

UN BLANK_UP _TO_WORLD:
<FRAMESITPOINTSIPARTS>, <frame>;

VIEW_CENTER_TPOINT: <frameltpoint>;

0.12

N.R.S.

N.R.S.

N.R.S.

Hein-Jan van Veldhoven
ID: 221176

Robotics Hein-Jan van Veldhoven
10: 221176

0.7.0.0. Important SRCl-command used when initializing
(they will have to be generated by command when starting the postprocessing)

DEF HP define main program
PO
VZ
UP
zy

adress
branch
subprogram
cycle

D.S.O.O. SRCl-commands not incorporated in this mapping

as conveyer synchronization
GfF gripper, will probably be set by ROC or at end of movement.
NOP no operation
NPK zero-offset correction
ORI orientation (wrist-rotation during path or at end point.)
PAU Output to periphery
ROl remaining loops cancelled
TV tranfer results of binairy operation
TXT text

0.13

Robotics

Appendix E: SRCL commands.

E.O.O.O. INDEX

Hein-Jan van Veldhoven
10: 221176

E.O.O.O. INDEX 1

E.1.0.0. Program Sequence Instructions 2

E.2.0.0. Movement Instructions 4

E.3.0.0. Binary Logic Instructions 6

E.4.0.0. Input/Output Memory Instructions 7

E.S.O.O. Arithmetic Instructions 8

E.6.0.0. Special Instructions 9

E.7.0.0. Sensor Function Instructions 10

E.S.O.O. Text display Instructions 12

E.1

Robotics

Command description:

E.1.0.0. Program Sequence Instructions

Definition
Main Program
Address
Branch
Subprogram
Cycle
Sensor Function
Space Point Data
Variable Data
Technology Table

Jump
Main Program
Address
Branch
Subprogram
Cycle

Sensor Function
01
Off

Wait
Time
Input

Conditional
Greater
Less Than
Equal
Not Equal To
True
False

Halt
Unconditional
Conditional

Remaining Loops Cancel

Interrupt
01
Off
Execute
Not Execute

E.2

Hein..Jan van Veldhoven
10: 221176

English Command: German Command:

DEF DEF
MP HP
PD PD
BR VZ
SP UP
or 'Z:(

SF SF
SO RD
VI) VI)

TET TEC

.. IMP SR3
MP HP
PD PD
BR VZ
SP UP
or 'Z:(

SF SF
OJ EIN
(ff" AUS

WAI WRT
T Z
I E

a:N BAW
CR CR
LE KL
EO G.
NE U3
T W
F F

HLT HLT
UN UN
<D BE

RLC RDL

INT UNT
(}J EIN
(ff" AUS
EX SEA
NX NBE

Robotics

E.2.0.0. Movement Instructions

Linear Movement LIN
Positions
Orientations

Auxiliary Axes NiX
01
Off

Linear Aux Axis Move LIN
Positions
Orientations
AuxAxes

Circular Movement
Positions Point 1
Positions Poi nt 2
Orientations

Circular Aux Axes Move CIA
Positions Point 1
Positions Point 2
Orientations
AuxAxes

Point To Point Movement PTP
Positions
Orientations

Point To Point Aux Axes PPA
Positions
Orientations
AuxAxes

Velocity VEL
Linear
All Axes
Specific Axis
Override
One Additional Axis
All Additional Axes

Acceleration Kr,

Linear Motion
All Axes
Specific Axis

E.4

Hein-Jan van Veldhoven
10: 221176

LIN
XYZ XYZ
ABC ABC

ZPC
Q\I EIN
OFF AUS

LIN
XYZ XYZ
ABC ABC
A1 - A6 Z1 - Z6

ZR
XYZ XYZ
XYZ XYZ
ABC ABC

ZRZ
XYZ XYZ
XYZ XYZ
ABC ABC
A1 - A6 Z1 - Z6

PTP
XYZ XYZ
ABC ABC

PPZ
XYZ XYZ
ABC ABC
A1 - A6 Z1 • Z6

(E)

CPA BAN
ALL ALL
/VlS PCH
01 01
Jl.X;(ZPC
AAA ZAL

EES
CPA BAN
ALL ALL
/VlS PCH

Robotics

Orientation ORt
Fixed
Variable

Approximate Positioning PfQ
Linear
Point To Point

Zero Offset ZOF

Tool Offset TOF
Position

E.S

FIX
VAA

CPA
PTP

TLO

Hein-Jan van Veldhoven
10: 221176

ORI
K()\J

VAA

LES
BAN
PTP

NPK

WZK
TLO

Robotics

E.3.0.0. Binary Logic Instructions

And A
Marker
Not Marker
Input
Not Input
Bit Store
Not Bit Store

Or 0
Marker
Not Marker
Input
Not Input
Bit Store
Not Bit Store

E.6

M
NM
I
NI
B
NB

M
NM
I
NI
B
NB

Hein-Jan van Veldhoven
10: 221176

U
M
NM
E
NE
B
NB

0
M
NM
E
NE
B
NB

Robotics

E.4.0.0. Input/Output Memory Instructions

Transfer Results TR
Output
Marker
Bit Store

Set S
Output
Marker
Impulse Output
Bit Store

Reset RS
Output
Marker
Bit Store

load LAD
Parameter
Output
Variable Memory
Variable
Space Point

Gripper GAP
Current Position Store
Open
Close

Output to Periphery our
P-Word
M-Word
H-Word

E.7

0
M
B

0
M
10
B

0
M
B

P
0
VPJ./I
V
S

Fa)

CFN
a..

PW
MW
HW

Hein-Jan van Veldhoven
ID: 221176

1V
A
M
B

S
A
M
IA
B

RS
A
M
B

LAD
P
A
VSP
V
R

GRF
Fa)

AUF
ZU

PAU
PW
MW
HW

Robotics

E.S.O.O. Arithmetic Instructions

Arithmetic
Addition
Substraction
M ultipl ication
Division
Compare

ARI

E.a

ADO
SUB
MLT
DIV
CMP

Hein-Jan van Veldhoven
ID: 221176

ARI
ADO
SUB
MLT
DIV
va

Robotics

E.6.0.0. Special Instructions

Analog Output tNJ
Offset
Velocity
Analog Table
Integration Time

Technology Table TET
01
Off

Conveyor Synchronization 01
Switch On
Switch Off
Interrupt

Time Distance Function TDF
01
Off

Pendulum Motion PNO
Axis 6
Cartesian

E.g

0
VEL
AT
ITE

OJ
a=F

s::l\I
a=F
INT

OJ
a=F

/J?IS
CAR

Hein-Jan van Veldhoven
10: 221176

/INA
0
G:S
AT
IZT

lEG
EIN
AUS

BS
ANF
END
UNT

TDF
OJ
a=F

PNO
N?£
KAR

Robotics

E.7.0.0. Sensor Function Instructions

Sensor Analog Interface SAl
01
Off

Sensor Control SCI

Sensor Read SRI
Cb;e

01
Off

Sensor Data Request SDR
Once
Cyclic
Cyclic Off

Load Sensor List SLT
Variable Memory
Control Variable

Sensor Compare SOv1
Greater
Less
Equal
Not Equal

Sensor Arithmetic SAR
Addition
Substraction
Multiplication
Division
Square Root
Sine
Cosine

Sensor Binary Logic s:o
And
Or
Exclusive Or
Not

Sensor Load SLA
Variable Memory
Variable
Space Point

E.10

OJ
aT

O\C
OJ
aT

O\C
Gte
aT

VAM
OJA

~
LE
to
NE

/JOO
SUB
MUL
DIV
OCR
SIN
a::s

A
0
>m
N

VAM
V
S

Hein-Jan van Veldhoven
10: 221176

SAS
EIN
AUS

SST

SOL
EML
EIN
AUS

SOA
EML
lYK
AUS

SLT
VSP
FKN

S\G
~
KL
G..
N3

SAR
/JOO
SUB
MUL
DIV
WRZ
SIN
a::s

VKM
U
0
>m
N

SLA
VSP
V
R

Robotics

Comparator a:M
Input Memory
Variable Memory

Binary Velocity Control BVC
Bit Memory
Input

Binary Path Control BCP
Bit Memory
Input

Analog Path Control PCP
Input Memory
Variable Memory

Analog Velocity Control Av:::,
Input Memory
Variable Memory

E.11

INM
VNIt

B
I

B
I

INM
VNIt

INM
VNIt

Hein-Jan van Veldhoven
ID: 221176

KMP
ESP
VSP

GFB
B
E

BKB
B
E

BKA
ESP
VSP

(?FA
ESP
VSP

Robotics

E.8.0.0. Text display Instructions

No Operation

Remark

Text

E.12

NOP

REM

TXT

Hein-Jan van Veldhoven
10: 221176

KOM

	Voorblad
	Index
	preface
	Summary
	Hoofdstuk 1
	Hoofdstuk 2
	Hoofdstuk 3
	Hoofdstuk 4
	Hoofdstuk 5
	Hoofdstuk 6
	Literature
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

