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Abstract

An extension of the Scharfetter-Guminel discretisation scheme is presented which
is designed especially for the electrothermal semiconductor device equations includ-
ing avalanche generation terms. The scheme makes explicit use of the exponential
character of solutions, and reduces to the standard Scharfetter-Gummel scheme in the
isothermal non-avalanche case.



1 Introduction

Over the last few decades, the size of semiconductor device structures has decreased
dramatically, and this process is still continuing. Because of this, the need for math-
ematical modelling of such structures is rapidly growing. So far, the most widely
used model for describing the behaviour of semiconductor devices is the drift-diffusion
model. This model consists of Poisson’s equation for the electrostatic potential and
continuity equations for holes and electrons. Simulations using this model have been
shown to agree well with experiments in many cases. Improved models for the param-
eters in the model, such as carrier mobilities, bandgap narrowing and recombination
(cf. [1]), effectively extend the applicability of the model. Although much attention is
paid to extended models ([2, 3]), such as the hydrodynamic model, the conventional
drift-diffusion model is still adequate for the simulation of many devices.

The simulation of the behaviour of semiconductor devices using the drift-diffusion
model offers substantial difficulties, arising in all phases of the numerical solution
procedure ([4]). Therefore, special methods have been developed over the past decade
to solve the associated problems in a robust and efficient manner. Research in this area
has led to special discretisation methods (the well-known Scharfetter-Gummel scheme
[5], mixed finite element methods [6]), special non-linear solution techniques ([7, 8])
and the use of state-of-the-art techniques for the solution of large sparse linear systems
([4, 9]). In addition, customised techniques have been developed for special models.
When avalanche generation is included in the model, the character of the equations
changes dramatically, and the methods developed need adjusting. In [10], an extended
Scharfetter-Gummel scheme is presented which makes use of the exponential character
of the problem.

In this paper we consider a simple extension of the drift-diffusion model, in which
the lattice temperature is introduced as an additional unknown. Thus, carriers are
still assumed to be in thermal equilibrium, but the overall temperature of the device
may vary. The effect of this extension is reflected in the model by an extra equation
for the lattice temperature, and by different expressions for the current densities. The
latter will not only contain terms relating to drift and diffusion, but also a term due
to temperature gradients. In addition, we assume that the recombination/generation
term contains the mechanism of avalanche generation. We will derive special discreti-
sation methods for this model, which take into account the varying temperature as
well as the exponential behaviour of the current densities. We will only elaborate on
the discretisation of the current relations, since the other equations involved do not
provide any significant problems when using the box method.

An outline of the paper is as follows. In the next section we first give an overview of
the equations which constitute the model, followed by a description of the parameters
used. Section 3 contains the derivation of the extensions of the Scharfetter-Gummel
scheme for 1-dimensional problems, both in the isothermal and the non-isothermal
cases. The former is, in fact, a summary of the material presented previously in [10],
and is used to explain the main ideas; the latter then discusses the application of these
ideas to the case of variable lattice temperature. In Section 4, the discrete schemes
derived are elaborated further. Especially for the non-isothermal cases, difficulties
occur in the approximation of integrals involved; remedies for this are described. Sec-
tion 5 then discusses the extension of the 1-dimensional methods to the case of 2-d
rectangular grids; although the basic idea of this extension is similar to that of the tra-
ditional Scharfetter-Gummel scheme, again specific difficulties are encountered. These
are described in this section, as well as their treatment. The paper is concluded with
a summary of the most important aspects of the methods presented.



2 The electrothermal device equations

The set of partial differential equations describing the stationary, electrothermal be-
haviour of semiconductor devices reads [11]

(21) V-(E)=p, p=qlp—n+D),
(22a) V-J,=—an|In|~ap | I, | +4R,
(22b) V-Jp=an|Jn|+ap | Tp | —4R,
(23) V-(xVT)=-H.

Equation (2.1) is the Poisson equation, (2.2a) and (2.2b) are the electron and hole
continuity equation, respectively, and (2.3) is the heat conduction equation. In these
equations, the electric field E and the electron and hole current densities J,, and J,
are given by

(24) E=-Vy,
(2.5a) I, = q(ganE + D, Vn+nDIVT),
(2.5b) J, = q(ptppE — D,Vp — pDTVT).

Equations (2.5a) and (2.5b) are referred to as the electron and hole current rela-
tion, respectively. The basic variables in (2.1)-(2.5) are the electrostatic potential ¥,
the electron and hole concentrations n and p, and the (absolute) device temperature
T. Physical parameters in the above equations are the space charge density p, the
doping profile D, the electron and hole ionisation rates «, and a,, the recombina-
tion/generation rate R, the thermal conductivity &, the heat generation rate H, the
electron and hole mobilities y, and p,, the diffusion coefficients D,, and D, and the
thermal diffusion coeficients DI and DIT,’ (see Appendix). In addition, the system
(2.1)-(2.5) contains two constants, viz. the permittivity ¢ and the elementary charge
q.

Here, we briefly discuss some models for the physical parameters. For a more
detailed discussion, see e.g. [1, 11] . The doping profile D is defined as the net
concentration of all ionised impurities, i.e.

(2.6) D= Np — Ny,

where Np and N, are the concentrations of ionised donors and acceptors, respectively.
Here we assume that all impurity atoms are singly ionised. Closely related to D is the
total impurity concentration N, defined by

(27 N =Np+ N,.

Most of the following physical parameters are a function of N.

At low electric fields, the drift velocity of the charge carriers is linearly proportional
to the electric field, and the proportionality factors are called the carrier mobilities
#e(¢ = n, p). The mobilities y1. are determined by various scattering mechanisms, such
as for instance lattice scattering or impurity scattering. At high electric fields however,
the drift velocities saturate due to carrier heating. This effect is accounted for by field-
dependent carrier mobilities. In general, p, = p.(N,T,E,n,p). A comprehensive
discussion can be found in [11]. Here we only present a typical example

He, LI
2.8 = —— =
(2.8)  pe 7 belE] (¢ =n,p),
Ve,sat
where p. rr is the mobility due to lattice scattering and impurity scattering only,
and where v, ;q; is the so-called saturation velocity. In this paper we assume that



the diffusion coefficients D,, D, are related to the mobilities y,, i, by the Einstein
relation

kT
(29) D, = Urp. (C = n,P), Ur = T;

where Ur is the thermal voltage and k is the Boltzmann constant. Furthermore, we

assume the following relation between the diffusion coefficients D, , D, and the thermal

diffusion coefficients DZ,DZ (2]

DT r41
@210) = ="*1
D, T
In (2.10) r is a constant depending on the dominant scattering type. If for instance
lattice scattering is dominant then r = —-%, However, if impurity scattering dominates
then r = 2, ‘
2

The recombination/generation rate R is the number of electron-hole pairs which
recombine or are generated per unit volume and per unit time. When recombination
prevails, R > 0, and otherwise, when generation prevails, R < 0. Note that in (2.2a)
and (2.2b) we have explicitly split off the avalanche generation term

1
(2.118.) Rir= *E(an | Jn | +ap |JP |)1

since it plays such a dominant role in the following. Avalanche generation is also often
called impact ionisation. The most commonly used models for R are the Shockley-

Read-Hall function
np — nz?nt

( ) Rsra Tp(n + nine) + T (D + Nint)

and the Auger function
(2.11c)  Rau = (Cn,aun + Cp aup)(np — Nine)-

In (2.11b), (2.11c) 7, and 7, are the electron and hole lifetimes, respectively, and
Nint is the intrinsic carrier concentration. The total recombination rate (excluding
avalanche generation) is the sum of Rsgy and Ra,. Avalanche generation is only of
importance at high electric fields. In fact, in this case Ry; completely dominates the
other recombination terms. A typical expression for the ionisation rates a. is

(2.12) a; = age(T)exp (——%) ,(c=n,p),

with E, = E-J./ | J. |. In other words, E; is the projection of E in the direction of
J..

In this paper we assume that n;,; is a constant, i.e. we ignore bandgap narrowing,
because it is not of importance in the derivation of the exponential fitting scheme.
However, extension of this scheme for a variable intrinsic carrier concentration n;y,; is
straightforward.

A model for the thermal conductivity is ([11])

(2.13) &(T) = (a + 0T 4 cT?)" 1.

Finally, consider the heat generation rate H, which is the heat generated in the device
per unit volume and per unit time. A thorough description of H can be found in [13].
Here we only present the so-called Joule heating term

2 2
(2.14) H:l(———l‘]"l Ak )
g\ Han  ppp

which is the heat generated due to the flow of carriers through an electric field. Note
that H > 0, i.e. heat is generated in the device and not consumed.

The equations (2.1)-(2.5) have to be solved on a domain £2, which consists of the
semiconductor material, but which may also contain regions of a different type, such

4



as oxide, plastic or metal. Only the heat conduction equation (2.3) has to be solved
on the whole domain. The electrical device equations (2.1),(2.2),(2.4) and (2.5) only
hold in the semiconductor material, and in the oxide region only the Poisson equation
has to be solved with space charge density p = 0. The set of differential equations
(2.1)-(2.5) has to be completed with appropriate boundary conditions.

For the derivation of the discretisation scheme it is convenient to introduce the
quasi-Fermi potentials ¢, ¢, and the Slotboom variables u,v. These variables are
defined in [14, 15]

n

(2.15) pn = ¢—UTln( ) vop =1+ Urln (L) ,
Nint Nint

and
(2.16) u=e9n/UT y = ¢?2/UT,

In the isothermal case, i.e. T is constant, the current relations (2.5) can be rewritten
in terms of these variables as follows

(217&) Jn = —q/innVSOm
(2.17b) I, = —quppVep,
or
(2.183) Jn = annintew/UTvu;
(2.18b) I, = —qDpninse~¥/UT V0.

Clearly, the quasi-Fermi potentials act in this case as the driving force for the current
densities. In the non-isothermal case, the current relations (2.17) and (2.18) have to
be supplemented with an extra term proportional to VT



3 Derivation of the 1-dimensional exponential fit-
ting scheme

3.1 The isothermal case

In this section we describe an exponential fitting scheme for the continuity equations
and the current relations, originally developed in [10]. The 1-dimensional continuity
equations read

(3.13.) J.,l, =~y | Jn | —ap | JP | +eR,
(3.1b) J, = n | Jn | +ap | Jp | —gR.

The current relations are, expressed in terms of the quasi-Fermi potentials or the
Slotboom variables:

! !
(3'23) In = —qunane, = annintC¢/UTu ,
(3.2b) Jp = _q”l’pp; = —qDpnince /U7y,

There are two difficulties associated with the continuity equations (3.1). Firstly, these
equations are intrinsically coupled and secondly, they are nonlinear in J, and Jp.
However, this nonlinearity can be overcome as follows. Define s, = sign(J,),s, =
sign(Jp), then | J,, |= s,J, and | J, |= s,Jp, and from equation (3.2) it is obvious
that s, = —sign(p,) and s, = —sign(go;). Therefore, the continuity equations can
now be written as

(3.3a) 3 = AJ+4R,
with

(3.3b) J= ( ‘5: ),A: ( ‘ﬁiﬂ ‘ﬂfp ),R= ( _}33),

where B, = spa, and B, = spa,. Thus (3.3a) may be considered as a linear system
with a non-constant coefficient matrix A.

For space discretisation, the domain 2 is covered with a non-uniform mesh. As-
suming a piecewise constant electric field E between neighbouring mesh points z; and
zi+1, A is a piecewise constant matrix. In particular for ¢ € [z;,2i41], A = Aiqy/2,
see Fig. 1. Then, the exact solution of (3.3a) subject to the boundary condition
I(@ig1/2) = Jigay2 is

T
(3.4) I)= e(-""—-‘ﬂi+l/2)Ai+1/2.]’,+1/2 + ,1/ T Ait1/2R (5)ds,
Tit1/2

clearly demonstrating an exponential behaviour of J(z) due to the avalanche genera-
tion term.

Equation (3.3a) is discretised using the box method (finite volume technique [16]).
Therefore, consider the box B; = [2;_1/,%;41/2] around mesh point z;. Integration
of (3.3a) over the box B; gives

(35) Jiji2—Jdicay =/

Tin1/3

T Tig1/2

A;_1/2Jd13+ / A,~+1/2Jd.’c+

Ly
Tig1/2
q/ Rdz.
Tiw1/2

Consider the second integral. Assume that for z € [z;, z;41], J(z) satisfies

(3.6) I(z) = eEmTrDAbag,



This assumption is equivalent to the requirement that J satisfies the homogeneous
equation 3" = 4;,, /2J. Substitution of (3.6) in the second integral of (3.5) gives

Tig1/2
(3.7) / Aip1)23de = (I - e(x‘_z‘+1/2)A‘+1/2)Ji+1/2-
T

The first integral in (3.5) can be computed in a similar way. The discrete continuity
equation then reads

3.8 e(i‘-‘—’v‘i-. 1/2)Ai+1/2Ji 12 — e(l'.’—fi—x/z)A-‘—l/zJi_l g = qbiRoi,
+1/ /

where b; = 2;11/2 — £;_1/2 is the size of box B;. Note that the last integral in (3.5)
is approximated by a simple midpoint rule. Also notice that for A = O (no avalanche
generation), the original box scheme is obtained.

Now consider the current relations formulated in terms of the Slotboom variables.
These equations can be written in vector form as follows

(3.92) J=Du,
with

YU
(3.9b) u=(:),D=qn,-m(D"e ’ 0 )

0 ~Dye~¥/Ur

Substitution of (3.6) in (3.9a) and integration over [z;,z;+1] gives the following ex-
pression for J;;1/2

Tit1
(3,1[)) Ji+1/2 = (/ D—le(z—xg+1/2)Ai+1/zdl.)—l(ui_H _ u’,),
T

where u; = u(z;), etc. Observe that the assumption about J is a straightforward
generalisation of the assumption that J is constant for z € [2;,2;31] (J' = 0) made
in the standard Scha fetter-Gummel scheme. For A = O (no avalanche generation),
(3.10) reduces to the standard Scharfetter-Gummel scheme. The equations (3.8) and
(3.10) are the discrete continuity equations and current relations, respectively. An
elaboration of the scheme will be presented in Section 4.



3.2 The non-isothermal case

Now we briefly discuss an extension of the exponential fitting scheme of the previous
section, for the case of a variable device temperature. The main difficulty in this case
is the additional term proportional to VT in the current relations. Using the relations
(2.9) and (2.10), the 1-dimensional current relations can be written as

(3.112) Jn =¢Dn(n’ —ny,/Ur), =% —(r+1)Ur,
(3.11b) J, = —¢Dy(p +p,/Ur),  p = ¥+ (r+ 1)Ur.

In (3.11), ¥ and 4, are modified potentials emanating from the V4 and VT terms
in the current relations. In the isothermal case we have ¥, = ¢, = 1. Note that the
thermal voltage Uz is not constant.

We like to write the current relations in a form similar to (3.2), so that we immedi-
ately can determine the sign (or direction) of J, and Jp,. Thus, consider the following
representation for the current densities on the interval [z;, Z;41]

(3.12a) J, = qDpe®* (ne'“")l ,

!

(3.12b) J, = —gDpe™% (pe®) .

Then it is easy to shcw that the functions a, () and a,(z) are given by

(3.13a) an(z) = an(z;) + r 3;&3 ds,
(3.13b)  ap(z) = ap(zi) + : g:((i))ds,

where the constants a,(z;) and ay(z;) can be chosen arbitrarily. Remark that in the
isothermal case a, = a, = ¥/Ur (up to an additional constant), in accordance with
(3.2). The current relations (3.12) can be rewritten in the following alternative ways.
Define the variables 4,4, and i, % corresponding with respectively @, /Ur,p,/Ur
and u,v, cf. (2.15) and (2.16),

(3.14) ¢n=an—ln(—n-),¢'p=ap+ln( d )

Nint Nint
3.15) =€ %" 9 =e¥r,
)

Then, the current relations, expressed in these variables, read

~!

(3.16a) J, = —qD,,ngB:, = ¢D,nipe®" 0,
(3.16b) J, = —qupgb;, = —qun;,,te_“"ﬁl.

Assume that the variables $,,%, are known, then the sign of J, and J, can be
determined from (3.16). Henceforth, the derivation of the discretisation scheme is
completely analogous to the isothermal case. Equation (3.8) is again the discrete
continuity equation. The current relations (3.9) and the formula (3.10) for J;}1/2
also hold in the non-isothermal case, if the vector u = (u,v)% and the matrix D are
replaced by respectively @ = (&,%)7 and

o Dye®n 0
(3.17) D = qnjp; ( 0 —Dye=ar ) .

To complete the derivation of the exponential fitting scheme, we have to compute
the functions a,(x) and a,(z). These functions are defined per interval [z;, z;41]. Let
¢ € [2;,2;+1] and assume that ¥ and T are linear on this interval. The linearity
assumption for ¢ is in accordance with the previous assumption that E is constant



on [z;, z;41]. The functions a,(z) and a,(x) can be easily computed from (3.13), and
we find

(3.183) an(z) = an(z:) — (B +(r+ I)U;)ﬁi(;:iz)’
(3.18b) ap(z) = ap(zi) — (E— (r + I)U;") U—:-(—:-nf;;) .

Ur(zi, z) is the harmonic average of Ur(s) on the interval [x;, 2], defined by
1 ® ds

(3.19) Ur(wi,2)™' = z—z; Jg, Ur(s)

Since Ur(s) is linear on [x;, ], the following expression for Ur(z;, z) is obtained
UT(IL‘) - UT(.‘E,-)
InUr(z) — InUp(z;)”

Using Taylor expansion, one can easily see that in the isothermal case Ur(z;,z) = Ur,
as is to be expected.

(3:20) Ur(zi,z) =




4 Elaboration of the scheme

The exponential fitting scheme consists of the discrete continuity equations (3.8) and
the discrete current relations (3.10). In this section we further elaborate on these two
equations. In particular, we discuss the computation of the matrix exponential e*4
and the current densities J;11/2, respectively.

Let A be a constant matrix. There are various ways to compute %4, see e.g. [17].
Since A is a 2 x 2 matrix with eigenvalues 0 and A = B, — f,, it is easy to show that

(4.12) €4 = T4 v(z)A,

with
17,2z :
_f x(*=1) ifax#0

(4.1b) ~(z) = { z if A = 0.
When we substitute this expression for ¢4 in (3.8), the discrete continuity equations
become

(4.2) (I +7igp172(2i — Tigay2)Aipayz) Jivryz —

(I + Yie1y2(i = Tio12)Ai1y2) Jic 12 = abiRy.

The function v in (4.2) depends on the eigenvalue ), and therefore we write ¥ = ¥;41/2
for the matrix A = A;41/2; and likewise for ¥;_1/2. In the following however, we will
omit the subscripts ¢ & 1/2 for convenience.

Consider the current relations (3.10). Substitution of equation (4.1) for the matrix
exponent gives

(4.33) Jip12=(I+ G,-+1/2Ai+1/2)°lji+1/2,
(4.3b) Jiy1sz = EZY jp(fign — ).

In (4.3b), J;y4y /2 is the current density in the case that avalanche generation is ne-
glected. The 2 x 2 diagonal matrices E, F and G, occurring in the computation of
Jit1/2, are defined by

Titl
(44&) Ei+1/2=/ D—ldlt,
Tigl
(44b) Fiyy/2 = / 7(2 — 2i41/2) D da,

(44c) Gigrja = By pFisaye.
The final discretisation scheme, after substitution of (4.3a) in (4.2), reads
-1 =
(4.5) (I +9(2i — ziy172)Airy2) (I+ Giyry24ivry2)” Jivrjz—
(I + (i — im1/2)Ainyy2) (I+ Gi—l/zAi—1/2)—lji-—1/2 = ¢bR;.

Thus, to complete the scheme, we still have to compute the current densities J i+1/2
and the matrix G.

Computation of J i+1/2 gives the standard Scharfetter-Gummel expressions for the
current densities. In the non-isothermal case they read ([12])

41 n;
-B _675 T o)
Tis1 ( )Tz>

bn = ((Yi1 — i) — (r + 2)(Uri41 — Ur)) [Ur (i, zig1),

- an,i =
(46&) Jn,-’+1/2 = T_:;IB-T(Z’.’ l‘,‘+1) (B((Sn)

- qD i =
(4.6b) Jpiq1/2 = _—;:’."'—llz-T(:L'i,-'”i+l) (B(—ép)

Pi+1 D
~B(6,)= 1,
i+1 Tit1 ( P)Ti)

10



6p = ((Yi+1 — ¥i) + (r + 2)(Ur,i31 — Ury)) /Ur (24, Tig1).

B(z) is the Bernoulli function defined by B(z) = z/(e* —1). In the derivation of (4.6)
we have assumed that on the interval [z;, ;,,], the potential 1 and the temperature
T are linear and that the diffusion coefficients D, and D, are constant. The equations
(4.6) might lead to cancellation problems; see e.g. [4], where this problem is discussed
for the isothermal case. An alternative formulation for the current densities, expressed
in the variables ¢, and @, is

~ qD, ; - ~ - ni
(4.78) Jniq1/e = ——t= 2Pz, 2i41) B(—80)6(nyi — Prit1) s
hit1 T;

2 gD, = - ~ i

(475) Fpiqryp = T2 (2, 2041) B(8,)8(Ppits — Bri) o
h,'+1 T;

where the function 6(z) is defined by §(z) = ¢* — 1. In order to avoid cancellation

problems, §(z) should be developed in a Taylor series for small values of z. Similar

Lo \1/2
expressions for Jp, 141 /2 with 3¢ replaced by 7 —L or (;:—;:3—) can be easily derived.

The same holds, mutatis mutandls, for Jp,,.H /2-
Finally, consider the computation of the diagonal matrix G. A simple calculation
shows (cf. (4.4)) that the matrix elements G; and Ga2 are given by

f::ﬂ v(x — iy1/2)e” " dz
fxiﬂ e~ ondyp ’

T

(4.8&.) Gll,i+1/2 =

S v(z = 2i41y0)e%rde

Lit+l _q
fI etrdz

(4.8b) Gazit1y2 =

In the isothermal case, the computation of G;; and Gg is straightforward, and we
find, with A = (¢;41 — ¥:)/(2Ur),

(4.92) Giiiyr2 = —(@it172 — )g(A, =A(@ig1/2 — i),
(4.9b) G23i41/2 = (Tigr72 — ) 9(A, A(@is1/2 — i),
where A is a short notation for A;;/2. The function g(z,y) in (4.9) is defined by

o oy = 1EFY) - f(2)
(4.10a) g(z,y) T
with

(4100)  f(z) = L),

In the computation of g(z, y), expression (4.10a) has to be replaced by a Taylor series
for small values of y. Also f(2) has to be developed in a Taylor series for small values
of z. However, in the non-isothermal case, the integrals in the denominators of (4.8)
can not be evaluated exactly if we assume that T(z) (or Ur(z)) is a linear function
on [z;,z;41]. Therefore, only in the computatlon of G1; and Gsy, we replace Ur by a
suitably chosen average Ur, e.g. Ur = (UT i + Ur,it1). Herewith we tacitly assume
that T is a mildly varying function. ThlS is correct if we ignore hot electron effects.
Computation of G1; and Gy then gives

(4.112)  Gurisrje = —(Big1j2 = 20)9(Bny ~M(zip1/2 — 72),
An = (Yn,iv1 — ¥n i)/ (207),

(4.11b)  Gazsiqaya = (Tixrs2 — 2i)9(Ap, MTiyr/2 — i),
Ap = (Ypi41 ~ ¢p,i)/(2[7T)-

11



5 Extension of the exponential fitting scheme to a
2-dimensional rectangular mesh

In Section 3 we have derived an exponential fitting scheme for the 1-dimensional semi-
conductor device equations, modeling avalanche generation and a variable device tem-
perature. Now we discuss the extension of this scheme to a 2-dimensional rectangular
mesh. For a triangular mesh, the derivation of the scheme is more complicated.

First we discuss the isothermal case. Consider the continuity equations (2.2)
and the current relations (2.17). The current densities J, = (Jns, Jny)T and J, =
(Jpss J,,,,)T are now proper vectors, and their directions are determined by V¢, and
Vp, respectively. Let s, = (snz,Sny)? and s, = (Spz, 8py)7 be the unit vectors in
the direction of respectively J, and J,, then obviously

Vi Ve,
5.1 Sp = —T—=—,8;, = — L
6.1) Ven 1'% = V0,1

The absolute values of the current densities are then given by the inner products
| In |=(8n,Jn) and | I, |= (Sp, Jp), and thus the continuity equations read

(5.2a) V-Ju=—an(sn,Jn)— ap(sp,3p) + qR,

(5.2b) V-3, = an(sn,Tn) + ap(sp, Ip) — qR.

Define the vectors J; = (Juz,Jpz)T and Iy = (Jny, Jpy)T, and the 2 x 2 matrix
J = (J5,J,). Rearraaging terms, equation (5.2) can be written in the following two
equivalent forms

(6.3a) V-J=A4,3,+A4,T,+4¢R,

03, 23, B
(53b) ( oz —A,;Jt) + (W - Any> = qR,

where the matrices A; and A, are defined by

(5.3(:) Az - ( —QnSng _apspz ) ,Ay = ( —ansny -—apspy ) )

QAnSnz  CpSpr OnSny QpSpy

or

In (5.3a), V- J is defined by V- J = (V- J,,V-J,)T. This form of the continuity
equations can be used to generalise the exponential fitting scheme on a 2-dimensional
rectangular mesh.

We apply the box method to equation (5.3a). Consider the box B;; = [z;_1/2, ZTiy1/2]%
[¥j-1/2, Yj+1/2] around mesh point (z;, y;); see Figure 2. Integration of (5.3a) over box
B;; gives

(5.4) / / V.JdS = / / (Aeds + A,T,)dS + 4 / RdS.
B;; B;; Bi;

Using Gauss’ law, the first integral in (5.4) can be reduced to a contour integral:

(5.5) // V- JdS:f (Vodo + vy 3y )ds,
Bij oB;;

where v = (v, 1y )T is the unit outward normal to the boundary 0B;;. The contour
integral in (5.5) and the third integral in (5.4) are approximated by the lowest order
quadrature rules. Thus, the approximation of the contour integral is

(5.6) }{ ”(Vsz +vydydds = (Yip172 — Yi-172)Tziv1/2,5 — Jzie1/2,5) +

17

(®iv172 — Tic172)(Iy,ij172 = Ty ij-1/2)-
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In (5.6), Jzi+1/2,; = J=(®iy1/2,9;), etc. The integral of the recombination rate
R, the third integral in (5.4), is approximated by b;;Rij, where b;; = (zi41/2 —
z;_1/2)(Yj+1/2 — Yj—1/2) is the area of box By; and Ri; = R(zi, ;).

In order to compute the second integral in (5.4), we have to know the variation
of J; and J, over B;;. By analogy with the 1-dimensional case, we assume that for
(z,9) € Bjj, J; and J, satisfy the following equations

83, 0J

(5.72) - A:d:=0, =0
83, 83, B
(5.7b) L =0, 5~ AuIy=0.

This means that J, is an exponentially varying function in the x-direction and is
constant in the y-direction. Likewise, J, is constant in x-direction and exponentially
varying in y-direction. Thus, referring to equation (5.3b), both the x-term and the y-
term in the homogenous continuity equation are separately set equal to zero. Assuming
piecewise constant matrices A, and Ay, the equations (5.7) can be solved easily and
subsequently, the second integral in (5.4) can be computed. Since A, depends on the
x-derivatives of ¢, o, and p,, a suitable choice is to take A; constant on the rectangle
[#i, Zi41] X [¥j—1/2, Yj+1/2] (see Figure 2); we write A, = A; ;11/2;. Likewise, we
take Ay = Ay ; ;172 constant on the rectangle [x;_) 9, Zi1/2) X [Uj, ¥j+1]- Thus, the
integral of AzJ, 4+ AyJ, over B;; can be split into four parts in a natural way. As an
example, we present the integral of A;J, over the right half B{j of the box By;

68) [ [ AcdadS = @graga = yimaps) (I- eemmindnsnras)
Bi'j

Joit1/2,5-

From the foregoing, we get the following discrete continuity equations
(5,9) (yj+1/2 - yj—l/z) (e(ti—$i+l/2)Az,i+l/2,jJx)‘._*_l/z’j _ e("_”"‘/")A""“/”"Jz,i—1/2,]') +

(37£+1/2 — 1‘:‘—1/2) (e(yj—!lj+1/2)Ay,-',j+x/2Jy".,“_l/z — e(!lj-'!/j—1/:)Ay,i,j-1/2Jy".’j_1/2) =
qbi;Ry;.
This equation is the 2-dimensional analogue of equation (3.8).
The computation of the current densities is divided into the separate computation

of the x-components J, and the y-components J,. Consider the computation of J,.
From the current relations (2.18), it is easy to see that J, satisfies

Ou
oz’
where the matrix D is defined in (3.9b). Let = € [z;,z;i41] and y = y;, and assume

that J, satisfies (5.7a). Then, analogous to the 1-dimensional case, J; ;11/2,; can be
computed from (5.10), and we find

(511) J=,i+1/2’j = (/
Zi

A similar expression can be obtained for J,.

Now, consider the non-isothermal case. In the following, we use the notation
Oy = -(,,% and Jy = aj" The major difference between the discretisation schemes for
the isothermal and tlfle non-isothermal case is the computation of the unit vectors
sn and s,. In analogy with the 1-dimensional case, cf. (3.12), we try the following
representation for the current densities:

(5.12a) J, = ¢Dpe**V(ne™ %),

(5.10) J,=D

Tig1 -1
D-le(x‘_x‘+‘/’)A”‘+”2’jdx) (Wiy1, — ugj).

(6.12b) J, = —qD,e™%"V(pe®r).

13



However, since 0,(0;an) = 0;(0yan) and 0,(0:a,) = 0-(9ya,), equation (5.12) gives
rise to the following necessary condition

0t 0,T
o,% 8,T

and in general, this condition only holds for constant T'. Therefore, instead of (5.12),
we have to assume the representations

(5‘143') Jnz = anea"taz(ne_a":)) Jny = ane“nvay(ne‘“»v),

(5.13) =0,

(5.14b)  Jpr = —qDpe™ %"=, (pe®?*), Jpy = —qDpe™ ?Pv 0y (pe®?¥).
The computation of the variables a,., etc. is straightforward and completely analo-

gous to the 1-dimensional case. Let the variables pnz, ¢ny, Ppe and @,y be defined by,
cf. (3.14),

n n
(5.158) ¢nz = Gpz —In ( - ) Py = Gpy — In ( : ) ,
Nint Nint

(5.15b)  @py = ap, +1n (-n—p—-) ) Ppy = Gpy + In ( P ) .
int

Nint

Then we obtain the following expressions for the current densities

a:c‘Pna: )
5.16a) J,=—qD,n ,
( ) 1% (ay‘»"ny

O Pps )
5.16b) J, = —qD ( zre .
( ) P qipp ay‘Ppy

The unit vectors s, and s, can be readily determined from (5.16). Further, the
discretisation of the continuity equations proceeds in exactly the same way as in the
isothermal case.

Concerning the computation of the current densities, we note the following. Let
the variables u,, uy, v, and vy be defined by, cf. (3.15),

(5.17a) wuy =e™%m=,u, = e ¥ny,
(5.17b) v, = €Y7=, vy, = e¥rv,

then the current relations can be written as
(5.18a) J, = D;0;u.,J, = Dydyu,,

where u, = (uz,vz)T and uy = (uy,vy)T, and where the matrices D, and D, are
defined by

D, e%n= 0 D, eb»y 0
(518b) D:p = qNint ( nO —DPC_aP’ ) ’Dy = qnint ( ﬂO —Dpe_a” ) .

The computation of the current densities is now completely analogous to the isothermal
case.
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6 Conclusicns

In this paper we have presented a numerical scheme for the electrothermal device
equations, specifically for the simulation of avalanche generation, in which case the
current densities are exponentially varying functions of the spatial variables. There-
fore, we have extended the box scheme and the standard Scharfetter-Gummel scheme,
using the assumption that the current densities are exponentially varying functions in
each mesh interval. On the other hand, in the standard Scharfetter-Gummel scheme
the current densities are assumed to be piecewise constant. As a consequence, the
scheme will give much better predictions for the currents in a device than the stan-
dard scheme, when avalanche generation is the predominant generation mechanism.
This is confirmed in [18], where the scheme is applied to the isothermal device equa-
tions. Finally, it should be noted that the current densities can be easily computed
from the standard Scharfetter-Gummel expressions.
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Appendix: Nomenclature

P electrostatic potential (V)

n electron concentration (cm™3)

p hole concentration (cm=3)

T  device temperature (K)

¢n  quasi-Fermi potential for electrons (V)

¢p  quasi-Fermi potential for holes (V)

u,v Slotboom variables

electric field (V/em)

electron current density (4/cm?)

J,  hole current density (A/cm?)

p  space charge density (C/cm3)

D doping profile (em™3)

N total impurity concentration (em=3)

Np ionised donor concentration (crn=3)

N4 ionised acceptor concentration (em=3)

an, lonisation rate for electrons (cm™1)

ap ionisation rate for holes (cm™1)

R recombination/generation rate (excluding avalanche generation) (em=3s1)
K thermal conductivity (W/emK)

H  heat generation rate (W/em?)

kn  electron mobility (cm?/Vs)

pp  hole mobility (cm?/Vs)

D, diffusion coefficient for electrons (cm2 /8)

D, diffusion coefficient for holes (cm?/s)

T thermal diffusion coefficient for electrons (¢cm?/Ks)
D7 thermal diffusion coefficient for holes (cm*/Ks)
> permittivity (C/Vem)

q elementary charge (C)

k Boltzmann constant (VC/K)
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Figure 1: The box corresponding to z;.
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Yi+1
- — =|- = Yi+12
Yj
— — == = Yj-1/2
| |
| I Yi-1
Tiog : z; '| Tip1
Ziw1/2 Ziti/2

Figure 2: The box corresponding to z;;.
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