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Executive Summary

Breath analysis is a technique that is gaining importance in both industry and academia. Po-
tentially, it is a non-invasive technique that will allow screening, diagnosing and monitoring of
patients.
Many studies have been performed in an attempt to make a distinction between healthy and
sick patients by only studying their breath. It was proven successful for detecting lung and
breast cancer, for identifying transplant rejection and for diagnosing liver disease among oth-
ers.
Ideally, it is Philips goal to develop a device that can take breath, process it and classify the pa-
tient as healthy or sick. Initially, this would be done for respiratory diseases, including asthma
and sepsis with respiratory complications.
However, processing breath is not simple. There is a spectrum of possible devices for analysis.
Electronic noses are a great bedside alternative, while gas chromatography is ideal for research
studies were the nature of the biomarkers should be found.
Philips is involved in several studies within the next couple of years, for asthma and sepsis
among others, and will process the samples with gas chromatography-mass spectrometry (GC-
MS).
My objective was to provide a reliable software workflow for the analysis of the very complex
GC-MS data, which could identify the molecules present in them and provide a reliable list of
possible biomarkers as an output. This list would in the future be used to train classifiers for
the mentioned diseases.
The result of this project was a complete processing workflow, beginning with the use of a third
party peak extraction software, followed by the customized design of a filtering and alignment
solution.
This combination provides a highly sensitive compound detection algorithm, a reliable peak
quality filter and an accurate solution for comparison of multiple samples. Results are provided
in a flexible manner for comprising a variety of classifier design possibilities.
This solution can greatly contribute to the analysis GC-MS data for biomarker identification.
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1 Introduction

1.1 Breath Analysis

The concept of breath testing has existed for years. Physicians know that certain odours may
be strong indicators of disease. For example, a fruity breath could suggest ketoacidosis, or an
ammonia-like smell could indicate kidney failure.
In some areas, breath analysis already has enormous commercial applicability, such as in the
case of breath alcohol monitors. However, its commercial applications can go far beyond these
simple devices. They have the potential to develop into tools for screening, diagnosing and
monitoring disease.
Following the advances of technology and research, breath testing has evolved towards the study
of volatile organic compounds (VOCs) present in breath. Recent studies, in conjunction with the
increasing understanding of disease processes and biomolecules, propose exhaled breath analysis
as a safe, non-invasive method that can provide additional information to the traditional blood
and urine studies.
It is Philips aim to ideally develop a device that can take a patient’s breath and classify him
as healthy or sick, initially for two diseases: sepsis and asthma. Still, in order to eventually
develop this device, much research needs to be done, so as to discover which are the biomarkers
that can act as predictors of these diseases.

Cancer

Transplant 

Rejection
Respiratory

Diseases

Liver 

Diseases

Healthcare

Applications

Asthma Sepsis

(respiratory 

complications)

Figure 1.1: Philips focus over a variety of possible applications of breath analysis

1.1.1 Breath Markers

Volatile organic compounds (VOCs) are small molecules which evaporate from liquids or solids
into air, reaching an equilibrium. This process provides a simple method to study the content
of liquid or solids without entering into contact with them, by analysing the composition of the
headspace or surrounding air.
Usually, we release hundreds of VOCs in every breath, which are the result of the metabolic
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processes occurring in the body. However, their concentrations are in the picomolar range, so
special techniques are required for their collection and analysis.
Over the last 20 years, breath analysis has greatly evolved. It is now understood that VOCs
are usually the result of the fractioning of larger biomolecules, so they should be studied as a
pattern rather than individually.
Several thousand VOCs have been observed in breath samples so far, though barely 1% of them
can be found in all males. The remaining 99% is influenced by environmental or lifestyle factors.
The goal of Philips, and of other research institutes throughout the world, is to eventually link
some of these VOCs to certain diseases.

1.1.2 Analysis Techniques

The analysis methods for breath range from laboratory techniques such as gas chromatography
to bedside alternatives, such as the use of electronic nose. This spectrum satisfies different
needs: laboratory techniques are more suitable for research and biomarker discovery, while
bedside devices are ideal useful for diagnosis and monitoring.
One of the most popular techniques is the use of artificial olfactory systems (also called electronic
noses), which can translate an odour into a pattern produced by broadly selective chemical
sensors. Electronic noses (E-noses) are more suitable for diagnostic assessment and monitoring
in clinical environments, given their small size and portability. Through the use of pattern
recognition with sufficient training data, an e-nose can learn to distinguish between healthy
and sick sensor patterns. Ideally, any hospital could have an e-nose for diagnostic purposes,
since its price is quite low compared to other breath testing methods.
Gas chromatography-mass spectrometry (GC-MS) allows for the separation and identification
of different compounds. Given its size and high cost, they are most suitable for clinical research.
GC-MS is generally considered the golden standard for breath analysis. In the following section,
we describe this technique, which was the one used in this project.

1.2 Gas Chromatography-Mass Spectrometry (GC-MS)

Gas chromatography-mass spectrometry (GC-MS) is an instrumental technique that combines
the features of gas chromatography and mass spectrometry to accurately separate and identify
different substances within a test sample.
Chromatography is a methodology developed around 50 years ago, which provided an unparal-
leled separation power of a sample mixture and a great ease of use. It consists of two distinct
phases: a stationary phase, which can be either solid or liquid, and a moving gaseous phase.
The rate of interaction between analyte and stationary phase will define the degree of separa-
tion (or elution) of the compounds.
The eluted molecules are then introduced into the mass spectrometer where they are ionized,
accelerated, deflected, and detected separately. This results in a spectrum of masses that are a
“fingerprint” of the compounds present in the original test sample.
The GC-MS technique combines the best of the two instruments, providing the proper sepa-
ration of compounds required by the mass spectrometer in order to avoid overlapping results,
and mass spectrometry’s great identification power.
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1.2.1 Main Structure

Figure 1.2 shows the main structure of a GC-MS.
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Figure 1.2: Basic elements of a gas chromatograph

The sample is injected into the column, carried by nitrogen gas. It interacts with the inner
lining of the column. Since different molecules interact differently with the stationary phase,
they travel at different speeds. Therefore, they exit the column (or elute) at various times. In
this manner, at the end of the column, molecules are separated according to their type. Every
type of molecule appears as a different peak in the chromatogram, which is a plot that shows
abundance vs. time.
In a later stage, the already separated molecules are ionized and the fragments are detected
by a mass spectrometer. This provides a specific pattern for every point in time, an it is what
allows for the identification of the components of every peak in the chromatogram.

1.2.2 Data

A GC-MS system produces a 3D dataset. Figure 1.3 shows a typical total ion count (TIC)
chromatogram, which represents the integration of all the mass spectral information for every
point in time. The two axes that form the chromatogram are the retention time, which are the
times at which compounds elute, and the abundance of such components at the detector. The
latter is normally measured in arbitrary units, but can be calibrated with internal standards
added to the measured sample.

Since a chromatogram has an average duration of 35 minutes for breath samples and about
3 mass spectra are processed every second, about 7000 mass spectra are produced per sample.
This means that a large amount of data must be processed to extract useful information from
the measurement.
The GC-MS instrument produces output files which contain both time and spectral information,
along with instrument and configuration details. One of the advantages of GC-MS compared to
other separation techniques is the wealth of existing mass spectral information. With the aid
of a special library search software, it is possible to compare a compound’s spectrum against
spectral libraries, and find the identity of that compound.



CHAPTER 1. INTRODUCTION 12

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Retention Time (min)

A
bu

nd
an

ce

Figure 1.3: Typical gas chromatogram
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Figure 1.4: Mass spectrum of a single peak (Ethanol)

The aim this project is to develop a software workflow which takes
gas chromatography-mass spectrometry data of breath samples as an
input and returns a list of the components present in that sample.



2 Results

2.1 Signal Processing

A GC-MS system produces a 3D dataset. The three axes that compose the dataset are time,
mass-to-charge ratio (m/z) and abundances. For every point in time, there is a corresponding
mass spectrum, which contains the information of the ion fragments present at that point in
time.
The processing of the GC-MS data can be divided into 5 steps, shown in figure 2.1.

Raw Data 
Collection

Peak 
Extraction

Alignment
Filtering of 
Exogenous 

Compounds

Statistical 
Analysis

Figure 2.1: Overview of the processing workflow for GC-MS data

The instrument generates output files, which contain the raw information of the measure-
ment.
The following step is the extraction of features out of the dataset, which means finding all the
different peaks present in the chromatogram. In order to perform this feature extraction, the
total ion count is found, by integrating all the mass spectra. The total ion count is then pro-
cessed in order to detect all the peaks present in the curve. It is not a simple process, because
some compounds may elute very close in time, so the algorithm must be smart enough not to
miss any components. This is performed by the deconvolution algorithm, which in our case
is AMDIS. Its choice is explained in the following section. The result of this stage is a list of
peaks, where each represents a single compound, and their particular characteristics, such as
retention time, area and mass spectrum.
However, no two chromatographic measurements are ever the same. This means that the same
compound may elute at a slightly different retention times every time. This presents a challenge
when working with multiple samples, because since the final objective is to compare them, we
need to be certain that the component eluting at x minutes in sample 1 is the same as compo-
nent eluting at x minutes in sample 2. This is what is called “alignment”. Since retention time
is not enough to unambiguously identify a certain compound, more information, i.e. the mass
spectra, needs to be taken into account for the comparison. The truth about the identity of a
peak always lies in its mass spectral information.
Therefore, in order to make a study with different patient samples, it is necessary to “align”
the compounds to make sure that we are comparing the same compound in each sample, no
matter their retention time.
There are two possible ways to perform the alignment: prior to the peak extraction by adjusting
the non linear shifts of the time axis, or after the peak extraction, by working with peak lists.
In our case, we worked in the second manner, because given its discrete nature it can be much
faster than working with complete chromatographic curves.
Still, since every sample contains a few hundred peaks, it is necessary to develop a fast alignment
algorithm. In our case, we use a parameter to optimize the speed of the alignment software:
the retention time window. This is explained in more detail in Appendix I. The retention time
window basically limits the search of the peak in a list by setting the maximum expected shift
for that peak. This means that the software would only look for it (in a second sample) in a
window around its retention time in the first sample. Thus, the mass spectrum comparison only
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needs to be performed against a few compounds. By working in this way, we are independent
of the nature of the shifts, which are generally non-linear.
Once everything is processed, we may need to eliminate compounds that have a non-endogenous
origin. We have identified a number of contaminants in the samples that are setup-related, and
even more may be found in the future. Such is the case of phenol or N,N-dimethyl acetamide,
which originate in the sampling bag. It is essential to remove these elements so as to ensure
the validity of the conclusions that may be drawn out of the data. They have no value for
identifying disease and may even affect the performance of a classifier.
The last stage of GC-MS data processing is the statistical analysis. In this step, a classifier is
built from the available data which allows to classify new patients as healthy or sick. There are
several software alternatives for this stage, but it is out of the scope of this project.
The most important part of GC-MS data processing is to ensure the quality of the biomarkers
found. This can only be achieved by optimizing every step of the process, improving extraction
and alignment algorithms, and properly defining filtering steps.

2.2 Commercial Software Alternatives

In order to test the capabilities of the software package that will later be used for the asthma
and sepsis projects at Philips, a small experiment was planned.
Both projects, asthma and sepsis, propose to find and identify biomarkers required to correctly
classify patients as healthy or ill. For this purpose, a software package developed by Agilent
was evaluated. However, given the complexity of breath mixtures it is difficult to assess the
quality of the processing by analysing patient data.
For that reason, a small scale test was carried out with known data. In this way, several
concerns could be analysed, such as the effectiveness of the peak extraction, the feature finding
procedures, the quality of the alignment of peaks and the statistical analysis conclusions.
Two mixtures were made in the lab, each containing the same 9 compounds. Of these 9
compounds, 5 were in the same concentration and 4 were present in a different concentration.
In this way, we had two different controlled groups. The goal was to process them in the same
manner we would process our breath samples, and study if they could be correctly classified
into these two different categories.

2.2.1 AMDIS vs. MassHunter

The peak extraction procedure was performed with AMDIS software, which is a free program
from the National Institute of Standards and Technology (USA) and with MassHunter, from
Agilent. Each software applied their deconvolution algorithm to our test dataset. AMDIS found
an average of 13 compounds per sample (were only 9 were real peaks) while the average for
MassHunter was 19. This meant that AMDIS had a sensitivity of 100% and a positive predictive
value of 68.35%, while MassHunter also had a 100% sensitivity, but a lower positive predictive
value of 47.37%. One other factor that supported the software choice was that the commercial
alignment software, Mass Profiler Professional, had the possibility to filter false positives only
for the AMDIS case. Furthermore, MassHunter extracted peak areas were unstable. For many
substances, it was known that their concentration did not change from sample to sample.
Howesver, MassHunter showed an inexplicable variation in the extracted areas for these peaks,
rendering it completely unreliable. Since AMDIS had shown to be superior in terms of positive
predictive value, some of its false positives could be removed by MPP in the following stage
and its extracted peak abundances were stable for repeated measurements, it was an obvious
choice over MassHunter. Thus, we discarded Agilent’s deconvolution software and chose the
free alternative for all future processing.
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2.2.2 Mass Profiler Professional, by Agilent

Initially, Mass Profiler Professional was a solid possibility for sample alignment. It could either
work in combination with AMDIS or with MassHunter. Nonetheless, combining it with AMDIS
had a serious benefit: it allowed the user to apply quality filtering on the data. It was a
rudimentary filtering since only a constant could be set, but it was already a great improvement
from the raw data.
The results with the 9 component mixtures were excellent. All false positives were eliminated,
leaving just 9 peaks per sample, and these peaks were correctly aligned. The software behaved
as expected. Still, it was clear that even though it was enough for processing simple mixtures
such as our test samples, it would be much harder to filter out false positives out of complex
breath data. The formula used for filtering had an inherent dependence on peak abundance.
This was not suitable for our case, since we could not guarantee that good biomarkers were
necessarily highly abundant. Thus, it was decided that our application required a solution
similar to Mass Profiler, but adapted to our needs, in particular for the quality filtering stage.
The software developed is described in the following section.

2.3 Matlab Tool

After analysing the available commercial tools for GC-MS data processing, we determined that
none of the studied alternatives fulfilled our exact requirements, in particular for the quality
filtering and alignment stages. It was decided that it would be more useful to develop a specific
software solution for our needs. This tool was created with Matlab, for its great flexibility for
analysing and plotting data, and its ease for making modifications to the source code.
A more detailed description of the tool can be found in Appendix I.
Figure 2.2 shows a more detailed view of the data workflow and the limits of the Matlab tool.

GC-MS 
data

AMDIS
Quality 
Filtering

Aligner
Results 
Matrix

Classifier 
Model

Matlab Tool

Figure 2.2: Detailed diagram of the data processing workflow

2.3.1 Quality Score Filtering

The main drawback of the alignment software we tested was its inability to cope with false
positives. Deconvolution algorithms usually produce false positives as a consequence of their
high sensitivity to peaks. It is not unusual for a deconvolution software to find between 30%
and 50% false results. This happened for both pieces of software analyzed.
When it was decided to develop a custom solution for processing breath data, this became one
of the first requirements. Since breath datasets are so large and complex, it was necessary to
ensure the quality of the analysis results by removing false positives or low quality compounds.
The solution was to implement a type of filtering that removes components that are suspected
to be false positives or that simply do not meet quality criteria, by having for instance a poor
signal-to-noise ratio. In this way, unreliable peaks could be eliminated.
AMDIS provides a set of characteristics along with every extracted peak. Some of these char-
acteristics, such as the signal-to-noise ratio have a very clear link to quality. Still, this link
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depends on the experimental configuration. Out intention was to create a tool that could allow
the user to train a filter for poor quality data.

Figure 2.3: Quality filtering tool

Even though this type of filtering was considered in Mass Profiler Professional, it was poorly
documented and depended on the user blindly setting filtering thresholds. Our tool overcame
this by not only allowing for multiple filtering parameter selection, but also by providing visual
and quantitative outputs to the operator, so that he could be in complete control of how much
data is filtered out and what remains. In this manner, only good quality peaks can be pre-
served. Less unreliable peaks in the data translates into a better performance of the alignment
algorithm in the next processing stage.
Quality score filtering can always be disabled if the user intends to work with pure, raw data,
at the risk of considering background noise as potential biomarkers.
In order to create the filter, a library of known true and false positives was necessary. We
obtained it through a series of controlled experiments were we knew exactly what was inside
the mixtures, and what necessarily had to be the consequence of algorithmic artifacts.
The tool can plot two or three peak parameters (from the six parameters available: models,
SNR, abundance, purity, width and amount) and find a linear decision surface to divide true
and false positives. In the future, other surfaces could be implemented, but in our case it did
not seem necessary or justifiable at this point.
Figure 2.3 shows an image of the user interface. The user can load a library of known true
and false positives (blue and red stars in the plot) and overlay it with his current data (green
dots). In this case, the unclassified data come from an asthma experiment with 19 patients.
The resulting filter can be exported back into the main software tool. A more detailed expla-
nation of the quality score filter can be found in Appendix I.
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2.3.2 Alignment

As mentioned in previous sections, in order to compare the contents of different samples, it is
necessary to perform an “alignment” of the peak lists. Since non-linear time shifts are expected,
but they are known to be quite small, it is possible to determine a maximum retention time
window in which a given chemical compound can be found. We take advantage of this fact in
order to speed up the alignment process.
The basic functioning of the algorithm is as follows. All the compounds in the first sample
are added to a partial matrix, where every row is a different compound. This list is compared
against the second sample. If a compound in the partial list is found in the second sample, then
its abundance is added to the matrix. All the compounds present in sample 2, but that were
not originally in the partial matrix are added. This improved partial matrix is now compared
against sample 3, and the process is repeated for all samples. In the end the list will contain
all the compounds found in all samples.
In order to find out whether two compounds are the same it is necessary to compare their mass
spectra. Since we do not intend to perform hundreds of comparisons per compound in the
partial matrix, we simply search for it in a window around its retention time. The similarity of
the spectra is calculated by finding their correlation. This is further explained in Appendix I.

2.3.3 Output

So as to maximize the possibilities for data analysis, we provide results in four ways. Firstly,
they are saved as a Matlab matrix and a bar plot, where the bars are clustered by group. They
user, at the beginning, can set the group to which every sample belongs, for example “Asthma”
or “Healthy”.
Data is also stored as an excel file, where the same information that is plotted is stored as an
array. Furthermore, that array is also stored in Weka ARFF format for statistical processing.

2.4 Processing Examples

In order to test the capabilities of the software package that will later be used for the asthma
and sepsis projects at Philips, a series of experiments were planned.

2.4.1 Pilot Experiments

Both projects, asthma and sepsis, intend to find and identify biomarkers in breath samples.
However, given the complexity of breath mixtures it is difficult to assess the quality of the
processing by analysing patient data. Furthermore, it is necessary to understand the effects
that the setup may have on the measurements.
For these reasons, several controlled tests were carried out with known data. In this way, several
concerns regarding the setup and the software could be analysed.

9 component experiment

This experiment, which was originally performed to compare different software packages, was
repeated with our Matlab tool. Two different mixtures, composed by the same 9 compounds
in different amounts were prepared. The aim was to see if they were properly extracted and
aligned. The results obtained with the combined workflow of AMDIS + our Matlab tools were
exactly what we expected: no peaks were lost and their was no confusion in the alignment.
Figure 2.4 shows a bar plot of the results.
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Figure 2.4: Results for the 9 compound experiment using the Matlab tool

Pilot Study

The pilot study mainly focused on studying the effects of the sampling setup on the measure-
ments. In some cases, it also provided a chance to test the Matlab tool. This is explained in
detail in Appendix F. In this section, however, we show some of the results obtained. When
possible, we also provide the results after processing with the Matlab tool.
Figure 2.5 shows the results obtained when analysing a blank conditioned tube that only had
nitrogen flowed through.
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Figure 2.5: Chromatogram of conditioned Tenax tubes with dry nitrogen

Figure 2.6 shows the results obtained by processing the previous chromatograms with
AMDIS and the Matlab tool. It is clear how the noisy background is ignored and only one peak
is successfully found. This peak is Toluene, and it was intentionally added to the sample as an
internal standard.

Figure 2.7 is the chromatogram of a known VOC mixture that was stored in conditioned
tubes. This mixture contained 2 VOCs and toluene as an internal standard.

Again, the results obtained with the software workflow were good. Figure 2.8 shows that
a total of 3 peaks were identified, and they correspond to the 2 VOCs and toluene.

In order to also analyse a more complex mixture, a breath sample was collected. It was
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Figure 2.6: Results of processing conditioned tubes with dry nitrogen with the Matlab tool
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Figure 2.7: Chromatogram of a mixture of known VOCs on conditioned tubes
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Figure 2.8: Results of processing a mixture of known VOCs with the Matlab tool

then stored in 3 conditioned Tenax tubes and analysed. Figure 2.8 shows the chromatogram
obtained.

Figure 2.10 contains the peaks detected by the software. The quality score filter that was
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Figure 2.9: Chromatogram of breath sample on conditioned tubes

applied was calibrated with data from the previous 9 compound experiment and the decision
surface was chosen with linear discriminant analysis. The performance was very good, with the
only error appearing in the last component. That peak was not detected for sample 1, because
it was removed by a too strict filtering stage. However, in the future this can be adjusted to
obtain perfect results.
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Figure 2.10: Results for the breath experiment that was part of the pilot study using the Matlab
tool

2.4.2 Analysis of asthma data

We wanted to take the software testing on step further. We had analysed breath obtained in a
controlled manner in the lab, but it was necessary to evaluate the performance on real clinical
data.
There was one small dataset of patient breath samples available from the asthma study. The
dataset consisted of 19 patient samples (10 controls and 9 with asthma), where each was sam-
pled 3 times. Each of this samples was processed with 1 week difference with each other.
All these files were processed with AMDIS and the Matlab tool. From the results matrix, a
group random of components were extracted, spanning the entire range of retention times. The
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evolution of these components over time was calculated, and these results can be found in detail
in Appendix H.
It was found that some components were inconsistent with time, while other were stable. Most
of the compounds that behaved erratically were precisely those whose origin we could no explain,
i.e. silicones. However, the compounds of known, endogenous origin did not vary considerably
with time.
These results were published as part of a paper that was written in cooperation between Ams-
terdam AMC and Philips.



3 Conclusions

The project was successful in terms of achieving a final design product that satisfies the cus-
tomer’s original requirements. The software fulfilled the need to easily process the GC-MS data
and provide an accurate and reliable list of possible biomarkers present in a breath sample.
After studying and testing different commercial alternatives, it was discovered that none satis-
fied the specified needs. Breath samples are very particular compared to other samples, since
they are very complex and the most important components for patient discrimination are not
necessarily the largest ones.
In comparison to the commercial programs in the market, the reliability was improved through
the development of a filtering system for poor quality compounds. This system allows the user
to remove potential false positives or markers that do not meet quality criteria easily and with
complete control over the process. The user is always aware of how much information is being
lost because of the filtering, but also knows that what remains is reliable enough to draw sta-
tistical conclusions.
The alignment stage also demonstrated to work properly, yielding adequate results for both
test and clinical data samples.
The final result is a flexible software toolbox that in the future can be used for analysing other
complex breath datasets.
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A Introduction to Breath Analysis

A.1 Introduction

The concept of breath testing exists since early times. In the past, physicians would associate
a particular odor to certain diseases. For instance, a fruity breath could suggest ketoacidosis,
or an ammonia-like smell could indicate kidney failure.

In present times, breath analysis has proved to have an enormous commercial applicability,
as exemplified by the common alcohol testing devices available in the market.

Following the advances of technology, breath testing has evolved towards the study of volatile
organic compounds (VOCs) present in breath. Recent studies, in conjunction with the increas-
ing understanding of disease processes and biomolecules, propose exhaled breath analysis as a
safe, non-invasive method that can provide additional information to the traditional blood and
urine studies.

Ideally, breath analysis can be used for screening, diagnosis and monitoring of disease.

A.2 Breath Markers

Volatile organic compounds (VOCs) are small molecules which evaporate from liquids or solids
into air until they reach an equilibrium. This process provides a non-invasive method to study
the content of liquid or solids, by analysing the composition of the surrounding air.

Normally, the human body releases hundreds of different VOCs that are the result of var-
ious metabolic processes. However, they are present in picomolar concentrations, thus special
techniques are required for their collection and analysis.

Over the last 20 years, breath analysis has greatly evolved. It is now understood that VOCs
are usually the result of the fractioning of larger biomolecules, so they should be studied as a
pattern rather than individually. This type of study has been benefited by the use of artificial
olfactory systems, which are discussed in a later section.

Today, thanks to the technological advances in this field, several thousand VOCs have been
observed in breath samples. Only about 1% of them can be found in all males, while the
remaining 99% is influenced by environmental or lifestyle factors. Hopefully, these VOCs could
be linked to different clinical conditions.

The results of different research studies are summarized in tables A.1 and A.2. These
studies used gas chromatography-mass spectrometry to identify the substances found in breath.

A.3 Sample Collection

The electronic nose can work by directly sampling exhaled breath. GC-MS analysis, on the
other hand, are off-line, since the instrument is not at the hospital. Therefore, in this case
breath is captured initially in Tedlar bags and the contents are later captured in sorbent tubes,
which are then transported to the laboratory.

Figure A.1 shows the online measurement of a child’s breath. Figure A.2 instead, shows the
breath collection setup for GC-MS analysis. The same setup can also be used for offline e-nose
studies. A detailed view of the collection device can be observed in figure A.3. The patient
breathes into a two-way mouthpiece. The inspired air is free from environmental VOCs thanks
to an inspiratory VOC filter. Exhaled air goes through a silica filter that absorbs moisture and
is then stored in a Tedlar bag.

Normally, the patient is required to breathe VOC free air for about 5 minutes and then one
single breath, at expiratory vital capacity, is collected.
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Figure A.1: On-line breath collection for e-nose
analysis

Figure A.2: Off-line breath collection for GC-
MS analysis

Inspiratory 
VOC-filter

Mouthpiece
2-way valve

Drying
expiratory

air

Tedlar
bag

Figure A.3: Breath collection setup

Since samples need to be transported, in particular for the GC-MS case, breath should be
transferred to a more suitable container, rather than moving Tedlar bags. For this reason, the
gas contained in the bags is extracted and flowed through adsorption tubes that capture the
VOCs present. Figure A.4 shows a diagram of this setup.

A pump extract air out of the Tedlar bag and makes it go through the Tedlar tube. A mass
flow controller measures the exact volume going through the setup, in order to ensure VOCs
are captured by the tube.

A.4 Analysis Methods

The analysis methods for breath range from laboratory techniques such as gas chromatography
to bedside alternatives, such as the use of electronic nose. This spectrum satisfies different
needs: laboratory techniques are more suitable for research and biomarker discovery, while
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Figure A.4: Setup for breath adsorption in Tenax tubes

bedside devices ideal useful for diagnosis and monitoring. In the following section, we describe
the two main techniques for exhaled breath analysis.

A.4.1 Electronic Nose

One of the most popular techniques is the use of artificial olfactory systems (also called electronic
noses), which can translate an odour into a pattern produced by broadly selective chemical
sensors. The sensor pattern is a fingerprint of the smell, though identification is only possible
by comparison against known sensor patterns. Figure A.5 shows an electronic nose and a
typical sensor pattern.
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Figure A.5: Photography of Cyranose 320 E-Nose and a typical sensor pattern

Electronic noses (E-noses) are more suitable for diagnostic assessment and monitoring in
clinical environments, given their small size and portability. Through the use of pattern recog-
nition with sufficient training data, an e-nose can learn to distinguish between healthy and sick
sensor patterns. Ideally, any hospital could have an e-nose for diagnostic purposes, since its
price is quite low compared to other breath testing methods.

A.4.2 Gas chromatography-Mass Spectrometry

Gas chromatography-mass spectrometry (GC-MS) allows for the separation and identification
of different compounds. Given its size and high cost, they are most suitable for clinical research.
GC-MS is generally considered the golden standard for breath analysis.
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It provides a chemical profile that can be used for the development of a classifier and for
the identification of every compound present in the sample.

The main difference when comparing this technique with electronic noses, is that in GC-MS
the compounds present in breath can be properly identified and named, while in e-noses only
patterns of smell are found rather than specific compounds. Therefore, if the aim is to study
the connection between biomarker and disease, it is necessary to have full knowledge of the
chemical identity of the marker.
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Figure A.6: Photography of Agilent 6890N GC and a typical breathogram

A.5 Conclusions

There is an enormous potential in sampling markers from exhaled air. Research has already
shown positive results for many different diseases. However, it is important to remember that
diagnosis will not occur with a single biomarker but with a set of markers that constitute the
so-called breathprint.

Breathprints may provide useful information for screening, diagnosis and continuous moni-
toring of disease, in a non-invasive manner.
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B Summary of Gas Chromatography-Mass
Spectrometry (GC-MS) techniques

B.1 Introduction

Gas chromatography-mass spectrometry (GC-MS) is an instrumental technique that combines
the features of gas chromatography and mass spectrometry to accurately separate and identify
different substances within a test sample.

Chromatography is a methodology developed around 50 years ago, which provided an un-
paralleled separation power of a sample mixture and a great ease of use. It consists of two
distinct phases: a stationary phase, which can be either solid or liquid, and a moving gaseous
phase. The rate of interaction between analyte and stationary phase will define the degree of
separation (or elution) of the compounds.

The eluted molecules are then introduced into the mass spectrometer where they are ionized,
accelerated, deflected, and detected separately. This results in a spectrum of masses that are a
“fingerprint” of the compounds present in the original test sample.

The GC-MS technique combines the best of the two instruments, providing the proper
separation of compounds required by the mass spectrometer in order to avoid overlapping
results, and mass spectrometry’s great identification power.

Mass
Spectrometer

Gas

Oven

Column

Sample

Injector

Figure B.1: Basic elements of a gas chromatograph

B.2 Main Structure

Figure B.1 shows a diagram of a gas chromatograph. The main elements comprised in a gas
chromatograph are: inlet, column, oven and detector, which in the case of GC-MS is the mass
spectrometer itself.
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B.2.1 Inlet

The inlet is a key element in the gas chromatograph, since it is the portion with which the
analyst interacts the most. For some columns sample injection a syringe can easily fit into the
column. However, for most columns (i.e. capillary columns, which are explained in the next
section), samples are injected into a chamber, vaporized and then transferred into the column
in the vapor phase.

B.2.2 Column

Columns are the “heart” of gas chromatography, since they are responsible for the separation
of compounds. There are mainly two types of columns used in GC: the packed column, used
for particular applications such as the analysis of fixed gases, and the capillary column, which
is present in 90% of modern chromatographs.

to  mass
spectrometer

Stationary Phase

Fused Silica Mobile Phase

Mixed 
Components

Separated 
Components

Figure B.2: Diagram of the interactions within a capillary column

As shown in Fig. 2, the different components in a mixture interact at different rates with
the stationary phase. This results in different transit times across the length of the column,
which produce an effective separation (or elution) of the compounds.

Packed Columns

Packed columns have an internal diameter between 2mm and 4mm and a length between 1m
and 4m. These columns are internally packed with an adsorbent. Since the ability to separate
is strongly dependant on the interaction between analyte and stationary phase interactions,
many different packing materials are available. The tubing can either be made of glass or of
stainless steel.

Capillary Columns

Capillary columns are the most commonly employed columns. Their length ranges from 10m
to 100m and their diameter varies from 100µm to 500µm. They contain no packing materials.
The stationary phase is coated on the internal wall of the column as a film 0.1µm to 5µm.
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Polymide Coating

Fused Silica

Stationary Phase

Figure B.3: Inner view of a capillary column

B.2.3 Oven

The main user controlled variable in the entire setup is temperature. The column is contained
in temperature controlled oven that operates between 5◦C and 400◦C, with an accuracy of
around 0.1◦C. It can also control the gradients with which temperature varies. The oven and
column have low thermal masses in order to allow for rapid heating and cooling of the system.

B.2.4 Detector (Mass Spectrometer)

Mass spectrometry identifies substances by electrically charging sample molecules, accelerating
them through a magnetic field, breaking them up into charged fragments and finally detecting
these charged pieces. Fig. B.4 shows the basic structure of a quadrupole mass spectrometer,
which is one of the most common varieties of the device.

Column

Anode

High Voltage
Source

Cathode

Lens Mass Analyzer Detector

Figure B.4: Diagram of a mass spectrometer

The main elements of a mass spectrometer are: the inlet, which in the GC-MS case it is
directly connected to the column; the electron impact ionizer, which ionizes sample molecules;
the lens; the quadrupole analyzer; and the detector.

The mass spectrometer acts on the separated molecules that exit the column. These
molecules are ionized by impacting them with an electron beam. The positive ions are ac-
celerated by an electric field and then sorted by their mass to charge ratio (m/z). The entire
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GC

Ions

Electron Impact Ionizer

Successful Ion Path

Quadrupole Ion Analyzer

Detector

Figure B.5: 3D diagram of a mass spectrometer

process takes place in vacuum. Finally, the ions are detected and counted, and the results are
digitally processed.

The output of the mass spectrometer is a plot of mass/charge ratios vs. abundances. This
spectrum is characteristic of the particular substance under analysis. Therefore, by comparing
the spectrum against an electronic database of thousands of plots, a technician may conclusively
determine the identity of the compound.

B.3 Data

Unlike traditional GC detectors, a GC-MS system produces a 3D dataset. Figure B.6 shows
the output of the GC-MS. Plot a) shows a typical chromatogram, where the amplitude at each
time represents the integration over the entire mass spectrum at that particular time.The area
of each peak is proportional to the concentration of that substance. For each time point, there
is a corresponding mass spectrum; an example of these can be seen in plot c). The color plot b)
shows the entire dataset obtained from one measurement. Since chromatogram has an average
duration of 35 minutes for breath samples and about 3 mass spectra are processed every second,
about 7000 mass spectra are produced per sample. This means that a large amount of data
must be processed to extract useful information from the measurement.

The GC-MS instrument produces output files of raw data, which in our case are Agilent
*.d files. These files contain both time and spectral information, along with instrument and
configuration details. One of the advantages of GC-MS compared to other separation techniques
is the wealth of existing mass spectral information. A special software from the manufacturer
of the equipment can process the raw data and compare it against spectral libraries, providing
identification of the compounds in the sample.

B.4 Used Setup

Normally, breath samples are contained in sorbent tubes, which trap the volatile organic com-
pounds. These tubes require to be thermally desorbed in order to release the VOCs into the
chromatograph. In our setup, the tubes are taken by an autosampler, which enables a thermal
desorption system (manufactured by Gerstel) to perform automatic processing of the samples.

The samples are heated and captured in a cold trap (also by Gerstel) in order to minimize
band broadening. A capillary gas chromatograph (Agilent 6890N) is used, with a column 30m
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Figure B.6: Sample GC-MS results, including a chromatogram and one mass spectrum per data
point
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Figure B.7: Temperature cycle of the GC-MS oven

long and 0.25mm diameter, 100% dimethylpolisiloxane. The temperature cycle can be observed
in figure B.7. The mass spectrometer (Agilent 5975 MSD) is used in electron ionization mode
at 70eV, with a scan range of m/s 29-450 Da.

Figure B.8 shows an image of the entire setup in the laboratory. The autosampler can be
observed on top, together with the thermal desorption system (TDS). The large rectangular
door is the oven, and the instrument on the right is the mass spectrometer.
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Autosampler

Oven Mass Spectrometer

TDS

Figure B.8: GC-MS setup used for processing breath samples at MiPlaza



C Gas chromatography-mass spectrometry
data processing

C.1 Introduction

Unlike traditional gas chromatography detectors, a GC-MS system produces a 3D dataset. For
every point in time, there is a corresponding mass spectrum, so the three dimensions that
compose the output are time, mass-to-charge ratio (m/z) and abundance. A typical dataset
can be observed in figure C.1. Since chromatogram has an average duration of 35 minutes
for breath samples and about 3 mass spectra are processed every second, about 7000 mass
spectra are produced per sample. This means that there is a large amount of data that must
be processed in order to extract useful information from the measurement.
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Figure C.1: Chromatogram and color plot of mass spectral information of a breath sample

In the following section, we describe the steps required to transform the 3D dataset into a
list of compounds present in the sample, which may eventually be disease biomarkers.

C.2 Processing Workflow

The processing of the GC-MS data can be divided into 5 steps, shown in figure C.2.
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Raw Data 
Collection

Peak 
Extraction

Alignment
Filtering of 
Exogenous 

Compounds

Statistical 
Analysis

Figure C.2: Overview of the processing workflow for GC-MS data

C.2.1 Raw Data Collection

Even though the instrument automatically generates the output files, which in this case are
Agilent *.d files, proprietary filetypes are a challenge. The fact that Agilent does not distribute
the structure of their files and that converters in the market are quite expensive, seriously limits
the possibilities for processing. In fact, only two pieces of software were found that could handle
our raw data (AMDIS and Agilent’s MassHunter), and they are discussed in a separate report.

C.2.2 Peak Extraction

In a second step, features are extracted out of the raw data. This step implies the integration of
all the mass spectra available for the creation of a TIC (total ion count) plot, which represents
signal strength vs. time. The main objective at this stage is to locate all the peaks present in
the chromatogram. However, some compounds may be coeluting and can be hard to distinguish
from the chromatogram only. Therefore, to solve this situation, a deconvolution algorithm is
applied. The algorithm attempts to discriminate compounds that are eluting at very close times
and may even be indistinguishable to the naked eye.

Figure C.3 shows a typical peak extraction situation. The arrows above the chromatogram
show the positions were a compound was found.

Figure C.3: Simple chromatogram and results of peak extraction stage

The result of this stage is a list of peaks, each representing a single compound, with their
identifying data (retention time, height, area, etc.) and their corresponding mass spectra.

C.2.3 Alignment

The same compound may elute at different retention times in different runs. This time difference
may be very small if the measurements were done subsequently, while large delays in processing
may lead to larger shifts. The main problem, however, is that these time shifts are not linear, so
a compound at early retention times may have shifted a fraction of a second, while a compound
at higher retention times may have moved a few seconds. This needs to be considered for data
processing, since the retention time of a compound is not enough to confirm the identity of that
compound. The truth about the identity of a peak always lies in its mass spectral information.
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Figure C.4 shows an example of the time shift suffered by peaks in a breath sample. Each
run was carried out one week after the previous, which caused the time shift to be larger than
in samples that are processed in a narrow time window. The third sample (red) is around 0.05
min shifted towards lower retention times.
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Figure C.4: Portion of a breath chromatogram showing time shifting of two peaks

Therefore, in order to make a study with different patient samples, it is necessary to “align”
the compounds to make sure that we are comparing the same compound in each sample, no
matter their retention time.

This can be done in two different ways. One possibility is to align the chromatographic
curves, prior to peak extraction, and once they are aligned run the peak finding algorithm.
However, these algorithms tend to be slow when dealing with multiple samples. Another possi-
bility is to first run the peak extraction algorithm, and then work with the different peak lists.
In this way, the dataset is smaller (a few hundred peaks per breath sample), and with certain
considerations such as setting the maximum expected time shift, it is possible to align the lists
fast and efficiently.

In our case, either the Agilent MPP software or our own Matlab code can performs the
alignment by taking two user-defined parameters: the retention time window and the match
factor. The retention time window is the maximum time shift expected in the data, which
as we mentioned before is useful to speed up the alignment process. The match factor is a
threshold used to determine the similarity of different peaks, by comparing their mass spectra.
By working in this manner, we are independent of the nature of the shifts, which are generally
non-linear.

C.2.4 Filtering of Exogenous Compounds

Once everything is processed, we may need to eliminate compounds that have a non-endogenous
origin. Through various studies performed on test data, several setup-related compounds have
been identified. For example, some compounds were found to be originated by the sampling
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bag, such as phenol or N,N-dimethyl acetamide. These and many others should be removed
since they have no value for identifying disease and may even confuse the classifier at a later
stage.

In small studies, a statistical tool may believe some of these non endogenous compounds
have some predictive value for a disease. However, if we have prior knowledge of their origin and
remove them before running a statistical analysis, we can avoid drawing mistaken conclusions.

C.2.5 Statistical Analysis

Finally, a statistical analysis is performed. There are many software alternatives for this stage.
Agilent’s software can rank the compounds by defining the sample groups, extracting the min-
imal number of peaks required for the classification and training a classifier.

On the other hand, there are better, more flexible alternatives available. It is possible to use
a statistical toolbox such as Weka or Matlab itself, especially in early stages of development,
since it provides much better possibilities for defining and training classifiers, as well as for
analysing the available data.

C.3 Conclusions

The aim of GC-MS data processing is not only to extract all information out of raw files, but
to do so in a reliable manner, so as to improve the quality of research results from the start.

There is a large amount of data in any breath sample. However, it is important to ensure
the quality of the biomarkers found. For instance, making sure that a marker is not actually
setup-related, is essential if we want valid statistical conclusions for disease diagnosis.

This can only be achieved by optimizing every step of the process, improving extraction
and alignment algorithms, and properly defining filtering steps.



D Analysis of the behavior of AMDIS,
MassHunter and Mass Profiler Professional
software on test data

D.1 Introduction

The analysis of gas chromatography-mass spectrometry (GC-MS) data requires preprocessing
in order to effectively extract the information contained in the samples. This preprocessing
includes an initial peak extraction step, run for every sample under analysis, which determines
which peaks are indeed present, at what retention times and in what amount. Since slight
variations in the position of the same peak in different samples can occur, then all identified
peaks need to be aligned across all samples to make comparisons possible. Once all peaks
are identified and are matched between different samples, then statistical analysis may be
performed.

In order to test the capabilities of the software package that will later be used for the asthma
and sepsis projects at Philips, a small experiment was planned.

Both projects, asthma and sepsis, propose to find and identify biomarkers required to cor-
rectly classify patients as healthy or ill. For this purpose, a software package developed by
Agilent is evaluated. However, given the complexity of breath mixtures it is difficult to assess
the quality of the processing by analyzing patient data.

For that reason, a small scale test is carried out with known data. In this way, several
concerns can be analyzed, such as the effectiveness of the peak extraction, the feature finding
procedures, the quality of the alignment of peaks and the statistical analysis conclusions.

D.2 Procedure

The experiment consists of two different gas mixtures, each containing the following 9 com-
pounds:

• HMDS (3.174 min)

• Toluene (4.402 min)

• Butylacetate (4.754 min)

• Ethylbenzene (5.467 min)

• Dichlorobenzene (7.426 min)

• Nitrobenzene (7.947 min)

• TCB (10.587 min)

• Hexadecane (11.657 min)

• Diphenylsulfide (12.142 min)

However, four compounds (toluene, butylacetate, dichlorobenzene and hexadecane) are
present in twice the concentration in mixture 1 than in mixture 2.

There are 6 replicates for each mixture, giving a total of 12 sample files. All replicates are
analyzed in a GC-MS instrument, obtaining their chromatograms and mass spectra.

39
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The 12 files are processed with AMDIS software in order to perform feature extraction. Once
this step is completed, the peaks detected are aligned across all different files and a statistical
analysis is performed.

In order to assess the performance of the software under evaluation we introduce a few
statistical parameters. Since in this experiment the original components of the mixture are
known, the number of true positives, false positives and false negatives are known. However,
given the nature of our data, the number of true negatives cannot be calculated. Thus only a
few statistical measures can be applied. We define them as follows:

Sensitivity =
Number of True Positives

Number of True Positives+Number of False Negatives
(D.1)

Positive Predictive V alue (PPV ) =
Number of True Positives

Number of True Positives+Number of False Positives
(D.2)

False Discovery Rate (FDR) =
Number of False Positives

Number of True Positives+Number of False Positives
(D.3)

D.3 Results

D.3.1 AMDIS

The peak extraction procedure is performed with AMDIS software, which is a free program
from the National Institute of Standards and Technology (USA). This software is intended
for peak extraction and identification of GC-MS data from a variety of sources, including the
Agilent GC-MS used at Philips MiPlaza.

The peak extraction process basically attempts to find all components (peaks) present in
a certain mixture. For clearly defined peaks it is relatively simple, but the software also need
to be able to make a distinction between coeluting peaks, combining its knowledge of time and
spectral information. This is done by a deconvolution algorithm which can identify different
peaks, with different mass spectra that overlap in time.

The setup of the software is essential to avoid the extraction of false peaks (false positives)
and the proper finding of the present compounds (to make sure no compounds are missed). Of
particular importance are the deconvolution parameter settings.

The component width was set to 20, since it is approximately the number of samples avail-
able per peak. The adjacent peak subtraction option is insignificant since it only exist for
identification processes which we do not perform within this software. Instead of running a
library search for all the compounds found in a breath sample, we only do so for the output
biomarkers (the ones of interest), and in that case we identify them by using the raw data
files using the library search feature in the Chemstation software, which is provided with the
Agilent instrument. However, the three main parameters (resolution, sensitivity and shape re-
quirements) are set to the low option. This is done to avoid finding too many compounds in a
simple mixture (many false positives). Still, the sensitivity or the resolution could be improved
for more complicated samples such as in the case of breath analysis, and this will need to be
studied later on.

The resulting output of AMDIS is a list of 13 compounds on average per source file, with
differing peak qualities. The retention times of these peaks are can be found in table D.1.

We used a color legend to classify the peaks found into three categories: true positive
(from the original 9 compounds), true positive (resulting from contamination, which was not



APPENDIX D. ANALYSIS OF AMDIS, MASSHUNTER AND MASS PROFILER 41

intentionally added to the mixture but is definitely present) and false positive (peak detected
where there is nothing present). The color legend is shown in figure D.1.

Figure D.1: Color legend for marking true and false positives

Table D.1: Compounds identified by AMDIS

Even though there were clearly more peaks identified than the original 9 compounds in the
mixture (see table D.1), in the following stage in Mass Profiler Professional the quality of these
peaks will be assessed and only reliable peaks will remain.

Table D.2 shows the results for peak identification, using a strict definition for true positive:
only those compounds that were intentionally added to the mixture. In this calculation, only
108 true positives are expected (12 samples with 9 peaks each). However, it will obviously have
the highest number of false positives, and thus a lower positive predictive value.

However, if we consider a broader definition of true positives and take into account those
peaks that were not intentionally added to the mixture but are indeed present in the chro-
matogram, the total number of false positives will decrease. However, this would also lead to



APPENDIX D. ANALYSIS OF AMDIS, MASSHUNTER AND MASS PROFILER 42

CONDITION
POSITIVE NEGATIVE

OUTCOME
POSITIVE 108 50
NEGATIVE 0 -

Sensitivity 100%
PPV 68.35%
FDR 31.65%

Table D.2: Statistical results of peak identification in AMDIS, with only compounds in the
mixture considered as true positives

the appearance of false negatives, since these small contamination peaks are not always suc-
cessfully identified. The results were recalculated using the broad definition of true positive
and they are presented in table D.3.

CONDITION
POSITIVE NEGATIVE

OUTCOME
POSITIVE 133 25
NEGATIVE 23 -

Sensitivity 85.2%
PPV 84.18%
FDR 15.82%

Table D.3: Statistical results of peak identification in AMDIS, considering contamination as
true positives

D.3.2 MassHunter

We run the same feature extraction process using Agilent’s MassHunter software. This software
is not as intuitive as AMDIS, but gives more freedom to the user for parameter selection. Still,
these parameter selection possibilities are poorly documented and the user must rely on the
manufacturer’s suggestions.

The average compounds found per sample is significantly higher than with AMDIS, with
an average of 19 compounds each. Thus, with a great number of false positives, the positive
predictive value is lower. However, just like in the previous case, true positives were counted
using a strict and a broad definition for them.
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Table D.4: Compounds identified by MassHunter

Table D.5 shows the results considering only the 9 compounds in the mixture as true
positives. Given the high number of false positives under this definition, the positive predictive
value is below 50%.

On the other hand, if contamination peaks are also considered true positives, since we cannot
truly say that their identification is a software error, we obtain the results shown in table D.6.

Furthermore, these results cannot be improved any further considering that Mass Profiler
has no quality score filtering for MassHunter data.

Still, the worst problem we have encountered with MassHunter is its variability when ex-
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CONDITION
POSITIVE NEGATIVE

OUTCOME
POSITIVE 108 120
NEGATIVE 0 -

Sensitivity 100%
PPV 47.37%
FDR 52.63%

Table D.5: Statistical results of peak identification in MassHunter, with only compounds in the
mixture considered as true positives

CONDITION
POSITIVE NEGATIVE

OUTCOME
POSITIVE 154 74
NEGATIVE 2 -

Sensitivity 98.72%
PPV 67.54%
FDR 32.46%

Table D.6: Statistical results of peak identification in MassHunter, considering contamination
as true positives

tracting peak abundance.
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Figure D.2: Peak abundances as measured by MassHunter. Red and blue show the different
mixtures
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Even though it calculates peak area properly, agreeing with Chemstation results, the cal-
culation for abundance and its results change depending on configuration. In our experiment,
even when the configuration parameters were the same for analyzing all files, peaks belonging
to the same mixture had different abundances measured.

The plot in figure D.2 shows how abundances vary for different compounds. We expected
to find similar abundances within each group (red or blue), and the only four cases where
differences should have been present between groups were for the components at 4.4, 4.75, 7.42
and 11.66 minutes. However, all cases show significant variations within mixtures in all types
of compounds (with or without concentration change).

D.3.3 Mass Profiler Professional

Mass Profiler Professional is a special software by Agilent that receives a set of samples in the
form of peak lists as an input, runs an alignment algorithm and then allows the user to perform
all sorts of filtering of the data. It has multiple data visualization tools and it also includes a
statistical processing toolbox for finding features (peaks) of interest. Thus, it can go from raw
peak lists to statistical conclusions of biomarkers of interest.

After AMDIS peak extraction

The choice of Mass Profiler parameters was also fundamental for the correct selection and
alignment of the peaks found in the previous stage. The settings the user is allowed to filter
compounds by their abundance (absolute or relative to the largest peak), by choosing only the
first n largest compounds, by only considering peaks within a retention time window, by setting
a minimum number of ions a peak should contain or by applying a quality score filter.

We chose to perform no abundance filtering since we did not want to remove identified peaks
only on the basis of their abundance. The key parameter in this configuration is the choice of
the minimum quality score which will help eliminate peaks that do not have a minimum level
of confidence.

The definition of minimum quality score is explained in figure D.3.

Minimum Quality Score Filter

• You can set the Minimum Quality Score (default value = 40)to
any value between 0 and 100. The Compound Quality Score
Filter is only available for AMDIS experiments.

• If the Quality of any Compound is below the Minimum Quality
Score then it would be filtered out.

• Quality = a*MO + b*SNR + c*Log10(abundance); where MO
is the number of model ions, SNR is the signal to noise ratio,
and the coefficients (default value = 1, for each) a, b and c
are configurable from Tools - Options - Configuration Dialog -
Miscellaneous - AMDIS Compound Quality Score Parameters.

Figure D.3: Quality Score Filtering definition

In our case, the quality score was set to the default value of 40, as suggested by the man-
ufacturer, given that no further documentation was available regarding the normalization of
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such value (the selectable value ranges from 0 to 100).
For the alignment algorithm, the retention time window, i.e. the maximum time shift a peak

is expected to undergo, was set to 0.1 min (more than enough for the current application which
showed little time shifting) and the match factor was set to 0.6 in the alignment properties.
The match factor is a threshold for the similarity score used by the alignment algorithm to
compare two peaks. The similarity score is a weighted sum of factors such as retention time,
abundance and mass spectra.

The output of the alignment stage showed 9 compounds were detected per sample file
(exactly the number of substances in the mixture) and they were all completely aligned. Figure
D.4 shows a scatter plot of retention time vs. principal mass (two elements that can almost
certainly identify a compound) and their frequency. All points are plotted in yellow because
they all have a frequency of 12, which means that every peak (characterized by its retention time
and principal mass) was found 12 times in the 12 samples. This is exactly what we expected
for the known mixtures. All the false positives disappeared by this stage, and only good quality
peaks remained.

Figure D.4: Results of the alignment stage in Mass Profiler Professional

Another visualization is possible within Mass Profiler, and this is shown in figure D.5.
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Every color (or letter) represents a given peak. Its abundance is plotted across all samples,
though they are separated into two groups, one on the left and another on the right. It can
be observed how for certain peaks the abundance shows no variation from one group to the
other (for instance peaks a, b, c, f and h) while for others there is a clear change in abundance
between groups (see peaks d, e, g and i).

Figure D.5: Peak abundance across different groups

Results can also be seen in table form, containing the found compounds and their abun-
dances in the different samples.
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After MassHunter peak extraction

We run the output files from MassHunter in Mass Profiler and performed the same process as in
3.3.1. However, the option quality score filtering is not available for this type of preprocessing,
which means that any false positives found by the deconvolution software cannot be eliminated,
especially if their abundances are high.

If we visualize the alignment process (fig. D.6), the results are different than in the previous
case. Now, not all points appear in yellow (frequency = 12) but there are also points in red
(frequency = 2). This means that on top of the true positives, many false positives still remain.
Moreover, the peak at 10.585 min, which is a true positive, is only detected as present in 4
samples and the same happens for the peak at 12.14 min is missing in one sample.

Figure D.6: Results of the alignment stage in Mass Profiler Professional
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Furthermore, it can be observed in figure D.7 how the abundances are not as stable as
the ones observed in the AMDIS experiment in figure D.5. Considering that samples within a
group have the exact same concentrations of components in the mixture, the extraction can be
considered poor given the high variation of abundance of any component within a group.

Figure D.7: Peak abundance across different groups

Peak abundance variations are so large, it is impossible to observe from the plot in figure
4 which are the peaks with different concentrations in the two mixtures. Not only the number
of identified peaks is larger (only 12 compounds are plotted, but there are 21 in total) but the
abundances are unreliable.

D.3.4 WEKA

In order to check the success of the processing steps, the results were passed through a statistical
toolbox. If everything was processed correctly, then the 4 compounds that changed their levels
between the two groups should be identified as the ones with the largest discrimination power.
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To perform the statistical analysis we used the files that were processed with AMDIS and
MPP since they were the most accurate. Results preprocessed with MassHunter could not be
considered reliable enough to continue with further processing.

Two ranking functions were used: InfoGainAttributeEval, which ranks each feature accord-
ing to its individual prediction power, and SVMAttributeEval, which trains a support vector
machine and ranks features according to the weights they were assigned by the classifier. These
two ranking algorithms were chosen based on literature research, and may not be the optimal
choice. Further studies should be performed to choose the best algorithm for the current ap-
plication.
The results can be seen in tables D.7 and D.8.

average merit average rank attribute
0.995 +- 0.002 1.5 +- 1.5 6 dichlorobenzene
0.995 +- 0.002 2.2 +- 0.4 3 toluene
0.995 +- 0.002 2.8 +- 0.4 4 butylacetate
0.995 +- 0.002 4 +- 0 1 hexadecane
0.995 +- 0.002 5.2 +- 0.6 7 nitrobenzene
0.662 +- 0.111 6.1 +- 0.54 9 diphenylsulfide
0.662 +- 0.111 6.2 +- 1.78 2 HDMS

0 +- 0 8.3 +- 0.46 8 TCB
0.19 +- 0.29 8.7 +- 0.46 5 ethylbenzene

Table D.7: Attribute ranking by information gain algorithm

average merit average rank attribute
8.9 +- 0.3 1.1 +- 0.3 6 dichlorobenzene

7.7 +- 0.458 2.3 +- 0.46 3 toluene
7.4 +- 0.663 2.6 +- 0.66 4 butylacetate

6 +- 0 4 +- 0 1 hexadecane
4.9 +- 0.3 5.1 +- 0.3 7 nitrobenzene

3.6 +- 1.114 6.4 +- 1.11 2 HDMS
2.8 +- 0.748 7.2 +- 0.75 5 ethylbenzene
2.3 +- 0.64 7.7 +- 0.64 9 diphenylsulfide
1.4 +- 0.8 8.6 +- 0.8 8 TCB

Table D.8: Attribute ranking by SVM algorithm

The top four features are the same for both types of analysis, and they match the peaks
that were present in different concentrations on the mixtures.

D.4 Conclusions

AMDIS showed to be efficient in the extraction of peaks, with a sensitivity of 100% and a
positive predictive value of 68% before the second filtering stage applied by MPP.

MassHunter on the other hand had a sensitivity of 100% but a positive predictive value of
47%. Besides, without the extra filtering stage in MPP (which is not available for this software)
it cannot be improved. However, the worst situation with MassHunter is that the calculated
abundances varied enormously within groups, which is unacceptable.
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The combination of AMDIS and Mass Profiler Professional proved to be accurate in de-
tecting and aligning peaks. Even though the AMDIS stage, working at the lowest resolution,
found a number of false positives in the mixtures, the quality score filtering performed by Mass
Profiler Professional completely removed them. All components were properly aligned, and
the basic classification algorithm applied yielded the expected result: the four most powerful
classifiers were the ones we knew were different in the two mixtures.

For the combination of MassHunter and MassProfiler were poor, with unstable and unreli-
able abundance values that lost the essence of the information contained in the samples. The
abundance difference between the two groups for the four compounds with changed concentra-
tion was unclear.

Perhaps for the MassHunter the parameter settings are not ideal, but the parameters to
be set are not transparent and user friendly. The results could not be improved, even after
following the suggestions from Agilents Tech Support.

Therefore for the analysis of GC-MS the combination of AMDIS and MPP seems to be the
most reliable choice, considering the stable abundances and the disappearance of false positives
thanks to the quality score filtering stage in MPP.

In the future, it might be of interest to carry out a similar small scale test, with a more
complex known matrix, though not as complex as a typical breath sample. This way, the reso-
lution capabilities of AMDIS could be tested, as well as the ability of MPP to align components
that are closer in time.



E Analysis of the repeatability of the
GC-MS measurements using the 9
compound experiment data

E.1 Introduction

For our study, it is essential to quantify the repeatability of our GC-MS measurements. In this
analysis, we will only examine the repeatability of the measurement itself, without taking into
account factors such as the setup, sample collection procedures, etc.
In order to perform this analysis, a standard mixture was prepared. The mixture contained 9
dissolved compounds, and its chromatogram can be observed in Figure E.1.
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Figure E.1: 9 compound mixture used for repeatability testing

The sample was measured 6 times with the GC-MS. The analyst then measured the area
and the retention time of each of the 9 peaks. The results are shown in the next section.

E.2 Results

Tables E.1 and E.2 show the different peak area measurements for the 9 peaks. The average,
standard deviation and relative standard deviation were calculated for each one.

The maximum relative standard deviation can be observed for hexadecane, at 5.30%. This
is an acceptable value for the breath measurements, though it considers only the instrument
and not the repeatability of the method.

Tables E.3 and E.4 show the retention time measurements and their variation. In this
aspect, the instrument is expected to be more precise and with less deviation.

52
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Peak Area

HDMS Toluene Butylacetate Ethylbenzene Dichlorobenzene

1 36235864 19252502 6878658 33336618 25812672
2 36637964 18916004 6422838 32782286 26016309
3 35145391 18424430 6513922 33119767 24954436
4 36603740 18229633 6305572 31803450 25575427
5 35604348 17842600 6174296 30954019 24892497
6 36940287 17666168 6264802 32180927 24305584

Mean: 36194599 18388556 6426681 32362845 25259488
Std. Dev.: 688615 611729 251587 897541 650581

%RSD: 1.90 3.33 3.91 2.77 2.58

Table E.1: Abundances of HDMS, toluene, butylacetate, ehtylbenzene and dichlorobenzene for
all 6 measurements, calculated by a technician.

Peak Area

Nitrobenzene TCB Hexadecane Diphenylsulfide

1 21350717 8400226 22127731 43846959
2 20992463 8910714 20770632 46496060
3 20775759 8209585 21528092 45723424
4 20057437 9044669 21193561 46169432
5 19389743 8641744 19857550 43380622
6 19635614 8990952 19146705 45687642

Mean: 20366956 8699648 20770712 45217357
Std. Dev.: 788895 341061 1101380 1286109

%RSD: 3.87 3.92 5.30 2.84

Table E.2: Abundances of nitrobenzene, TCB, hexadecane and diphenylsulfide for all 6 mea-
surements, calculated by a technician.

Peak Area

HMDS Toluene Butylacetate Ethylbenzene Dichlorobenzene

1 3.175 4.4055 4.7605 5.4725 7.4285
2 3.175 4.4045 4.7575 5.4745 7.4315
3 3.174 4.407 4.7605 5.4735 7.4335
4 3.177 4.4025 4.762 5.4725 7.4285
5 3.173 4.4095 4.7585 5.4735 7.4285
6 3.175 4.4045 4.7615 5.4715 7.4295

Mean: 3.175 4.406 4.760 5.473 7.430
Std. Dev.: 0.0013 0.0024 0.0017 0.0010 0.0021

%RSD: 0.04 0.05 0.04 0.02 0.03

Table E.3: Retention times of HDMS, toluene, butylacetate, ehtylbenzene and dichlorobenzene
for all 6 measurements, calculated by a technician.

For retention times, the largest relative standard deviation was 0.05%. This is completely
acceptable, given that any alignment software can easily handle such low deviations without
any conflicts. This differences are absorbed by the alignment process and do not affect the
analysis any further.

Figure E.2 shows an overlay of the chromatograms measured in the 6 runs. Visually, hardly
any differences can be observed. Figures E.3 and E.4 zoom into the two peaks with the highest
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Peak Area

Nitrobenzene TCB Hexadecane Diphenylsulfide

1 7.9545 10.592 11.659 12.141
2 7.9535 10.590 11.664 12.144
3 7.9535 10.592 11.659 12.140
4 7.9485 10.592 11.663 12.144
5 7.9480 10.592 11.661 12.138
6 7.9495 10.595 11.664 12.139

Mean: 7.951 10.592 11.662 12.141
Std. Dev.: 0.0029 0.0018 0.0023 0.0025

%RSD: 0.04 0.02 0.02 0.02

Table E.4: Retention times of nitrobenzene, TCB, hexadecane and diphenylsulfide for all 6
measurements, calculated by a technician.

relative standard deviation of area and retention time.
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Figure E.2: Chromatographic overlay of 6 runs of testing mixture

The same data files were automatically analyzed by AMDIS. This way, it was also possible
to consider the influence of the automatic software in the measurements, as opposed to the
measurements performed by a technician (shown in tables E.1, E.2, E.3 and E.4), given that
for processing breath all area calculations will be performed automatically.

AMDIS measurements are shown in tables E.5, E.6, E.7 and E.8.



APPENDIX E. ANALYSIS OF GC-MS REPEATABILITY ON SIMPLE EXPERIMENT 55

11.61 11.62 11.63 11.64 11.65 11.66 11.67 11.68 11.69 11.7
0

0.5

1

1.5

2

2.5

3
x 10

6

Retention Time (min)

A
bu

nd
an

ce

Figure E.3: Overlay of 6 runs for peak with worst area deviation, Hexadecane
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Figure E.4: Overlay of 6 runs for peak with worst retention time deviation, Toluene

Peak Area

HMDS Toluene Butylacetate Ethylbenzene Dichlorobenzene

1 36235835 19252504 6878655 33336618 25812672
2 33675985 18914854 6422849 32782287 25772552
3 35145362 18424428 6513913 33119766 24954436
4 35181004 18227463 6215741 31803448 24968684
5 32764630 17842602 6174309 30954017 24892497
6 34266070 17666170 6271040 32180928 24308075

Mean: 34544814 18388004 6412751 32362844 25118153
Std. Dev.: 1235036 611644 261974 897542 577388

%RSD: 3.58 3.33 4.09 2.77 2.30

Table E.5: Abundances of HDMS, toluene, butylacetate, ehtylbenzene and dichlorobenzene for
all 6 measurements, calculated by an automated algorithm.

Again, the maximum relative standard deviation for the integrated signal is 5.30%. The au-
tomatic calculation neither introduced nor reduced the average abundance deviation. However,
significant improvements can be observed in the retention time deviations, where the maximum
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Peak Area

Nitrobenzene TCB Hexadecane Diphenylsulfide

1 21350717 8400226 22127731 43846959
2 20567710 8607208 20770632 43024452
3 20775759 8209589 21528092 45723424
4 20052628 8386089 21193561 43727654
5 19389743 8661539 19857551 43384375
6 19635614 8802163 19146705 42361214

Mean: 20295362 8511136 20770712 43678013
Std. Dev.: 739332 216987 1101380 1136841

%RSD: 3.64 2.55 5.30 2.60

Table E.6: Abundances of nitrobenzene, TCB, hexadecane and diphenylsulfide for all 6 mea-
surements, calculated by an automated algorithm.

Peak Area

HMDS Toluene Butylacetate Ethylbenzene Dichlorobenzene

1 3.1724 4.4006 4.7532 5.4659 7.4245
2 3.1717 4.4001 4.7527 5.4649 7.4247
3 3.1733 4.4015 4.7543 5.4663 7.4246
4 3.1727 4.4001 4.7525 5.4657 7.4237
5 3.1721 4.4006 4.7534 5.4651 7.4237
6 3.1729 4.4016 4.7539 5.4658 7.4242

Mean: 3.173 4.401 4.753 5.466 7.424
Std. Dev.: 0.0006 0.0007 0.0007 0.0005 0.0004

%RSD: 0.018 0.015 0.014 0.010 0.006

Table E.7: Retention times of HDMS, toluene, butylacetate, ehtylbenzene and dichlorobenzene
for all 6 measurements, calculated by an automated algorithm.

Peak Area

Nitrobenzene TCB Hexadecane Diphenylsulfide

1 7.9473 10.5845 11.6563 12.1398
2 7.9463 10.5835 11.6566 12.1393
3 7.9474 10.5854 11.6559 12.1386
4 7.9465 10.5840 11.6559 12.1386
5 7.9465 10.5824 11.6550 12.1380
6 7.9465 10.5832 11.6565 12.1402

Mean: 7.947 10.584 11.656 12.139
Std. Dev.: 0.0005 0.0010 0.0006 0.0008

%RSD: 0.006 0.010 0.005 0.007

Table E.8: Retention times of nitrobenzene, TCB, hexadecane and diphenylsulfide for all 6
measurements, calculated by an automated algorithm.

relative standard deviation is 0.018%.
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E.3 Conclusions

The maximum standard deviation of the measured area was 5.30%, calculated by both a tech-
nician and a computer. In the case of retention time, it was 0.05% for the human operator and
0.018% for the computer measurements.
The addition of the peak extraction software improves the repeatability for retention times, and
has a similar performance as manual measurements for the integrated signal.
Though these results are optimistic because they show a high repeatability of GC-MS measure-
ments, including the automatic computer calculations, further testing is required to calculate
an overall repeatability of the entire breath collection and measurement procedures.



F Analysis of pilot study data

F.1 Introduction

In order to further understand some observations made on asthma data, a series of experiments
were planned.

Firstly, it was intended to explain the origin of the numerous siloxanes showing up in
breath measurement. The main suspicion was that they were somehow setup-related and not
endogenous. Since no tubing in the setup contained silicones, a possibility was that water could
be interacting with the GC column and releasing the siloxanes. For this purpose, we required
to study the effects of water on different samples.

Moreover, it was also necessary to find out whether water could also affect the detected
intensities of different components.

Furthermore, it was planned to study the effects of storage time on conditioned tubes.
Since tubes are conditioned at Philips MiPlaza, and are then transported to the hospitals with
a certain delay, it was essential to know that the quality of the conditioning was not lost with
the passing of time.

F.2 Methods

A total of 7 experiments were carried out. These are described in the following list.

• Conditioned tubes with dry nitrogen

3 tubes were conditioned. Dry nitrogen was flowed through them, and they were later
inserted into the GC-MS.

• Conditioned tubes with wet nitrogen

3 tubes were conditioned. Humidified nitrogen (at 100% relative humidity) was flowed
through them, and they were later inserted into the GC-MS.

• Conditioned tubes with a mixture of known VOCs and dry nitrogen

3 tubes were conditioned. Dry nitrogen passing through 2 permeation tubes (sources of
known VOCs) was flowed through them, and they analysed with the GC-MS.

• Conditioned tubes with a mixture of known VOCs and wet nitrogen

3 tubes were conditioned. Wet nitrogen (100% relative humidity) passing through 2
permeation tubes was flowed through them, and the analysis was performed.

• Conditioned tubes with breath

3 tubes were conditioned. Breath was collected in a Tedlar bag. 3 500ml samples were
extracted out of the bag, and each was flowed through the tubes. They were then processed
in the GC-MS.

• Conditioned tubes stored for 14 days with dry nitrogen

3 tubes were conditioned and stored. Dry nitrogen (was flowed through them, and they
were later inserted into the GC-MS.

• Analysis of the ventilator air at the ICU

Samples were taken of the compressed air that is given to patients at the ICU, and air
was also sampled from the different ventilators available.

58
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F.3 Results

F.3.1 Dry Nitrogen

Figure F.1 shows an overlay of the three measurements. Even though they are all supposed
to be blanks, sample 1 shows a higher background signal. It shows many more peaks than
the other two, which match perfectly with each other. Still, if we compare this value with the
column bleed, the extra peaks are around the noise level.
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Figure F.1: Overlay of 3 runs of dry nitrogen

The level of the toluene standard added to the mixture is stable for all three.
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Figure F.2: Zoom into the toluene peak for the 3 measurements
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Furthermore, as figures F.3(a) and F.3(b) show, sample 1 appears to have higher levels of
the two siloxanes than the other two samples.
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(a) Zoom into siloxane peak nr. 1
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(b) Zoom into siloxane peak nr. 2

Figure F.3: Zoom into 2 siloxanes for the 3 measurements

However, when we running the Matlab software with quality filtering, none of the noise
peaks remain. Figure F.4 shows that the only one compound found by the tool in all three
samples is toluene.
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Figure F.4: Results obtained by processing the dry nitrogen samples with the Matlab tool
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F.3.2 Wet Nitrogen

In this experiment something went wrong. This can be observed in figure F.5, were the 3
curves do not match each other for the lower retention times. Samples 1 and 2 have a peak
around 4.5 min which is in all likelihood an artifact, given that it does not even match between
the two of them. Figure F.6(b) shows a closer view of this artifact.
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Figure F.5: Overlay of 3 runs of wet nitrogen

The toluene standard is matched well, though a slight drift in time can be observed.
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(a) Zoom into the toluene peak
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(b) Zoom into artifact in low retention times
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Moreover, Sample 1 shows much higher levels of the two siloxanes than the other samples.
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(c) Zoom into siloxane peak nr. 1
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(d) Zoom into siloxane peak nr. 2

Figure F.6: Zoom into 2 siloxanes for the 3 measurements

The software was unable to overcome the matching problems. However, the chemist in the
project mentioned that when a case like this is found, it is usually discarded, so there is no
expectation for the software to work with poor data. Nonetheless, the toluene standard which
was the only reliable peak in the entire measurement was properly detected and aligned by our
tool.
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Figure F.7: Results obtained by processing the wet nitrogen samples with the Matlab tool
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F.3.3 Dry VOCs

All the samples showed good repeatability. If we observe closely the toluene peak and the two
VOCs, they coincide almost perfectly both in abundance and in retention time.
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Figure F.8: Overlay of 3 runs of a dry mixture of known VOCs
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Figure F.9: Zoom into the toluene peak for the 3 measurements
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(a) Zoom into Hexane
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(b) Zoom into Ethylacetate

Figure F.10: Zoom into the two VOCs added to the mixture

No siloxanes could be observed above the baseline, and figures F.11(a) and F.11(b) zoom
into the retention time area were they would normally be found.
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(a) Zoom into siloxane peak nr. 1
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(b) Zoom into siloxane peak nr. 2

Figure F.11: Zoom into 2 siloxanes for the 3 measurements
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When processed with AMDIS and the alignment software only the three expected peaks
(toluene and the two VOCs) are detected and aligned.
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Figure F.12: Results obtained by processing the known dry VOCs samples with the Matlab
tool
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F.3.4 Wet VOCs

The three samples also show good matching in the wet case. In figure F.13 the two VOCs are
very clear peaks, and the toluene standard is also visible.
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Figure F.13: Overlay of 3 runs of a wet mixture of known VOCs

If we look closely at the toluene peak, water does not seem to have affected its detection.
However, a better comparison against the dry case is performed later on.
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Figure F.14: Zoom into the toluene peak for the 3 measurements
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(a) Zoom into Hexane
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(b) Zoom into Ethylacetate

Figure F.15: Zoom into the two VOCs added to the mixture

Siloxanes can be observed barely above the noise level. There does not seem to be a
significant increase in siloxanes due to the presence of water.
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(a) Zoom into siloxane peak nr. 1
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(b) Zoom into siloxane peak nr. 2

Figure F.16: Zoom into 2 siloxanes for the 3 measurements
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The software only identified these three main peaks (after quality filtering) and they showed
good repeatability.
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Figure F.17: Results obtained by processing the known wet VOCs samples with the Matlab
tool
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F.3.5 Breath

The three breath samples showed good repeatability. Except for a few cases, which will be
explained, there matching is adequate.
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Figure F.18: Overlay of 3 runs of a breath sample

There are three peaks that seem to behave in a strange manner. Phenol, on one hand, tends
to increase with time (sample 1 was the first to be extracted out of the Tedlar bag, while sample
3 was the last). However, it is known that phenol is a contaminant originated in Tedlar bags,
so its increasing trend could be linked to the time a sample spent inside the bag.
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Figure F.19: Zoom into phenol peak
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The siloxanes, on the other hand, vary their abundance from sample to sample, apparently
decreasing with time. It should be noted that they are significantly higher than the levels
measured in the blank runs.
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(a) Zoom into siloxane peak nr. 1
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(b) Zoom into siloxane peak nr. 2

Figure F.20: Zoom into 2 siloxanes for the 3 measurements

The software identified 22 compounds, where only one was not found in one of the samples.
This is the result of a too strict quality filtering. A simple change of this decision threshold can
correct this defect.
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Figure F.21: Results obtained by processing breath samples with the Matlab tool
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F.3.6 Stored Nitrogen

Again, the three measurements had good matching. They appear to have higher background
levels than in the case with no storage. However, these peaks are still well below the column
bleed level.
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Figure F.22: Overlay of 3 runs of dry nitrogen on tubes stored for 14 days

If we observe the toluene peak in detail, there is only a small shift in time between runs.
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Figure F.23: Zoom into the toluene peak for the 3 measurements



APPENDIX F. ANALYSIS OF PILOT STUDY DATA 72

Only one of the samples, number 3, shows an increase in siloxane levels. Since it does not
occur in the other two samples, we cannot confirm that storage is the cause of their presence.
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(a) Zoom into siloxane peak nr. 1
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(b) Zoom into siloxane peak nr. 2

Figure F.24: Zoom into 2 siloxanes for the 3 measurements

When processing the samples with the Matlab tool, all the background peaks were eliminated
and only toluene remained.
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Figure F.25: Results obtained by processing the stored conditioned tubes with the Matlab tool



APPENDIX F. ANALYSIS OF PILOT STUDY DATA 73

F.3.7 Comparison of dry and wet nitrogen experiments

When comparing wet and dry blank tubes, the retention time for toluene is slightly shifted (it
has a lower retention time for dry samples.
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Figure F.26: Zoom into the toluene peak for dry and wet cases

The siloxane levels are higher on average for the wet group, though there is one sample in
the dry set that has higher levels than two of the wet samples. Therefore, there is no clear time
dependence of the abundance of siloxanes.
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(b) Zoom into siloxane peak nr. 2

Figure F.27: Zoom into 2 siloxanes for dry and wet measurements

F.3.8 Comparison of dry and wet VOCs experiments

When comparing dry and wet voc mixtures, the toluene standard does not show any significant
variation. The siloxanes are around the same level, possibly higher in the wet case but not very
significantly.

However, what is remarkable about this experiment is that the VOCs seem to have been
affected by the presence of water. The abundances for the dry samples are considerably lower
than for the wet samples. An explanation was found for this phenomenon: the presence of
water affects the release of VOCs from the permeation tube. So water is not really interfering
with the detection and measurement, but with the generation of the mixtures.
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Figure F.28: Zoom into the toluene peak for dry and wet cases
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Figure F.29: Zoom into 2 siloxanes for dry and wet measurements
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Figure F.30: Zoom into the two VOCs added to the mixture
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F.4 Air quality at the ICU of Amsterdam AMC hospital

As a part of our pilot study, it was important to assess the quality of the air that will be
provided to patients in the ICU, for the sepsis study. Before sampling breath from intubated
ICU patients it is necessary to identify compounds that are not originating from patients breath
but are coming from the ventilator setup or from the air that the patient is provided (compressed
air). To this end we sampled 3 tubes containing compressed air, 3 tubes of air coming from a
Hamilton Galileo ventilator and 3 tubes of air coming from a Maquet, Servo-I ventilator.

Compressed air

All 3 tubes gave reproducible measurements. It is positive that the compressed air used by the
hospital is very clean, and does not significantly contribute to the background.
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Figure F.31: Sample of the compressed air administered to ICU patients at the hospital

Ventilators
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Figure F.32: Air sample of Hamilton ventilators

Figure F.32 and Figure F.33 show the chromatograms from air that went through two
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different types of mechanical ventilators. Both ventilators give a clear contamination signature
that is consistent between all samples.
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Figure F.33: Air sample of Maquet ventilators

In the retention times below 15 minutes there are some distinct peaks present. However, for
retention times between 15 and 20 minutes, there is a large continuous portion of contaminants,
where the peaks are almost indistinguishable. Figure F.34 shows that fortunately, the GC
signature of both ventilators is the same. This supports the theory that the contamination is
mainly coming from the tubing.
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Figure F.34: Overlay of Hamilton and Maquet ventilators air
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Comparison of ventilator signal with breath sample

Figure F.35 shows a spectrum coming from the ventilator and a breath sample in the same plot.
The column bleed differences should be ignored, since they are the result of some amplitude
adjustments made to the breath signal to compensate for a lower sampled volume with respect
to the ventilator air.
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Figure F.35: Overlay of ventilator air and a breath sample

Even though both signals are within the same order of magnitude, it would be possible
to work with samples from ventilated patients if all components between 15 and 20 minutes
retention time were ignored, and the discrete peaks below 15 minutes were removed as we do
for any non-endogenous components.
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F.5 Conclusions

There was no apparent connection between the presence of water and the appearance of siloxanes
in the samples. Water did seem to produce some shifts in retention times, but nothing that the
retention time window of the software tool could not overcome. Background signal levels did
not change with the addition of water.

The wet VOC samples had variation in their abundance levels with respect to the dry case,
but this was found to be caused by the setup itself and not to water interacting with the VOCs.

The test of stored condition tubes showed that if they are used within 2 weeks of their
conditioning, the background levels are still low, well below the column bleed. There would be
no problem in transporting tubes from Philips to hospitals within this time window, as long as
they are properly closed.

The levels of the siloxanes in breath are much higher than the levels in blank tubes. This
means that we cannot completely rule out the possibility that they are also endogenous in
origin.

Regarding the sampling of ventilator air, despite the fact that the samples were far more
contaminated than expected, it is possible to find a solution. As we mentioned before, all
components between 15 and 20 minutes retention time could be ignored, and the discrete peaks
below 15 minutes could be individually removed. If we look at normal contents of a breath
sample, only about 30% of the information would be lost by ignoring this window. Thus, we
conclude that sepsis studies with the given setup are feasible.



G Analysis of the repeatability of the
GC-MS measurements using the pilot
experiments data

G.1 Introduction

Since all of the experiments in the pilot study were run in triplicates, then it is possible to repeat
the study on repeatability we performed for the 9 compound experiment. In this way, we can
find out whether the repeatability of the system (GC-MS + Software) is within the range of
our previous findings. In the past, we found that the maximum differences in abundance were
5.30% and for retention time 0.018%.

The pilot study experiments include runs of nitrogen and nitrogen with VOCs (both at
0% and 100% relative humidity), breath and dry nitrogen on stored tubes. This allows us to
evaluate repeatability under different conditions, such as moisture level and complexity of the
mixture.

G.2 Method

For every experiment, we processed the data using AMDIS for peak extraction and then aligned
the samples using our Matlab-based software. Quality score filtering was applied, in order to
remove the large number of false positives present. The results from the alignment stage were
used for comparing abundances, while the retention times were directly obtained from the
AMDIS files, since this information is no longer available post-alignment.

G.3 Results

In this section we calculated the repeatability for every case, both for abundance and retention
time. The process is repeated for the 6 different experiments.

79
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G.3.1 Dry Nitrogen
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Figure G.1: Overlay of 3 runs of dry nitrogen on Tenax tubes

Figure G.1 shows some differences between the three runs. The first run showed more
peaks in the background. However, most of these peaks were considered of poor quality and
eliminated by the alignment software.

After processing, only toluene remained. Tables G.1 and G.2 show the repeatability values
for abundance and retention time for this peak.

Peak Area

Toluene

1 36235864
2 36637964
3 35145391

Mean: 36194599
Std. Dev.: 688615

%RSD: 1.90

Table G.1: Peak area for toluene, as calculated
by the software

Retention Time

Toluene

1 9.6176
2 9.6141
3 9.6108

Mean: 9.6142
Std. Dev.: 0.0034

%RSD: 0.0354

Table G.2: Retention time for toluene, as cal-
culated by the software

Table G.1 shows that the peak area was highly repeatable under these conditions, with only
1.90% relative standard deviation (RSD). The retention time was stable as well, with 0.03%
RSD.

Even though the three measurements were not perfect matches, as shown in the overlay
of the chromatograms, the quality score filtering overcomes this problem by removing the low
quality background peaks.
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G.3.2 Wet Nitrogen

In this case, nitrogen at 100% relative humidity was flowed through 3 Tenax tubes, to study
whether the humidity affected the background level.
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Figure G.2: Overlay of 3 runs of wet nitrogen on Tenax tubes

Several anomalies can be observed in figure G.2. None of the three runs seem to match at
early retention times (¡5 min) and in two of them there is an artifact of high abundance in that
same range. This large peak should not be present, given that this was just a wet blank run.
Its origin cannot be explained.

Since the disturbances in in this experiment are so large that it cannot be considered an
useful sample for repeatability calculations. Thus, no further analysis is performed for this case.

G.3.3 Dry VOCs

A mixture of 2 known VOCs was prepared. These two components together with nitrogen gas
were flowed through Tenax tubes.
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Figure G.3: Overlay of 3 runs of dry nitrogen and 2 VOCs on Tenax tubes

Peak area was repeatable, always below 5% relative standard deviation, and so were reten-
tion times, with a RSD always below 0.1%.
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Peak Area

Toluene VOC 1 VOC 2

1 1264386 41949291 69975420
2 1300783 38961485 72484109
3 1343967 39308520 65789774

Mean: 1303045 40073099 69416434
Std. Dev.: 39838 1634069 3381993

%RSD: 3.06 4.08 4.87

Table G.3: Abundances of toluene and VOCs, calculated by the aligner software

Retention Time

Toluene VOC 1 VOC 2

1 9.6230 5.0209 5.4229
2 9.6166 5.0149 5.4140
3 9.6210 5.0223 5.4204

Mean: 9.6202 5.0194 5.4191
Std. Dev.: 0.0033 0.0039 0.0046

%RSD: 0.0340 0.0783 0.0847

Table G.4: Retention times of toluene and VOCs, calculated by AMDIS

G.3.4 Wet VOCs

The same VOCs as in the previous case were flowed together with nitrogen at 100% relative
humidity through Tenax tubes.
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Figure G.4: Overlay of 3 runs of wet nitrogen and two VOCs on Tenax tubes

Peak area repeatability was at the same levels as in the previous case, despite the addition
of moisture. Relative standard deviations of retention times were below 0.1% as well.
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Peak Area

Toluene VOC 1 VOC 2

1 1340780 56491180 100800645
2 1286785 55331645 89248945
3 1310662 58702711 94244394

Mean: 1312742 56841845 94764661
Std. Dev.: 27057 1712672 5793397

%RSD: 2.06 3.01 6.11

Table G.5: Abundances of toluene and VOCs, calculated by the aligner software

Retention Time

Toluene VOC 1 VOC 2

1 9.6185 5.0178 5.4204
2 9.6208 5.0211 5.4241
3 9.6294 5.0262 5.4249

Mean: 9.6229 5.0217 5.4231
Std. Dev.: 0.0057 0.0042 0.0024

%RSD: 0.0597 0.0843 0.0443

Table G.6: Abundances of toluene and VOCs, calculated by the aligner software

G.3.5 Breath

A breath sample was collected in a Tedlar bag. From this bag, three 500ml samples were taken
and flowed through three Tenax tubes.
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Figure G.5: Overlay of 3 runs of a breath sample
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Peak Area

C1 C2 C3 C4 C5 C6 C7

1 8514398 1863864 2076050 8380039 12497166 949647 6074921
2 4035237 1742158 1518265 5961625 28720671 1036786 6264961
3 3073246 1676752 1423252 5403719 40914725 935987 6813079

Mean: 5207627 1760925 1672522 6581794 27377521 974140 6384320
Std. Dev.: 2903861 94957 352679 1582112 14256313 54681 383281

%RSD: 55.76 5.39 21.08 24.03 52.07 5.61 6.00

Table G.7: Abundances of breath components, calculated by the aligner software

Peak Area

C8 C9 C10 C11 C12 C13 C14

1 2820886 1027657 538161 710270 3612844 1363615 4996041
2 2487468 918589 492025 640716 3209747 1242016 5007101
3 2393855 839510 581354 606307 3004128 1202806 4827204

Mean: 2567403 928585 537180 652431 3275573 1269479 4943449
Std. Dev.: 224457 94470 44672 52962 309650 83848 100822

%RSD: 8.74 10.17 8.32 8.12 9.45 6.60 2.04

Table G.8: Abundances of breath components, calculated by the aligner software (cont.)

Peak Area

C15 C16 C17 C18

1 906765 2747214 1532320 1240000
2 788878 2861103 1473240 1207504
3 785825 2707828 1515174 1236279

Mean: 827156 2772048 1506911 1227928
Std. Dev.: 68960 79598 30394 17785

%RSD: 8.34 2.87 2.02 1.45

Table G.9: Abundances of breath components, calculated by the aligner software (cont.)

The results for peak area repeatability are more complex than for previous cases. There are
three compounds that should not be taken into account because they are consequence of the
sample collection methodology. Compounds C1 and C4 are siloxanes, which are thought to be
unstable in the presence of water. C5 is a contaminant from the Tedlar bag. For the rest of the
compounds, the relative standard deviation is around or below 10%, with the exception of C2,
whose unstable behaviour cannot be explained at the moment.
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Retention Time

C1 C2 C3 C4 C5 C6 C7

1 10.4260 10.7900 11.7893 13.9586 14.3485 15.4644 15.5668
2 10.4202 10.7856 11.7815 13.9543 14.3475 15.4561 15.5620
3 10.4220 10.7860 11.7848 13.9556 14.3504 15.4580 15.5624

Mean: 10.4227 10.7872 11.7852 13.9562 14.3488 15.4595 15.5637
Std. Dev.: 0.0030 0.0024 0.0039 0.0022 0.0015 0.0043 0.0027

%RSD: 0.0285 0.0226 0.0332 0.0158 0.0103 0.0281 0.0171

Table G.10: Retention times of breath components, calculated by AMDIS

Retention Time

C8 C9 C10 C11 C12 C13 C14

1 15.7801 15.8928 16.0904 16.5252 16.6144 16.7174 16.8023
2 15.7738 15.8884 16.0865 16.5198 16.6106 16.7130 16.7979
3 15.7756 15.8878 16.0845 16.5226 16.6100 16.7105 16.7998

Mean: 15.7765 15.8897 16.0871 16.5225 16.6117 16.7136 16.8000
Std. Dev.: 0.0032 0.0027 0.0030 0.0027 0.0024 0.0035 0.0022

%RSD: 0.0206 0.0172 0.0187 0.0163 0.0144 0.0209 0.0131

Table G.11: Retention times of breath components, calculated by AMDIS (cont.)

Retention Time

C15 C16 C17 C18

1 16.8535 19.5801 19.5957 20.3227
2 16.8472 19.5738 19.5894 20.3179
3 16.8466 19.5751 19.5912 20.3216

Mean: 16.8491 19.5763 19.5921 20.3207
Std. Dev.: 0.0038 0.0033 0.0032 0.0025

%RSD: 0.0227 0.0170 0.0166 0.0124

Table G.12: Retention times of breath components, calculated by AMDIS (cont.)

Retention times, on the other hand, were highly repeatable, below 0.05% RSD in all cases.
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G.3.6 Stored Nitrogen

In this case, conditioned tubes were stored for 2 weeks. They were then used normally along
with dry nitrogen.
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Figure G.6: Overlay of 3 runs of dry nitrogen on tubes stored for 2 weeks

Peak Area

Toluene

1 1217716
2 1260728
3 1271649

Mean: 1250031
Std. Dev.: 28513

%RSD: 2.28

Table G.13: Peak area for toluene, as calculated
by the software

Retention Time

Toluene

1 10.7591
2 10.7672
3 10.7600

Mean: 10.7621
Std. Dev.: 0.0044

%RSD: 0.0413

Table G.14: Retention time for toluene, as cal-
culated by the software

Peak area for toluene was very repeatable, at 2.28% relative standard deviation. The same
is true for its retention time, with 0.04% RSD.
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G.4 Conclusions

For all the simple experiments, i.e. with the exception of the breath measurements, the obtained
values for repeatability of peak area matched those of the previous study (Analysis of the
repeatability of the GC-MS measurements using the 9 compound experiment data). The worst
repeatability of peak area was for one of the VOCs at 6.11%, in the same order of magnitude
of the previous results.

For breath, however, repeatability results were not as good. Approximately 20% of the
components had a relative standard deviation of the area of less than 5%. More than 50% of
the compounds had a RSD of between 5% and 11%. One component had an inexplicably large
RSD of 21% and three others are not considered due to their methodological origin. However, if
we only take into consideration the good, breath related components, 93% of them have a RSD
of less than 11% which is still a reasonable value, in the order of magnitude of our previous
findings.

Retention times, on the other hand, were repeatable in all cases. This is expectable, since
the experiments were performed in a short time window, so the GC column did not suffer
any changes in that period. This results also include the effects of AMDIS, and the software
does not appear to add any extra error when calculating the times. For all cases, the relative
standard deviation was below 0.1%.

In conclusion, repeatability for GC-MS measurements in combination with the software
was good. The system behaved well with and without moisture, and despite suffering some
deterioration, it was still reasonable for complex mixtures such as breath.



H Analysis of component abundance
stability with time for 19 asthma and
control samples

H.1 Introduction

Breath samples are stored in Tenax tubes until they are processed by the gas chromatograph-
mass spectrometer (GC-MS). It is known that time has an effect on samples that can be observed
mainly in two ways: a time drift of the peaks (the time axis suffers non-linear shifts) and change
in abundances. Our intention is to study, from the limited dataset we currently have, the effects
of storage on samples.

In a previous analysis we concluded that the best combination of software for preprocessing
GC-MS files was the use of AMDIS and either Mass Profiler Professional or our own alignment
tool. For this analysis we only need to be confident in the abundance calculation performed
by AMDIS and in the subsequent alignment with the Matlab tool. Since in the previous study
we determined that AMDIS high positive predictive value and the combination with a quality
score filtering algorithm yielded good alignment of test samples, AMDIS and the Matlab tool
were chosen to analyse 19 available asthma and control files.

H.2 Analysis

A total of 19 patients were studied: 10 control (healthy) patients, and 9 asthma patients. For
each patient 3 bags of breath were collected and then transferred to Tenax tubes. The first
tube was analysed after one week (t0), the second after two weeks (t1) and the third after three
weeks (t2). This yielded a total of 57 samples for GC-MS analysis. The 57 GC-MS output files
are initially processed with AMDIS in order to extract the peaks and were later filtered and
aligned with the Matlab tool.

However, since there is an average of 120 compounds found per breath sample, it would
take too long to analyse the behaviour with time of each one. Therefore, we picked a number
of components to study, based on their frequency (the components studied were commonly
present in patients’ breath), their abundance and their retention time.

Table H.1 shows the list of compounds chosen.
The chosen peaks span the entire spectrum, some are more distinct than others, they have

different abundances and others are present in complicated areas of the spectrum, particularly
the 4.5 min region where many compounds are co eluting. Furthermore, the peaks included both
known breath related compounds, such as acetone and isoprene, and compounds of unknown
origin.

H.3 Results

In the obtained plots, which due to their number are shown in the Figure appendix section, the
evolution of peak abundances over time can be observed. Each plot represents one component,
each group of three bars is a single patient, and each color is a specific time of analysis, i.e.
one, two or three weeks.

Mainly two types of behaviour can be observed. Some compounds appear to behave in
a relatively stable manner (for instance Isoprene or Limonene) while others show an erratic
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Name Retention Time

Carbon Dioxide 3.36

Acetaldehyde 3.72

2-methyl-1-propene 3.79

Ethanol 4.27

Acetone 4.40

Isoprene 4.73

Dimethylsulfide 4.82

Carbon Disulfide 5.13

1-propanol 5.48

Trimethylsilanol 5.71

2-butenal 6.94

2-methyl-1,3-dioxalane 7.10

Benzene 7.54

Heptane 8.55

Toluene 9.92

Hexamethylcyclotrisiloxane 11.11

N,N-dimethylacetamide 11.59

Benzaldehyde 13.65

Octamethylcyclotetrasiloxane 14.44

Limonene 15.24

Decamethylcyclopentasiloxane 17.11

Table H.1: Compounds for which time stability was analysed

behaviour (such as Hexamethylcyclotrisiloxane or Octamethylcyclotetrasiloxane).
In the case of the compounds with erratic behaviour we can observe a common pattern that

appears to be linked to each patient. For example, if we have a look at Octamethylcyclote-
trasiloxane and Decamethylcyclopentasiloxane, some patients seem to have a relatively stable
behaviour (such as HEY35, TUY and REE). On the other hand, other patients show a variation
pattern that appears to repeat in every case, for example ALB has a high concentration at t0,
a very low abundance at t1 and again a medium abundance at t2. Or STE, who seems to only
have a noticeable abundance at t1, for all the inconsistent compounds.

H.3.1 One-Way Repeatead Measures ANOVA

In order to determine if the means varied significantly over time, we ran a one-way repeated
measures ANOVA analysis. The null hypothesis was that the group means (for t0, t1 and t2)
were the same. In several cases, this hypothesis was rejected. The results are summed up in
table H.2.

H.4 Conclusions

Most of the compounds that behave erratically are precisely those whose origin we cannot
explain, i.e. silicones. A first step towards understanding the reasons for this unstable behaviour
would be explaining the origin of these compounds.

The ANOVA analysis, however, showed that several compounds have an unstable behaviour.
This is something that will need to be studied further, in order to ensure that samples coming
from different hospitals in Europe, with different storage times, are valid. Still, most compounds
of known endogenous origin were stable.
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Retention Time ID F p-value

3.36 Carbon dioxide 0.9497 0.3963

3.72 Acetaldehyde 4.7549 0.0147

3.79 2-methyl-1-propene 0.0949 0.9097

4.27 Ethanol 0.1403 0.8696

4.40 Acetone 1.0411 0.3634

4.73 Isoprene 5.6958 0.0071

4.82 Dimethylysulfide 1.6463 0.2070

5.13 Carbon disulfide 3.1473 0.0550

5.48 1-propanol 7.6006 0.0018

5.71 Trimethylsilanol 5.6786 0.0072

6.94 2-butenal 0.1952 0.8235

7.10 2-methyl-1,3-dioxalane 1.5238 0.2316

7.54 Benzene 0.9655 0.3904

8.55 Heptane 0.5695 0.5708

9.92 Toluene 0.7154 0.4958

11.11 Hexamethylcyclotrisiloxane 6.2425 0.0047

11.59 N,N-dimethylacetamide 0.1992 0.8203

13.65 Benzaldehyde 0.4546 0.6383

14.40 Siloxane 2.6327 0.0857

14.44 Octamethylcyclotetrasiloxane 0.3632 0.6980

15.24 Limonene 5.9623 0.0058

16.81 Siloxane 5.0064 0.0121

17.11 Decamethylcyclopentasiloxane 0.2936 0.7473

Table H.2: Calculated F and p values for the dataset using one-way repeated measures ANOVA

In future testing, we will also evaluate if this variability in abundances has to do with
compounds interacting with water. If this was the case, it would explain the link with specific
patients rather than compounds, since we do remove moisture in the setup, but have no control
or measurement on that amount.

Repeatability of GC-MS measurements should be studied in the near future. This way, it
would be possible to make a distinction between possible instrument related variations and dif-
ferences that may be related to storage time. We cannot truly define a compound as stable with
time without first knowing fully the behaviour of the instrument without any time differences.
Once the repeatability of the instrument is known, we can deduce how much of the variation is
due to storage.
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H.5 Figure appendix
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Figure H.1: Evolution of carbon dioxide abundances over three weeks of storage
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Figure H.2: Evolution of acetaldehyde abundances over three weeks of storage
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Figure H.3: Evolution of 2-methyl-1-propene abundances over three weeks of storage
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Figure H.4: Evolution of ethanol abundances over three weeks of storage
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Figure H.5: Evolution of acetone abundances over three weeks of storage
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Figure H.6: Evolution of isoprene abundances over three weeks of storage
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Figure H.7: Evolution of dimethylsulfide abundances over three weeks of storage
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Figure H.8: Evolution of carbon disulfide abundances over three weeks of storage
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Figure H.9: Evolution of 1-propanol abundances over three weeks of storage
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Figure H.10: Evolution of trimethylsilanol abundances over three weeks of storage
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Figure H.11: Evolution of 2-butenal abundances over three weeks of storage
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Figure H.12: Evolution of 2-methyl-1,3-dioxalane abundances over three weeks of storage
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Figure H.13: Evolution of benzene abundances over three weeks of storage
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Figure H.14: Evolution of heptane abundances over three weeks of storage
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Figure H.15: Evolution of toluene abundances over three weeks of storage
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Figure H.16: Evolution of hexamethylcyclotrisiloxane abundances over three weeks of storage
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Figure H.17: Evolution of N,N-dimethylacetamide abundances over three weeks of storage
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Figure H.18: Evolution of benzaldehyde abundances over three weeks of storage
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Figure H.19: Evolution of octamethylcyclotetrasiloxane abundances over three weeks of storage
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Figure H.20: Evolution of limonene abundances over three weeks of storage
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Figure H.21: Evolution of decamethylcyclopentasiloxane abundances over three weeks of storage



I Software tool for GC-MS data processing

I.1 Introduction

After analysing the available commercial tools for GC-MS data processing, we determined that
none of the studied alternatives fulfilled our exact requirements. Therefore, a simple though
very specific solution could be designed for the problem at hand.

Figure I.1 shows the different processing stages a breath sample needs to go through before
any statistical analysis is possible. The Matlab tool designed covers 3 of these stages: quality
filtering, alignment and result reporting. It obtains its data straight out of AMDIS, which was
discussed in a previous report, and the results could be directly sent to a statistical analysis
software.

GC-MS 
data

AMDIS
Quality 
Filtering

Aligner
Results 
Matrix

Classifier 
Model

Matlab Tool

Figure I.1: Block diagram

I.2 Design

I.2.1 AMDIS Files

The first challenge of developing this tool was the compatibility with AMDIS files. The standard
files from AMDIS have the extension *.elu. There is little documentation on their structure,
but it could be deduced out of the analysis of several files we had available.

Figure I.2 shows an example of the information contained in an *.elu file for a single peak.
Normally, *.elu files contain information for a large number of peaks, so they can have even
larger sizes.

The header contains several parameters of the peak, many of which will be very important
in the next sections. Some of the parameters contained include:

• Retention Time (RT)

• Purity (PC): The percentage of the total ion signal at the components maximum inten-
sity scan that belongs to the deconvoluted component. AMDIS determines this by first
extracting all of the ions associated with a component and then summing them to yield
the total ion signal of the component.

• Signal to Noise Ratio (SN): The total signal-to-noise value as measured by utilizing all
ions in a component.

• Width (WD): The full width at half maximum height of the chromatographic component
peak; where the width is given in scans.

• Amount (RA): The area of the deconvoluted component relative to the total ion count
for the entire chromatogram, expressed as a percentage.

98
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NAME: |SC839|CN3|MP1-MODN:91(%96.4)|
AM1162303|PC96|SN423|WD7.7|TA1.0|
TR296.7|FR830-847|RT4.4006|MN0.028|
RA5.55|IS19252502|XN20546892|MO20: 
91 92 65 63 51 50 93 89 62 90 64 61 52 66 74 77 
53 75 76 87|EW2-2|FG1.000|TN2.186|OR1|NT0
RE
23379 140220 331794 615182 990020 
1434103 1915585 2273631 2450979 2388672 
2119786 1687388 1227316 821561 487847 
250068 94971 0 
NUM PEAKS: 29
(50,52 )(51,74 )(52,17 )(53,8 )(60,3 )
(61,18 )(62,39 )(63,84 )(64,18 )(65,122 )
(66,14 )(67,1 )(73,3 )(74,11 )(75,6 )
(76,4 )(77,11 )(78,1 )(84,2 )(85,6 )
(86,8 )(87,5 )(88,1 )(89,40 )(90,21 )
(91,999 )(92,575 )(93,41 )(94,1 )

Header

Mass Spectral 
Information

Figure I.2: Information contained in an *.elu file for a single peak

• Integrated Signal (IS): Sum of all the ions associated with a component.

• Models (MO): The number of ions whose shape matches that of the total ion count
(chromatographic peak)

The mass spectral information section contains all fragments found for that specific peak.
Each one of the points listed contains the mass to charge ratio of the fragment and its abundance.

I.2.2 Quality Filtering

Deconvolution algorithms have the drawback that they may produce false positives as an output.
In general, when working with a reasonable sensitivity, these types of software tend to over
identify peaks in a given chromatogram. This is the case of AMDIS, and so was the case of
MassHunter which we evaluated in a previous analysis. For instance, when studying a simple
9 component mixture in AMDIS, an average of 13 compounds were found every time. This
defect means that the GC-MS processing tool should be able to handle these false positives
appropriately.

However, the samples that will be processed with the Matlab tool are unknown, in the sense
that the user has no previous knowledge of the contents. Therefore, the false positives cannot
be unequivocally identified. The solution for this situation is to implement a type of filtering
that removes components that are suspected to be false positives. In this way, unreliable peaks
could be eliminated.

Every peak identified by AMDIS possesses certain inherent characteristics, which were men-
tioned in the previous section. Some of these could help distinguish between true and false
positives because they can be linked to peak quality. Still, this link would be dependent on the
current experimental configuration. Thus, we needed to develop a tool that would aid the user
to train an optimal filter given a certain database of known true and false positives, and would
remove all unreliable peaks from the current data. Less unreliable peaks in the data translates
into a better performance of the alignment algorithm in the next processing stage.
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The main requirements of the quality filtering stage were that it should be tunable, from
completely disabled to very strict filtering, it should have several decision surface alternatives,
it should provide a visual output to facilitate the understanding of what is being applied to the
data and it should provide a quantitative output of the effects of the filtering on the data, i.e.
how much information is being removed.

In our current situation, we had a library of known true and false positives from a set of
controlled experiments that were performed. With this knowledge, we were able to develop a
tool that can find a filtering surface and show how it affects the experimental data.

Figure I.3 shows an image of the user interface. The user can load a library of known true
and false positives (blue and red stars in the plot) and overlay it with his current data (green
dots). In this case, the unclassified data come from an asthma experiment with 19 patients.

Figure I.3: Quality filtering tool

The user has the possibility of choosing 2 or 3 out of the 6 parameters available for the
classification (models, SNR, abundance, purity, width and amount) and then determining a
linear decision surface. This surface can be set manually, but may also be found with linear
discriminant analysis. There is also the possibility of making the filtering very strict or very
tolerant.

The resulting filter can be exported back into the main software tool. Within the main tool
the quality filtering option can also be disabled completely, which may be useful if the user is
willing to work with raw data.

Linear Discriminant Analysis

In order to find the optimal decision surface for separating true and false positives, we use a
linear discriminant analysis algorithm. Its objective is to find the plane that maximizes the
separability of the two groups. Figure I.4 shows two plots that explain this. Plot a) shows a
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poor choice of the separation direction. Plot b) instead shows the optimal choice of direction.
If the points are projected onto this line, they are properly separable. LDA seeks directions
that are efficient for discrimination.
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Figure I.4: Illustration of the concept of optimal separability

A brief explanation is as follows. Initially, the data is divided into several matrices, one
per group, where the rows are different samples and the columns represent each attribute or
biomarker. The program finds the mean of both groups and then calculates the covariance of
each group matrix, shown in equations I.1 and I.2. The value pj is proportion of samples of
each group relative to the total. The sum of all covariances is computed and the between class
scatter is calculated (see equation I.3). Finally, the direction of discriminatory plane (or line)
is found by applying equation I.4.

Sw =
∑
j

pj × covj (I.1)

covj = (xj − µj)(xj − µj)T (I.2)

Sb =
∑
j

(xj − µ3)× (xj − µ3)T (I.3)

v = inv(Sw)× Sb (I.4)

I.2.3 Alignment

The alignment stage of the processing is crucial for obtaining samples that can be compared
between each other and to allow drawing statistical conclusions.

It is essential to define what is meant by alignment. Originally we start with a continuous
chromatogram produced by the GC-MS instrument. After processing the chromatograms with
AMDIS, we no longer have entire chromatograms but a list of discrete peaks found in the
original data files. However, one difficulty arises when comparing different samples. Peaks have
to be matched between different lists, because a certain compound may not always be found
in the same position in different samples. Figure I.5 shows how the first component found in
patient X may be the the second component found in patient Y, for instance, acetone. Other
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components may be found in the same position, like the third and fourth, but others may
be found in completely different locations. This differences between samples occur frequently,
particularly for breath samples, where not all substances are found in all patients. In fact, there
are about 3000 possible VOCs that may be found in breath, but only around 200 are found per
patient, and less than 10% are shared by the majority of the population.

• Compound 1
• Compound 2
• Compound 3
• Compound 4
• Compound 5
• Compound 6
• Compound 7
• Compound 8
• Compound 9
• Compound 10
• Compound 11
• Compound 12
• Compound 13

• Compound 1
• Compound 2
• Compound 3
• Compound 4
• Compound 5
• Compound 6
• Compound 7
• Compound 8

Patient X Patient Y

Figure I.5: Illustration of the concept of sample “Alignment”

If we intend to compare between a large number of samples, without identifying and giving
a name to each component found first, then it is necessary to perform this type of alignment
across all samples to find the abundance of every element in every file (zero if it is absent).

Algorithm

Given a certain experimental configuration, the same chemical compound in different runs will
have about the same retention time. Therefore, there is a window around a certain retention
time where a compound is expected to be found. This fact is essential for speeding up the
alignment process.

If in the alignment stage n different samples must be aligned, then there are n compound
lists (of variable length). The algorithm starts by creating a new list (which we will call the
“Total List”, and includes all of the components found in all samples). As a second step, it
takes all of the compounds in Sample 1 and adds them to the list (see figure I.6), with their
respective abundances.

Then it compares this partial total list with sample 2, starting by the first compound on
the list. It looks for that compound in sample 2, though not anywhere: it searches for the
compound in a time window around its retention time. If it is found, the abundance is added
to the total list. All the compounds found in sample 2 that were not present in the total list
are added at the end.

This process is repeated by comparing the incomplete total list against every sample avail-
able. With every comparison, the list may be come longer, to the point that at the end it will
contain all the compounds found in all samples.
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Retention Time Sample 1

3.46 10054

4.40 23587

5.17 12548

7.42 100451

7.94 11335

10.58 65898

Total Table

3.46 10054
4.40 23587
5.17 12548
7.42 100451
7.94 11335
10.58 65898

Sample 1

Figure I.6: First step of alignment process

Retention 
Time

Sample 1 Sample 2

3.46 10054 9870

4.40 23587 18975

5.17 12548 0

7.42 100451 125362

7.94 11335 0

10.58 65898 0

8.83 0 45313

12.14 0 9522

Total Table

3.43 9870
4.45 18975
5.65 3517
7.38 125362
8.83 45313
12.14 9522

Sample 2

Figure I.7: Second step of alignment process

Similarity scoring

In order to find out whether two compounds are the same it is necessary to compare their mass
spectra. Each spectrum is represented as row vector of order peak intensities. In this way,
every mass spectrum is represented by a point in a multidimensional space defined by each of
the masses. We choose to use the square of the cosine between two vectors as a measure of
their similarity, following the conclusions by Stein and Scott.

The formula for the similarity S is the following:
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Retention 
Time

Sample
1

Sample 
2

Sample 
3

Sample 
4

…
Sample 

n

3.46 10054 9870 0 11050 … 0

4.40 23587 18975 25564 0 … 19115

5.17 12548 0 11526 13554 … 0

7.42 100451 125362 0 116479 … 99891

7.94 11335 0 10989 11447 … 0

10.58 65898 0 59483 63659 … 0

8.83 0 45313 39795 43114 … 0

12.14 0 9522 0 0 … 0

3.30 0 0 1215 0 … 0

5.35 0 0 33456 0 … 0

4.58 0 0 0 12145 … 0

2.27 0 0 0 0 … 1561

11.11 0 0 0 0 … 9424

Total Table

2.27 1561
4.41 19115
7.39 99891
11.11 9424

Sample n

Figure I.8: Final step of alignment process

S = cos2 θ =

 n∑
i=1

AiBi


2

 n∑
i=1

(Ai)
2


 n∑

i=1

(Bi)
2


However, the higher masses of a spectrum have a higher diagnostic potential. Therefore

weighting is performed on the data in order to give more importance to the higher masses.
Therefore, the original abundances vector:

(A1, A2, ..., An)

is weighted by the masses they correspond to, obtaining:

(
√
M1A1,

√
M2A2, ...,

√
MnAn)

Figure I.9 shows the effect of such weighting on a flat spectrum. The abundances of the
fragments with a larger mass to charge ratio are amplified.

Finally, the complete similarity score formula is the following:

S =

 n∑
i=1

Mi

√
AiBi


2

 n∑
i=1

MiAi


 n∑

i=1

MiBi
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Figure I.9: Quality filtering tool

I.2.4 Interface

Figure I.10 shows the graphical user interface. The “File Management” module takes AMDIS
files as inputs and lists them. By default, all samples are considered to belong to the the same
group (Group 1). The user can set a group label for each of the samples, which is necessary for
proper plotting of the results.

Figure I.10: Graphical user interface for the aligner software

The “Quality Filtering” section offers the choice on whether to activate or disable the filter.
If enabled, the user can choose to load a saved filter (designed with the designer tool in the
past), to input the filter manually if the constants of the hyperplane are known, or to use the
designer to create the filter wanted. Though the designer tool if the most clear option since
it shows the effects on the data under study, having a predesigned filter is also useful when
making repeated analysis.

The “Alignment” section allows the user to choose the two alignment parameters avail-
able, which were mentioned previously: retention time window and match factor. With this
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information, the software is ready to fully process the data.

I.2.5 Results

Results are provided in three different ways. Firstly, there is a visual output within Matlab.
Here, compounds are plotted as bars according to their abundances, and are grouped depending
on their labels. The user assigns a group label to each file at the beginning of the process, and
this is used later for plotting purposes, since bars are shown clustered by group. An example
of such output is shown in figure I.11. The colours show the two different groups.
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Figure I.11: Graphic output of the alignment process

Results are also stored as an excel file (see figure I.12), where the same information that
is plotted is stored as an array. Furthermore, the array is also stored in Weka ARFF format
for statistical processing. This is shown in figure I.13, for a small set of biomarkers (only four
were considered) in a study of asthma data.

Figure I.12: Excel output of the alignment process



APPENDIX I. SOFTWARE TOOL FOR GC-MS DATA PROCESSING 107

RELATION breath

@ATTRIBUTE A1 NUMERIC
@ATTRIBUTE A2 NUMERIC
@ATTRIBUTE A3 NUMERIC
@ATTRIBUTE A4 NUMERIC
@ATTRIBUTE class asthma,control

@DATA

600000,531000,1770000,266207,asthma
647000,76200,388000,783233,asthma
651000,758000,570000,647176,asthma
580000,200000,1750000,930896,asthma
686000,63900,447000,780405,asthma
503000,145000,1620000,185852,asthma
542000,1,410772,721292,asthma
541000,525074,587637,795470,asthma
519000,211000,2840000,681448,asthma
578000,98200,1250000,742391,control
635000,126470,1000000,680023,control
580000,140000,1630000,406390,control
601000,1,2460000,298126,control
652000,907000,767000,781246,control
599000,633000,715000,702737,control
400000,1,1500000,1,control
409000,112000,527000,61741,control
415000,1,946000,158206,control
350000,1,502000,1,control

Figure I.13: Reduced example of output in Weka’s arff file format for statistical analysis of
asthma data

I.3 Conclusions

The software fulfilled the initial requirement of providing an accurate and reliable list of
biomarkers present in a sample. In comparison to other commercial programs in the mar-
ket, the reliability was improved through the development of a filtering system for poor quality
compounds. This system allows the user to remove potential false positives or markers that do
not meet quality criteria easily and with complete control over the process. The user is always
aware of how much information is being lost because of the filtering, but also know that what
remains is reliable enough to draw statistical conclusions.

The alignment stage also demonstrated to work properly, yielding adequate results for our
only asthma dataset available.

In the future, the software should still be tested further with complex datasets, such as
other breath samples.



J User Guide for the complete processing
workflow

J.1 Introduction

This document summarizes the steps required to process a breath sample, from beginning to
end. The original files are expected to be in Agilent’s *.d file format, though AMDIS is capable
of working with many other source files. These files are initially processed with AMDIS, and
are later imported into the Matlab tool. We describe all the steps required to obtain good
results in detail.

J.2 AMDIS Processing

J.2.1 Description

AMDIS stands for “Automated Mass Spectral Deconvolution and Identification Syste”. It is a
simple software running a complex algorithm for GC-MS data interpretation.

It can identify the peaks present in a certain GC-MS data file, separating even closely
coeluting peaks thanks to its deconvolution algorithm. Later, it also allows the users to run a
library search (if there is a NIST library present in the computer) and the peaks found may
be identified. Though the Biomedical Sensor Systems department does not have this library, it
may be used by people in MiPlaza.

J.2.2 Loading Files

• Click File → Open

• Find the *.d file to be loaded and click Open

J.2.3 Configuration

• To analyze the file click Analyze → Analyze GC-MS data

• The following window will pop up:

Figure J.1: Analyze pop-up menu

108
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• Type of analysis should be set to Simple.

• Click on Settings to configure the analysis, and the next window will appear:

Figure J.2: Analysis settings menu

• The Identification tab in our case should remain as shown.

• The Instrument tab contains several parameters of interest. These are the setting re-
quired for the use with the Agilent GC-MS.

Figure J.3: Analysis settings menu

• The Deconvolution tab requires several things to be changed in order to work with our
data.
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Figure J.4: Analysis settings menu

• The Component Width should be set (how many spectral scans are present across a
peak).

• Tick Omit m/z and fill in 0 in order to omit the TIC as a model peak.

• The Adjacent peak subtraction is useful only when performing identification steps,
if there is no library search performed it can be ignored. It is used to minimize the
interference of adjacent peaks. Choose none if the spectrum is extremely clean, two if it
is very congested.

• The choice of Resolution and Sensitivity will depend on the samples at hand. However,
to minimize false positives, it is useful to start by setting both parameters to Low. If the
sample is more complex, Resolution could be increased to Medium and so on.

• Shape requirements refer to how shape is taken into consideration in the deconvolution
algorithm. Initially it is recommended to be set to Low. A higher value of Shape
requirements implies stricter requirements on individual ions shape, and thus leads to
less compound identifications.

• In the Library, QA/QC and Scan sets tabs nothing should be changed. If a special
library should be used, then it can be selected in the Library tab.

• Finally, click on Save to store the new analysis settings.

• Back to the previous screen, click on Run to perform the analysis on the file opened at
the beginning.

• In the following figure, a typical results window can be observed.
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• The Chromatographic Display shows the chromatogram extracted from the sample
file, with small arrows above pointing at the peaks found by the deconvolution algorithm.

• The Profile Display shows the abundances of all the ions that are part of the currently
selected component. When all of these curves have a similar shape, it usual suggests that
this is a good quality peak and not likely to be a false positive.

• The Information Lists show all of the compounds found, with their retention times and
by clicking on each, extra information is shown such as SNR, number of model ions, area,
etc.

J.2.4 Batch Processing

• The next step is to run a batch job on all the files we want to process. Click on File →
Batch Job → Create and Run Job. The following screen pops up:

Figure J.6: Batch processing menu

• Click on Add and select all the files that require processing.

• Analysis type should be kept on Simple.

• Click on Save As in order to record the current batch job.

• Finally click on Run to perform the batch job.

J.2.5 Export

• Output files *.fin and *.elu can be found in the same folder where each original file was
found.
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J.3 Matlab Tool

The Matlab tool can be run from the command line in Matlab, by typing “Aligner”.

J.3.1 Loading Files

• Once the application is open, click on File → Open Files

• When the file selection menu opens, choose all the files to be analyzed and click Open

Figure J.7: File selection menu

• Set different group labels for each file by clicking on their respective label, typing another
group name in the New Label box and clicking Apply.

• When all the labels are correctly set, click Convert to start processing the files.

Figure J.8: File management menu



APPENDIX J. USER GUIDE 114

J.3.2 Quality Score Filtering

• Now that the Quality Filtering section is enabled, choose whether No Filtering will
be applied or With Quality Filtering.

• If No Filtering was chosen, simply click Filter and move on to the Alignment section.

• If With Quality Filtering is chosen, there are three possibilities.

• Choose Load Saved Filter to open a *.ftr file saved at the filter designer.

• Choose Input Manually to load the 7 constants for the 6 dimensional hyperplane di-
viding the data

• Or chooseDesign Filter to open the filter designer.

• At the filter designer, the data under analysis is loaded automatically in color green. To
open a library of known true and false positives, click on File → Load True/False
Positives

• In the pop-up menu, choose the *.mat file that contains the library. In the default case,
it is found in the Data folder and is called scatter2.mat

Figure J.9: Quality filtering tool

• Once the data is loaded, simply choose the parameters for plotting in the menus below
the axes.

• Choose the linear classification technique from the possible options (LDA is the default)
and click on Apply Classifier. This will show a plot of the decision surface.
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• Once the desired filter is designed, the user may click on Save to save it as an *.ftr file
for future use

• When ready, click on Export Model to return to the main tool.

• Finally, click on Filter to move on to the next stage.

J.3.3 Alignment

• When the alignment section is enabled, to cells appeared filled in by default.

• The Retention Time Window is the maximum expected time shift of peaks. In our
case, 0.1 min is more than enough.

• The Match Factor sets the limits for detecting the similarity of two peaks. Spectra are
never exactly the same, so 0.8 is a good starting value. If the program misses to align
peaks, it may be lowered to a less strict condition.

• When the values are chose, click on Align.

• A plot with the results appears. If the results are not satisfactory and the user intends
to reprocess, close the plot and click on Reset in the aligner.

J.3.4 Other Output Files

• In the folder named Output, in the root directory, two more files are saved. A data.arff
file for Weka, and a data.xls for use with Microsoft Excel. These files are overwritten
with each run, so they should be renamed to preserve.
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