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Abstract

In this paper we describe a numerical method to simulate particular axisymmetric vis­
cous sintering problems. In these problems the material transport is modelled as a viscous
incompressible Newtonian volume flow driven solely by surface tension. The numerical
simulation is carried out by solving the governing Stokes equations for a fixed domain
through a Boundary Element Method (BEM). The resulting velocity field then determines
an approximate geometry at a next time level by employing a variable step, variable order
Backward Differences Formulae (BDF) method. This numerical algorithm is demonstrated
for several simply connected sintering domains, including two coalescing spheres. Further­
more, by considering the movement of a particular fluid region some discrepancies between
modelling it as a two-dimensional fluid and as an axisymmetric problem are demonstrated.
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1 Introduction

A method to produce glass fibres for the telecommunication industry is heating a porous pure
glass to a sufficiently high temperature so that the glass becomes a highly viscous fluid: the flow
causes densification of the glass. The driving force for this phenomenon is the excess of free
surface energy of the porous glass compared to a same quantity of a fully dense glass. This
process is usually referred to as viscous sintering.

Ideally, one wants to produce a dense and homogeneous glass, free from voids and impurities
this way. Therefore, a good theoretical understanding is needed of the densification kinetics of
the porous glass, i.e. the viscous sintering phenomenon. In particular, one is interested in the
shrinkage rate of the glass as a function of the viscosity and particle size, which reflects how time,
temperature and microstructure influence the development of the densification process. Another
question is what kind of structural configuration leads to a higher densification rate.

A simple approach of describing the sintering phenomenon is to consider the behaviour of
simple systems only, like the coalescence of two spheres, which can be used to understand the
behaviour of macroscopic systems. A more sophisticated approach is the determination of a
representative unit cell within the porous glass and to consider the densification of it. This unit
cell has to be chosen so that it reflects the sintering of the porous glass as a whole realistically.

The glass flow appears to be highly viscous, incompressible and Newtonian: the Stokes'
creeping flow equations hold. The motion of the fluid surface is obtained from the Lagrangian
representation for the velocity by considering the surface points as material points, i.e. a kinematic
constraint is used. In the last few years a lot of work has been done in simulating the sintering
of two-dimensional fluid regions. By now the evolution of some particular geometries can be
solved even analytically, in particular using conformal mapping techniques, cf. Hopper [1]-[3].
The numerical simulation of viscous sintering is performed by successively solving the Stokes
problem and employing a time step to predict the next level geometry.

The sintering of an infinite line of cylinders was simulated by Ross et at. [4]; they applied a
Finite Element Method (FEM). Kuiken [5] considered domains with a rather moderately varying
curvature. He used an integral representation based on the stream function and vorticity function
and solved the resulting equations by employing a Boundary Element Method (BEM). In earlier
work, cf. Van de Vorst et ai. [6]-[10], we reported about the solution of the problem for arbitrarily
shaped two-dimensional fluid regions. In those papers, the Stokes problem is described by an
integral formulation based on boundary distributions of single- and double layer hydrodynamical
potentials.

The next step is the simulation of three-dimensional sintering geometries. The most logical
fluid regions to start with are axisymmetric geometries: bodies which are formed by rotating a
two-dimensional plane around a given axis. Because of this rotational symmetry, the problem
can be reduced to any plane through this particular axis, i.e. actually a two-dimensional problem
has to be solved.

Jagota and Dawson [11]-[12] were the first to perform the numerical simulation of some
particular axisymmetric problems. They considered the sintering of both the coalescence of
two equal spheres and an infinite line of equal spheres. These simulations were carried out by
applying a Finite Element Method (FEM) to solve the Stokes problem. The geometry at a next
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time step was found by using a simple forward Euler scheme.
In this paper, we present a numerical method that is capable of simulating arbitrary simply

connected axisymmetric fluid regions. The numerical algorithm is based on the two-dimensional
code developed by us earlier, cf. Van de Vorst et ai. [6]-[10]. The BEM is applied to solve
the governing Stokes equations for a fixed domain. After solving the Stokes problem, the time
stepping is carried out by a more sophisticated time integrator: a variable step, variable order
Backward Differences Formulae (BDF) scheme.

In section 2 of this paper we formulate the problem that has to be solved. Moreover, we
briefly outline the derivation of the integral equation for the axisymmetric case. In section
3, we highlight some details of the numerical implementation; especially some aspects of the
assembling of the system of equations, the discretization of the surface curvature and the time
integration. Afterwards, we will demonstrate the obtained numerical algorithm for any type of
axisymmetric problem and discuss some of the evolution differences between two-dimensional
and axisymmetric sintering problems. Especially we focus on the coalescence of two equal
spheres which is commonly treated as unit problem in sintering literature.

2 Problent Formulation and Solution

The material transport by viscous sintering is modelled as a viscous incompressible Newtonian
fluid driven solely by surface tension, cf. Kuiken [5]. So the Stokes creeping flow equations are
valid, which read in dimensionless form

with the continuity equation

6. v - gradp

divv = O.

0, (2.1)

(2.2)

Here v is the dimensionless velocity and p the dimensionless pressure. The stress tensor T for a
Newtonian fluid is defined by

(avo av.)
T;j = - pbjj + -a'. + a J. •

X J x,
(2.3)

On the surface the tension, say b, in the normal direction is proportional to the trace of the
curvature tensor K ex{3,

b := Tn = - K excr n, (2.4)

where n is the outward unit normal vector and the indices Cl' and 13 are varying between 1 and 2.
The equations (2.1)-(2.4) can be solved uniquely for afixed domain up to an arbitrary rigid-body
translation and rotation.

The motion of the boundary is obtained by applying the Lagrangian representation for the
boundary velocity v,

dx
dt = v(x)

3

(x E f), (2.5)



where t is the dimensionless time. The above kinematic constraint expresses the displacement 
of the material boundary particles: the trajectories of those particles are followed. Hence a 
quasi-static approach is used to solve the viscous sintering problem. 

In earlier work [6]-[10], it was shown that the BEM is ideally suited to solve two-dimensional 
viscous sintering problems. Therefore, it is convenient to employ the BEM for axisymmetric 
shapes too: hence we have to reformulate the problem in terms of an integral equation. 

There are two approaches for deriving the governing integral formulation for axisymmetric 
problems based on hydrodynamic potentials of single- and double layers. Both methods are 
leading to the same equation. The first one is to obtain the integral equation by using the 
axisymmetric fundamental solution based on ring forces, cf. Brebbia et al. [13]. The second 
approach is to apply the fundamental solution derived from a point force so that a Cartesian version 
of the three-dimensional integral equation is obtained. Subsequently cylindrical coordinates are 
then substituted in this formulation. Here we will briefly summarize the latter method. More 
precise details of this derivation can be found for example in Lee and Leal [14], or in Becker [15] 
where this problem is considered as a special case of an elastostatic problem. 

Let us denote a fluid region by n and its "smooth" surface by an. The derivation of the 
integral equation in the case of a Cartesian coordinate system is described in detail by, for example 
Pozrikidis [16]; in this specific case we obtain for a point x of the fluid, 

(2.6) 

where i and j are varying between 1 and 3. Here the coefficients Cij, qij and Uij are equal to 
respectively: 

qij(X, y) -

In order to obtain the integral equation for the axisymmetric case, we reformulate the repre­
sentation above by employing cylindrical coordinates (f, 0, z), Le. 

Because of the rotational symmetry, we only have to determine Vr and V z (ve 0) at the 
intersection of the surface an and (say) the half-space {1 ::::: 0. This intersection curve will be 
denoted by r; let therefore x ::::: (R, 0, Z)T E r. After successive substitution of cylindrical 
coordinates and integration along the O-direction of equation (2.6) we obtain 

(2.7) 

were the superscript C stands fOf cylindrical and a, f3 are either 1 or 2; hence 
vC 

::::: (vf, vi)T ::::: (vn vz)T, etc. Moreover, the coefficients q~/i and u;'j3 depend on complete eJliptic 
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integrals of the first and second kind. After some analytical manipulation, the kernels on the right 
hand side of the integral equation above can be rewritten as 

U
c -01(3 -

21r AO Al 0 A2 20 
- dO 1 J 01(3 + 01(3 cos + 01(3 cos 

811' 0 (a - bcosO)~ 

1 [E(k) (AO 
- 211'va + b a - b 01(3 

where 

a = r2 + R2 + cZ
, b = 2r R, c = Z - z, k = J a ~ b' 

and the coefficients A~(3 are given by 

A~(3 

A~(3 

A!(3 

-

-

-to)aO)(3b + o)ao2(3cR - OZOIol(3cr + (a + CZ)02010ZfJ, 

(2a - C2)OlcrOlfJ - Dlcro2(3cr + 0201 DI(3cR - D201 02{3b, 

- ~DI OIo1{3b. 

Here K(k), E(k) are the complete elliptic integrals of the first and second kind respectively, 
defined by ,.. 

"2 

K(k) = J dr.p I 

o VI - k2 sinz r.p 

1!: 
2 

E(k) = J VI - k2 sin2 r.p dr.p. 
o 

The kernels on the left hand side of equation (2.7) are represented by 

where the coefficients B;/;(3 are equal to 

B~(3 

B!(3 

B~t3 

-

-

- iOlaOJ(3db + oIOIoz(3Rdc - OZOIOl{3rdc + 02a02(3dcz, 

(de + Bf))oJcrol{3 + (R2nr - rd)olczo2(3C + (d - rnr)o201 01{3Rc + 02cro2(3Rc2nr1 

(enr - rd)olaol{3R - iOlcz02(3bcnr + 02aOl{3R2cnr) 

B!(3 - -~OIDlOI(3bRnr' 
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and d = -rnr +cnz, e = R2 +r2. We remark that if the point x is lying at the z-axis, Le. R = 0,
the integrals become very simple since then b = 0 too, we obtain

(2.8)

The integral representation (2.7) possesses one degree of freedom only: a translation in the
z-direction, say r.pc = (0, I )T. There are two methods to make this integral formulation uniquely
solvable for a fixed domain. One is to perform this by adding one additional variable representing
this translation freedom and requiring the fluid to be stationary at a point of the z-axis, Le. include
one extra integral constraint, cf. Hsiao et al. [17]. The other method is to "deflate" the double
layer integral operator, i.e. we remove this degree of freedom as we did in the two-dimensional
case, cf. Van de Vorst [8]. We prefer the latter approach since then no additional variable is
required. After deflating equation (2.7) we obtain

cC\'J1V~(XC) +Jq~J1v~ dr + <p~(XC)J<p~v~rdr

This integral representation is used in the remainder of this paper.

3 Numerical Solution

(2.9)

The numerical implementation of the axisymmetric integral equation is very similar to the two­
dimensional case, cf. Van de Vorst et ai. [6]; we actually have two unknowns V r , V z on a boundary
curve. Because of this, the mesh redistribution, which is a very important item during the
simulation of a particular shape, can be performed by applying the algorithms developed for the
two-dimensional case, cf. Van de Vorst and Mattheij [7]. However, the time integration method
has to be modified slightly, and of course the assembling of the system of equations as well.
Therefore, we will highlight some details of this numerical solution in this section.

The application of the BEM to equation (2.9) is performed by substituting linear or quadratic
element-wise truncated polynomial approximations for the boundary curve, velocity and surface
tension respectively, into the discretized form of (2.9). Varying the point XC in this formulation
over all the collocation points, results in the following square full rank system of linear algebraic
equations, that is denoted by

(3.1 )

Here v C
, bC and :cC are vectors that consist of the velocity, surface tension and nodal boundary

coordinates respectively of all successive collocation points in the r- and z-direction. 11. and 9
denote the matrices obtained by element-wise integration of equation (2.9). The elliptic integrals
that occur in the coefficients can be approximated by using either standard routines or a series
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representation. When the element integrals become singular, there are basically two approaches
for computing them.

The first, quite commonly used, method is to express the elliptic integrals by a series expansion
in terms of a logarithmic singularity, cf. Byrd and Friedman [18]. After substituting those
expansions into the singular integrals, these integrals become of the same type as they occur
in the two-dimensional case; so they are approximated by applying a logarithmic Gaussian
quadrature formula.

The second approach is to apply the so-called Telles' transformation [19]. The goal of this
method is to cancel the singularity by employing a transformation such that the Jacobian of this
particular transformation is equal to zero at the singular point. Thereafter, the transformed integral
can be computed using an ordinary Gaussian quadrature formula. In the case of linear elements
a quadrature polynomial transformation, say cp(s) = Co + ClS+C2s2, can be constructed. The
coefficients Ci are obtained form the following three requirements,

cp'(s)ls=s = 0, cp( -1) = -1, and cp(+1) = +1,

where the I denotes the derivative with respect to s. The first requirement enforces the Jacobian
to be zero at the singular point s and both the other two requirements are needed in the Gaussian
quadrature approximation. Another interesting property of this transformation is that many of the
Gaussian points are distributed near the singularity. Here, we have chosen for the latter method.

When the point XC is a point on the z-axis (R = 0) the elliptic integrals that occur in the
coefficients disappear: the integrals become very simple as is shown by equation (2.8). In the
case of linear elements, it is even possible to compute the latter element integrals analytically
when they become singular.

Another feature in which the axisymmetric implementation differs from the two-dimensional
case is that the coefficient matrix Ccx{3 cannot be computed using rigid-body motions in the radial
direction. Again there are two approaches to obtain the (2 x 2) diagonal matrices of the system of
equations. The first method is to apply analytical expressions for the coefficients Ccx{3, cf. Brebbia
and Dominguez [20]. The second approach, which is applied here and which is extensively
outlined in Becker [15], consists of two parts: the first step is using rigid-body motions in the
z-direction so that the diagonal matrix coefficients that apply in this particular direction are
obtained. The second step, the computation of the remaining diagonal coefficients which apply
in the r-direction, is performed by employing a plane stress condition from which the velocity
and tension can be computed that is valid for any arbitrary shaped region.

The next point of concern is the computation of the surface tension vector bC
, i.e. the

calculation of the principal surface curvature and the outer normal. Like in the two-dimensional
case, a local method is used to determine the principal curvature at the discretization points on the
boundary surface r. For example in the linear case, this curvature at a particular collocation point
is approximated by fitting a quadratic polynomial through that particular point and its neighbours;
say the parametric form (r(s), z(s))T applies with - I :s; s :s; 1. Then for the approximate principal
curvature at this specific point (s = 0) on the curve r we obtain

rz// - r/z' z'

((r/)2+ez/)2)~ + r.jerl)2+ezl)2 5=0
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and for the outer nonnal

z' -r'

This way we compute the surface tension at all discretization points. If a nodal point is at the
symmetry axis (r = 0) the second term in equation (3.2) will cancel and the curvature in this
particular points is approximated using the symmetry of the problem.

After solving the system of equations (3.1) for a fixed region, a time step has to be carried out.
From the kinematic motion equation (2.5), it follows, after substituting cylindrical coordinates,
that the motion of the material points on the boundary curve r can be described by

dz
- = V z ·
dt

(3.3)

Substituting (3.3) into the algebraic equations (3.1) yields the following system of nonlinear
ODEs,

dx
C

= 1-£-1 (XC) Q(:vC ) bC(xC). (3.4)
dt

In available literature about free creeping Stokes flows this system of ODEs is discretized by
a simple forward Euler scheme or other explicit schemes. However, it appears that the above
system of ODEs can be stiff for certain type of shapes (e.g. fluid regions which are having
cusp-like regions); in such a case the time step in the forward Euler scheme has to be taken very
small for obtaining a stable method. Therefore, we have implemented a variable step, variable
order Backward Differences Formulae (BDF) method to solve those ODEs. More details about
this implementation for the two-dimensional case are available in Van de Vorst and Mattheij [10].

4 Numerical Results and Discussion

In this section we show examples of the simulation of axisymmetric sintering problems. Here
all fluid domains are deforming into a sphere, since this shape minimizes the outer surface that
occupies a certain amount of material. The differences in evolution between two-dimensional
and axisymmetric problems are discussed too.

The first example is the sintering of two equal spheres. The radius of the coalescing spheres
is taken equal to 1; the initial radius of the contact circle between both spheres is set equal to
0.15. Here, the contact radius of the coalescing circular surface will be denoted by r. The
development during sintering of the contact radius is of physical interest. The contact radius is
a measure of how "strong" a sintering compact already is. When r is small, a smaller force is
necessary to break the contact between both spheres than at later stages of the sintering process,
when the contact radius is larger. The collocation points of the starting shape are obtained from
Hopper's analytical solution for the coalescence of two equal cylinders, cf. Hopper [1]. Hence
for the initial stage we assume that the geometrical differences between two touching cylinders
and two touching spheres can be ignored. This is a reasonable assumption since the principal
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t = 0.0

t = 0.6

t = 1.5

t = 0.2

t = 0.8

t = 3.0

t = 0.4

t = 1.0

t = 10.0

Figure 1: The coalescence of two equal spheres into one sphere occupying the same amount of fluid.
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neck curvature in the rz-plane may assumed to be dominant (order 1,-3) over the neck curvature
in the O-direction (order r- 1). Only nodal points from the first quadrant of the 0 = 0 plane are
needed because of the double symmetry of the body. This symmetry is preserved during the
calculations.

Figure 1 shows the simulation results of this coalescence at subsequent times t. In figure
2 we have plotted the numerically obtained contact radius between both spheres (solid line).
The contact radius development obtained by Jagota and Dawson [II], which they derived by
employing a FEM, is plotted too. In the figure, this curve is referred to as the FEM solution
(dashed line). In their paper, they have printed a table of the contact surface between both
spheres, called A, and a dimensionless time, called T. This table has to be read with care because
our time normalization differs. More precisely, the following relation between their solution and
ours holds,

r = JA, and ( 31r)~ ( )t = 4 T - TO ,

where the constant TO is added to ensure the initial r to be equal to 0.15. As can be observed
from figure 2, at later time stages the BEM and FEM solutions are matching reasonably well.
During the initial time stage both solutions also match, however the FEM solution follows the
contact radius development of two coalescing cylinders a longer period of time. Hence, the FEM
approach obtains a faster rate of coalescence for the period 0.25 ~ t ~ 2.0.
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- 2 cylinders (BEM)

000 2 cylinders (Exact)
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1.5

0.7
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i 0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 2.5 3

-----+- t

Figure 3: The shrinkage difference of the two equal spheres compared to both Hopper's exact and BEM solution
of two equal coalescing cylinders. Moreover, the matching of the analytic approximate shrinkage relation with the
coalescing spheres shrinkage rate is shown during the early stage.

In this figure we have plotted also the exact Hopper solution for the contact radius between two
equal coalescing cylinders with initial radius I (circle marks), cf. Hopper [l]. The BEM-solution
obtained for an axisymmetric initial geometry, considered as a two-dimensional problem, is also
shown (solid line). This solution is obtained by running our 2D-code with exactly the same
program parameters for the mesh generation and the BDF time integrator as in the axisymmetric
case. As can be seen from the figure, both solutions are nearly identical everywhere; this gives
some validation of the correctness of the axisymmetric results.

An analytical approximation for the contact radius which is commonly used in sintering
literature to predict the initial stage of the coalescence is the so-called Frenkel relation, cf. Van
de Vorst [9]. In figure 2 we have plotted the Frenkel relation which in the case of the considered
coalescing spheres reads,

2 ( 2 2)iF = "3 r - (0.15) .

As can be seen (dashed dotted line), this relation predicts a much faster coalescence of the two
spheres, even in the initial stage. Hence, we conclude that it does not make any sense to use this
analytical relation anyway.

A more interesting feature is that Hopper's solution for two coalescing cylinders is reasonably
matching with the contact radius r of the two equal spheres obtained by both the FEM and BEM
solution during the early stage of the coalescence. Hence during this period, the development of
the contact radius of the spheres can be approximated analytically by applying Hopper's solution
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t r s t r s t r s

0.0 0.147767 0.005648
0.1 0.256069 0.015936 1.1 0.835476 0.239844 2.1 1.076790 0.451738
0.2 0.344573 0.031870 1.2 0.869421 0.263721 2.2 1.091422 0.469234
0.3 0.423611 0.050464 1.3 0.900912 0.287162 2.3 1.104851 0.486204
0.4 0.495164 0.070953 1.4 0.929983 0.310101 2.4 1.117181 0.502275
0.5 0.558910 0.093534 1.5 0.956720 0.332468 2.5 1.128519 0.517475
0.6 0.616099 0.117287 1.6 0.981281 0.354200 2.6 1.138930 0.531823
0.7 0.668213 0.141559 1.7 1.003816 0.375236 2.7 1.148500 0.545299
0.8 0.716292 0.166203 1.8 1.024480 0.395526 2.8 1.157276 0.558008
0.9 0.759296 0.190920 1.9 1.043433 0.415040 2.9 1.165347 0.569909
1.0 0.798940 0.215557 2.0 1.060821 0.433771 3.0 1.172759 0.581064

Table 1: Both the contact radius r and shrinkage s development of two coalescing spheres at subsequent time
steps.

or the approximate relations that we derived in Van de Vorst [9], viz.

7fr
t = (4.1)

410g2 - logr

This early stage (nearly) matching of the contact radius is not surprising since we already noted
that during this coalescence stage, the principal curvature of the neck in the rz-plane is dominant
over the principal curvature in the O-direction. This matching validates the use of Hopper's
analytical solution for the generation of the initial axisymmetric shape.

An even more important property that can be obtained from this coalescence is shown in
figure 3. In that plot we show the shrinkage rate s of the coalescing spheres and compare it to
the shrinking of two similarly sized cylinders. From the figure we observe that the shrinkage
rate of the spheres (dashed line) is approximately linear during a large time period. Hence
our calculations support the experimentally obtained linear shrinkage behaviour of regular and
equally sized spherical particle packings performed by both Kuczynski [21J and Kingery and
Berg [22].

Another interesting feature that can be obtained from figure 3 is that during the initial
coalescence stage, the shrinkage rate is almost identical to the shrinkage of two equal cylinders.
Hence the early stage shrinkage of these spheres can be approximated analytically by

t ~ 47fVS 1 (4.2)
610g2 -logs

cf. Van de Vorst [9]. The dotted line in figure 3 represents this initial stage shrinking development.
As can be seen, this relation is approximately applicable for 0 ~ t ~ ].

Finally, in table 1 we have printed the numerically obtained values of the contact radius rand
the shrinkage s at subsequent time points t = 0.0(0.1 )3.0. During this particular coalescence
simulation, the error which we obtained in the change of the volume was less than 1%.
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t = 0.0

t = 0.3

t = 1.0

t = 0.1

t = 0.4

t = 1.5

t = 0.2

t = 0.5

t = 2.0

Figure 4: The coalescence of a sphere with initial radius 0.5 on a sphere with radius 1. The smalJer sphere is
gradually "eaten up" by the larger one. This phenomenon is usually referred to as Ostwald ripening.
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0.15

st0.35

0.3

Figure 5: The comparison between the shrinkage s for the sintering of the two unequal spheres and the similar
two-dimensional problem shows again a matching during the early stage. Moreover, this shrinkage is behaving
linearly during a large period of time.

The second axisymmetric sintering geometry we consider is the coalescence of two unequal
spheres. Note that this shape has rotational symmetry only in contrast to the previous problem.
Here, the initial radius of the largest sphere is taken equal to 1 and that of the smaller sphere
is equal to 0.5. The initial geometry is obtained from Richardson's analytical solution for the
coalescence of two unequal cylinders, cf. Richardson [23]. The initial contact radius between
both spheres is taken 0.12.

The shape evolution is shown in figure 4. As can be observed from these pictures the smaller
sphere is gradually vanishing into the larger one. This phenomenon of growth of large particles at
the expense of smaller ones is usually referred to as Ostwald ripening or Cannibalism in sintering
literature (cf. Mulder et at. [24]).

We observe that the early stage contact radius development between those spheres is behaving
similar as compared to the two-dimensional unequal cylinders problem. Also the shrinkage rate
of both problems is matching reasonably well during the early stage as can be seen from figure
5. Moreover, this figure shows that the shrinking of both spheres is evolving almost linearly as a
function in time.

Next, we consider the sintering of two equal rings upon each other to compare the contact
surface development of two coalescing rings, spheres and cylinders respectively. In figure 6 we
have plotted the initial shape. This shape is obtained by a translation equal to 3.0 in the r-direction
of the Hopper solution for two equal cylinders as considered in the first problem of this section.
Hence the initial radius of these rings is equal to I and the width of the annular contact surface
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t = 0.0

t=l.4

t = 0.7

t = 2.3

Figure 6: The coalescence of two ring-shaped viscous fluids which leads to a touching of the surface at the
symmetry axis.

Figure 7: A cross-section of the rings in the rz-piane, t = 0.0(0.] )2.3.

15



2r

1 2

_.-
-'-

------

- 2rings

- - - 2 spheres

_. -. 2 cylinders

1.41.20.80.60.40.2o 1.6 1.8 2
-t

Figure 8: The matching of the width of the contact surface (2r) of the two equal coalescing rings, spheres and
cylinders during the initial stage.

equals 0.30 (i.e. 2r).
The further deformation of the geometry is also plotted in figure 6. Moreover, a cross-section

of the shape evolution at subsequent time steps of0.1 is shown in figure 7. Besides the coalescence
of both rings, it can be observed that the rings are shrinking towards the symmetry axis due to
the principal curvature in the O-direction. This causes problems for our code as it is not (yet) able
to handle situations where a boundary gets close to the axis of symmetry. From figure 7 we also
observe that both rings do not shrink in the z-direction during the coalescence.

Since the starting geometry is similar to the coalescing spheres and cylinders considered
previously, the width development of the contact surface of these three coalescence problems
can be compared. Figure 8 shows those developments for each problem when time increases.
Although the ring shape does not have a symmetric curvature at both sides of the annular contact
surface, we see that the coalescence proceeds almost identically to the cylinder problem during
the early stage. Moreover, the coalescence rate of the two spheres is behaving roughly the same
during this stage too. At later time stages, the coalescence rate of the rings develops much faster
compared to both other problems. This is due to the principal curvature in the B-direction, since
that curvature becomes dominant over the principal curvature in the rz-plane.

Another geometry to study asymmetric neck growth is the sintering of a sphere onto a ring.
This is a straightforward axisymmetric generalization of the two-dimensional sintering of three
circles with an angle between the centres of those circles, cf. Van de Vorst [9]. The interesting
aspect of this geometry is that if the initially chosen top angle of the cone formed by the centre of
the sphere and the centre circle of the ring, is small, an internal hole can occur during sintering.
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t = 0.0 (above view)

t =0.45 (above view)

t =0.0 (below view)

t =0.45 (below view)

Figure 9: The coalescence of a sphere on a ring-shaped viscous fluid to study asymmetric neck growth.

This hole development also depends on the initial contact surface width between the sphere and
the ring.

The first picture of figure 9 shows the initial shape of such a system. The geometry is viewed
from above. In this particular case, the angle between the centre of the sphere and the ring centre
line is taken equal to 100° when considered a cross-section in the rz-plane. From this picture,
it is clear that when the angle is large, no internal holes during sintering will occur, since the
larger the angle between sphere and ring, the deeper the sphere is initially placed inside the ring.
Note, that for different angles we obtain different ring sizes. The initial radius of both the sphere
and the ring is set equal to 0.5, and the contact surface is again obtained by applying Hopper's
analytical solution for two equal spheres; here the contact radius is taken equal to 0.1, thus the
contact surface width is equal to 0.2.

The other picture of figure 9 is taken at time t = 0.45. At that moment, the inside part of
the ring is nearly touching the symmetry axis: an internal hole is formed. In order to obtain
a more detailed view of this hole formation, we consider figure 10. Here, the evolution of the
cross-section of the shape in the rz-plane is plotted at subsequent time steps. Figure loa is
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8. The initial angle is 1000 and the contact surface
width is equal to 0.20. The curves refer to t =
0.0(0.05)0.45.

c. The initial angle is 1200 and the contact surface width
is equal to 0.20. The curves refer to t =0.0(0.05)0.8.

b. The initial angle is 100" and the contact surface width
is equal toO.40. Thecurvesrefertot =0.0(0.05)0.4.

d. The initial angle is 90" and the contact surface width
is equal to 0.20. The curves refer to t =0.0(0.05)0.3
and t =0.338.

Figure IO: A cross-section of the coalescing sphere and ring in the rz-plane during sintering. The differences in
evolution are shown when both the angle and/or the contact surface width between the sphere and ring are varied.

showing the sintering of the above described geometry at times t = 0.0(0.05)0.45. At the final
time step a hole occurs: the remaining inner parts of the ring are nearly touching the symmetry
axis.

Furthermore, we will discuss the differences in the evolution when some characteristics of
the shape are slightly changed. In figure lOb we have plotted the evolution of the same geometry,
but now the initial contact surface width is taken two times larger, i.e. 0.4. As can be seen, no
internal hole will develop since the boundary is almost completely touching the symmetry axis:
a line contact occurs.

Figure IOc shows the effect of an increase of the initial angle between the sphere and ring.
The angle is set equal to 1200 and the contact surface width is again 0.2. The curves refer to
values of time t = 0.0(0.05)0.8. When comparing this simulation to the results of figure loa we
observe that no internal hole is found. Now, the development of a cusp at this particular part is
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the only effect. This plot also shows that the cusp smooths out as time increases. It appears that
the cusp is smoother if the initial contact surface width is larger too, i.e. a similar behaviour as
we found for the shape of figure lOb.

The effect of decreasing the angle between the sphere and the ring is shown in figure lOd.
Here, the angle is set equal to 90°. Again an internal hole is formed and this hole is larger than
the one in figure loa. Hence the shape is behaving like we would expect.

If we model and simulate the geometries of figure 10 as two-dimensional fluids, it appears
that such a hole development does not take place for all those shapes. A hole occurring only if
the angle is taken much smaller, thus when the two outer cylinders are almost touching initially.

Finally, we simulate the rounding of two opposite cones that are pressed together. From a
two-dimensional point of view, the initial shapes are rhombic geometries. The largest diagonal
line inside those shapes is taken equal to 2 and the angle of the lines that define the sharpest
corners is initially set equal to 15, 30 and 60 degrees respectively. In figure 11 the rounding
is shown of the cone with initial peak of 15°. The cross-section of the deformed shapes are
plotted in figure 12 at subsequent times t = 0.0(0.025)0.5. A remarkable phenomenon that can
be observed form these pictures is that the cones deform inside the prescribed initial geometry
of the sharpest corner parts. Hence, no j~uid blob occurs at the top of the cones when they are
deforming. It can also be seen that the rounding is proceeding slower by increasing angle.

5 Conclusion

The examples of section 4 demonstrate both the capabilities and limitations of our numerical
code. It is shown that the shrinkage of both two equal and two unequal spheres is proceeding
at a linear rate during the initial stage. This shrinkage rate can be approximated analytically by
applying the corresponding two-dimensional analytic solutions of these problems. Moreover,
the rounding of sharp peaks is developing like the corresponding two-dimensional problems.
Asymmetric neck growth is studied by considering the coalescence of two equal rings and a
sphere on a ring. These simulations show the influence due to the principal curvature in the
azimuthal direction on the shape deformation. These latter examples also demonstrate both the
touching of boundaries and the formation of inner holes in the three-dimensional case.

It is clear that a further improvement of the simulation capabilities may be achieved by the
design of a detect and handle algorithm for the case of a touching boundary. This problem is not
quite straightforward, since a measure has to be introduced that indicates when two boundaries
are touching. Of course, this measure has to depend on the discretization error too. After the
touching, the outer surface curvature of the coalescing region has to be prescribed. We think that
a most sensible value for this curvature may be obtained from the unit problem of the sintering
of two spheres. The initial radii of those spheres should then be chosen such that they mimic the
both parts of the coalescing surface locally quite well. And of course, experimental verification
has to be carried out, to justify the model chosen.

19



t =0.00 t =0.02 t =0.04 t =0.06 t =0.08 t =0.10

Figure 11: The rounding of two opposite cones that are pressed together. The initial angle of the initial peak equal
to 15°

1
\ /i
\ I
\ I
V

peak 15° peak 30° peak 60°

Figure 12: The cross-section ofthe rounding of two opposite cones that are pressed together at t = 0.0(0.025)0.5.
The initial angle of the peaks are taken equal to 15, 30 and 60 degrees respectively. The cones deform inside the
prescribed initial geometry of the peaks and the rounding is proceeding slower by increasing angle.
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