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(ADAPTIVE) COMPUTED TORQUE CONTROL
OF (FLEXIBLE) ROBOT SYSTEMS

Summary

A mechanical manipulator can be defined as a multi degrees of freedom open-loop chain
of mechanical linkages interconnected by joints. This mechanism, driven by actuators
at the joints, is capable of moving the object at the end of the robot arm along a pre-
scribed trajectory in space. To implement high-performance control, even when the ma-
nipulator dynamics are poorly known or when large and unpredictable variations occur,
adaptive control is considered, being a process of modifying one or more parameters
of the structure of the control system and/or the control actions so as to force the re-
sponse of the closed-loop system towards a desired one. Among various types of adaptive
robot control systems, the Model Reference Adaptive Control (MRAC) systems
are important since they lead to relatively easy-to-implement systems with a high speed
of adaptation and can be used in a variety of situations. However, it turns out to be
difficult to derive convergence, stability and robustness conditions and it is hoped that a
more unified framework for choosing an adaptation algorithm will be developed in future.

For an orientation in the field, five MRAC methods in literature are investigated. At-
tention is focussed on the adaptive sliding controller of Slotine and Li [1987], in which
the robot nonlinearities are compensated by feedback control. The model parameters are
estimated on-line by an adaptation algorithm, based on the hyperstability theorem of
Popov [1969]. This theorem offers a systematic solution to the stability problem, while
Lyapunov’s second method requires the (probably difficult) choice of an appropriate func-
tion candidate. In order to assure robustness in the presence of model uncertainties and
(environmental) disturbances, a sliding control term is incorporated into the control input.

Today, industrial robots are used for various purposes. Because of hardware limitations
in on-line applications, until now, robot control has been studied extensively under the
assumption that the actuator transmissions are stiff and that the links can be modeled
as rigid bodies. Therefore, most of today’s robots have a very stiff (and thus heavy)
construction in order to avoid deformations and vibrations. For higher operating speeds,
industrial robots should be lightweight constructions to reduce the driving force/torque
requirements and to enable the robot arm to respond faster. However, a lightweight ma-
nipulator may have flexibility in the link structure and elasticity in the transmissions
between actuators and links. For most manipulators, elasticity of the motor transmissions
has a greater significance for the design of the controller than the deformation of the flex-
ible links. Furthermore, link flexibility can be approximately modeled by a chain of rigid
sublinks interconnected by elastic joints. Hence, more accurate models involving elastic
transmissions should be taken into account to pursue better dynamic performance of in-
dustrial robots. The application of more complex control algorithms is possible now due
to the availability of advanced multiprocessor equipment for real-time manipulator control.
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Inleiding

Het project ’Geavanceerde regelconcepten voor niet-lineaire flexibele mechanische syste-
men’ heeft tot doel het ontwikkelen van concepten voor het on-line regelen van niet-
lineaire mechanische systemen en heeft als uitgangspunt een model van die systemen. In
dat model wordt rekening gehouden met onzekerheden ten aanzien van (eventueel in de
tijd variérende) systeemparameters, met elastische vervormingen en met speling en wrijv-
ing. Klassieke concepten uit de lineaire regeltheorie (PID-regelaars, optimale regelaars,
etc.) zijn niet zondermeer bruikbaar en derhalve worden momenteel nieuwe technieken
ontwikkeld. De in het vervolg met 'Computed Torque Control’ aangeduide methodes zijn
gebaseerd op vereenvoudigde modellen van de te regelen systemen. Beschouwd worden
mechanische systemen waarvan de onderdelen t.o.v. elkaar grote verplaatsingen en ver-
draaiingen kunnen ondergaan. Bij dit onderzoek wordt in het bijzonder de aandacht
gericht op mechanische manipulatoren die een object langs een vooraf bepaalde gewenste
baan in de ruimte dienen voort te bewegen.

Adaptive Computed Torque Control voor stijve manipulatoren
met parametrische onzekérheden

In eerste instantie worden de manipulator-elementen stijf verondersteld. Daarnaast wordt
aangenomen dat enkele van de systeemparameters, zoals bijvoorbeeld de massa van de
last aan het uiteinde van de robotarm, onbekend zijn of eventueel zelfs variéren in de
tijd. De taak van een ’Adaptive Computed Torque Control’ systeem is dan om on-line de
parameters van het regelmodel te schatten, zodanig dat het geregelde systeem de gewenste
baan toch zo goed mogelijk volgt (dus binnen bepaalde marges).

In dit rapport worden vijf adaptieve regelconcepten vergeleken aan de hand van simu-
laties op een translatie-rotatie (TR) robot (hoofdstukken A en B). De verkregen resultaten
zijn bevredigend, maar werpen niet meer licht op de achtergornd van de (verschillen in)
deze methodes. Er is wel een algemene aanpak zichtbaar waarbij computed torque control
wordt toegepast. In die aanpak worden de model parameters on-line geschat, zodanig dat
het geregelde systeem de gewenste trajectorie zo goed mogelijk volgt. De zgn hypersta-
biliteitstheorie van Popov [1969], waarop deze methode is gebaseerd, blijkt meer ruimte
te scheppen voor het ontwerpen van adaptieve regelingen dan de condities verkregen vol-
gens de meer bekende methode van Lyapunov. Dit opent de weg naar het formuleren van
adaptieve regelconcepten voor flexibele manipulatoren.

Geavanceerde regelconcepten voor flexibele manipulatoren
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Door het optrede
groter dan het aantal ingangssignalen op de motoren die de robot-elementen ten opzichte
van elkaar doen bewegen. Dit levert regelproblemen op die ook door adaptieve regelingen,
ontworpen voor stijve manipulatoren, niet kunnen worden opgevangen: simulaties van de
eerder gebruikte adaptieve regelingen op dezelfde TR-robot, nu echter met een elastische
arm, leiden tot instabiliteiten in het geregelde gedrag. Daarom moet allereerst gezocht
worden naar methodes voor het ontwerpen van stabiele regelingen voor flexibele mecha-



nische systemen zonder dynamische onzekerheden.

*) Generalized computed torque conirol

Heeren [1989] heeft een voorstel gedaan voor een computed torque control versie waarbij,
via een zekere vorm van optimalisering ten aanzien van de ingang, getracht wordt alle
vrijheidsgraden en tevens de motorkrachten/-koppels binnen bepaalde grenzen te houden
(hoofdstuk D). Daarmee wordt voorkomen dat er een ongewenst grote divergentie van deze
signalen optreedt, maar enige garantie ten aanzien van de stabiliteit van het resulterende
systeemgedrag ontbreekt.

*) Sliding computed torque control met stabilizer

Aan de sliding computed torque regelaar van Slotine en Li [1986] (hoofdstuk B) kan een
regelterm worden toegevoegd ter stabilisatie van de optredende elastische oscillaties. Een
aanzet daartoe is beschreven in paragraaf D.5. Daarbij wordt gebruik gemaakt van de
'Variable Structure Systems’ (VSS) theorie volgens Utkin [1977]. Deze aanpak heeft tot
doel het uitdempen van de optredende elastische trillingen in het systeem, hetgeen bij
slappe elementen een heel onnatuurlijk gedrag van het systeem tot gevolg kan hebben.

*) Two-time scale computed torque control

Een zeer in het oog springend alternatief wordt gegeven in het artikel van Slotine en Hong
[1986] (hoofdstuk E). Daarbij wordt niet getracht om de flexibele bewegingen volledig te
dempen, maar wel om deze te leiden naar een natuurlijker ogend gedrag (de zgn ’mani-
fold’), dat bij benadering kan worden afgeleid uit de bewegingsvergelijkingen van het flexi-
bele systeem door te lineariseren volgens de ’Singular Perturbation Technique’ (Khorosani
en Spong [1985], Marino en Nicosia [1984]). Er zijn overeenkomsten te bespeuren met de
sliding control-methode van Asada en Slotine [1986],in die zin dat er met een toegevoegde
regelterm allereerst gepoogd wordt de flexibele vrijheidsgraden te laten convergeren naar
die manifold als zgn. ’switching surface’, waarna vervolgens de rest van het systeem, het
niet-flexibele gedeelte, als vanouds wordt geregeld om de overige ’stijve’ vrijheidsgraden
de gewenste trajectorie te laten volgen. Slotine en Hong gebruiken daarbij een regeling
volgens de reeds vermelde ’sliding computed torque control’ methode van Slotine en Li.
Er kan waarschijnlijk evengoed een andere regeling op los gelaten worden.

*) (Adaptive) Computed Torque Control van de flexibele
manipulator opgesplitst in twee deelsystemen
Tot slot is in hoofdstuk F het idee uitgewerkt waarbij de bewegingsvergelijkingen van het
flexibele manipulator systeem opgesplitst worden in twee deelsystemen (enerzijds de stijve
robot-elementen en anderzijds de aandrijvingen), onderling gekoppeld door de elastis-
che verbindingskrachten. Op beide deelsystemen kan vervolgens een vorm van computed
torque control worden toegepast, waarbij elastische referentie-verbindingskrachten worden
gedefinieerd die het gewenste volggedrag van de stijve robot-elementen tot gevolg kun-
nen hebben, mits de stabiliteit van beide geregelde deelsystemen in onderlinge samenhang
gegarandeerd is. De motor-ingangssignalen worden bepaald, zodanig dat de optredende
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elastische verbindingskrachten zoveel mogelijk overeenkomen met deze referentiekrachten.
De uitbreiding naar adaptief regelen in geval van model-onzekerheden via deze methode
wordt kort aangehaald. In eerste instantie wordt getracht volgens de methode van Lya-
punov globale stabiliteit te verkrijgen (niet-adaptief); een voor de hand liggend alternatief
is de hyperstabiliteitstheorie van Popov (adaptief). Simulatie-resultaten, verkregen bij het
regelen van een translatie-roatatie robot met een elastische verbinding tussen de motor en
de roterende arm, worden besproken in hoofdstuk G.

Slotopmerking

Verder onderzoek op dit gebied zal vooralsnog fundamenteel van karakter zijn om zodoende
te komen tot een basis voor het ontwikkelen van (adaptieve) regelstrategieén voor flexibele
manipulatoren. Dit fundamenteel getinte werk zal worden ondersteund door uitwerkingen
via simulaties. Op de langere termijn wordt beoogd enkele geselecteerde strategieén voor
toetsing aan de praktijk te realiseren op een experimentele xy-tafel.
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THE DYNAMIC MODEL OF A ROBOT MANIPULATOR.

A manipulator is modeled as an open chain of n moving rigid bodies (links)
interconnected by cylindrical, revolute or prismatic joints of one dearee of freedom,
with one end fixed to the ground and the other end free. The actuator
forces/torques acting on the Jomts are the inputs, whereas the joint coordinates
represent the outputs.

~ In the absence of friction, gravity or other disturbances, the dynamic model of a robot

manipulator can be written as:

M(g)a + C(g,v)y = u (1),

where o

a(t) is the [nx1] vector of joint displacements (revolute/translational),

v(t is the {nx1| vector of joint velocities,

aft is the {nx1| vector of joint accelerations,

u(t is the {nx1] vector of applied joint forces/ torques,

M(q) is the |nxn| symmetric,positive definite inertia matrix,

C(q,v)y is the [nx1] vector of Conohs and centrifugal forces/ torques

C(q,v)y = n(g,¥) = [n ] [v N (g)v] Ji=1,..,n.

Equation (1) can be translated into the next state variable differential equation:

=Ax+Bu+k 2).

Although the equations of motion are complex, nonlinear equations for all but the

-simplest- robots; they: have several fundamental properties which can facilitate control

system design. It is assumed that the kinematic structure of the manipulator is known,
but that the numerical values of some or all of the dynamic robot parameters (such as link
masses, moments of inertias, etc.) are unknown. Now, one fundamental property of robot
dynarmcs is that these parameters of interest appear as coefficients in a linear relationship
unctions of the generalized coordinates, so that we may write the dynamic

M(q)a + C(g,v)¥ = W(q,v,a)p (3),

p is a [rx1] vector containing known/unknown parameters,
W(q,v,a) is a [nxr] matrix of known functions.
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COMPUTED TORQUE CONTROL.

Computed torque control schemes rely on exact compensation of all nonlinearities in the
manipulator system, so that, in the ideal case, the closed—loop system is linear and
decoupled.

Using a structure identical to that of the dynamics of the manipulator, the control input
is chosen as:
u=M(gu +C(g.v)v (4).

Then, by substituting (4) into (1), the problem is reduced to that of controlling the simple
System:
a=u . (5),

r

since the inertia matrix M is positive definite and therefore invertible.

Expression (5), in turn, represents a set of n decoupled double—integrators, each of which
can be controlled mdependantly by an outer—loop control law with units of the desired
acceleration aq(t). This can be defined in terms of a given linear dynamic compensator

K(s) as:
u =2 —K(s)e (6),
where e(t) = g(t)—qq(t)-
Substituting (6) into (5) leads to the linear error equation: [ + K(s) le=0.
The simplest choice of K(s) in (6) is a PD—compensator: K(s)=K s + Kp,
\Y%
which leads to the familiar second order error equation: E+Ke+Ke=0.
v P

If the gain matrices Ky and K, are chosen as diagonal matrices with positive diagonal
elements, then the closed—loop system is linear, decoupled and globally stable.

However, this desirable performance is based on the assumption that the values of the
parameters appearmg in the dyna.rmc model o the control law (4) do match the
parameters of the actua ¢ ), maj_m hm'fa*mn of the computed

AL U AV 2 UiiNs wisa
+A
vorque aﬁ'ﬁfﬂauh 15

only apply:

p
ot

""""

n= hhfi(g)ur + C(g,v)x (7),

instead of (4), so that we get the closed—loop dynamics
a=(M'M)u_+ MY CCly (8)
instead of (5).

Expression ((2 shows that the problem is not as simple as f) looked, and in particular
may not be adequately handled by standard linear control techniques.
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A.3 ADAPTIVE MANIPULATOR CONTROL.

Imprecise knowledge of manipulator parameters can be solved by application of adaptive
control techniques. Most of the MRAC methods, considered in this short review, do rely

" on nonlinearity compensation in a form as described in the previous section (eventually
combinated with a kind of feedback control) plus incorporation of system parameter
estimation.

The adaptive controller design problem will be:

Given the desired trajectory [q4, vd4 and ag), and with some or all manipulator
parameters being unknown, derive a control law for the actuator torques/forces u
and an estimation law for the unknown parameters of p such that the manipulator
‘output-tracks the desired trajectory after an initial adaptation process:

lim[e]=1lm[gq [=0 (9)
t o = ®
lim[e]=1lim[yy ]=0 (10)
t— ® —w

The global stability of the overall adaptive control scheme of Landau and Horowitz &
Tomizuka is based on Popov's Hyperstability theory. It is remarkable, however, that the
trend in the other recent works is to utilize Lyapunov's second method. .
Al of Lke schemes ; dlescribed next ; wsure Asympééc -érackthcg og the C(e's"e‘{( _"€§n”“
éra{gu:éc% %:r all possible nckad condibcons and wxtbh all xtaxnad 9““6"“'0“’ ﬂmagzi?&((.
A.3.1 LANDAU (1979).
Chmmpp———

Landau was one of the first who applied the Hyperstability theory of Popov to the design
of MRAC systems. He used the type of MRAC technique called parameter adaptation:
the adaptation algorithm adjusts the feedback control gain Kp(t) and the feedforward
control gain K,(t) on-line [see figure [1{]] This, in order to let the closed—loop
characteristics of the manipulator closely follow the performance of a reference model.
This model, chosen by the designer, specifies the desired closed—loop performance.
Landau has chosen a linear time—invariant reference model that must be stable and
~controllable-and which has the same structure as the manipulator system (without the
term k of equation (2)). The state variable differential equations of the reference model

are:
X =Ax +Bu (11),
1 [H ccC cr
Xe is the [2nx1] state vector of the reference model
(= the desired trajectory xgq),
Ur is the [nx1] reference input due to the desired performance,
¢ is the chosen [2nx2n] system matrix of the reference model,
Bc is the chosen {2nxn] input matrix of the reference model.

The adaptive control law Landau proposed is:

u=—Kx+Kuy (12),
P ur

where

~

Kp(ex,t) is the adjusted feedback control gain,
Ku(ex,t) is the adjusted feedforward control gain.




tue-wiw-il

A3.2 HOROWITZ AND TOMIZUKA (1980).
D

The overall control system of Horowitz and Tomizuka is shown in figure [2]. In the
inner—loop MRAC system the adaptation algorithm drives the closed—loop manipulator
system to follow the reference model. If this performance equivalence is achieved, the
outer—loop PID controller is sufficient to force the response of the adaptive controlled
manipulator system towards the desired trajectory.

The reference model, specifying the desired system performance, is chosen to be a double
integrator for each degree of freedom:

H
It

q

[ C

<
I
I

(13).

c C

Further, Horowitz and Tomizuka have proposed the following adaptive contrdl law:

u=M(g)a +n(gy)-Fe —Fe (14),
c P C v e
where
ec(t) = g(t) — qc(t),
ec(t) = ¥(t) — ¥e(t),
ac(t) is the output of the outer—loop PID controller, defined as:
t
a =—fKedr—-Ke—-K¢ (15).
[ t0 i P v

Each term of M(q) and n(q,v) is adjusted by the adaptation algorithm, in order to obtain:

lim[_e_:c]=g and um[gc]=g (16).

= © @

To show the asymptotic stability of their control scheme, Horowitz and Tomizuka treated
the nonlinear, time—varying quantities of M(q) and n(g,v) as constants in the stability
analysis. Therefore, the underlying assumption was always that the parameter adaptation
law is much faster than the manipulator dynamics; i.e. that the manipulator parameter
variation is negligible compared with the speed of adaptation.

A.33 CRAIG, HSU AND SASTRY (1986).

Craig, Hsu and Sastry present an adaptive version of the computed torque method for
robot control. The key point in their paper is the introduction of a parametrization of the
dynamic manipulator equations, that yields a linear expression in terms of a suitably
selected set of robot and load parameters (equation (3)). Their adaptation law adjusts the
unknown, but constant system parameters on—line and uses the latest estimates in the
computed torque servo:

u=M(g[a,Ke-Ke]+n(qy) (17),
whereas the parameter adaptation algorithm is:

p=—IW'(qya)M*(g) ¢+ Be] (18),
where J is the [rxr] adaptation gain matrix.

Figure [3] shows the structure of the adaptive computed torque controller of Craig, Hsu
and Sastry..
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A4 SADEGH AND HOROWITZ (1987).
R
Refering to the trend in recent work of Craig, Hsu and Sastry (1986), Sadegh and
Horowitz have been able to remove the slowly time-varying system parameter
requirement of Horowitz and Tomizuka (1980), by reparametrizing the nonlinear dynamic
manipulator terms as linear functions of unknown but constant parameters (equation (3)),
which will be estimated on—line by the parameter adaptation algorithm:

cC ¢ ¢C
The new adaptive control law will be:
u= M(Q)éc + n(g,y.,zc) - Fv.e.c (20),
t
- where a =a —fKedr—Ke—Keg (21).
c d to i Cop v

Comparing this with the method of Craig, Hsu and Sastry, in the algorithm (19) the
acceleration input ac(t) is used instead of the joint accelerations a(t) in (18) (which are
not measurable in most realistic applications) and no matrix inversion is required.

A5 SLOTINE AND LI (1986).
. ]
Craig, Hsu and Sastry (1986) have proposed an adaptive computed torque controller,
which, however, requires acceleration measurements and the inversion of the matrix of
estimated parameters. This problem is solved by Slotine and Li using a natural
relationship between the inertia matrix and the Coriolis/centrifgal terms, namely that:

R=] M-2C ] is a skew—symmetric matrix
(i.e., that XTR)_(_=Q for all x, and so ryj; = —Tjk), as can be easily
derived from the Lagrangian formulation of the manipulator dynamics .
This property enabled Slotine and Li to define the following adaptive law cq. adaptation
algorithm: i )
u=M(ga, +Clav)y, ~Ke-Ke (22),
: T
p= W (Q>X,Xd,éd)§ (23)

However, this adaptive controller does yield zero velocity errors but it may present
nonzero position errors. Slotine and Li solved this problem by restricting the residual
tracking errors to lie on a sliding surface:

| s(t) =&+ Ae=0 (24),
thus guaranteeing asymptotic convergence of the tracking error.

Now, control law (22) and adaptation algorithm (23) are modified into resp.:

u=M(@a +Clavy —Kg (25)

fz = *J—JWT(Q,X,!I,Q‘.'E (26),

where g(t) = ¢ + Ag,

t
g =g,~A[edt > a, = a, -Ag
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A4 Lyapunov's second method.

To show the global tracking convergence of their adaptive controller, Slotine and Li
consider the Lyapunov function candidate:

V(t) = H s "M(q)s + 5135 ] (27)

~ & . .
where p(t)=p(t)—p denotes the parameter estimation error vector.

Differentiating V yields:

v(t) =g Mg+ 3 Ms+plp= (28)

i
i

T[ u—Cy~ Mg_r} + §T[ %(M——2C) +Cls+ 1~)_TJ£2.

Now, Slotine and Li have used the property of skew—symmetry to eliminate the term

%QT(M—QC) ¢ With control law (25) V(t) becomes:

i e A -7 Z

3"[Ma +Cy K s-Cy-Ma +Cs ] +p Jp =
r r

r

V(t) -

[V, + G, ~K ] + 5770 -

="K s+ [W(gvy a)Ts+p]  (29)

Finally, Slotine and Li have defined adaptation algorithm (26), such that

ng,m ¥:) )Ts. +Jp=10
r r

T

The resulting expression of V is: V(t) =5 Kdg <0.

This expression shows that the output error converges to the sliding surface s(t) = 0,
which implies that both the velocity and position tracking errors go to zero.

Substituting control law (25) into the manipulator dynamics (1),

one obtains the closed—loop dynamics
M(a-a )+(M-h)a +C(—v )+(C-O)v +K =0,
Mg+[C+K Js= ng,z,zr,@r)ﬁ (30).

We can conclude that the adaptive robot controller of Slotine and Li consists of a PD
feedback part and a full dynamics feedforward compensation part with the unknown
manipulator (and load) parameters being estimated on—line.
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A.6 Plots.

S(_)me simulation results
with a translation—rotation robot:

Figure [8]: PD-controller: u = —Kgg [Kd=l()()ﬂ

The desired trajectory. 3

Figure [ 4):

Fixed—parameter control: figures [6}, 7 and [8].

Figure (8] Computed torque with PD feedback
u = M(q)ad +C(q,¥)va—Kas

[Kd=100].

Figure [: Computed torque with PD feedback
u = M(q){aas—Kpe-Ke] + C(q,¥)vd

SHd(2)
-.".IZLL!).-
.42
‘i (1)

Figure 18}:
As Fig.[6] but with g.(t) instead of with gq(t):
u = M{g)ar +C(q,¥)¥r—Kas [Kd=100].

Adaptive control: p = —J"WT(g,g,xd,@d)g

Figure B):
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Adaptive computed torque with PD feedback:
u = M(g)aa +C(g,¥)va—Kas.

Figure [10}:

Adaptive computed torque with PD feedback:
u = M(q)[ad—Kpe—K] +C(a,v)vd.
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B ON THE ADAPTIVE CONTROL OF ROBOT MANIPULATORS
J.—J E. Slotine and W. Li

.E)o/,

INTRODUCTION.

- A -globally ‘stable adaptive controller for robot manipulators was presented in Craig et

al.(1986). The key point in that paper was the introduction of a parametrization of the
robot equaiions that yields a linear expression in terms of a suitably selected set of robot
and load parameters. Based on this parametrization an adaptive computed torque
controller was proposed. However, it required acceleration measurements and the inversion
of the matrix of estimated parameters. Using a natural relationship between the inertia
matrix and the Coriolis/centrifugal terms, this problem is solved by Slotine and Li (1986).

Slotine and Li have developed a globally asymptotically convergent adaptive controller to
control manipulators under certain dynamic uncertainties. Their adaptive robot control
algorithm consists of a proportional/differential (PD) feedback part and a full dynamics
feedforward compensation part with the unknown manipulator and payload parameters
being estimated on—line.

Dynamic model of a robot manipulator.

In the absence of friction or other disturbances,the dynamic model of a robot manipulator

-can be written as:

u = M(g)a + C(g,v)¥ (1)
where
u is the [n*1] vector of applied joint torques or forces,
a is the [n*1] vector of joint displacements,

M(q) is the {n*n| symmetric, positive definite inertia matrix,
n(q,v) is the tn*l]] vector of centrifugal, Coriolis
gravity and friction torques/forces.



’iuz- yv‘w-ll-lsso B-2

Fundamental properties of manipulator dynamics.

Although the equations of motion (1) are complex, nonlinear equations for all but the
simplest robots, they have several fundamental properties which can be exploited to
facilitate control system design. Two of them are mentioned now:

")

First, Khosla et al. (1985) and Atkeson et al. (1985) have shown that all of the
constant parameters of interest such as link masses, moments of inertias, etc.,
appear as coefficients of known functions of the generalized coordinates. By defining
each coefficinet as a separate parameter, a linear relationship results so that we may
write the dynamic equations 8) as:

M(g)a + C(q,v)y = W(q,v,a)p (2)

p is a [r*1] vector containing the unknown buZ constant Parame{-.ers s
W(q,v,a) 1s a [n*1r] matrix of known functions.

where

Second, as remarked by authors as Arimoto et al. (1984) and Koditschek (1984),

the matrix N = | M—2C ] is skew—symmetric (i.e., that gTN§=Q for all x,
and so nyj = —njk), as can be easily derived from
the Lagrangian formulation of the manipulator dynamics .

Controller design.

The controller design problem is as follows:

Given the desired trajectory, and with some or all manipulator parameters
being unknown, derive a control law for the actuator torques/forces and an
estimation law for the unknown parameters such that the manipulator
output tracks the desired trajectory after an initial adaptation process.

Slotine and Li derive their controller in a few steps:

1.

First, in section 1, a simple globally stable adaptive controller is obtained from the
Lyapunov stability analysis. The controller strongly exploits the structure of the
manipulator dynamics, pointed out in the previous section. However, the adaptive
controller does yield zero velocity errors, but it may present nonzero position errors.

Slotine and Li solve this problem in section 2 by restricitng the residual tracking
errors to lie on a sliding surface, thus guaranteeing asymptotic convergence of the
r

tracli
tracxing ©rror.

Further, in section 3, a sliding control term is incorporated into the control input to
make the controller robust either to the uncertainty on parameters not explicitely
estimated on—line and to residual time—varying disturbances (such as stiction),

Finally, the sliding control term is changed in section 4 into a sonamed saturation
control term to avoid control chattering.
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B ADAPTIVE COMPUTED TORQUE CONTROLLER WITH PD FEEDBACK.

To derive the control algorithm and adaptation law, Slotine and Li consider the Lyapunov
function candidate

V(t) =H e M(@e+5 I5+e K el ®)
where

p(t)=p(t)—p denotes the parameter estimation error vector,
Kp and J are [r*r] symmetric positive definite matrices, usually diagonal,
e(t)=q(t)—gq(t) 1s the tracking error.

Differentiating V yields:

V() =& M(de/dt) + e MErpIp+e'K e =

—el[u- Cy—Ma ]+ e [4M-2C) + Cle+ plip + gTKpg =
_ T o
=¢[u-Cy —Ma +Kel]+p Jp (4)
where
Slotine and Li have used the property of skew—symmetry
to eliminate the term %QT(M—QC) ¢
Then Slotine and Li define the following adaptive control law:
u(t) = M(g)a (t) + Clav)y, —K e—K ¢ (5)
where 1(4 and C are the matrices obtained by substituting the

known and estimated parameters into M and C.

Now V() =T Mo, +Claxy,~K el +31%p ©)
where M(q) = M(q)-M(q),
C(g,v) = C(a,v)-C(g,v)-
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Further, since the matrices M and C are linear in terms of the manipulator parameters
(first mentioned property), we can write

M(a)a, + Clgv)y, = W(g,v,y W) (7)
and therefore

T

V(t) = —¢ Kdg+{; [J;+WT§]. (8)

This suggests choosing the following gradient estimator as the adaptation law, such that

T

sz + W e=0 (seee.g. Anderson et al. (1986)):

-

p= “J_IWT(Q,!,! ! d)g . 9)

Note that p=p, since the unknown parameters p are constants.

The resulting expression of Vis V(t) = —QTKdg <0. (10)
Therefore the control law (5) and the adaptation law (9) yield a globally stable adaptive
controller.

Expression (10) implies that the steady—state joint velocity error goes to zero. However, it
-does not necessarily guarantee that the steady—state position error is also zero. Slotine and
Li now modify the previous adaptive scheme in order to solve this potential problem.

53 ELIMINATION OF THE STEADY-STATE POSITION ERRORS.

The undesirable steady—state position errors can be eliminated by restricting them to lie on
a sliding surface:

8(t) =&+ Aey=0 (11)
where
A is a [n*n] constant symmetric positive definite matrix (or more
generally, a matrix whose eigenvalues are strictly in the right—half plane).
- Formally, this can be achieved by replacing the desired trajectory
aq(t) in the above derivation by the virtual 'reference trajectory':

q =g —Afedt . (12)

Accordingly, vq and aq4 are replaced by
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Defining g=¢ =y—v =¢+Ae , (13)

r r

control law (5) and adaptation law (9) are modified into

u(t) = M(g)a,(t) + Clax)y —K g (14)

(ev.v .2 )8 (15)

where
Kq  is a [n*n] symmetric positive definite matrix,
\%Y is now a function matrix of v, and a, instead of vq resp. ag,
which is defined by the following linearity relation
associated with the dynamic model (2):

M(g.)_a.Jr + C(_q,z)xr = W(g,y,zr,a.r)p.-

Equation (14) represents a special feedforward plus PD controller, while (15) is a gradient
update law.

To show the global tracking convergence of the adaptive controller,
consider the Lyapunov function candidate

V(t) =4 s Ms +plIp], (16)

instead of (3), which yields (instead of (10)):
V(t) =1

s K <0 (17)

Note that control law (14) does not contain a term in Kp, since the position error g is
already included in 3. Expression (17) shows that the output error converge to the sliding
surface g(t)=0. This in turn implies that ¢ » 0 as t - co. Thus, the adaptive controller
defined by (14) and (15) is globally asymptotic stable and guarantees zero staedy—state
position errors, as long as the desired gq, ¥q and a4 are bounded.

Substituting the control law (14) into the manipulator dynamics (1),

one obtains the closed—loop dynamics

Ms+[K +Cl=Wl(gyy,a)p (18)

where 1; is determined by the adaptation law (15).
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B.34 SLIDING CONTROLLER.

In practice, one may simplify the adaptation algorithm (15) by not explicitely estimating
all unknown parameters. Some parameters may have relatively minor importance in the
dynamics, in which case one may choose to make the controller robust to the uncertainty
on these parameters rather than explicitely estimating them on—line. Similarly, some
geometric parameters may already be known with reasonable precision. Further, the
controller must be robust to residual time—varying disturbances (such as stiction).

To account for these effects of uncertainties, Slotine and Li have incorporated a sliding
control term into the control input (14) (see figure [1}):

u =u—ksg(s) (19)
where

sgn(s) = +1 ifs > 0,

sgn(s) = —1 ifs <0.

#3492  SATURATION CONTROLLER.

However, the added sliding control term in (19) is discontinuous across the surface g(t)=0,
which will lead to control chattering. Chattering of the control input ug is in general
highly undesirable in practice, since it involves extremely high control activity and further
may excite high—frequency dynamics neglected in the model. Slotine and Li have remedy
this situation by smoothing out the control discontinuity. This is achieved by choosing
outside a certain boundary B(t) control law ug as before (which guarantees boundary layer
attractiveness) and then interpolating ug inside B(t) (see the figure[2]). In other words, the
switching function sgn(g) is replaced %y the saturation function sat(s/b).

u =u-ksat(y/b) (19)
where

sat(s/b) = +1 ifg/b> €,

sat(s/b) =s/b if—€<s/b<e

sat(s/b) = -1  ifg/b < —€.

As shown in Slotine (1984), s is then guaranteed to converge to the boundary layers with
corresponding small tracking errors, and furthermore essentially assigns a lowpass filter
structure to the local dynamics of the variable s, thus eliminating chattering.

-

i

5(6:’@‘ | fboura,(au(oil
| Raugx i)

§

i\ 1
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|

I

Figure [1]: Figure [2]:

Trajectories pointing towards the sliding surface g(t) = 0. Control law interpolation in the boundary layer B(t)
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Fixed—parameter control: figures [Y], [51 and [6].

Figure [3]: PD—controller: u = -Kas [Kd=100]| Figure [4]: ted torque with PD feedback

S M(0)as +Clay)vaKas
[Kd=100].

Figure [5]: Computed torque with PD feedback i W;;‘re %2] . . (t) t d of with ga(t):
~ ~ s Fig. ut wit Qr lnS €ad 01 with g4
u = M(g)las—Kpe—K+e] + Cg,v)va u= M(Q;ar +C(g,¥)vi— [Kd=100].
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Adaptive control: p = ——J"WT(g,y,zd,gd)_e (figures [7] and {8]).
Figure [7): Adaptive computed torque with PD feedback:
u = M(g)aq +C(q,v)va—Kags.

. & (2)
. R
" o (1)
L . N
Figure [8]: Adaptive computed torque with PD feedback:
u = M(g)[ac—Kpe—K+&] +C(g,¥)va.
m ()
-.(2)
m (1)
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I Adaptive control: p = —J‘IWT(Q,g,y,,@r)g (all next figures).
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C CONTROL OF A FLEXIBLE MANIPULATOR.

C.1 INTRODUCTION.

In the control of robots, besides PID also advanced control techniques as computed torque
control and adaptive control have been investigated. However, these control methods
appear to be in their origin version only applicable to rigid manipulators. There is needed

now an extension for controlling robots with elastic joints and/or flexible links, while the
problem of achieving stability is severe.

C.2 RIGID MANIPULATOR CONTROL.

Industrial robots will be of great importance in future. Robots of today are used already
for various purposes in different industries. Until now, the control of industrial robots has
been studied extensively under the assumption that the (actuator) joints are stiff and that
the links can be modelled as rigid bodies. This assumption can be justified for most of
today's robots, because of their very heavy construction in order to avoid undesirable
positioning inaccuracies that may be caused by elastic deformations and vibrations. The
advantage of such stiff constructions is that (angular) encoders at the actuator joints
(sonamed 'collocated sensors') can be used to get information about the actual position of
the end—effector in space in a purely geometric manner. Therefore, the controller can use
this information directly to perform the actuator inputs. The joints are then driven
simultaneously, often by a simple PID servo loop. However, the main disadvantage of
today's typical stiff robots is that they do relatively slow response.

C.3 FLEXIBLE MANIPULATOR CONTROL.

For higher operating speeds, industrial robots in future shall be made lightweight to
reduce the driving torque requirements and to enable the robot arm to respond faster.
However, as a consequence of this development, high speed operation leads to high inertial

mat £ +hna ma 1a+ mnarmhan
forces which in turn cause considerable elastic deformations of the manipulator members

1ICL
and thus to less end—point positioning accuracy. This makes it necessary to take into
consideration the dynamic effects of joint elasticity and (distributed) link flexibility
during rapid arm movements by more advanced control algorithms. Therefore, the
feedback control system will be equipped with additional sensors giving information about
the elastic vibrations to be suppressed or stabilized. Mostly, the control action will then

still be carried out by the existing joint actuators (i.e., no additional actuators are used).

The inclusion of the flexible motion in the control action enables to achieve better
positioning accuracy with the existing joint actuators. However, theoretically any
flexible system has an infinity number of elastic modes, while the limited number
of sensors and actuators restricts the controller design to a few critical modes.
Therefore, mostly the mathematical robot model will consider only the first
eigenmodes of each flexible link (in these papers too).
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C3.1 Computed torque control.

A well known approach to improve the control of robotic manipulators is the computed
torque/ inverse dynamics control method. Here, the control law is designed explicitely on
the basis of a detailed nonlinear model, in order to compensate the robot nonlinearities
and to guarantee a desired closed—oop behavior.

It is well known that the dynamic equations of a rigid robot system may be globally
linearized and decoupled by nonlinear feedback. This computed torque control approach
transforms the equations of motion of the rigid system into a set of double integrator
equations which can then be controlled by adding an 'outer loop' (PID—) control
(pole—placement techniques; see for example ﬁ])

However, the dynamic model of a flexible manipulator is not feedback linearizable in the

conventional way as for a rigid robot.

*) The 'rigid' computed torque control technique can be understood as a special
case of a more general procedure for transforming a nonlinear system into a linear
system, which is known as external/ feedback linearization ([2]) and leads to on of
fh]e poss[il])ﬁe approaches in controlling elastic robots (see also references [3], [4], [5],
6] and [7
— The remarkable result obtained with pole—placement control of a
feedback linearized system is that the closed—loop
system has a desired behavior in the whole state space.
— However, the feedback linearization technique appears to be
computationally expensive in general and requires
accurate modeling and full state measurements.

*) A second alternative mentioned in literature for flexible robot control is found
in utilizing the concept of integral manifold to the equivalent gingular perturbation
model of the flexible robot (iS}). It has been shown that the reduced flexible
system obtained then is indeed feedback linearizable.
A short review is given in chapter E: 'Two—time scale sliding control
of a flexible manipulator — Slotine and Hong'.

C32 Adaptive control.

The use of a computed torque control model requires accurate knowledge of the physical
manipulator parameters and its payload or is only meaningful if it is possible to identify
the model parameters with satisfactory accuracy. This, because instability of the control
algorithm will occur in case of parametric uncertainty. With off-line identification
strategies there will always remain the question wether the obtained estimated parameter
values are validate for a variety of different desired trajectories or just for one.
Otherwise, one would prefer to identify the model parameters for comtrol purposes
on—line, because then they can be adjusted at any time for each arbitrary reference
trajectory and never need to converge to certain constant values.

An adaptive control approach seems to be of great relevance for the control of systems
with unknown or time—varying parameters or even with an unknown part of dynamics. A
possible way to handle with parametric uncertainties is to implement an adaptive
computed torque control law as follows:

— first adopt a suitable (linearization of the) robot model,

— then perform on—line estimation of the model parameters,

— finally apply the computed torque control law with the adjusted parameters.

The adaptive algorithms may for example be derived from Lyapunov global stability
considerations or from the Hyperstability theory of Popov [9].
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C.3.3 Sliding control.

Finally, it will be necessary to assure robustness to the effects of uncertainties of those
model parameters not estimated on—line, unmodelled dynamics and disturbances, for
example by incorporating a sliding control term into the control input 5810tine and Li
[10]). However, since sliding control gives rise to discontinuous signals (i.e., chattering
occurs), one must care about the admissable inputs to the system and probably has to use
the boundary layer approach of Asada and Slotine [11] (which gives, however, less
tracking accuracy: see chapter B: 'On the adaptive control of robot manipulators —
Slotine and Li'). Because the physical constraints on the available motor power limit the
extension of the actuator inputs, for practical implementation it would perhaps be
possible in some way to use the generalization approach of the computed torque control
strategy as has been presented by Heeren [10] (see a short desription of it in chapter D:
'Generalized computed torque control of a tlexible manipulator')
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D  GENERALIZED COMPUTED TORQUE CONTROL
OF A FLEXIBLE MANIPULATOR.

D.1 MANIPULATOR DYNAMICS.

It has been shown that a fairly general model for a manipulator has a nonlinear structure
of the following kind:

M(g)g + C(g,4)qa = Hu (1)
where
q(t) is the [nx1] vector of independent degrees of freedom
of the manipulator model,
u(t) is the [mx1] vector of actuator inputs.

0.24  MANIPULATOR CONTROL.

The main control objective is usually to make the manipulator's end—effector follow some
desired path in space. Frequently, it follows from the manipulator design that the
number k of output quantities y(t) is equal to the number m of servomotor input
variables u(t). y(t) Determines the end—effector position and orientation and depends on

(t): -
‘ ®

If the desired path for y is specified by a known, time dependet function yq(t), then the
main objective is to let the tracking error y(t)—yq(t) tend to zero. A more complete
formulation may also include desires about the derivative of y(t).

».2.2 COMPUTED TORQUE CONTROL.

Often, the computed torque control law for a manipulator is chosen as follows:

1_1=H-1{M[§d+Kvg+Kp§]+Cg} (3)
where
gd(t) is the [nx1] vector of generalized coordinates
due to the desired trajectory,
e(t) is the [nx1] tracking error: e=4-4g.

However, if a flexible link manipulator has to be controlled, gq4(t) cannot be determined
explicitely from equation (2), because n > k. Therefore, if we still decide to use control
law (3), this is only possible when assumptions have been made about the behavior of
[n—k] variables of gq(t) (for example, that the flexible state variables and their derivatives
have to remain zero). This does not indicate that this is an optimal choice (see for more
about the reference trajectory: W. Winkelmolen [1987]).
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COMPUTED TORQUE CONTROL WITH DESIRED OUTPUT.

Differentiating equation (2) twice leads to an equation of the next form:
¥ =EQ3la+E (9)a (4)-

Th(e)computed torque control law (3) will be alternated now with the desired output path
yd(t) into:

4 o
— 41 - 106 T &
u= [E1M H] {yd+ Kvgy+ Kp_e,y+ E1M Cq Elg} (5)

where ey(t) is the [kx1] tracking output error: ey =Y —Yd-

This computed torque control law concentrates only on the main control objective to let
the tracking (output) error and its derivative tend to xero. A prove of the stability in the
case of a rigid manipulator (n = k) is given by Asada and Slotine [1985]. However, for
flexible manipulator models (n > k) only the stability of the output coordinates y(t) can
be proven, whereas it is in general impossible to prove the stability of all terms of g(t). It
is even possible to find flexible manipulator models for which state—instability occurs,
while the output remains stable (M. Tijdink [1989]). This is a serious disadvantage of the
computed torque control concept in combination with flexible manipulators.

GENERALIZED COMPUTED TORQUE CONTROL.

A generalization of the computed torque control strategy has been presented by T. Heeren
[1989], to take into account the desire that each term of g and its derivative remains
bounded. ~This control objective can be mathematically formulated in z(t); the
generalized coordinate qi(t) can be bounded by introducing a penalty function that
produces large values when q; is out of range:

. ) .
Zq(i) = qu( qi_qi[max] ) if qi > qi[max], (6)
0 else,
2 .
i qu( qi—qi[min] ) if qi > qi[mln]-

an output quantity, so the number of

1 1
ts. We define for example:

z Yy,
z=lz |=|z2 (7).
Z Z.
-_‘3 __
Differentiating (7) yields: % =FEq+ Eg— i (8).

z Will be equal to zero as long as the manipulator is in the desired working area. As soon
as the tracking error e is unequal to zero [z # 0], or as soon as terms of g and their
derivatives reach the given bounds [z2 # 0 resp. zg # 0], control actions z4(t) will force
them to zero.
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In this way it is obvious that we want to obtain:

d =2z _Zd = Q (9)7
K gy +K gy
\4 P
where zq(t) can be chosen as: z,= Kb 8 (10).
K z7
bd~q
Consider the main control objective: =% -z =0

% fa T
Combinating this with equations (1) and (4) will lead to control law (5).

Unfortunately, it is in general impossible to choose u such that equality (10) holds,
because the dimension of z is larger than the dimension of u. Hence, all that can be done
is to minimize some norm of d. Because there is further the desire to keep the
force/torque inputs u(t) bounded too, the minimization of d may be combined with the
minimization of u. This can be realized by minimizing a scalar function J, which is a kind
of respone quality functional and uses positive weighting matrices W and R in order to
denote the relative importance of each objective:

T

J=d"Wd + u' Ru (11).

A minimum of J with respect to u can be found by requiring that the derivative of J with
respect to u is equal to zero. This results in the following generalized computed torque

control law:

-1 .
u=[z2"Wz 4+Rr] zTW {z, +2+EM1CeEq} (12)

where 7. = EM™H.

COMPUTED TORQUE WITH SLIDING CONTROL.

In this section, the computed torque control law (5) will be described through the sliding
control approach of Slotine and Li [1986].

A switching surface, which zeros the tracking error and its derivative, is defined as:

P
s(t)y=¢e —Ae =10 13).
s(t) =e_—Ae 50 (13)

The time derivative of the switching surface along a trajectory of the system can be
expressed as:

§=§y“A§y=
=Ei§ + Ed —Ja — A&y =

= Eiq + EM Hu—EM Cq— g — Ady (14)
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The equivalent input to the system when it is in sliding mode is:

4 o
— 41 - A0e T g
U= [E1M H] { ¥, + Agy + EIM Cq Elg } (15)

This in turn leads to 8(t) =8y—Aéy =0 (186),

which [with (13)] means that both e(t) and &(t) asymptotically tend to zero when the
system is in sliding mode; i.e., the sliding mode guarantees total stability of the system.

It is the objective that the trajectories of the system beginning from any initial condition
are attracted towards the switching surface s(t)=0 in a finite time and thereafter maintain
in sliding mode. The control law satisfying the reaching condition

o

may have many forms and can for example be chosen as follows:

u=yu -—[EMH] K sgn(s) (18).

Substituting this u in equation (14) yields:
- -1 .
§=EM H [EMH] { §q + Ay + E;M1Cq — Erq — k sgn(s) }
+ E1Q+— E1M_1Cg— a — Agy

8§ = —k sgn(s) (19).

This satisfies the reaching condition (17) and thus guarantees that the system will reach
the sliding surface in finite time. Then, during sliding mode, the system is insensitive to
parameter uncertainties and disturbances.

To decrease the chattering of the input signal, Slotine and Li propose utilizing the
boundary layer approach of Asada and Slotine [1985], in which the switching function is
replaced by a saturation function:

u=u - [, MIH] & _sat(s/2) (20).

In literature, sometimes the switching function is embedded in the robust controller
design of a stabilizer for parametric uncertainties, disturbances and damping of elastic
oscillations:

" - % _1 A~
— -1 .
_qeq [E1M H v PBfo (21),
where " means that the value of the function with
" is not necessarily equal to the actual value,
qr represents the flexible motion of the robot
(this last term in (21) is here not considered further),
v is a new input to the system
(some indications how to define it are given now).
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Substituting equation (21) without its last term into (14) gives:
§ = BMH { to— [EaMH] v } +
+ B — EMICq — §ig — Agy =
= EMH [EMH] { §o+ Agy+ EMICo— Bya—v } +
+ Eg — EIM7Cg —§a — Ay + ¥ —v =

A _1 A A .
= ([ERMH][EMH] —I1){ §a + Agy + EM7Cy—Eg~y } +
+ [ EM1IC -EM1IC ]g —-V.

$§ =PAéy+1+w+Dg—y (22),
- -1
where P = [E{MH]|[E;MH] -1 ,
r=P[{¥s-Eyq] , |
- PX 9

= BMAC - BMAC |

O I=

Each element of M(q) and C(g,q) is assumed to have its upper and lower bound, while the

desired trajectory ¥q is assumed bounded too (because otherwise the trajectory cannot be
realized by finite input torques/forces to the system) and v has its bounds due to the
actuator saturations. Thus, each element of above equation is bounded and one of the
stabilizer control inputs, which satisfy the reaching condition (17), is given as follows
(Kosuge and Furuta [1988]):

v=-K& —~Ke —z (23),
vy Py
T m
where z.=-sgn(s )k +a g+% B e (y),
1 17 81 1 %;} 1j y

kei> jri + Wi] S%n(si)

ajj = aijt [ < —djj] when ¢;8; > 0,
aij” [ > —djj ] when g;s; < 0,

By = Bjj* [ < —APy] when ¢;81 > 0,

Ky = Bis Bij- [> —APj;] when €81 < 0,

kpy = kp;t [<0] when sig; > 0,
kpi - >0 I when Si?,i < 0.

In equation (23) the second term could be chosen zero. But in practice, this term can be
used in order to decrease kg;. Large kg; causes a large chattering of v;.

Equation (23) guarantees that the sufficient reaching condition (17) for the sliding mode
to occur is satisfied, as long as v; does not exceed its physical limit due to the actuator

saturations. This means that vi does not satisfy the sufficient condition if M is extremely
far from its actual value M and thus w; becomes very large. But this is not the case in
practice, when the parameter uncertainties and variations caused by a payload is not
considered so large in usual robot arms. There is the question in which way this
stabilizing approach can improve adaptive control of flexible manipulators.
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D.6.4

COMPUTED TORQUE CONTROL
WITH A FULL REFERENCE TRAJECTORY.

The flexible manipulator dynamics has the next form:

M(q)d + C(e.q)a=Hu (1)
where
a(t) is the [nx1] vector of independent degrees of freedom
of the manipulator model,
u(t) is the [mx1] vector of actuator inputs (m < n),
il =[ I[mxm] O [mx(n-m)] ].
The known [mx1]desired trajectory vector is: yd(t)z vl gr(t) ] (24)

(n unknown variables qr; and only m equations yai=y(qri))-

*)

")

Off-line, a [nx1] reference trajectory vector g,(t) will be determined with the m
equations(z4) and the next (n—m) equations of flexible manipulator dynamics (1):

h™(q)d +hTC(g .4 )a =0 (25)
Tr ) o r T T

o
L

where bY =[ 0[(n—m)xm] I [(n—m)x(n—m)] ].

Which remains from (1) will on—line be used in the form of the following
computed torque control law:

HTM(Q)Llr + HTC(Q,Q)Q =u (26)

where ar = gr -+ Kv§ + Kp@a
€=4-—4qr.
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D.6.2
Ezample: THE TR-ROBOT WITH ONE FLEXIBLE LINK
(only first eigenmode modeled).

The [3x1] vector of independent degrees of freedom:

q(t) = [ s)ggz

rotation of the pendulum
bending of the elatic pendulum

” [translation of the carriage }

The known [2x1] desired trajectory (2) is: (), x(t), & ().
[ x x + leos(p )—wsin(y ) (5)
— — d{ — r r T r
L0 =3la(®)]= [ v, } T sin(p)+weos(p) (6)
The [3x1] reference trajectory qr(t) and its derivatives to be determined:
wr = ya/sin{¢er) —1 —_ wr = wr(yq, ¢r), ) (7)
wl‘ = wI‘(YdaYd? 99r,§0r),
&)l‘ = wr(Yd,S’d7yda Qol‘ycpl'?(;br)'
Xr = X4 — 1cos(¢r) + wisin(gr) = xq — lcos(r) + yq — Isin(¢r)
— Xr = Xr(Xd, ¥d, ¢r), (8)

XI' = Xr(xdaXda YdaYda wﬁ(tbr)J
Xr = xr(Xd,%Xd,Xd, Ydr¥d>Fds Pr,@rsPr)-

Here, equation (3) from manipulator dynamics (1) can be described as:

M31(Qr)5(r + 1\/132(Qr)§br + M33(Qr)wr + ﬂ3(QraQr) =0 (9)

By substituting (7) and (8) into (9), one obtains an equation with which ¢ and its
derivatives can be determined:

f((Ph‘;Or,‘;?r) = g(Xd,Xdﬁd, Yd,}"daf’d) (10)

(To facilitate the solution of (10) one can assume for example that ¢y

is a second—order polynome: ¢r(t) = a + bt + ct?,
or(t) = b + 2ct
Belt) = 2¢ )



tue-wiw-1l

D.6.3 ADAPTIVE COMPUTED TORQUE CONTROL D-8

WITH A FULL REFERENCE TRAJECTORY.

At time t=ty the next variables are known:
g(tk), a(tk) are the measured positions and velocities,

p(tk—At) is the vector with adaptively adjusted parameters,
vd(tk) is the desired output trajectory:

Ya(tk) = y[ ar(tx) ]-

In order to determine a reference trajectory gr(t) as far as possible in the same way as in
equation (3) but considering also the real manipulator dynamics (1), parametric
uncertainty forces us to solve the following differential equation of g; on—line:

M a(t ).o(t A1) )d () +BTCCa(t ).a(t )p(t —At) at ) =0 (11).

It is now possible to update the estimated parameters p with an adaptation algorithm of
the next form:

p(t,) =TW(a(t ).a(t )a(t)a(t))st) | (12),

where e(ty) = a(ty) — ar(ty)-

Finally, one utilizes the following adaptive computed torque control law:
H'M(q(t,)p(t ) )a (t ) + 1T C(a(t )4t ),n(t ) Ja(t,) = u(t ) (13),
where ar(tk) = dr(tx) + Ke(ty) + Kpe(tk) -

It will be difficult to prove the stability of this adaptive computed torque control system.
It is likely from (11) that

Ty . . T - \ _
BTM(a(t).n(t, ) )a (t) +hTCla( ).t ).0(t) da(t ) = d (14).
. u
Define: gd = d|
Then M(a(t )p(t ) a(t ) + Cla(t )4(t )0 ) Ja(t ) =u (¢ ) (15).

The equivalent error system:

Mg = Mﬁ-M_fjrAz uq _AQO_CQ._MQ[‘ =

= Mar + G4 — do — O — Mg =

= Mg, + MK¢ + MKpe + Cq — .d_p —Cq —~ Mg, =
= [M-M]g, + [C—C]g + MK,& + MKpe — do :

ME — MK & — MK e = [M-Ma,+ [c-Cla—4,=Waaa.dienl-d, (18)

¥
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E TWO-TIME SCALE SLIDING CONTROL
OF A FLEXIBLE MANIPULATOR.

Slotine, J.—J. E. and Hong, S. [1986]

E1l INTRODUCTION.

The main idea of the approach of Slotine and Hong [1986] to the control of flexible
manipulators leads to a two—time scale system structure as given in figure [1] at page 6.

It starts with a separation of the dynamic equations of a flexible manipulator:

M(q)§ + n(g,4) = Hu (1),
in those describing the rigid body motion resp. those describing the flexible effects:

i =f(a,4,9.4) @),

G =1(a,4,4,4) 3)-

Then, they investigate the elasticity properties by the singular perturbation technique of
Marino and Nicosia [1984] to decompose the manipulator dynamics into a 'slow' resp. a

'fast' submodel: ¥ =g (0XzLH) (4),

pz = g2(x,x,z,z,u) (5),

Assuming that only small deviations from the rigid body motion will occur and are to be
considered, they further use the concept of slow manifold (Khorasani and Spong [1985]) to
obtain the next linearized singular perturbation model:

2 = ]—(1(X7X71_17h7u’) (6)’
ut =k (x,%:h,h,p) (7),
The reduced flexible model (6) represents the system dynamics restricted to a sonamed

'slow manifold' described by: z = h(x,3,0,4)
z = h(x,3,u,4) (8),

and is of the same dimension as the rigid model of the flexible system, but preserves and
captures the dynamics of the full system to a higher degree of accuracy. It can now be
used to design a slow feedback control u,. Further, a fast control us is needed in order to
guarantee that the slow manifold is actually attractive, i.e. that all system trajectories
converge to the manifold. The composite two—time scale controller is then defined as:

Cu=u +u ) (9),
. T E
where u = 0(X,4,2,%,1),
ur(x,%,p) controls the rigid body motions,
us(z—h(x,X,1r,1), 2-h(x,X:lr.p)) controls the elastic modes.

For the required robustness to parametric uncertainty, Slotine and Hong finally use the
sliding_control methodology of Slotine [1984] to design the two—time scale sliding
controller:

Us =Us + Us (10)-
T f

*)  Based on the control u, for the rigid robot system, the slow sliding controller
usr is designed to account for parametric uncertainty on the slow manifold.

*)  The purpose of the fast sliding controller ugr is then to force the fast variables to
follow the slow manifold, despite the presence of uncertainty.
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E.2. MANIPULATOR DYNAMICS
IN SINGULAR PERTURBATION FORMULATION.

In the paper of Benati and Morro [1988], a chain of flexible links has been modeled as a
system with a finite number of degrees of freedom. The main advantage of their approach
through Lagrange's formalism is, that it leads to explicit dynamic equations of the flexible
manipulator (in terms of well defined geometrical parameters) which, in general, can be
written in the next form:

M(g)@ + n(q,q) = Hu 1),
where u(t is the [mx1] vector of actuator inputs,

at is the [nx1] vector of generalized coordinates

which can be split up into two vectors:

q= [ o 1 ,
L %
where

ar(t is the kxﬂ(vector describing the rigid motion of links,
ar(t is the [(n—k)x1] vector of flexibility degrees of freedom.
nlg.4) can be split up info : D(gY) = m.(g.§)+ pal(glkgy

With § = M7 Hu—n ] and after some mathematical manipulations, we get:

4 =al(q,4,9,4)+A(a.a)ke +B(q.q)u (2),
4 =al(a,q,9.a)+A(a.q)k + B (q.9)u (3)-
whexe g(q,. o) = - MY In.(g,.g)
a (Q/)% = - M"(z} nz(;)%
Defining; xX=4d Ply) = M7(gH
r
zZ= kgf

the equations of motion for the flexible manipulator can be written in the general form of
a singular perturbation model:

¥ =a (pinzpz) + A (xp2)z + B (xpz)u (12),

4t = a (x:X12,12) + A (x:12)z + B (x,1z)u (13),
where

X is the [kx1] state vector associated with the 'slow' dynamics,

z is the [(n—k)x1] state vector associated with the 'fast’ dynamics,

7 is the inverse of the joint/link mechanical stiffness [very small scalar].

By formally setting y=0 and eliminating z from the equations, (12)—(13) are reduced to
the equations of motion of a rigid manipulator: M(x)¥ + n(x,X%) = Hu.
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Es3. DESIGN OF THE SLOW SLIDING CONTROLLER.

The singular perturbation model (12)—(13) is complex and nonlinear, and is not directly
linearizable. However, it can easily be decomposed into a 'slow' and a 'fast' submodel by

z = h(x,%,u,p)
= h(x,XU,4)

using the slow manifold:

().

which can be obtained as the solution of a partial differential equation formed by
substituting its expression into equation (13):

#i = 2 (x,3uh,ph) + A (x.uh)h + B (x.pb)u (14).

Once h is determined from this sonamed manifold condition, the dynamics of the system
&12)—-(13) on the manifold are given by a reduced—order system referred to as the reduced
exible system, which is performed by replacing z by h in equation (12):

X = a (%dopuh) + A (x:ph)h + B (x:ph)u (15).

The computation of the slow feedback control u=u; out of this reduced flexible system is
complicated by the need to solve the manifold condition (14).  Therefore, an
approximation to h and u; is obtained by expanding them in a power series of . In
practice, the following first—order expansion is generally adequate to capture the dynamic
effects of interest:

b(x,%u ) = b (xiu ) + ph (30 ) (16),
u (v1w) = u (65w) + pm (x.1.w) (17),
where -
W is a new input which is assumed to be known,
ho and ug are the manifold resp. the control
obtained from the rigid model (p=0):

(14)  asot+Agcho+Bauo =0  —> ho = —Ago[a20 + Baou] (18),
(15)  atotAroho+Biolo=w  —> uo =-Ba—w] (19),

2 = [a10—A10A25" 220]-
Using this known rigid manifold hy and control uy, we can obtain hy from (14) under the

assumption that the fast variables z are on the first—order corrected slow manifold
[neglecting terms of order p2]:

i =a+Ah +pAbk +Bu +puBu (20).
o T2 270 21 20 21 D
The definitions of: (X, Xophopih) = 2i0(x:%,0,0) + pA2i(x, %0 b ),
Al(X)Hh.) = AiO(-X7Q) + ﬂAAi(.XLhO)’
Bi(x,ph) = Bio(x,0) + p#ABi(x:h ), (21)
will lead to an expression for h;: h=A Yd~B u] (22),
1 20 20 1
where

expressions with 1/u are omitted,
d=1,—Aag— AAQ}_IO- A%u - Bieuo'
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Also, the first—order corrected slow subsystem can be written [x2=0]:

¥=w+pb+c+Bu] (23),
where W = 810 + Aiohp + Biolo,
b = Aay + AAhy + ABquy,
= [ Ao + pAAy ]A2o'1£1_-
*) When there is no model uncertainty: X = a10+ A1cho+ Biouo= w.
Then the corrective control compensating for flexibility will be:
u =-B1b+c¢] (24).
1 —0
*) However, with parametric uncertainty, ho and uo are only known as:
h=-A Ya +B u] (25),
0 20 20 20 0
u,=-Ba-y] (26),

where "~ indicates available estimates.

Therefore, an additional control term is required in the corrective control uy, in order for a
flexible manipulator to track the desired trajectory despite the presence of parametric
uncertainty. Considering equation (23), Slotine and Hong have derived the following slow
sliding control law:

us = p "By —w]-B[b+c] (27),
X
where ux is a new input designed to achieve desired closed—loop
specifications:

u =% —-Kye—-Kpe—~Kssat[s /@ ],
X d X X X X X X T X
ex is the tracking error of the rigid motion state variables:
QX =X Xd’
8x is the slow sliding surface defined as:

s =¢ +Kye +Kp [edt,
0

X X X X X

Ks andsat[s /@ ] are defined as in Asada and Slotine [1986].
X X X

Finally, the slow sliding controller ug, is in its first—order expansion defined in the same
way as ur in (17)

P

gsr=uo+uusi=B‘1{—@+_vz+ux—ﬂ—u[h+g]}

Thus:

us =B1{u —a—p bte]} (28).
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E4 DESIGN OF THE FAST SLIDING CONTROLLER.

The slow submodel was derived under the assumption that the fast variables z follow the
slow manifold h. However, this is not necessarily guaranteed in the presence of
parametric uncertainty. Therefore, a fast control us is needed to force the fast variables
to follow the desired manifold, i.e. to make the desired manifold attractive despite
parametric uncertainty:

u =u(n) (29),
where n represents the deviation of the fast variables
from the desired manifold:

(30).

The influence of the fast control on the slow subsystem can be neglected in the design
when 7 is maintained at a small value by the fast sliding control ur after the decay of fast
dynamics. To derive the fast submodel, we can make the assumption that the slow states
x and their derivatives are fixed parameters Y, and v, during this fast transient. This
allows to simplify the problem when the slow and fast time scale are significantly
different: tf < t;. By expressing the fast flexible model (13) in the fast time scale defined
as tf = t/p, we get:

7" = §(6t) 6t¢) = p’s.

where "indicates differentiation with respect to ts.
Equ.(13)—> z"= pa, (x v .1z.2') + pA (X pz)z + 1B (xpz)u (31),
which
with (30): z =1+ ho + hy,
becomes:
7" +h''+ b = a2 ( Xo, Yo, #+phot+p*hy, n'+ho'+uhy' ) +
+ pAs ( Xo, p+photpPhy ) [ n+ho+uby | +
+ uB2 (Xo, p+itho+%hy ) [ ur+ur ] (32).

The first—order corrected fast manifold can be defined from the equation above:

h:,"f' /‘1—11" = paa ( Xo> Yo, ptho+p?hy, ho'+phy') +
+ pAz ( Xo, phot+phy )

nh _Ln2]1‘ \l [
+ B2 ( Xo, pthot+p*h1 ) ur (33).

Which remains from (32) is the following expression:

7" = pas(Xo,Zo,0,1') + pA2(Xo,um)n + B2 Xo.p1)us (34).

Neglecting terms of order 42, we obtain the first—order corrected fast submodel:

" __ 4
n' =g (x v ,00) +pA, (x 0)n+pB (x 0)ut (35).
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In order to make the available manifold attractive in the presence of parametric
uncertainty, the fast sliding controller then takes the following form:

_ p-1 A
gsf o B2n { 1_lz/” an A2n11 } (36)’
where u =—Kyn'—Kp g—Kssat[s /@ ],
Z zZ Z z Z Z

the fast sliding surface is defined as:

t
s =0+ Kyn+ Kp jf_ndt.
Z z zto f

E.5. THE TWO-TIME SCALE SLIDING CONTROLLER.

The composite two—time scale sliding controller is finally defined as:

. 3 - 3 -
+ B2n { le/ﬂ @211 A2nﬂ } (37)‘
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F (ADAPTIVE) TWO-SUBMODEL BASED
COMPUTED TORQUE CONTROL
OF FLEXIBLE ROBOT SYSTEMS.

F.1 INTRODUCTION.

The problem in controlling a lightweight mechanical manipulator is to perform fast,
accurate and robust motions despite structural flexibilities, payload variations and other
environmental disturbances. An (adaptive) two—submodel based control approach has
been developed to extend the familiar computed torque control scheme for rigid robot
systems to flexible robots.

F1.1 The flexible manipulator system.

A lightweight manipulator may have flexibility in the link structure and/or
elasticity in the motor joints. For most manipulators, joint elasticity has a greater
significance for control system design than the actual bending modes of the links.
Furthermore, the distributed link flexibility can be approximately modeled by a
chain of rigid sublinks interconnected by elastic joints. Hence, a more accurate
(thus higher order) representation of robot dynamics involving elastic joints should
be taken into account to get better control performance.

In comparison with a rigid robot, the system dynamics of a flexible robot with n degrees

of freedom is still governed by the same type of second—order., coupled, highly nonlinear
differential equations: ~

M(q)d + n(g,4,t) = Hu, (1)

where a(t) is the vector with n generalized coordinates,
M(q) is the [n*n] mass inertia matrix,

u(t) is the vector with m motor input signals,
n(qg,q,t) contains the centrifugal and Coriolis forces/
torques, gravity, friction, etcetera.
With y = | gT g_T }T we obtain 2n first—order nonlinear differential
equations: ¥y =f(y.ut) . (2)

However, an important difference is that, when the structural flexibilities are included,
the number of inputs is less than the number of degrees of freedom (m<n). A 'rigid'
control strategy ur(t), which just tries to track a desired trajectory in space specified by m
generalized coordinates, will often result in an instable system behavior. Therefore, the
control system must deal with control of the elastic vibrations as well as the joint
trajectory tracking. However, it is not possible to find a control input for a lightweight
manipulator which will accomplish perfect tracking of any given desired trajectory in joint
space while totally damping the undesired flexible deflections. It is more realistic to
search for a control law achieving both a reasonable trajectory tracking and a certain
stabilization of acceptable vibrations.
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F.1.2 Two submodels of the flexible manipulator system.

In first instance, starting with Slotine & Hong [1987], we assume that n=2m and that the
dynamic model (2) of the flexible manipulator can be split up into two subsystems:

x =g(x,zt), 3)
z =h(x,z,u,t) . 4)

If the desired trajectory is specified by xq4(t), the tracking error is defined as:
e=X4—X. ()

Then, we introduce a reference manifold error:
€ =%r— 2, (6)

in which the reference vector z:(x,t) must be chosen in such a way that
substitution of (6) in (3) will result in a stable differential tracking error equation:

&=%d—X = X4 — g(x,est) . (7)

That is to say: the tracking error g(t) will tend to zero in time if e,=0.

F.1.3 Two—submodel based (adaptive) flexible robot control.

To force the generalized coordinates z(t) to their references z.(t), the intention now is to
obtain a stable differential reference manifold error equation too:

fa = Zl’ - .Z. = Zl’ - h(&er(Xat)—Qz,ﬂﬁt) (8)

by choosing a suitable 'flexible' control input signal uf(x,z,t), which will be composed of a
computed torque control part (with internal PD action) and, for example, a sliding
control part (in order to obtain robustness against uncertainties and parameter variations:
Asada & Slotine [1986]). The computed torque control part appears to be a combination
of the 'rigid' computed torque control law u,(t) of the robot model without flexibilities
and of a computed torque control term multiplicated with the inverse of the stiffness
matrix K of all elastic joints and/or flexible links:

X,_’é,t) = Ur

g (x,t) + K'ne(x,2,t) + Ustiding. 9)

The term with ue tries to force the flexible motions to behave in a more natural way

according to the equations of motion of the flexible system.

Unfortunately, the computed torque control method relies heavily on an accurate
prior knowledge of the robot system dynamics and, therefore, above approach will
further be expanded to an adaptive control technique in which the unknown, but
constant system parameters will be adjusted on—line (basically according to the
method of Slotine & Li [1987]). Finally, the global asymptotic stability of the
control system is guaranteed through the Hyperstability approach of Popov [1969].
Thelnew (adaptive) flexible robot control method will be illustrated by simulation
results.
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F.2 THE FLEXIBLE MANIPULATOR SYSTEM.

The equations of motion for a manipulator system with linear elagtic joints are:

M (q)d_+ C(a,4)4 +gla)=Kla-q) (10)
J§ +Bg +K(a-q) =u (11)
where ar(t) is the [(n—m)*1] vector with link variables,

ar(t) is the [m*1] vector with actuator variables,

Mi(qr) is the mass inertia matrix of the rigid—link robot,
J is the mass inertia matrix of the joint motors,
K is the diagonal stiffness matrix of the linear elastic joints.

(12)
are the elastic forces/torques at the joints,
coupling equation (10) with (11):
Mg +Cq +g=z=u-J4 -Bg (13).
The equations of motion for the rigid manipulator system are:
M (g )+Jld_+ [C(a .4 )+Bla +g(q) =u (14)
According to Slotine and Hong [1987], with the definition of
x=4 as the 'rigid' variables, (15)
z= K(gf—gr) as the 'flexible' variables, (16)
p=K1 as the very small 'parasitic' elasticity matrix, (17)

the equations of motion of the flexible system (10)—(11) are changed into those of a
socalled singularly perturbated system:

M (x)% + C(x.x)x + g(x) =2 (18)
1237 + pBz + [IM1+1)z = u + [IMIC-Bjk + IM g (19)

If p—>0, equations (18)—(19) become the equations of a quasi—steady state system:
M (x)+J]% + [C(z%)+B]% + g(x) = u, (20)

which approximates the rigid manipulator model (14) and represents the relationship
between the rigid state variables x(t) describing the behavior of the flexible system
(10)—(11) if it is forced to constrain its 'flexible' evolution of z(t) on the reference
manifold z(t).
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F.3 RIGID COMPUTED TORQUE CONTROL.

The first step in the derivation of the two—submodel based control law is the formulation
the next rigid computed torgue control term:

u = [M (x)+]]E+K ¢ ) + [C(x.%)+B]% + g(x) (21)

where gr=g+K fe is a reference trajectory error (22)
X

e=x—X is the tracking error. (23)

With this control input we can define a certain 'reference manifold', describing the elastic
forces/ torques required for manipulating the rigid links along the desired trajectory:

z =M (x)(% +K ¢ ) + C(x.x)% + g(x) (24)

The equivalent reference trajectory error equations of the closed—loop system are:

Mr(§r+Kr§r) = gz (25)
where e=z—32 is the reference manifold error  (26)
Z T
F.3.1 Sliding control term.

If 4 is very small, i.e. if the elastic joints are nearly stiff, there is only needed an extra
sliding control term ug(t) (to be added to u.(t)) in order to force the flexible state
variables z(t) towards the reference manifold z/(t) and to keep the system in sliding
motion on e(t)=0:

u=u +u (27)

T

uivalent' control term (21) when the system is in sliding motion. A
) law is obtained by letting the control function u be

f
ur represents the ‘e

variable structure control ({/.S.C.
defined as follows:

u= ut ,€,>0 (28)
ur ) €z = 0
Ll_ 3 eZ < 0
where a necessary and sufficient existence condition for the

local existence of sliding motion on e,=0 is:

u<u <ut (29)
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As a result of this control policy, the flexible state trajectories of the system reach locally
the sliding surface e,=0 if:

ime >0 (30)
KA

i.e., in the neighbourhood of e,=0 is the surface
reachability condition: ,

(31)

which guarantees a crossing of the sling surface e,=0
from each side of it by use of a sliding control term (for
example: us = —k.sgn(e;); see Slotine & Li [1986]).

F.4 FLEXIBLE COMPUTED TORQUE CONTROL.

If the parasitic elasticity parameter p is not very small, also the 'flexible' terms in the
equations of motion have to be compensated for in the computed torque control, instead
of approximating only the rigid manipulator system with y=0.

Considering the flexible robot model (18)—(19), by substituting the elastic forces z(t) of
(18) into (19) we get:

Wz + pBz + [M (x)+J]% + [C(x%)+BJx + g(x) = u (32)

The flexible computed torque control law will be

r f

=u + { J(zr+Kz<_éz) + Bz } (33)

Now, the equivalent reference trajectory error , cq. reference manifold error equations are:

(E+Ke¢)=¢e (34)
WE+Ke)+ [M+Jle =0 (35)

Finally, combination of (34) and (35) leads to the equivalent error equations of the total
closed—loop system:

[Mr+J](§r+Kr_er) + (§Z+Kzgz) =0 (36)
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F.4.1 Reformulation.

F-6

Assume measurement of the state variables: y(t) = [%;g; ] )
X z
where L= x| Y= | ] (37)
Then, the flexible manipulator system (18)—(19) can be rewritten as:
L= S11y1 + S12¥2 + Slgg (38)
y = Sm¥1 + S22y2 + Szgg + Sul_l (39)
0 I [0 0
where S11 =10 -—M;lC ’ 12 = ] M;l g |
0 0 ] 0 K
S, =0 (Miic-J1B) | - S, = | (3+Mzt) —JB |’
L) B
Slg= 2g: M§1 ’ Su - _J-l )
Further, we define the total error vector e (t)= [93' 18 ] ,
Y eya(t
5] <]
= J— Z
where e .= le | €= lm | (40)

Finally, the equivalent error equations of the closed—loop system can be rescribed in the

next form: ‘
o 0 I o . 0
— |yl | — 0K, My 0 _
&=l 7|00 o K ¢ =2¢,-
=2 0 0—(J M)XK,

(41)
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F.5 STABILITY OF THE OVERALL CONTROL SYSTEM.

In anticipation on an adaptive flexible control system, Lyapunov's stability approach shall
be combined with the Hyperstability theory of Popov [1969] for generalisation.

Define a Lyapunov function candidate: (42)
where P is a positive definite matrix.
ifforentiatine of V(t) o] . .—-1T. T
Differentiating of V(t) gives: V==-"Pe +e P& . (43)
Ty Ty Ty Ty
Using error equations (41) leads to:
. . 1 .
V=-ePe +e PAe = {P+PA+ATP Je . (44)
Ty 'y Ty Ty 2y y

) To guarantee the global stability of the overall control system, the time derivative
of V(t) has to be semi—negative definite according to
Lyapunov's stability approach:

V=-e'Qe <0 | (45
y y

where Q is a positive definite matrix.

*) For a more general approach in deriving a globally stable control law u(t), it is

however better to use the Hyperstability theory of Popov, which requires that:

V=-¢'Qe + elw [46)
Yy y y

t
[el(Nw(rdr<y
to y [}

with finite 7 and where w = -21-{ P+PA+ATP e .
y
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F.6 ADAPTIVE FLEXIBLE COMPUTED TORQUE CONTROL.

If there are unknown system parameters p; in My(p) and C(p), an adaptive control
algorithm will adjust them on—line and put them into the vector E t).

Instead of (24), the reference manifold z, will then be approximated by:

z =M (xp)&+K e) + C(x,x,p)X + g(x,p) (47)

and the adaptive flexible computed torgue control law will be:
=M +J](% +K ¢ ) + [C+Blx + g + pf J(;r+Kzf,z) +B.} (48)
where :ezz ér— z is the adaptive reference manifold error (49)

Because there exists the linear relationship:
M -MJ(& +K ¢ ) + [C-Clx + [g-¢] = W(x.xX )[p-D) (50)

we can obtain the next equivalent error equations of the two closed—loop subsystems:

(18)—(47): Mrz +Cx+g=z= z —e = Mr(zr—l—KrQr) +Cx+g—e

N M@E+Ke)+We =e (51)
\ r r rr P Z

(18)—(32): p{ Jz+Bz } +JX +Bx+z=1

(47)~(48): u= J(;r+KZéZ)+Bz }+IE+Ke) +Bi+z

— M(§z+Kz9z) 7 J(§r+Kr§r) i §z =0 (52)

\

Finally, with (51) and (52) we have the total equaivalent error equations:

[Mr+J](§r+Krgr) + "J(SZ“LKZ*}Z) + ng =0 (53)

where ep=p—p is the adapted parameter error. (54)

To guarantee global stability of the controlled system, the adaptation algorithm for
on—line estimation of the system parameters has to be derived by using the Hyperstability
theory of Popov, as described short in the previous section. Further investigations on this
subject will follow.
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F.7.1 Conclusions.

The main problem in control of flexible robots, namely the number of control inputs being
less than the number of controlled variables, has been faced by a composite control law
consisting of the conventional 'rigid' computed torque controller and a ‘flexible' computed
torque part multiplicated with the inverse of the stiffness matrix. The resultant control
system resembles the socalled 'two—time scale sliding control' technique of Slotine & Hong
[1987], based on a singular perturbation formulation of the equations of motion and the
concept of integral manifold. Fortunately, in this approach the stiffness of each elastic
joint does not have to be relatively large neither is there the restriction of Slotine and
Hong that there have to be as many elastic joints as motor inputs (no flexible links, no
rigid motor joints). Both methods require all system state variables (positions and
velocities) for feedback. But then, Lyapunov's stability theorem guarantees that the
output trajectory will follow the desired trajectory and that the elastic forces/torques,
which are not directly constrained by the output specifications, remain on a certain
‘manifold’; due to the natural flexibility behavior of the system. In the next chapter, the
key concept will be illustrated with simulation results of a Translation—Rotation (TR-)
robot with one elastic joint.
In first instance, the motion control of a manipulator with elastic joints based on
precise knowledge of the system parameters is considered. Due to parameter
uncertainties and/or variations, it is not possible in practice to exactly compensate
the manipulator dynamics. Therefore, the earlier mentioned flexible computed
torque control method is finally adapted in an adaptive flexible control algorithm,
based on the 'rigid' adaptive technique of Slotine & Li [1987]. Stability will be
guaranteed by the Hyperstability approach of Popov [1969

Future research.

While the extension of the computed torque control (CTC) technique to joint—level
control of flexible manipulators seems to be quite straightforward, a more involved
situation arises for the end—effector trajectory control. The number of outputs is taken
equal to the number of available inputs, but if there are more joints than actuators
(especially in case of approximated link flexibility) the basic limitation is due to the
noncollocation of actuators and controlled outputs. For this class of manipulators, the
knowledge of the desired trajectory and of its time derivatives is not enough to determine
the required forces/torques instantaneously. Instead, a dynamic inverse system has to be
used on-line to generate the natural 'reference' behavior of all system state variables due
to the desired output trajectory. To address this problem, future research in 1991 will be
concentrated on the development of an output—trajectory based version of the (adaptive)
flexible CTC controller.
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Control simulation results
on the 3 D.O.F. elastic—joint TR—robot.

*)  The initial system state variables qi(to) and qa(to) are due to
the desired trajectory at t=tg: qid(to) resp. gaq(to)-

*)  If nothing else is mentioned: Kg = diag[10}, k, = 10. poag ©
Figure [1]: Open—loop control: u=¢9. __ . __40
Figure [2): PD—control: u = Kp.ey + Kq.¢y,
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ey=va—y, y=[x y] ", Kp=Ka=diag[10].
Rigid Computed Torque Control (3):
Ks = 0.
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. ] regul

on the 3 D.O.F. elastic—joint TR~robot.

o 4 6 8 10
time [sec]
Figure [3): Rigid CTC: Kg=0.

time [sec)

Figure [2}:

x xd [m]

-10

PD—control: u = Kp.ey + Kg.¢y,
ey=ya—y, y=[x y] T, Kp=Ka=diag[10].

time [sec]

Rigid CTC: K = diag|[10].

Figure [5):
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Flexible CTC (19): Ks= 0 {+fig[7]}.
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Flexible CTC (19): Kg=0 {+fig[5]}.

Figure [7]:
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Flexible CTC (19): Ks = diag[10] {+ fig[6]}.
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If nothing else is mentioned: K

. = diag[10], k; = 10.

G-42

Figure [9]: Flexible CTC (12)—(28).
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Figure [10]: Flexible CTC (31):
r3 = §{Mi2(da)d1a+Ma2(ga)G2a+12(qd,0d)] +q24-
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Figure [11]: Flexible CTC (12)—(24), (23): Kg= diag[i0], k,= 10. + %['6]3?"‘% L#]
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zl z1r [Nm]

& 6 8 10
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41-1330
Figure [12): Flexible CTC (12)—(24), (23): Ks= 0, k; = 10. l MEqras
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Figure [13): Flexible CTC (12)—(24), (23): Ks= diag[10], k.= 0. MEqyral
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Fhoxchale CTC G(aXza),(23): Ks= c(n'ac% [:;22] s kz=10.
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Flexible CTC (12)~(31), qus (25): ]I
(M5 9s3)
Figure [14): Ks=0,k;=0.
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/‘ﬁgw [6] and [8] : 4= 100 e ~; Fiexible cTC (19).
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Flexible cTc ( 34).
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H TWO—-SUBMODEL BASED COMPUTED TORQUE CONTROL
OF ELASTIC-JOINT ROBOTS.

H.1 Introduction.

In contradiction to chapter F, in this chapter there is not the restriciton that all motor
joints have to be elastic (n=2m): n<2m.

H.2 The elastic—joint manipulator system.

The dyvnamic model of a flexible manipulator is:

F(1): M(g)d + n(g,q,t) = Hu, (1)
page [G—2): The 3—degrees—of—freedom (DOF') translation—totation (TR—) robot:
q1 F My Mg O 10 ni
qQ=q |, u={MO], M= |Mp Mp 0 |, H=|00|, n= nz—kg%—fhg -
a3 0 M3 01 n3+k(qgs—q2
The equations of motion for a manipulator system with linear elastic joints are:
F~(10): M(q)§ +n(a.q)=2z (2)
F-(11): Jg_ +n +Klg—q) =u J (3)
_ | ux — | Ux
where %= [K(gf-gr)] [& ] ’ @
Uy are the rigid—joint actuator forces/torques,

z are the elastic forces/torques
between the links and motors.

Again, with the definition of

F—(15): x=gq (5)
T
F—(16): z=K(g-q) (6)
F—17): p=K1 (7)
the equations of motion of the flexible system (3)—(4) are changed into:
F—(18): M ()%+n (x%) =z (8)
F=(19): plZ+Jx+n +z =u 9)
Z z Z f

In the example of the 3—DOF elastic—joint TR—robot:

x:[gﬂ’ Zfz[E(Q3‘Q2)]:[};]’ nxz[gé]’ nz=[g3],

_ F _ | My Mlz] _I:O 0 :}
u [MOJ’ M‘[Mm My |’ Jz— 0 Ms3 |°
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H.3  Elastic—joint robot control.

The reference forces/torques required for manipulating the rigid links along the desired
trajectory:

F(24): 2,= | 2| =M @E+Ke) +n (x3) (10)

In the case of the example, the 'rigid' computed torque force is:
G—(12): Fr = Mis(Gs1+Ks118s1)+Mia(Gso+ Ks126s2),

while the 'reference manifold' is also calculated on—line with:
G—(13): zr = Mia(Gs1+Ks21851)+Maa(Gso+Ksaoesa).

Then, the two—submodel based computed torque control law will be:

F-(33): (11)

where :) the rigid computed torqu ontrol part:
F—(21): 1'11' - Jz()_(r+Krgr) i gz i Zfr -
= [MX+JZ](—X.I'+KIQI) + I_lX + gZ (12)

_’D the flexible computed torque control part:

F-(33): u, =32, +K¢ ) (13)

The example on page [G—4] shows us that:

Fr ]
G—(20): Ur = [ zr+Ma3(Gsa+Ksontso)+n3 |, uf = pMa3(Z+K28;)
Finally, the equivalent error equations of both subsystems are
P(18)/(24),G(15)/(16): e =z -z =M (6 +K¢) (14)
F—(19)/(33), G—21): ,qu(ngJerng) + Jz(gr+Kr_er) +e =0 (15)

The error equations of the total closed—loop svstem are:

F—(36), G—(22): [M+J]E+Ke)+p (&8 +K¢ ) =0 (16)
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