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(ADAPTIVE) COMPUTED T O R Q U E  C O N T R O L  
OF (FLEXIBLE) R O B O T  SYSTEMS 

Summary 

A mechanical manipulator can be defined as a multi degrees of freedom open-loop chain 
of mechanical linkages interconnected by joints. This mechanism, driven by actuators 
at the joints, is capable of moving the object at the end of the robot arm along a pre- 
scribed trajectory in space. To implement high-performance control, even when the ma- 
nipulator dynamics are poorly known or when large and unpredictable variations occur, 
adaptive control is considered, being a process of modifying one or more parameters 
of the structure of the control system and/or the control actions so as to  force the re- 
sponse of the closed-loop system towards a desired one. Among various types of adaptive 
robot control systems, the M o d e l  Reference Adaptive Contro l  (MRAC) systems 
are important since they lead to relatively easy-to-implement systems with a high speed 
of adaptation and can be used in a variety of situations. However, it turns out to  be 
difficult to  derive convergence, stability and robustness conditions and it is hoped that a 
more unified framework for choosing an adaptation algorithm will be developed in future. 

For an orientation in the field, five MRAC methods in literature are investigated. At- 
tention is focussed on the adaptive sliding controller of Slotine and Li [1987], in which 
the robot nonlinearities are compensated by feedback control. The model parameters are 
estimated on-line by an adaptation algorithm, based on the hyperstability theorem of 
Popov [1969]. This theorem offers a systematic solution to the stability problem, while 
Lyapunov's second method requires the (probably difficult) choice of an appropriate func- 
tion candidate. In order to  assure robustness in the presence of model uncertainties and 
(environmental) disturbances, a sliding control term is incorporated into the control input. 

Today, industrial robots are used for various purposes. Because of hardware limitations 
in on-line applications, until now, robot control has been studied extensively under the 
assumption that the actuator transmissions are stiff and that the links can be modeled 
as rigid bodies. Therefore, most of today's robots have a very stiff (and thus heavy) 
construction in order to  avoid deformations and vibrations. For higher operating speeds, 
industrial robots should be lightweight constructions to  reduce the driving force/torque 
requirements and to  enable the robot arm to respond faster. However, a lightweight ma- 
Iliyulaior- *Iïay hav.ie fieSbi&y in & liï& s.r-üci-üre and el:asticiiy in the trasisulissiuiis 
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has a greater significance for the design of the controller than the deformation of the flex- 
ible links. Furthermore, link flexibility can be approximately modeled by a chain of rigid 
sublinks interconnected by elastic joints. Hence, more accurate models involving elastic 
transmissions should be taken into account to  pursue better dynamic performance of in- 
dustrial robots. The application of more complex control algorithms is possible now due 
to  the availability of advanced multiprocessor equipment for real-time manipulator control. 
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Inleiding 

Het project 'Geavanceerde regelconcepten voor niet-lineaire flexibele mechanische syste- 
men' heeft tot doel het ontwikkelen van concepten voor het on-line regelen van niet- 
lineaire mechanische systemen en heeft als uitgangspunt een model van die systemen. In 
dat model wordt rekening gehouden met onzekerheden ten aanzien van (eventueel in de 
tijd variërende) systeemparameters, met elastische vervormingen en met speling en wrijv- 
ing. Klassieke concepten uit de lineaire regeltheorie (PID-regelaars, optimale regelaars, 
etc.) zijn niet zondermeer bruikbaar en derhalve worden momenteel nieuwe technieken 
ontwikkeld. De in het vervolg met 'Computed Torque ControF aangeduide methodes zijn 
gebaseerd op vereenvoudigde modellen van de te regelen systemen. Beschouwd worden 
mechanische systemen waarvan de onderdelen t.o.v. elkaar grote verplaatsingen en ver- 
draaiingen kunnen ondergaan. Bij dit onderzoek wordt in het bijzonder de aandacht 
gericht op mechanische manipulatoren die een object langs een vooraf bepaalde gewenste 
baan in de ruimte dienen voort te bewegen. 

Adaptive Computed  Torque Contro l  voor  s t i j v e  manipulatoren 
m e t  parametr i s che  onzekerheden 

In eerste instantie worden de manipulator-elementen stijf verondersteld. Daarnaast wordt 
aangenomen dat enkele van de systeemparameters, zoals bijvoorbeeld de massa van de 
last aan het uiteinde van de robotarm, onbekend zijn of eventueel zelfs variëren in de 
tijd. De taak van een 'Adaptive Computed Torque Control' systeem is dan om on-line de 
parameters van het regelmodel te schatten, zodanig dat het geregelde systeem de gewenste 
baan toch zo goed mogelijk volgt (dus binnen bepaalde marges). 

In dit rapport worden vijf adaptieve regelconcepten vergeleken aan de hand van simu- 
laties op een translatie-rotatie (TR) robot (hoofdstukken A en B). De verkregen resultaten 
zijn bevredigend, maar werpen niet meer licht op de achtergornd van de (verschillen in) 
deze methodes. Er is wel een algemene aanpak zichtbaar waarbij computed torque control 
wordt toegepast. In die aanpak worden de model parameters on-line geschat, zodanig dat 
het geregelde systeem de gewenste trajectorie zo goed mogelijk volgt. De zgn hypersta- 
biliteitstheorie van Popov [1969], waarop deze methode is gebaseerd, blijkt meer ruimte 
te scheppen voor het ontwerpen van adaptieve regelingen dan de condities verkregen vol- 
gens de meer bekende methode van Lyapunov. Dit opent de weg naar het formuleren van 
adaptieve regelconcept en voor flexibele manipulatoren. 

Geavanceerde  rege lconcepten voo r  f lexibele manipulatoren 

T7 vanaÎ hooÎ~siuk C iigi hei accent op het niët-adaptief regelen üü'n flezlkele .7iziiil~lpul~iû~re~n. 

groter dan het aantal ingangssignalen op de motoren die de robot-elementen ten opzichte 
van elkaar doen bewegen. Dit levert regelproblemen op die ook door adaptieve regelingen, 
ontworpen voor stijve manipulatoren, niet kunnen worden opgevangen: simulaties van de 
eerder gebruikte adaptieve regelingen op dezelfde TR-robot , nu echter met een elastische 
arm, leiden tot instabiliteiten in het geregelde gedrag. Daarom moet allereerst gezocht 
worden naar methodes voor het ontwerpen van stabiele regelingen voor flexibele mecha- 

goor 'sb& opireden van elasi;.sehe vr@eidsgraden het totde vr;ji;he;dsgradeii 
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nische systemen zonder dynamische onzekerheden. 

*) General i zed  computed  torque control  

Heeren [1989] heeft een voorstel gedaan voor een computed torque control versie waarbij, 
via een zekere vorm van optimalisering ten aanzien van de ingang, getracht wordt alle 
vrijheidsgraden en tevens de motorkrachten/-koppels binnen bepaalde grenzen te  houden 
(hoofdstuk D). Daarmee wordt voorkomen dat er een ongewenst grote divergentie van deze 
signalen optreedt, maar enige garantie ten aanzien van de stabiliteit van het resulterende 
systeemgedrag ontbreekt. 

*) Sliding computed  torque control  m e t  s tab i l i zer  

Aan de sliding computed torque regelaar van Slotine en Li  619863 (hoofdstuk B) kan een 
regelterm worden toegevoegd ter stabilisatie van de optredende elastische oscillaties. Een 
aanzet daartoe is beschreven in paragraaf D.5. Daarbij wordt gebruik gemaakt van de 
'Variable Structure Systems' (VSS) theorie volgens Utkin [1977]. Deze aanpak heeft tot 
doel het uitdempen van de optredende elastische trillingen in het systeem, hetgeen bij 
slappe elementen een heel onnatuurlijk gedrag van het systeem tot gevolg kan hebben. 

*) T w o - t i m e  scale computed  torque control  

Een zeer in het oog springend alternatief wordt gegeven in het artikel van Slotine en Hong 
[1986] (hoofdstuk E). Daarbij wordt niet getracht om de flexibele bewegingen volledig te 
dempen, maar wel om deze te leiden naar een natuurlijker ogend gedrag (de zgn 'mani- 
fold')? dat bij benadering kan worden afgeleid uit de bewegingsvergelijkingen van het flexi- 
bele systeem door te lineariseren volgens de 'Singular Perturbation Technique' (Khorosani 
en Spong [1985], Marino en Nicosia [1984]). E r  zijn overeenkomsten te bespeuren met de 
sliding control-methode van Asada en Slotine [1986], in die zin dat er met een toegevoegde 
regelterm allereerst gepoogd wordt de flexibele vrijheidsgraden te laten convergeren naar 
die manifold als zgn. 'switching surface', waarna vervolgens de rest van het systeem, het 
niet-flexibele gedeelte, als vanouds wordt geregeld om de overige 'stijve' vrijheidsgraden 
de gewenste trajectorie te laten volgen. Slotine en Hong gebruiken daarbij een regeling 
volgens de reeds vermelde 'sliding computed torque control' methode van Slotine en Li. 
E r  kan waarschijnlijk evengoed een andere regeling op los gelaten worden. 

*) (Adap t i ve )  C o m p u t e d  Torque Cont ro l  van de  f l e d e l e  
manipu la tor  opgespl i ts t  in twee  dee l sy s t emen  

slet is in hoof&t,uk F het idpp Gitgrwerkt waarbi; J -- hPwPgingr~ergeli~~ingen --"- vzn het 
flexibele manipulator systeem opgesplitst worden in twee deelsystemen (enerzijds de stijve 
robot-elementen en anderzijds de aandrijvingen), onderling gekoppeld door de elastis- 
che verbindingskrachten. Op beide deelsystemen kan vervolgens een vorm van computed 
torque control worden toegepast, waarbij elastische referentie-verbindingskrachten worden 
gedefinieerd die het gewenste volggedrag van de stijve robot-elementen tot gevolg kun- 
nen hebben, mits de stabiliteit van beide geregelde deelsystemen in onderlinge samenhang 
gegarandeerd is. De motor-ingangssignalen worden bepaald, zodanig dat de optredende 
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elastische verbindingskrachten zoveel mogelijk overeenkomen met deze referentiekrachten. 
De uitbreiding naar adaptief regelen in geval van model-onzekerheden via  deze methode 
wordt kort aangehaald. In eerste instantie wordt getracht volgens de methode van Lya- 
punov globale stabiliteit te verkrijgen (niet-adaptief); een voor de hand liggend alternatief 
is de hyperstabiliteitstheorie van Popov (adaptief). Simulatie-resultaten, verkregen bij het 
regelen van een translatie-roatatie robot met een elastische verbinding tussen de motor en 
de roterende arm, worden besproken in hoofdstuk G. 

Slotopmerking 

Verder onderzoek op dit gebied zal vooralsnog fundamenteel van karakter zijn om zodoende 
te komen tot een basis voor het ontwikkelen van (adaptieve) regelstrategieën voor flexibele 
manipulatoren. Dit fundamenteel getinte werk zal worden ondersteund door uitwerkingen 
via simulaties. Op de langere termijn wordt beoogd enkele geselecteerde strategieën voor 
toetsing aan de praktijk te realiseren op een experimentele xy-tafel. 
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is the 
is the 
is the 
is the 
is the 
is the 

a-  i 

nxl vector of joint displacements (revolute/translational), 
'nxl' vector of joint velocities, 
nxl vector of joint accelerations, 
' n x l '  vector of applied joint forces/torques, 
'nxn symmetric,positive definite inertia matrix, 
:nxli vector of Coriolis and centrifugal forces/torques: 

4.1 THE DYNAMIC MODEL OF A ROBOT MANIPULATOR. 

A manipulator is modeled as an open chain of n moving rigid bodies (links) 
interconnected by cylindrical, revolute or prismatic joints of one degree of freedom, 
with one end fixed to the qound and the other end free. The actuator 
forces/torques acting on the joints are the inputs, whereas the joint coordinates 
represent the outputs. 

In the absence of friction, gravity or other disturbances, the dynamic model of a robot 
maniniilator can be written as: 

Equation (i) can be translated into the next state variable differential equation: 

Although the equations of motion are complex, nonlinear equations for all but the 
simplest robots, they have several fundamental properties which can facilitate control 
system design. It is assumed that the kinematic structure of the manipulator is known, 
but that the numerical values of some or all of the dynamic robot parameters (such as link 
masses, moments of inertias, etc.) are unknown. Now, one fundamental property of robot 
dynamics is that these parameters of interest appear as coefficients in a linear relationship 
of kr,=wn h c t i o n s  ef the generu!ized com!inôtes, sa that wo may write the dynamic 
eqQat,i^ns (i) 2s: 

M(da  + C(s,l!)x = W(Q,Y,a)l, (3), 
where 

is a [rxl] vector containing known/unknown parameters, 
W(g,x,a) is a [na ]  matrix of known functions. 
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A -2 

COMPUTED TORQUE CONTROL. 

Computed torque control schemes rely on exact compensation of all nonlinearities in the 
manipulator system, so that, in the ideal case, the closed-loop system is linear and 
decoupled. 

Using a structure identical to that of the dynamics of the manipulator, the control inwt  
i s  chosen as: 

9 = M(g)ll r + C(s,J$! (4). 

Then, by substituting (4) into (1), the problem is reduced to that of controlling the simple 
system: 

- a = g  (5), 
t 

since the inertia matrix M is positive definite and therefore invertible. 

Expression (5), in turn, represents a set of n decoupled double-integrators, each of which 
can be controlled independantly by an outer-loop control law with units of the desired 
acceleration ad(t). This can be defined in terms of a given linear dynamic compensator 
K(s) as: 

- u r = -d a -K(s)g (0 
where g(t) = g(t)-qd(t). 

Substituting (6) into (5) leads to the linear error equation: [ s21 + K(s) ]e = 0. 

The simplest choice of K(s) in (6) is a PD-compensator: K(s) = K s + K , 
ë + K e + K e = Q. 

If the gain matrices K, and K, are chosen as diagonal matrices with positive diagonal 
elements, then the closed-loop system is linear, decoupled and globally stable. 

V P 

P- 
which leads to the familiar second order error equation: - 

V 

instead of (4), so that we get the closed-loop dynamics 

instead of (5). 

Expression (8 shows that the problem is not as simple as 5) looked, and in particular 
may not be a d equately handled by standard linear control tec h niques. 
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A.3 A D A P T m  MANIPULATOR CONTROL. 

Imprecise knowledge of manipulator parameters can be solved by application of adaptive 
control techniques. Most of the MRAC methods, considered in this short review, do rely 
on nonlinearity compensation in a form as described in the previous section (eventually 
combinated with a kind of feedback control) plus incorporation of system parameter 
estimat ion. 

The adaptive controller design problem will be: 

Given the desired trajectory [&, yd and ad], and with some or all manipulator 
parameters being unknown, derive a control law for the actuator torques/forces Q 

and an estimation law for the unknown parameters of I> such that the manipulator 
output tracks the desired trajectory after an initial adaptation process: 

The global stability of the overall adaptive control scheme of Landau and Horowitz SC 
Tomizuka is based on Popov's Hyperstability theory. It is remarkable, however, that the 
trend in the other recent works is to utilize Lyapunov's second method. 
flff og &,e s c h e ~ n e ç  describecc' nexf insure. asympAtrc 4ruckrh~ 
tr&&c% % all p o s s i b k  ihi&Q c o n d i G o n ~  and U& al/ ~ & n &  S L ~ ~ ~ L . & J  

û.3.1 LANDAU (1979). 

t h e  desrkd +nc, 

bct i u<-&< i e 

Landau was one of the first who applied the Hyperstability theory of Popov to the design 
of MRAC systems. He used the type of MRAC technique called parameter adaptation: 
the adaptation algorithm adjusts the feedback control gain Kp(t) and the feedforward 
control gain K,(t) on-line see figure [i 1. This, in order to let the closed-loop 

This model, chosen by the designer, specifies the desired closed-loop performance. 
Landau has chosen a linear time-invariant reference model that must be stable and 
controllable and which has the same structure as the manipulator system (without the 
term k of equation (2)). The state variable differential equations of the reference model 
are: 

characteristics of the manipu I ator closely f' ollow the performance of a reference model. 

- X = A x  + B Q  
C c c  C K  

.,...here 
-v L. 

Ur 

is the [anxi] state vector of the reference model 
(= the desired trajectory &d), 
is the [nxl) reference input due to the desired performance, 
is the chosen 2nx2n] system matrix of the reference model, 
is the chosen t 2nxn] input matrix of the reference model. 

Ac 
Bc 

The adaDtive control law Landau proposed is: 

where 

I * I i 
u = - K x + K  

P- U K  

Kp(gx,t) is the adjusted feedback control gain, 
K,(g,,t) is the adjusted feedforward control gain. 



tue-wfw-i1 

,. ,. 

U = M ( Q ) ~  + - F 5 - F fj 
c p c  v c  

where 
%(t) = d t )  - sc(t>, 
&(t) = 10) - &), 

A- 4 

(141% 

6.3.2 HOROWITZ AND TOMIZUKA 
4 

r 

(1980). 

t 
Kigdr-K P- e-K V fj 

The overall control system of Horowitz and Tomizuka is shown in figure [2]. In the 
inner-loop MRAC system the adaptation algorithm drives the closed-loop manipulator 
system to follow the reference model. If this performance equivalence is achieved, the 
outer-loop PID controller is sufficient to force the response of the adaptive controlled 
manipulator system towards the desired trajectory. 

The reference model, specifying the desired system performance, is  chosen to be a double 
integrator for each degree of freedom: 

9 = y  

- ir =a (13). 

c c  

c c  

(15)- 

Each term of M(q) and g(q,x) is adjusted by the adaptation algorithm, in order to obtain: 

l i m [ g  ] = o  
r+ C 

and f i r n [ &  ] = o  
C r+ 

To show the asymptotic stability of their control scheme, Horowitz and Tomizuka treated 
the nonlinear, time-varying quantities of M(q) and n(g,x) as constants in the stability 
analysis. Therefore, the underlying assumption was always that the parameter adaptation 
law is much faster than the manipulator dynamics; i.e. that the manipulator parameter 
variation is negligible compared with the speed of adaptation. 

CL). 3.3 CRAIG, HSU AND SASTRY (1986). 

Craig, Hsu and Sastry present an adaptive version of the computed torque method for 
r û b ~ t  cmtrd.  The key pirit  iri their pper is the introduction of a parametrization of the 
dynamic manipulator equations: that yields a linear expression in terms of a suitably 
selected set of robot and ioad parameters (equation (3jj. Their adaptation law adjusis the 
unknown, but constant system parameters on-line and uses the latest estimates in the 

whereas the parameter adaptation 1 algorithm is: 

comDuted torque servo: 
u = Wil)[ ad -Kpg -K e 1 + n(s,x) (171, 

where J is the frxr] adapthion gain matrix. 
J 

Figure [3] shows the structure of the adaptive computed torque controller of Craig, Hsu 
and Sastry.. 
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i. 
A A 

u = M(da r + C(Q,Y)Y r - K h s (2517 

(26), 
1 -'T B = -J w (S,Y,Y ,a )a r r  

I 

A.3.4 SADEGH AND HOROWITZ ( 1987). 

Refering to the trend in recent work of Crai , Hsu and Sastry (1986), Sadegh and 

requirement of Horowitz and Tomizuka (1980), by reparametrizing t e nonlinear dynamic 
manipulator terms as linear functions of unknown but constant parameters (equation (3)), 
which will be estimated on-line by the parameter adaptation algorithm: 

fl 
Horowitz have been able to remove the sowly P time-varyin system parameter 

The new adaptive control la 

where 
t 

a = a  - j K i g d ~ - K e - K &  
' P- V 

- c -d to  

Comparing this with the method of Craig, Hsu and Sastry, in the algorithm (19j the 
acceleration input zic(t) is used instead of the joint accelerations -(t) in (18) (which are 
not measurable in most realistic applications) and no matrix inversion is required. 

f3.35 SLOTINE AND LI (1986). 

Craig, Hsu and Sastry (1986) have proposed a31 adaptive computed torque controller, 
which, however, requires acceleration measurements and the inversion of the matrix of 
estimated parameters. This problem is solved by Slotine and Li using a natural 
relationship between the inertia matrix and the Coriolis/centrifgal terms, namely that: 

R = [ M-2C ] is a skew-symmetric matrix 
(i.e., that 
derived from the Lagrangian formulation of the manipulator dynamics . 

T b=Q for all s7 and so rkj  = -rek),  as can be easily 

This property enabled Slotine and Li to define the following adaptive law cq. adaptation 
algorithm: A 

a = M(q)ad + C(Q,I)Yd - K P- e - K Y e (22) 7 
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A.4 Lyapunov's second method. 

To show the global tracking convergence of their adaptive controller, Slotine and Li 
consider the Lvanunov fiinction candidate: 

V(t) = 2 gTM(q)9 + iTJE ] 
A 

where E(t>=g(t)--Q denotes the parameter estimation error vector. 

Differentiating V yields: 

= sTM$ + kTMp + -T JQ - _  - - 

Now, Slotine and Li have used the property of skew-symmetry to eliminate the term 
gT(M-2c)e . With control law (25) Q(t) becomes: 

- 

Finally, Slotine and Li have defined adaptation algorithm (26), such that 

The resulting expression of V is: 

This expression shows that the output error conver es to the sliding surface s(t) = 0, 
which implies that both the velocity and position trac a ing errors go to zero. 

Substituting control law (25) into the manipuiator dynamics ( i j ,  
one obtains the closed-loop dynamics 

A 

We can conclude that the adaptive robot controller of Slotine and Li consists of a PD 
feedback part and a full dynamics feedforward compensation part with the unknown 
manipulator (and load) parameters being estimated on-line. 
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3 ON THE ADAPTIVE CONTROL OF ROBOT MANIPULATORS 

J.-J E. Slotine and W. Li 

€ 5 0 9  INTRODUCTION. 

A lobally stable adaptive controller for robot manipulators was presented in Craig et 
a1.(?986). The key point in that paper was the introduction of a parametrization of the 
robot equations that yields a iinear expression in terms of a suitably selected set of robot 
and load parameters. Based on this parametrization an adaptive computed torque 
controller was proposed. However, it required acceleration measurements and the inversion 
of the matrix of estimated parameters. Using a natural relationship between the inertia 
matrix and the Coriolis/centrifugal terms, this problem is solved by Slotine and Li (1986). 

Slotine and Li have developed a globally asymptotically convergent adaptive controller to 
control manipulators under certain dynamic uncertainties. Their adaptive robot control 
algorithm consists of a proportional/differential (PD) feedback part and a full dynamics 
feedforward compensation part with the unknown manipulator and payload parameters 
being estimated on-line. 

Dynamic model of a robot manipulator. 

In the absence of friction or other disturbances,the dynamic model of a robot manipulator 
can be written as: 

u = M(q)a + C(s,l!)y (1) 
where 

- U is the Tn*ll vector of applied joint torques or forces? 
is the rn*l] vector of joint displacements, 

M(g) is the ‘n*nl symmetric, positive definite inertia matrix, 
II(Q,I) is the /n*l.’/ vector of centrifugal, Coriolis 

gravity and friction torques/forces. 



Fundamental properties of manipulator dynamics. 

Although the equations of motion (1) are complex, nonlinear equations for all but the 
simplest robots, they have several fundamental properties which can be exploited to 
facilitate control system design. Two of them are mentioned now: 

*) First, Khosla et al. (1985) and Atkeson et al. (1985) have shown that all of the 
constant parameters of interest such as link masses, moments of inertias, etc., 
appear as coefficients of known functions of the generalized coordinates. By defining 
each coefficinet as a separate arameter, a linear relationship results so that we may 
write the dynamic equations P 1) as: 

where 
M ( Q h  + C(Q,X)I = W(s,J!,i)a (2) 

Q is a [r*1] vector containin the unknown bu& cons*anf parameters  3 

W(g,y,&) is a [n*rr] matrix o f known functions. 

*) Second, as remarked by authors as Arimoto et al. (1984) and Koditschek (1984), 

the matrix N = [ M-2C 3 is skew-symmetric (i.e., that 3 Nx=Q for all s, 
and so nkj = -n.k), as can be easily derived from 
the Lagrangian lormulation of the manipulator dynamics . 

T 

Controller design. 

The controller design problem is as follows: 

Given the desired trajectory, and with some or all manipulator parameters 
being unknown, derive a control law for the actuator torques/forces and an 
estimation law for the unknown parameters such that the manipulator 
output tracks the desired trajectory after an initial adaptation process. 

Slotine and Li derive their controller in a few steps: 

1. 

2. 

3. 

4. 

First, in section 1, a simple globally stable adaptive controller is obtained from the 
Lyapunov stability analysis. The controller strongly exploits the structure of the 
manipulator dynamics, pointed out in the previous section. However, the adaptive 
controller does yield zero velocity errors, but it may present nonzero position errors. 

Slotine and Li solve this problem in section 2 by restricitng the residual tracking errors lie a $:&fig sUïface, +L..n n*.nnnnt n : n m  CL(I  ,-ntnt; n n n x r n r m n n r n  nf t h o  
V l I u  

trantinm b i U i L b  nrrnr. UI  I "I  

ulua  6uaiaiitikiiib a.) i i i y u u u i c  UULI v ~ I b u u U u  

Further, in section 3, a sliding control term is incorporated into the control input to 
make the controller robust either to the uncertainty on parameters not explicitely 
estimated on-line and to residual time-varying disturbances (such as stiction), 

Finally, the sliding control term is changed in section 4 into a sonamed saturation 
control term to avoid control chattering. 



B.1 ADAPTIVE COMPUTED TORQUE CONTROLLER WITH PD FEEDBACK. 

* * 

a(t)  = M(g)a (t) + C(g,y)v - K e - K e -d -d P- d- 

To derive the control algorithm and adaptation law, Slotine and Li consider the Lyapunov 
function candidate 

(5) 

(3) 
T NT N T V(t) = g e  M ( g ) e + ~  Jg+e K e ]  

P- 
where 

L 

i(t)=e(t)-Q denotes the parameter estimation error vector, 
KP and J are r*r] symmetric positive definite matrices, usually diagonal, 
c(t)=Q(t)-d t t)  is the tracking error. 

Differentiating V yields: 

V(t) = eTM(de/dt) + i[ e T M q t  Q -T JQ + gTK e = 
P- 

T T '  'T T = e  [IJ-Cy-Ma ] + e  [i(M-2C)+C]&-t Q J Q + ~  K e =  
-d P 

- 

- T 'T - -e [ g - C v  -Ma -t K e l t p !  JQ. 
-d -d P- 

where 
Slotine and Li have used the property of skew-symmetry 

(4) 

to eliminate the term gT(M-2c)e 

Then Slotine and Li define the following adaptive control law: 

I I 

where 
A 

M and C are the matrices obtained by substituting the 
known and estimated parameters into M and C. 
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1 

A A T  g=-J W ( g v v  a ) e  . 
'-'-cl '-d 

Further, since the matrices M and C are linear in terms of the manipulator parameters 
(first mentioned property), we can write 

and therefore 

T -T T V(t) = 3 Kde + p [ JE + W e]. 

This suggests choosing the following gradient estimator as the adaptation law, such that 

Jp + W e = Q T (see e.g. Anderson et al. (1986)): 

The resulting expression of V is V(t) = 3 T KAe 5 0. 

(9) 

Therefore the control law (5) and the adaptatTon law (9) yield a globally stable adaptive 
controller. 

Expression (10) implies that the steady-state joint velocity error goes to zero. However, it 
does not necessarily guarantee that the steady-state position error is also zero. Slotine and 
Li now modify the previous adaptive scheme in order to solve this potential problem. 

8.3 ELIMINATION OF THE STEADY-STATE POSITION ERRORS. 

The undesirable steady-state position errors can be eliminated by restricting them to lie on 
a sliding surface: 

(11) 
where 

A is a [n*n] constant symmetric positive definite matrix (or more 
generally, a matrix whose eigenvalues are strictly in the right-half plane). 

Formally, this can be achieved by replacing the desired trajectory 
&(t) in the above derivation by the virtual 'reference trajectory': 

L 

a = Q  -A f & t  -- 
I 'd o' 

Accordingly, I d  and a d  are replaced by 

(12) 
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I 
A 1 

g(t) = M(!J)a c (t) + c(s,xkr-Kds 
A 

l A T  B = -J w (w,x ,a )Q r r  
- 

8-5 

(14) 

(15) 

s = e  zx-1 = e + h ~  , 
i S 

Defining 

control law ( 5 )  and adaptation law (9) are modified into 

Equation (14) represents a special feedforward plus PD controller, while (15) is a gradient 
update law. 

To show the global tracking convergence of the adaptive controller, 
consider the Lyapunov function candidate 

(16) 
T -T - V(t) = i[ s Ms + B JB I ,  

instead of (3), which yields (instead of (10)): 

Note that control law (14) does not contain a term in Kp, since the position error is 
already included in s. Expression (17) shows that the output error converge to the sliding 
surface s(t)=Q. This in turn implies that -t 0 as t + 00. Thus, the adaptive controller 
defined by (14) and (15) is  globally asymptotic stable and guarantees zero staedy-state 

Substituting the control law (14) into the manipulator dynamics ( i ) ,  
one obtains the closed-loop dynamics 

position error9, $9 !mg 8 3  the desire6 &, Pa &Ed 84 âïe LiuUnded. 

MS + [ Kd + c 1s = W(gt,y,Yr,g,)" P- (18) 

where p is determined by the adaptation law (15). 
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B.3R SLIDING CONTROLLER. 

\ fb  > 
I 

I 
i 

I 

In practice, one may simplify the adaptation algorithm (15) by not explicitely estimating 
all unknown parameters. Some parameters may have relatively minor importance in the 
dynamics, in which case one may choose to make the controller robust to the uncertainty 
on these parameters rather than explicitely estimating them on-line. Similarly, some 
geometric parameters may already be known with reasonable precision. Further, the 
controller must be robust to residual time-varying disturbances (such as stiction). 

To account for these effects of uncertainties, Slotine and Li have incorporated a sliding 
control term into the control input (14) (see figure [i]): 

- u = g -k.sgn(f3) , (19) 
6 

where 
if g > 0, 

0.3.2 SATURATION CONTROLLER. 

However, the added slidin control term in (19) is discontinuous across the surface g(t)=Q, 
which will lead to contro f chattering. Chattering of the control input us is in 
highly undesirable in practice, since it involves extremely high control activity and urther 
may excite high-frequency dynamics neglected in the model. Slotine and Li have remedy 
this situation by smoothing out the control discontinuit . This is achieved by choosing 

generai 
outside a certain boundary B(t) control law us as before Ghich 

switching function sgn(s) is replaced % y the saturation 

boundary layer 
attractiveness) and then interpolatin inside B(t) (see the words, the 

As shown in Slotine (1984), s is then guaranteed to converge to the boundary layers with 
corresponding small tracking errors, and furthermore essentially assigns a lowpass filter 
structure to the local dynamics of the variable s, thus eliminating chattering. 

Figure [i]: Figure [a]: 
Trajectories pointing towards the sliding surface s(t) = 0. Control law interpolation in the boundary layer B(t) 
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C CONTROL OF A FLEXIBLE MANIPULATOR. 

Gl 

C. i INTRODUCTION. 

In the control of robots, besides PID also advanced control techniques as computed torque 
control and adaptive control have been investigated. However, these control methods 
appear to be in their origin version only applicable to rigid manipulators. There is needed 
now an extension for controlling robots with elastic ioints and/or flexible links, while the 
problem of achieving stability is severe. 

C. 2 RIGID MANIPULATOR CONTROL. 

Industrial robots will be of great importance in future. Robots of today are used already 
for various purposes in different industries. Until now, the control of industrial robots has 
been studied extensively under the assumption that the (actuator) joints are stiff and that 
the links can be modelled as rigid bodies. This assumption can be justified for most of 
today's robots, because of their very heavv construction in order to avoid undesirable 
positioning inaccuracies that may be caused by elastic deformations and vibrations. The 
advantage of such stiff constructions is that (angular) encoders at the actuator joints 
(sonamed 'collocated sensors') can be used to get information about the actual position of 
the end-effector in space in a purely geometric manner. Therefore, the controller can use 
this information directly to perform the actuator inputs. The joints are then driven 
simultaneously, often by a simple PID servo loop. However, the main disadvantage of 
today's typical stiff robots is that they do relatively slow response. 

C.3 FLEXIBLE MANIPULATOR CONTROL. 

For higher operating speeds, industrial robots in future shall be made lightweight to 
reduce the driving torque requirements and to enable the robot arm to respond faster. 
However, as a consequence of this development, high speed operation leads to high inertial 

and thus to less end-noint, ~ositionine: accuracv= This makes it, necessary to tuke Int^ 
consideration the dynamic effects of -joint elasticity and (distributed) link flexibility 
during rapid arm movements by more advanced control algorithms. Therefore, the 
feedback control system will be equipped with additional sensors giving information about 
the elastic vibrations to be suppressed or stabilized. Mostly, the control action will then 
still be carried out by the existing joint actuators (i.e., no additional actuators are used). 

The inclusion of the flexible motion in the control action enables to achieve better 
positioning accuracy with the existing joint actuators. However, theoretically any 
flexible system has an infinity number of elastic modes, while the limited number 
of sensors and actuators restricts the controller design to a few critical modes. 
Therefore, mostly the mathematical robot model will consider only the first 
eigenmodes of each flexible link (in these papers too). 

ferces which in turn cause CGnsiderabk e!astlc d&rmations of the maEipd&tûï members 
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C. 3.1 ComDuted toraue control. 

A well known approach to improve the control of robotic manipulators is the comDuted 
toraue! inverse dynamics control method. Here, the control law is designed explicitely on 
the basis of a detailed nonlinear model, in order to compensate the robot nonlinearties 
and to guarantee a desired closed-loop behavior. 

It is well known that the dynamic equations of a ri&J robot system may be globally 
linearized and decoupled by nonlinear feedback. This computed torque control approach 
transforms the equations of motion of the rigid system into a set of double integrator 
equations which can then be controlled b adding an 'outer loop' (PID-) control 
(pole-placement techniques; see for example b]) 
However, the dynamic model of a flexible maniphator is not feedback linearizable in the 
conventional way as for a rigid robot. 

*) The 'rigid' computed torque control technique can be understood as a special 
case of a more general procedure for transforming a nonlinear system into a linear 
system, which is known as extemal/ feedback Eneaxizatiopz (121) a d  leads to on of 
the possible approaches in controlling elastic robots (see also references [ 3 ] ,  [4], [ 5 ] ,  

- The remarkable result obtained with pole-placement control of a 
feedback linearized system is that the closed-loop 
system has a desired behavior in the whole state space. 

- However, the feedback linearization technique appears to be 
comput ationally expensive in general and requires 
accurate modeling and full state measurements. 

161 and [71) 

*) A second alternative mentioned in literature for flexible robot control is found 
in utilizing the concept of inte al manifold to the equivalent s i n d a r  Derturbation 
model of the flexible rob- been shown that the reduced flexible 
system obtained then is indeed feedback linearizable. 

A short review is given in chapter E: 'Two-time scale sliding control 
of a flexible manipulator - Slotine and Hong'. 

c. 3.2 AdaD t ive control. 

The use of a computed torque control model requires accurate knowledge of the physical 
manipulator parameters and its payload or is only meaningful if it is possible to identifv 
the model Darameters with satisfactory accuracy. This, because instability of the control 
algorithm will occur in case of parametric uncertainty. With off-line identification 
strategies there will always remain the question wether the obtained estimated parameter 
values are validate for a variety of different desired trajectories or just for one. 

on-line, because then they can be adjusted at any time for each arbitrary reference 
trajectory and never need to converge to certain constant values. 

An adaDtive control approach seems to be of great relevance for the control of systems 
with unknown or timevarying Parameters or even with an unknown part of dynamics. A 
possible way to handle with parametric uncertainties is to implement an adaptive 
computed torque control law as follows: 

otb~ïwise,  one WoUld pïefeï ie, identify the mudel ya,ïam1eters fûr cuntroi purposes 

- first adopt a suitable (linearization of the) robot model, 
- then perform on-line estimation of the model parameters, 
- finally apply the computed torque control law with the adjusted parameters. 

The adaptive algorithms may for example be derived from Lyapunov global stability 
considerations or from the Hyperstability theory of Popov [9]. 
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c. 3.3 Sliding control. 

Finally, it will be necessary to assure robustness to the effects of uncertainties of those 
model parameters not estimated on-line, unmodelled dynamics and disturbances, for 

Slotine and Li 

occurs), one must care about the admissable inputs to the s stem and probably has to use 
the boundary layer approach of Asada and Slotine [11[(which gives, however, less 
tracking accuracy: see chapter B: 'On the adaptive control of robot manipulators - 
Slotine and Li'). Because the physical constraints on the available motor power limit the 
extension of the actuator inputs, for practical implementation it would perhaps be 
possible in some way to use the generalization approach of the computed torque control 
strategy as has been presented by Heeren 101 (see a short desription of it in chapter D 

example by incorporating a sliding control term into the control input 
[lo]). However, since sliding contÏ-ol gives rise to discontinuous signals i.e., chattering 

'Generalized computed torque control of a A exible manipulator') 

References: 
Kokotovic, P.V. (1985). 

Recent trends in feedback design: an overview. 
Automatica, Vol. 21, No. 3, p p  225-236, 1985. 

Nijmeijer, H. and Van der Schaft, A.J. 
Nonlinear dynamical control systems. 
Springer- Verlag, New- York, 1990. 

(1990). 

Cesareo, G. and Marino, R. (1984). 
On the controllability properties of elastic robots. 
6th Int. Conj on Analysis and Optimization of Systems, 
INRIA, Nice, 1984. 

Robust stabilization for a class of nonlinear systems. 
Proc. 7th Int. Symp. on the Math. Theory of Network 
and Systems, (MTNS) Stockholm, Springer- Verlag, june 1985. 

Journal of Dynamic Systems, Measurement and Control, 
Vol. 109, p p  310-319, 1987. 

Robust nonlinear control of robot manipulators. 
Proc. 24th IEEE Conj on Decision and Control, 
F o r t  Lauderdale, p p  1767-1 772, dec 1985. 

Feedback linearization of a flexible manipulator 
near its rigid body manifold. 
Systems and Control Letters, Vol, 6, p p  187-192, i985. 

Two-time scale sliding control of manipulators with flexible joints. 
American Control Conference, BSE DPC 82 AME. 

Spong, M.W. 
(1985) 

(1987)' Modeling and control of elastic joint robots. 

Spong, M.W. and Vidyasagax, M. (1985). 

Khorasani, K. and Kokotovic, P.V. (1985). 

Sioiine, J.4- E. and Hong, S. (i987) 

Popov, V.M. Hyperstability of control system. 
New York, Springer- Verlag. 

(1969) 

Slotine, J.-J. E. and Li, W. (1987) 
On the adaptive control of robot manipulators. 
Proc. ASME Winter Annual Meeting. 

Robot analysis and control. 
John Wiley & Sons. 

Asada, H. and Slotine, J . 4  E. (1986) 



tue-wfw-i1 P -1 

Jo GENERALIZED COMPUTED TORQUE CONTROL 
OF A FLEXIBLE MANIPULATOR. 

MANIPULATOR DYNAMICS. 

It has been shown that a fairly general model for a manipulator has a nonlinear structure 
of the following kind: r 

where 
(1) 

is the [nxl] vector of independent degrees of freedom 
of the manipulator model, 
is the [mxí] vector of actuator inputs. 

D. 2.1 MANIPULATOR CONTROL. 

The main control objective is usually to make the manipulator's end-effector follow some 
desired path in space. Frequently, it follows from the manipulator design that the 
number k of output quantities y(t) is equal to the number m of servomotor input 
variables g(t). y(t) Determines the end-effector position and orientation and depends on 
d t ) :  

(2) 

If the desired path for y is specified by a known, time dependent function Ed(t), then the 
main objective is to let the tracking error E(t)-Yd(t) tend to zero. A more complete 
formulation may also include desires about the derivative of y(t). 

p.2.2 COMPUTED TORQUE CONTROL. 

Often, the computed torque control law for a manipulator is chosen as follows: 

where 
is the [nxl] vector of generalized coordinates 
due to the desired trajectory, 

e = q - q  
d' 

is the [nxl] tracking error: - 

However, if a flexible link manipulator has to be controlled, C&(t) cannot be determined 
explicitely from equation (2), because n > k. Therefore, if we still decide to use control 
law (3), this is only possible when assumptions have been made about the behavior of 
[n-k] variables of c&(t) (for example, that the flexible state variables and their derivatives 
have to remain zero). This does not indicate that this is an optimal choice (see for more 
about the reference trajectory: W. Winkelmolen [1987]). 



tue-wfw-i1 D-2 

D. 3 COMPUTED TORQUE CONTROL WITH DESIRED OUTPUT. 

Differentiating equation (2) twice leads to an equation of the next form: 

The commted torarie control law (3)  will be alternated now with the desired output path 
Yd(t) into: 

-1 
U = [E M-lH] {y + K e + K + E M-lCQ- E 9) 

a d V Y  P Y  1 1 
- (5) 

where - ey(t)  i s  the [kxl] tracking output error:  ey = y  -Yd. 

This computed torque control law concentrates only on the main control objective to let 
A prove of the stability in the 

by Asada and Slotine [1985]. However, for 
stability of the output coordinates y(t) can 

be proven, whereas it is in general impossible to prove the stability of all terms of q(t). It 
is even possible to find flexible manipulator models for which state-instability occurs, 
while the output remains stable (M. Tijdink [1989]). This is a serious disadvantage of the 
computed torque control concept in combination with flexible manipulators. 

the tracking (output) error and its 
case of a rigid manipulator (n = 
flexible manipulator models (n > 

tend to xero. 

P.4 GENERALIZED COMPUTED TORQUE CONTROL. 

A generalization of the computed torque control strategy has been presented by T. Heeren 
[1989], to take into account the desire that each term of g and its derivative remains 
bounded. the 
generalized coordinate qi(t) can be bounded by introducing a penalty function that 
produces large values when qi is out of range: 

This control objective can be mathematically formulated in Z(t);  

z (i) = 
9 

if q. > q.[maxI, 

else, 

if q. > q.[min]. 

1 1 

1 1 

The value of each term of 3 is considered to be an output quantity, so the number of 
eiitput yiimtitiev is XIOW larger thar, the r,~mber 3f icputs. We define fûr e;ami;!e: 

Differentiating (7) yields: 

- z Will be equal to zero as long as the manipulator is in the desired working area. As soon 
as the tracking error e is unequal to zero [ZI # O], or as soon as terms of g and their 
derivatives reach the given bounds [EZ # O resp. 23 # O], control actions zd(t) will force 
them to zero. 
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- K ê + K e  - 
V-Y P Y  

z =  K z  
-a b -4 

K z: 
bd- q - - - 

D-3 

In this way it is obvious that we want to obtain: 

1 

where Sd(t) can be chosen as: 

Consider the main control objective: 
Combinating this with equations (1) anL (4) w 

Unfortunately, it is in general impossible to choose u such that equality (10) holds, 
because the dimension of is larger than the dimension of u. Hence, all that can be done 
is to minimize some norm of & Because there is further the desire to keep the 
force/torque inputs u(t) bounded too, the minimization of d may be combined with the 
minimization of u. This can be realized by minimizing a scalar function J, which is a kind 
of respone quality functional and uses positive weighting matrices W and R in order to 
denote the relative importance of each objective: 

A minimum of J with respect to u can be found by requiring that the derivative of J with 
respect to u is equal to zero. This results in the following generalized computed toraue 
control law: 

P. 5 

where Z = EM-lH. 

COMPUTED TORQUE WITH SLIDING CONTROL. 

In this section, the computed torque control law (5) will be described through the sliding 
control approach of Slotine and Li 619861. 

A switching surface, which zeros the tracking error and its derivative, is defined as: 

( i3j .  (" -, =ey-A3=0 

The time derivative of the switching surface along a trajectory of the system can be 
expressed as: 

- s = E y - h e y  = 
1 3 - yd - hey = 

= E l Q + E l Q - ? d - A e y =  

= E14 + E1M Hu - E1M CQ - Ed - Aey 
-1 -1 
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The eauivalent inmt to the svstem when it is in sliding mode is: 

u = [E M"H]-'{ + AC + E M-lCp - E p } 
I d Y 1  1 - 

eq 

which [with (13)] means that both e(t) and e(t) asymptotically tend to zero when the 
system is in sliding mode; i.e., the sliding mode guarantees total stability of the system. 

It is the objective that the trajectories of the system beginning from any initial condition 
are attracted towards the switching surface s(t)=Q in a finite time and thereafter maintain 
in sliding mode. The control law satisfying the reaching condition 

( 1 7 h  

may have many forms and can for example be chosen as follows: 

Substituting this Q in equation (14) yields: 
-1 

- S = EIM% [EIM-IH] { y d  + Ae, + ElM-'CQ - E1Q - k sgn(s) } 

This satisfies the reaching condition (17) and thus guarantees that the system will reach 
the sliding surface in finite time. Then, during sliding mode, the system is insensitive to 
parameter uncertainties and disturbances. 

To decrease the chattering of the input signal, Slotine and Li propose utilizing the 
boundary layer approach of Asada and Slotine [1985], in which the switching function is 
replaced by a saturation function: 

J 

-1 

In literature, sometimes the switching function is embedded in the robust controller 
design of a stabilizer fm parametric coeertsinties, disturba~ces and damping of elastic 
oscillations: GFJ-; * 

= u - [EIM-'H] y - PBpf 
eq 

where * means that the value of the function with 
* is not necessarily equal to the actual value, 
gf represents the flexible motion of the robot 

- v is a new input to the system 
(this last term in (21) is here not considered further), 

(some indications how to define it are given now). 
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Substituting equation (21) without its last term into (14) gives: 
A -1 

- S = ElM-lH { ueq- [ElM-lH] 1 } + 

where 

Each element of M(q) and C(g,Q) is assumed to have its upper and lower bound, while the 
desired trajectory Ed is assumed bounded too (because otherwise the trajectory cannot be 
realized by finite input torques/forces to the system) and y has its bounds due to the 
actuator saturations. Thus, each element of above equation is bounded and one of the 
stabilizer control inputs, which satisfy the reaching condition (17), is given as follows 
(Kosuge and Furuta [lSSS]): 

where 

when Qjsi > O, 
when Qjsi < O,  
when $jSi > O, 
when 9 j S i  < O, 

In equation (23) the second term could be chosen zero. But in practice, this term can be 
used in order to decrease ksi. Large ksi causes a large chattering of vi. 

Equation (23) guarantees that the sufficient reaching condition (17) for the sliding mode 
to occur is satisfied, as long as V i  does not exceed its physical limit due to the actuator 
saturations. This means that vi does not satisfy the Sufficient condition if M is extremely 
far from its actual value M and thus W i  becomes very large. But this is not the case in 
practice, when the parameter uncertainties and variations caused by a payload is not 
considered so large in usual robot arms. There is the question in which way this 
stabilizing approach can improve adaptive control of flexible manipulators. 
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COMPUTED TORQUE CONTROL 
WITH A FULL REFERENCE TRAJECTORY. 

The flexible manipulator dvnamics has the next form: 

where 
is the [nxl] vector of independent degrees of freedom 
of the manipulator model, 
is the [mxl] vector of actuator inputs (m < n), 

The known [mxl]desired trajectorv vector is: Y,@)= Y[ 9Jt)  1 
(n unknown variables qri and only rn equations ydi=y(qri)). 

*) Off-line, a [nxl] reference trajectory vector qr(t) will be determined with the m 
equations(24) and the next (n-m) equations of flexible manipulator dynamics (1): 

where 
o a h = [ O [(n-m)xm] I [(n-m)x(n-m)] 1 .  

*) Which remains from (1) will on-line be used in the form of the following 
computed toraue control law: 

where 
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D.6-2 
Example: THE TR-ROBOT WITH ONE FLEXIBLE LINK 

(only first eigenmode modeled). 

The [3x1] vector of independent degrees of freedom: 

I translation of the carr i age 
rotation of the pendulum 
bending of the el  a t  i c p e ndulum 

The known [2x1] desired trajectory (2) is: 

x + Icos(cg j-w sin(p j 
lsin(cp )+wecs(<p ) 

r r  

r 

The [3x1]  reference trajectory qr(t) and its derivatives to be determined: 

= yd/sin( pr) - 1 -> (7) 

Here, equation (3) from maniDulator dvnamics (1) can be described as: 

By substituting (7) and (8) into (9), one obtains an equation with which pr and its 
derivatives can be determined: 

f( pr,@r,Pr) = g(xd$d$d, yd,yd,yd) (10)- 

(To facilitate the solution of (10) one can assume for example that <pf 

is a second-order polynome: pr(t) = a + bt + ct2 , 
@r(t) = b + 2ct , 
pr(t) = 2~ .) 
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D.6.3 ADAPTIVE COMPUTED TORQUE CONTROL 
WITH A FULL IXEFERENCE TRAJECTORY. 

D-€3 

At time t=tk the next varia,bles are known: 
q(tk), G(tk) are the measured positions and velocities, 
Q(tk-At) is the vector with adaptively adjusted parameters, 
Yd(tk) is the desired output trajectory: 

Yd(tk) = Y[ qr(tk) 1. 
In order to determine a reference traiectorv gr(t) as far as possible in the same way as in 
equation (3) but considering also the real manipulator dynamics (i), parametric 
uncertainty forces 11s to solve the following differential equation of gr on-line: 

(11). 
l! T A  M( dtk),E(tk-At) )4r(tk) + 0 T -  C( s(t,)?Q(t,),Q(t,-at> )4(tk) = 0 

It is now possible to update the estimated parameters Q with an adwtation algorithm of 
the next form: 

d t k )  = rw ( s(t,)?Q(tk)?Q (t,),sr(t,) )e(t,) (1% 

where - e(tk) = q(tk) -g r ( tk ) .  

Finally, one utilizes the following adaDtive computed toraue control law: 

It will be difficult to prove the stability of this adaptive computed torque control system. 

It is likely from (11) that 

(14). 
0 T -  M( 9(tk)'a(tk) l apk)  + J! T C( - q(tk)>Q(tk)?B(tk) )4(tk) = d 

Define : 

m 
I hen: 

-d u = [i]. 

The equivalent error system: 
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TWO-TIME SCALE SLIDING CONTROL IE OF A FLEXIBLE MANIPULATOR. 

Slotine, J.-J. E. arad Hong, S. 

INTRODUCTION. 

[1986] 

The main idea of the ap 
manipulators leads to a two 
It starts with a separation 

in those describing the rigid body motion resp. those describing the flexible effects: 

Then, they investigate the elasticity properties by the sinnular Derturbation technique of 
Marino and Nicosia [1984] to decompose the manipulator-dynamics into a 'u' resp. a 
'u' submodel: (417 

(51, 

Assuming that only small deviations from the rigid body motion will occur and are to be 
considered, they further use the concept of slow manifold (Khorasani and Spong [1985]) to 
obtain the next linearized singular perturbation model: 

The reduced flexible model (6) represents the system dynamics restricted to a sonamed 
'slow manifold' described by: 

(a 
and is of the same dimension as the rigid model of the flexible system, but preserves and 
captures the dynamics of the full system to a higher degree of accuracy. It can now be 
used to design a slow feedback control Zr. Further, a fast control Gf is needed in order to 
guarantee that the slow manifold is actually attractive, i.e. that all system trajectories 
converge to the manifold. The composite two-time scale controller is then defined as: 

= L&,k,z,&p), 
ur(x>k,P) controls the rigid body motions, 
uf(g-b(x,$,Ur,p), &h(x,k,ur,/i)) controls the elastic modes. 

For the required robustness to parametric uncertainty, Slotine and Hong finally use the 
sliding control methodology of Slotine 1119841 to design the two-time scale sliding 
controller: 

&=us + u  (10). 
r -% 

*) 

*) 

Based on the control Gr for the rigid robot system, the slow sliding controller 
usr is designed to account for parametric uncertainty on the slow manifold. 
The purpose of the fast sliding controller gsf is then to force the fast variables to 
follow the slow manifold, despite the presence of uncertainty. 
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L 2  MANIPULATOR DYNAMICS 
IN SINGULAR PERTURBATION FORMULATION. 

In the paper of Benati and Morro [1988], a chain of flexible links has been modeled as a 
system with a finite number of degrees of freedom. The main advantage of their approach 
through Lagrange’s formalism is, that it leads to explicit dvnamic eauations of the flexible 
manipulator (in terms of well defined geometrical parameters) which, in general, can be 
written in the next form: 

is the mxl] vector of actuator inputs, 
is the t 11x11 vector of generalized coordinates 
which can be split up into two vectors: 

where 

g =  

motion of links, 
degrees of freedom. 

3 rgi,+) can be splif up inik : n(rt;+j = ga +)+ E,h+qg 

With Q = M-l[ HU-Q ] and after some mathematical manipulations, we get: 

Defining: x = slr 
z = kg 

f - 

P = 

the equations of motion for the flexible manipulator can be written in the general form of 

x = il,(x,k,PWa -p A,(X,& + B,(X,PE)U (W1 
I 

where 
is the kxl] state vector associated with the ‘slow’ dynamics, 
is the t (n-k)xl] state vector associated with the ‘fast’ dynamics, 
is the inverse of the joint/link mechanical stiffness [very small scalar]. 

x 
ru 
Z - 

By formally setting p=O and eliminating from the equations, (12)-(13) are reduced to 
the equations of motion of a rigid manipulator: M(X)X + n(x7.t) = HU. 
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E03 DESIGN OF THE SLOW SLIDING CONTROLLER 

The singular perturbation model (12)- nd is not directly 
linearizable. However, it can easily be 'fast' submodel by 
using the slow manifold: 

(8)- 

which can be obtained as the solution of a partial differential equation formed by 
substituting its expression into equation (13): 

Once h is determined from this sonamed manifold condition, the dynamics of the system 
12)-(13) on the manifold are given by a reduced-order system referred to as the reduced 6 exible svstem, which is performed by replacing by h in equation (12): 

The computation of the slow feedback control out of this reduced flexible system is 
complicated by the need to solve the manifold condition (14). Therefore, an 
approximation to h and ur is obtained by expanding them in a power series of ,u. In 
practice, the followl capture the dynamic 
effects of interest: 

(16)7 

where 
- w is a new input which is assumed to be known, 
- ho and go are the manifold resp. the control 

obtained from the rigid model @=O): 

(14) a20+A20ho+~20Uo = Q -> O0 = -A20-1[i120 + B203!0] (m 
(15) aio+Aloho+~lo~o = E -> - uo = -B-'[a - IV] (1917 

where = [B10-A10A2ö1 B201, 
- 8 = [a10-A10A2ö1 3201. 

Using this known rigid manifold ho and control go, we can obtain hl from (14) under the 
assumption that the fast variables are on the first-order corrected slow manifold 
[neglecting terms of order p2]: 

will lead to  an expression for hl: 
where 

h = A -l[d - B E ]  
-1 20 20 1 

expressions with l / p  are omitted, 
d=li,-A&%-AAh - A B u  -B U 

2-9 2- 25-8' - 
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Also, the first-order corrected slow subsvstem can be written [p2=0]: 

where 

*) When there is no model uncertainty: 2 = &o+ Aloho+ Biouo= w. 
Then the corrective control compensating for flexibility will be: 

(24). U = -B- [ b + c ]  -. - 
*) However, with Darametric uncertainty, ho and go are only known as: 

h = --A -1[ a +B u ]  
-0 20 -20 20-0 

A -  a 

u = -B-l[a -E] 
-0 

where * indicates available estimates. 

Therefore, an additional control term is required in the corrective control ui7 in order for a 
flexible manipulator to track the desired trajectory despite the presence of parametric 
uncertainty. Considering equation (23), Slotine and Hong have derived the following slow 
sliding control law: 

where ux Is a new input designed to achieve desired closed-loop 
specifica,tions: 

- u = 2 -K, e -Kp -Ks sat[ s /i 3 ,  x d  x x  x x  X x x  

- e, is the tracking error of the rigid motion state variables: 

- sx is the slow sliding surface defined as: 

Ks and sat[ / g  ] are defined as in Asada and Slotine [1986]. 
X x x  

Finally, the slow slidincr controller Usr is in its first-order expansion defined in the same 
way as Gr in (17) 

Thus: 

* .. L . L .  

u s  = U  +pus = B - l { - a + w + ~  - w - , ~ [ b + c ] }  
r -0 1 X 
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E*4 DESIGN OF THE FAST SLIDING CONTROLLER 

The slow submodel was derived under the assumption that the fast variables z follow the 
slow manifold h. However, this is not necessarily guaranteed in the presence of 
parametric uncertainty. Therefore, a fast control uf is needed to force the fast variables 
to follow the desired manifold, i.e. to make the desired manifold attractive despite 
par amet ric uncertainty: 

where TJ represents the deviation of the fast variables 
from the desired manifold: 

- - ( h0+ph1 ) 

The influence of the fast control on the slow subsystem can be neglected in the design 
when TJ is maintained at a small valiae by the fast sliding control II~ after the decay of fast 
dynamics. To derive the fast submodel, we can make the assumption that the slow states x and their derivatives are fixed parameters xo and go during this fast transient. This 
allows to simplify the problem when the slow and fast time scale are significantly 
different: tf < tr. By expressing the fast flexible model (13) in the fast time scale defined 
as tf = t /p ,  we get: 

- z' = 2 (St/&) = pa, 

- z" = - Z(St/Stf) = p2&. 

where indicates differentiation with respect to tf. 

The first-order corrected fast manifold can be defined from the equation above: 

Which remains from (32) is the following expression: 

22" = p&(Xo7!!0,p373') + pA2(X0,p3)8 + pB2(xO,p3)uf 

Neglecting terms of order ,u2, we obtain the first-order corrected fast submodel: 

19 - rl - ~2n(xoi~olQ711+) + PA 2n (x o 70)g + m 2n (x o -  $)af 

(34). 

(35). 



'X3TIOXLNO3 3NI(II?S 3W3S 3MIA-OML 3HL 'C *3 



F-1 tue-wfw-il-1990 

F (ADAPTIVE) TWO-SUBMODEL BASED 
COMPUTED TORQUE CONTROL 
OF FLEXIBLE ROBOT SYSTEMS. 

F. 1 INTRODUCTION. 

The problem in controlling a lightweight mechanical manipulator is to perform fast, 
accurate and robust motions despite structural flexibilities, payload variations and other 
environmental disturbances. An (adaptive) twosubmodel based control approach has 
been developed to extend the familiar computed torque control scheme for rigid robot 
systems to flcxible robots. 

F. i. 1 The flexible manipulator system. 

A lightweight manipulator may have flexibility in the link structure and/or 
elasticity in the motor joints. For most manipulators, joint elasticity has a greater 
significance for control system design than the actual bending modes of the links. 
Furthermore, the distributed link flexibility can be approximately modeled by a 
chain of rigid sublinks interconnected by elastic joints. Hence, a more accurate 
(thus higher order) representation of robot dynamics involving elastic joints should 
be taken into account to get better control performance. 

In comparison with a rigid robot, the system dynamics of a flexible robot with n degrees 
of freedom is still governed by the same type of second-order, couded, highly nonlinear 
different ia1 eauat ions: I M(q)Q + o(s,Q,t) = Ha 7 (1) 

where q(t) is the vector with n generalized coordinates, 
M(q) is the [n*n] mass inertia matrix, 
- u(t) is the vector with m motor input signals, 
- n(q,q,t) contains the centrifugal and Coriolis forces/ 

T X 7 : t L  r T AT IT lllfi nk+a<- On ~ v o +  n v A n v  nnnl;nnnv A:ggnvnm+;o1 
V V l b l l  y = 9 y j w c  W U b a J l l  A l l  1113b--U1UCl  L I u l l l l l l G c z l  u l l l G ~ G l l t J l a d  

torques, yravi t y, friction, etcetera. 

equations: 

However, an important difference is that, when the structural flexibilities are included, 
the number of inputs is less than the number of denees of freedom (m<n). A 'rigid' 
control strategy ur(t), which just tries to track a desired trajectory in space specified by m 
generalized coordinates, will often result in an instable system behavior. Therefore, the 
control system must deal with control of the elastic vibrations as well as the joint 
trajectory tracking. However, it is not possible to find a control input for a lightweight 
manipulator which will accomplish perfect tracking of any given desired trajectory in joint 
space while totally damping the undesired flexible deflections. It is more realistic to 
search for a control law achieving both a reasonable trajectory tracking and a certain 
stabilization of accept able vi brat ions. 
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F.I.2 Two submodels of the flexible manbdator svstem. 

In first instance, starting with Slotine & Hong [1987], we assume that n=2m and that the 
dynamic model (2) of the flexible manipulator can be split up into 

24 = g(x,z,t) 9 
- 2 = Mx,z,u,t) - 

If the desired trajectory is specified by xd(t) ,  the tracking error is defined as: 

Then, we introduce a reference manifold error: 
ez = zr -z > 

in which the reference vector .Z,t) must be chosen in such a way that 
substitution of (6) in (3) will result in a stable differential tracking error equation: 

- e = &j -g = &j -g(z,g,,t) . (7) 

That is to say: the tracking error g(t) will tend to zero in time if gZ=Q. 

F.1.3 Two-submodel based (adaDtive) flexible robot control. 

To force the generalized coordinates Z(t) to  their references zr(t), the intention now is to 
obtain a stable differential reference manifold error equation too: 

by choosing a suitable 'flexible' control input signal &c,z,t), which will be composed of a 
computed torque control part (with internal PD action) and, for example, a sliding 
control part (in order to obtain robustness against uncertainties and parameter variations: 
Asada & Slotine 

and of a computed torque control term multiplicated with the inverse of the stiffness 
matrix K of all elastic joints and/or flexible links: 

. The computed torque control part appears to be a combination 
torque control law ur(t) of the robot model without fiexibilities of the 'rigid' 

The term with ue tries to force the flexilbie motions to behave in a mere natiiral way 
according to the equations of motion of the flexible svstem. 

Unfortunately, the computed torque control method relies heavily on an accurate 
prior knowledge of the robot system dynamics and, therefore, above approach will 
further be expanded to an adaptive control technique in which the unknown, but 
constant system parameters will be adjusted on-line (basically according to the 
method of Slotine & Li [1987]). Finally, the global asymptotic stability of the 
control system is guaranteed through the Hyperstability approach of Popov [1969]. 
The new (adaptive) flexible robot control method will be illustrated by simulation 
results. 
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F.2 THE FLEXIBLE MANIPULATOR SYSTEM. 

The equations of motion for a manipulator system with linear elastic ioints are: 

vector with link variables, 
vector with actuator variables, 

where 

inertia matrix of the rigid-link robot, 
J is the mass inertia matrix of the joint motors, 
K is the diagonal stiffness matrix of the linear elastic joints. 

(12) 

(13). 

he eiastic forces/torques at the joints, 
coupling equation (1 O) with (1 1) : 

MQ r r  +CQ r + $ = g = ~ ~ - J t j  f -BQ f 

The equations of motion for the rigid maniwlator svstem are: 

According to Slotine and Hong 

r x = q  

3 = K(ilf-!Q 
p = K-' 

19871, with the definition of 

as the 'rigid' variables, (15) 

as the 'flexible' variables, (16) 

as the very small 'parasitic' elasticity matrix, (17) 

the equations of motion of the flexible system (10)-(11) are changed into those of a 
socalled singularlv Derturbated svstem: 

If p->O, equations (18)-(19) become the equations of a quasi-steady state system: 

which approximates the rigid manipulator model (14) and represents the relationship 
between the rigid state variables x(t) describing the behavior of the flexible system 
(10)-(11) if it is forced to constrain its 'flexible' evolution of z(t) on the reference 
manifold zr( t ). 
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F.3 RIGID COMPUTED TORQUE CONTROL. 

The first step in the derivation of the two-submodel based control law is the formulation 

where - e =e+K Je is a reference trajectory error 
r X 

e = x - is the tracking error. 
-d 

With this control input we can define a certain 'reference manifold', describing the elastic 
forces/ torques required for manipulating the rigid links along the desired trajectory: 

- z = M (z)(Z +K e )  + C(x,&)& +g(z) 
r r r r r  

The equivalent reference trajectory error equations of the closed-loop system are: 

where 

M (E +K e ) = Z (25) r r r r  

- e = z -z is the reference manifold error (26) z r  

F. 3.1 Slidine; control term. 

If p is very small, i.e. if the elastic joints are nearly stiff, there is only needed an extra 
sliding control term gs(t) (to be added to Ur(t)) in order to force the flexible state 
variables z(t) towards the reference manifold zr(t) and to keep the system in sliding 
motion on e,(t)=o: 

- l l=g  + g  
r S 

-- u,. represer,ts the 'cquivde~t' c m t r d  term. (21) when the system is in sliding motion. A 
variable structure control (V.S.C.) law is obtained by Petting the control function u be 
defined as follows: 

- U- 

where a necessary and sufficient existence condition for the 
local existence of sliding motion on eZ=Q is: 
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As a result of this control policy, the flexible state trajectories of the system reach locally 
the sliding surface eZ=Q if: 

i.e., in the neighbourhood of eZ=Q is the surface 
reachabilitv condition: 

(31) 

which guarantees a crossing of the sliding surface gZ=Q 
from each side of it by use of a sliding control term (for 
example: = -k.sgn(%); see Slotine & Li [1986]). 

F.4 FLEXIBLE COMPUTED TORQUE CONTROL. 

If the parasitic elasticity parameter p is not very small, also the 'flexible' terms in the 
equations of motion have to be compensated for in the computed torque control, instead 
of approximating only the rigid manipulator system with p=O. 

Considering the flexible robot model (18)-(19), by substituting the elastic forces z(t) of 
(18) into (19) we get: 

pJH + pBS + [M (g)+J]g + [C(x,&)+BJ& + g(x) = U 
r 

The flexible computed torque control law will be 

= U + /I{ J(Z +K e ) + Bg } (33) r z z  

Now, the equivalent reference trajectory error , cq. reference manifold error equations are: 

(34) 

(35) 

Finally, combination of (34) and (35) leads to the equivalent error equations of the total 
closed-loop system: 

I [M +J](e +K e )  + @(E +K e ) = 0 r r r r  z z z  



(OP) 

r 
n 

1= s 
zz 

1 
]= s 

1 = zTs 
aiaqM 
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T V=-g &e 5 0  
Y Y  

F-7 

(45) 

F.5 STABILITY OF TRE OVERALL CONTROL SYSTEM. 

In anticipation on an adaptive flexible control system, Lyapunov's stability approach shall 
be combined with the Hyperstability theory of Popov [1969] for generalisation. 

Define a Lyapunov function candidate: 
where P is a positive definite matrix. 

Difkrentktiting ef V(+\ \UI g ives: 

Using error equations (41) leads to: 

1 T' T IT T V = - g  Pg + e  PAg =-g {P+PA+A P } g .  
2 Y  Y Y Y 2 Y  Y 

(43) 

(44) 

For a more general approach in deriving a globally stable control law u(t), it is 
however better to use the HvDerstability theory of PODOV, which requires that: 

1 '  T with finite y and where jy = -{ P+PA+A P }e . 
2 Y 
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F. 6 ADAPTIVE FLEXIBLE COMPUTED TORQUE CONTROL. 

If there are unknown system parameters pi in M&) and C(p 
algorithm will adjust them on-line and put them into the vector A 0). 

E 
Instead of (24), the reference manifold gr will then be approximated by: 

an adaptive control 

A 

where gz= zr- is the adaptive reference manifold error 

Because there exists the linear relationship: 

(48) 

(49) 

we can obtain the next equivalent error equations of the two closed-loop subsystems: 

(1 8)-(47): 

-’\ 

A ,. A , . A  

M Z + C g + g = z = z  - e  = M ( Z + K e ) + C & + + - e z  
r r z  r r r r  

,. 
M ( % + K e ) + W e  = e  

r r r r  -P z 

(1 8)-( 32) : 

(47)-(48) : 

-’\ 

p{ Jg+B&}+ J z + B & + g = u  

- U = p{ J ( Z  +K e )+B& } + J(Z +K e ) + BZ + z 
A 

r i r r  - r  z - z  

A 

pJ(- +K e ) + J(e +K e )  + = 0 e2 2-2 r r r  Z 

Finally, with (51) and (52) we have the total equaivalent error eauations: 

I [M +J](% + K e )  +@(e +K e ) + WG = O  
r r r r  -2 2-2 P (53) 

where g,=~-p is the adapted parameter error. (54) 

To guarantee global stability of the controlled system, the adaptation algorithm for 
on-line estimation of the system parameters has to be derived by using the Hyperstability 
theory of Popov, as described short in the previous section. Further investigations on this 
subject will follow. 



tue-wfw-il-1990 F-9 

F. 7.1 Conclusions. 

The main problem in control of flexible robots, namely the number of control inputs being 
less than the number of controlled variables, has been faced by a composite control law 
consisting of the conventional 'rigid' computed torque controller and a 'flexible' computed 
torque part multiplicated with the inverse of the stiffness matrix. The resultant control 
system resembles the socalled 'two-time scale sliding control' technique of Slotine & Hon 
[1987], based on a singiilar perturbation formulation of the equations of motion and the 
concept of integral manifold. Fortunately, in this approach the stiffness of each elastic 
joint does not have to be relatively large neither is there the restriction of Slotine and 
Hong that there have to be as many elastic joints as motor inputs (no flexible links, no 
rigid motor joints). Both methods require all system state variables (positions and 
velocities) for feedback. But then, Lyapunov's stability theorem guarantees that the 
output trajectory will follow the desired trajectory and that the elastic forces/torques, 
which are not directly constrained by the output specifications, remain on a certain 
'manifold', due to the natural flexibility behavior of the system. In the next chapter, the 
key concept will be illustrated with simulation results of a Translation-Rotation (TR-) 
robot with one elastic joint. 

Iri first i~s t ame ,  the motion control of a manipulator with elastic joints based on 
precise knowledge of the system parameters is considered. Due to parameter 
uncertainties and/or variations, it is not possible in practice to exactly compensate 
the manipulator dynamics. Therefore, the earlier mentioned flexible computed 
torque control method is finally adapted in an adaptive flexible control algorithm, 
based on the 'rigid' adaptive technique of Slotine & Li 19871. Stability will be 
guaranteed by the Hyperstability approach of Popov [1969 f . 

Future research. 

While the extension of the computed torque control (CTC) technique to joint-level 
control of flexible manipulators seems to be quite straightforward, a more involved 
situation arises for the end-effector trajectory control. The number of outputs is taken 
equal to the number of available inputs, but if there are more ioints than actuators 
(especially in case of approximated link flexibility) the basic limitation is due to the 
noncollocation of actuators and controlled outputs. For this class of manipulators, the 
knowledge of the desired trajectory and of its time derivatives is not enough to determine 
the required forces/torques instantaneously. Instead, a dynamic inverse system has to be 
used on-line to generate the natural 'reference' behavior of all system state variables due 
to the desired output trajectory. To address this problem, future research in 1991 will be 
concentrated on the development of an output-traiectorv based version of the (adaptive) 
flexible CTC controller. 
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h.4 Control simulation results 
on the 3 D.O.F. elastic-joint TR-robot. 

*) 

*) 

The initial system state variables ql(t0) and qZ(t0) are due to 
the desired trajectory at t=to: qid(t0) resp. qZd(t0). 
If nothing else is mentioned: Ks = diag[lO], k, = 10. 

Figure [i]: 
Figure [2]: 

Rigid Computed Torque Control (3): 

Flexible Computed Torque Control ( 19) [ (1 2)-( 20)] : 

Ks=O. - _ _ _  - _ _ _  
K s  = diag[lO]. 

Figure 1141; 
Figure 15 * 

Flexible CTC (12)-(24), qr3 (23): 
Ks = diag[lO], 
Ks = O, k Z =  10. - -  __ _ _ -  __ - - -19 
Ks = diag[lO], 

Flexible CTC (12)-(31), qr3 (25): 

Ks = diag[lO], 

k, = 10. 

k, = O. 

Ks = O, k Z = O .  _ _  I _ _  _ _  - - __ -16 
k, = 10. 
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Figure [i]: Open-loop control: g = Q. Figure 
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F-( 1) : 

+ 
1 I I 

M(Q)ii + E(Q,il,t) = Hu 7 

H TWO-SUBMODEL BASED COMPUTED TORQUE CONTROL 
OF ELASTIC-JOINT ROBOTS. 

I I 

H. i Introduction. 

In contradiction to chapter F, in this chapter there is not the restriciton that 
joints have to be elastic (n=2m): n52m. 

motor 

(1) 

page [ G-21: The 3-degrees-of-freedom (DOF) translation-totatdn (TR-) ro 

The equations of motion for a manipulator system with linear elastic 'oints are: I 

- ux are the rigid-joint actuator forces/torques, 
- z are the elastic forces/torques 

between the links and motors. 

F-(18): 

F-(19): 

- 

M (z)Z + 0 (z,$ = z 
X X -f 

/ArZ+JZ+g + z  =u 
z -f Z Z 

In the example of the 3-DOF elastic-joint TR-robot: 
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H.3 Elastic-ioint robot control. 

The reference forces /toraues required for manipulating the rigid links along the desired 
trajectory: 

(10) r r r  X 
F-( 24) : 

In the case of the example, the 'rigid' computed torque force is: 
G( 12): Fr = Mi1 (qsí+Ksííesí) +Mí2( qs2+Ksi#s2) 7 

while the 'reference manifold' is also calculated on-line with: 
G(13): zr = Mia(qsi+Ks2iesl)+M22(qs2+Ks22es2). 

Then, the two-submodel based computed torque control law will be: 

F-( 33): 

F-( 2 1) : 

where the computed torque control part: 

- u r z r  = J ( % + K e ) + ~ ~ + z f i =  r r  

=[M x +J](Z++Ke)+o z r r r  X + E  Z (12) 

the flexible computed torque control part: 

F-( 33) U =J(E z -fr + K e  z-zf ) (13) 

Finally, the eqUivakat aïoï  eqdatim cf heth S~bSystPrns wre: 

e = z  -z = M ( e + K e )  
-zf -fr -f x r i r  

p J ( ë  + K e  ) + J ( e + K e )  z r r r  

F-( 18) / (24, G( 15) / (16) : 

z 'Zf z-zf 
F-(19)/(33), G(21): 

The error eauations of the total closed-loor, svstem are: 

(14) 

+ e  = O  (15) 
Z f  - 

F-( 36), G( 22) 1 1  (16) 
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