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Abstract 

ABSTRACT 

This report gives a summary of the present-day state of my research. The research deals with the 
controlling of manipulators with flexible transmissions between the actuators and the stiff links. 
Ivonne Lammerts, member of the WFW group, has developed a control law for this kind of 
manipulators. This control law deals with tracking the desired trajectory as well as control of the 
elastic vibrations. The control law is an extended version of the Computed Torque Control 
strategy and is called the Composite Computed Torque Control strategy (C CTC strategy). 
The goal of my research is to test the C CTC strategy and to apply the control law in a practical 
situation. The xy table, which is situated in the WFW lab, will be used as the test apparatus. By 
executing simulations with the model of the xy table and by executing experiments with the xy 
table I have to find the properties of the C CTC strategy. 
The present day siaie of the ïeseaïch is that I have designed a C CTC law for the controlling of 
the xy table. Further, I have made some theoretical analysis and I have executed a lot of 
simulations. 
During the research I have considered two different situations, a theoretical situation and a 
practical situation. For the theoretical situation appears that the stability of the system is 
guaranteed and that the simulation results are good. For the practical situation ( the expected 
situation which will appear during the experiments) it is not possible to guarantee the stability. 
However, the simulation results are satisfactory, so there will be a reasonable change that the C 
CTC law will be applicable in practice. 
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Introduction 

1. INTRODUCTION 

Today industrial robots are used for various purposes. Because of hardware limitations in 
on-line applications, until now, robot control has been studied extensively under the 
assumption that the actuator transmissions are stiff and that the links can be modelled as 
rigid bodies. Therefore, most of today’s robots have a very stiff construction in order to 
avoid deformations and vibrations. 
For higher operating speeds, industriai robots shouId be light-weight constructions to 
reduce the driving forcehorque requirements and to enable the robot arm to respond faster. 
However a lightweight manipulator may have flexibility in the link structure and elasticity 
in the transmissions between the actuators and links. For most manipulators, elasticity of 
the motor transmissions has a greater significance for the design of the controller than the 
deformation of the flexible links. 
A well known approach to improve the behaviour of manipulators is the computed torque 
control method. In its original version this control method appears to be applicable only to 
rigid manipulators. If flexibility plays an important role, it often results in an instable 
system behaviour. Therefore, the control system must deal with control of the elastic 
vibrations as well as trajectory tracking. 
However, it is not possible to find a control input for a flexible manipulator which will 
accomplish perfect tracking of any desired trajectory in space while totally damping the 
undesired elastic deflections. It is more realistic to search for a control strategy achieving 
both a reasonable trajectory tracking and a certain stabilization of acceptable vibrations. 
Ivonne Lammerts, member of the WFW-group, has developed such a control strategy. This 
control strategy is an extended version of the familiar composite torque technique for rigid 
manipulators, and is called the Composite Computed Torque Control strategy (C CTC 
strategy). Ivonne Lammerts has proved, for a theoretical situation, that this control strategy 
will be applicable to systems with one or more flexible transmissions. The question is 
now: How will the C CTC strategy function in reality. During my research I have to 
answer this question. 
This report gives the present-day state of my research. In this report I will show the C 
C ï C  strategy and I will show the C C ï C  law which I have designed for the controlling of 
a xy table with a flexible transmission. Further I will show and discuss some theretical 
analysis and some simulations results. At the end I will give some recommendations to 
continue the research in the future 
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The composite computed torque control strategy 

THE COMPOSITE COMPUTED TORQUE CONTROL STRATEGY 2. 

A manipulator with elastic motor transmissions 

We consider manipulators that can be modelled as an open chain of n rigid links inter- 
connected bij joints with one degree of freedom per joint. One end of the chain is fixed to 
the ground and the other end has to fooliow a specified trajectory in space. 
Since each joint allows one relative motion of the connected link, n generalized 
coordinates are necessary and sufficient to describe the kinematics of the links. These 
coordinates are the components of a vector gl E: Rn. The desired path of gl in time is 

Each joint has its own actuator and its own transmission between the actuator and the 
driven link. The motor torques (used in a generalized sense, i.e. denoting both torques and 
forces) acting on the transmissions are the robot control inputs. In this paper, we consider 
the case in which some or all transmissions are elastically deformable. Then, for each 
elastic deformation it is necessary to introduce an extra coordinate to desribe the rotation 
of the rotor of the motor. These extra coordinates are the components of a vector gm E Re 
with e s n. 
For the sequel it is advantageous to regroup the coordinates gl of the links in two vectors 
9s E: Ikn-" and contain the coordinates of the direct driven links 
(i.e. by the stiff transmission), respectively the coordinates of the elastically driven links 
(i.e. driven by the elastic transmissions). See fig 2.1. 

denoted by gld = gld(t). 

E: Re, where 9s and 

Fig 2.1 Elastically driven links - direct driven links. 
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The composite computed torque control strategy 

This completes the introduction of the total vector of generalized coordinates 9 E Ikn+”. 

Th defined by components of the vector 

m - 4 ,  - & = g  

charaterize the deformations of the elastic motor transmissions. Hence, if these 
transmissions are modelled as massless linear springs, the elastic torques being the 
components of a vector 3 E Re are related to E by 

z = Kg 
-e 

where K E Re*e is the positive definite diagonal stiffness matrix. 

Dynamic model of the flexible robot 

Using a Langrangian approach, the dynamic model of the manipulator can be written as: 

where: 

9= E 9s i~ g m  lT 
M = positive definite inertia matrix. 
Ca = is a vector with torques due to te Coriolis and centrifugal effects. 
Kkq = is the vector with elastic-transmission torques. 
- n = is the vector with torques due to friction. 
g = is the vector with torques due to gravity. 
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The composite computed torque control strategy 

The model can be given in a detailed form by: 

mJ S + m s s  e + m s 2  m + c s s ~ s + c , ~ e + c s ~ m + ~ , + g s  = 2, (2.5) 

m A  S +meJ e +meJ m +CA + c e s  +ce,,,cj m +r~,+g,+K@~-g~) = 2 (2.6) 

m A  S +m,> e + m A  m +c,4 S + c d  e +CA m +y1 -m +g m +K@ m -g )  e = -e u (2.7) 

Composite computer torque control 

The first problem in controlling a rigid-link manipulator with elastic motor transmissions, 
is that only the desired link coordinates sd= qld(t) can be determined directly from the 
known desired gripper path, while there is no indication for a certain desired trajectory of 
of &(t) or %(t> (note: &= K(9m-a). 
To obtain a smooth robot performance in space, we define a reference trajectory sr= g,,.(t) 
for the link variables, which will converge to qld after progression in time. Further, the 
idea is to formulate a 'reference manifold' &,Xt) ( or CJJ on which the controller tries to 
keep the elastic-transmissions torques z-(t), instead of trying to supress them totally. 

The second problem is that there are more degrees of freedom than control inputs. The 
goal of the composite controller developed in this chapter is to track the reference 
trajectory of the links, while stabilizing the elastic vibrations around the specified 
reference manifold. 

It is appealing to try to find the analogue for flexible manipulators of the socalled 
computed torque control method for rigid robots. However, an elastic-transmission robot 
does not allow a nonlineair feedback control as for rigid manipulators, since there are less 
control inputs than degrees of freedom. Here, we choose the next computed torque 
notation for the (n+e)-th order dynamic model of the flexible robot (Ivonne Lammerts, 
October 1991). 

where, 

- K, is a diagonal positive gain matrix. 
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The composite computed torque control strategy 

- gr is a chosen reference trajectory of all system variables; in this case, the vector 
s= è is a sliding service for g according to Asada and Slotine (1986). -. 
- e= qd-q is the total error. 
e = 8-9 is the total reference error. 

- -r I: = c+Ac VtrtO; s(t& c(t0). 
- 
- 

-r 

Note, that we do know the desired trajectory of the link variables, gld(t) and its time 
derivatives, but we haven’t any indication of how to determine a certain desired trajectory 
g,d(t) for the eiastic motor rotor variabies, uniess we make use of above computed torque 
expression in splitting it up again in a partitioned form according to the equations 2.5, 2.6 
and 2.7: 

where &, Ke and Q are diagonal, positive definite gain matrices. 

With equation (2.10) it is possible to find a reference trajectory for q,(t), &,(t) and 
g,(t) (under the assumption that g(t) and i(t) and the parameters are known). Now it is 
possible to formulate the reference manifold Gr(t)= K(gm-~,) and to determine the inputs 
us(t) and ue(t) with (2.9) and (2.11). 
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Controlling the xy table with a C CTC law 

3. CONTROLLING THE XY TABLE WITH A COMPOSITE COMPUTED 
TORQUE LAW 

The goal of my research is to test the Composite Computed Torque Control strategy ( C 
CTC strategy), and to find the properties of this control law. For the research I will use 
the xy table with one elastic transmission as test apparatus. The xy table is situated in the 
WFW lab. 
In this chapter I wiii show the C CTC law which i have designed €or the controliing of 
the xy table. 

The xy table 

A schematic representation of the xy table is given in fig. 3.1 ( Heeren, 1989 and v.d. 
Molengraft, 1989). 

SPINDLE U U 

fig 3.1 Schematic representation of the xy table. 
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Controlling the xy table with a C CTC law 

For control design we have to choose a suitable model of the xy table. I choose the next 
model ( v.d. Molengraft, 1989). 

fig 3.2 model of the xy table 

See appendix A for a more detailed description of the xy table. 

The dynamic model of the xy table can be written as: 

M@g+C(g,@q+Ka+n@ - = 

If M,C and Kk are partitioned in accordance to the partitioning of g, the dynamic model 
can be given in detailed form (see also appendix A). 
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Controlling the xy table with a C CTC law 

miiq +mi3q3++Ci2'g 2+ci3C@ 3 +ciiq) i+nii+k(cp ;-cp3) = u, (3.4) 

The C CTC law 

We choose, as shown in chapter 2, the next C CTC strategy: 

Splitting the above computed torque expression in a partitioned form according to the 
equations 3.2, 3.3 and 3.4 gives: 

where, 

i = l , 2  

vir = reference trajectory 
'pid = desired trajectory 

@ir = @d+'X~d- '~i)  
(3.9) 
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Controlling the xy table with a C CTC law 

Now, we have to define a vector g,. In g, we put those variables of which we define a 
desired trajectory. The number of variables of g, is equal to the number of inputs. In the 
general case g, exists of those variables which fix the position of the end effector of the 
robot. 
In the case of the xy table we can put two variables in g,. The position of the end effector 
of the xy table is fixed by three variables (cpl, cp,, cp3).  So, we have to make a choice 
which variables we put in 8. We have two possibilities: we can choose g,= rip, cp3IT , or 
we can choose g,= [cp2 qJT. 

if we choose CJ,= [cp2cp31T and define the desired trajectories $a, s d  and a d ,  it is possible 
with (3.7) to determine the reference trajectorie cpir and its time-derivatives: 

Equation (3.10) is in most cases an instable differential equation. Only if we choose a very 
small springconstant k (something like c31 or smaller), we will find a stable solution. This 
is not an useful result, so we have to try the other possibility g,= [cp, 'pi lT.  After defining 
the desired trajectories and its time-derivatives we can determine the reference trajectory 
cp3r and its time-derivatives: 

Equation (3.11) is a stable differential equation. We can determine cp3Xt) and its time- 
derivatives, and with this variables it is posible to determine the inputs u,(t) and u,(t) with 
(3.6) and (3.8). 

Now that we have found a way to use the C C ï C  strategy for controlling the xy table, we 
can test the control strategy and find the properties of the control strategy. In the next 
chapters I will describe how the testing is done and which results I have found. 
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Stability of the closed loop system 

4. STABILITY OF THE CLOSED LOOP SYSTEM 

Stability is an extremely important factor for control design, especially for the kind of 
flexible robot systems considered in this report. Lyapunov’s stability theorems make 
possible a method of synthesizing control laws which guarantee stability of the closed loop 
system ( system and controller). 
In the second stability approaeh of Lyapunov ( Kok, 2992>, the first step is the derivation 
of the equivalent error equations of the closed loop system. The equations which describes 
the closed loop error dynamics of the model of the xy table controlled by the C CTC law 
are: ( 3.6-3.2, 3.7-3.3, 3.8-3.4): 

m22ë2r+m23ë3r+~23e3r+c21elr+k2è2r = 0 (4.1) 

m31ëlr+m32ë2r+m33ë3r+c32è2r+c33è3r+c31~lr-k(elr-e3$ +k3èSr = O 

i = 1, 2, 3 
e,  = (Pir-(Pi  

Then, we use the total reference error vector e, in order to obtain a sliort notation of the 
equivalent error equations of the overall closed loop system: 

Më +Ce +Kker+Ké = O 
- r  -r  r-r (4.4) 

In the second step, a positive definite Lyapunov function candidate V(t) of the total 
reference error vector e, is chosen such that it represents the mechanical energy of the 
flexible system. 

V = ---rTMi&+---rTKgr 1 1 
(4-5) 
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Stability of the closed loop system 

To guarantee the stability we have to come up the following 4 requirements: 

1) V(st)= O , with x= O 

+ x= [s s] + oké 

2) V(%t)2 ~Ilxll 
* The inertia matrix M is positive definite and I(k is not negative definite. 
+ oké 

3) V(%t)= continuous and differentiable. - oké 

4) V(st) < o 

* With (4.5) we can find: 

1 V = è 'Më +-8 'hfè +e 'Kk è 
-r -r 2 - r  -r -r -r  

With (4.4) V can be given by: 

I have defined the matrix C (see appendix A) such that the matrix [%M-C] is 
skew-symmetric, i.e.: 

[-n;r-C] 1 = -[-&?-Cl' 1 
2 2 
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Stability of the closed loop system 

As a consequence, we can make use of the property of skew-symmetry of [%M-C] 
in that: 

1 x ' [ d f - C ] x  - = O ,for any arbritrary x - 
- 2  

V = -è 'Kr è < O 
-r -r 

(4.9) 

(4.10) 

The Lyapunov function comes up to the 4 Properties. So we can conclude that the closed 
loop system is asymptotically stable. 

Note: 

Expression (4.10) shows that the total reference velocity error converges to the sliding 
surface - s= &= - -  ;+he= 0, which implies that both the velocity and position tracking errors 
go to zero. 

14 



Simulations with the theoretical situation 

5. SIMULATIONS WITH THE THEORETICAL SITUATION 

In this report 1 will make a distinction between a theoretical situation and a practical situation. 
In this chapter I will show and discuss the simulations I have executed with the theoretical 
situation. 

Theoretical situation 

The theoretical situation is the situation I was using in the previous chapters. This means that: 

- all parameters are known. 
- all variables + time derivatives are known (on every moment). 
- the model of the xy table fits the reality. 
- the inputs are continuous. 

In chapter 4 I have proved that this theoretical situation leads to a asymptotically stable system. 

Simulations 

The mean goal of executing the simulations is to test the C CTC law and to determine the 
properties of the C CTC law. The simulations have been executed with the program MATLAB. 
The differential equations have been solved with a third order Runge Kutta integration algorithm. 
The integration accuracy can be chosen. 
The goal of applying the c CTC law is to track the desired trajectory a d =  [cp2d 'pidIT and its time 
derivative. The C CI'C law calculates cpP3r (+ time derivatives) and the inputs u, and u, so that g,, 
g, will track ad, s d '  

With the simulations I have to find the influence of: 

- the control gain factors. 
- the desired trajectories. 
- the spring constant of the elastic transmission. 
- the integration accuracy. 

Further I have to find out: 

- if the system is stable ( if not something is wrong). 
- how good and fast is the tracking of the desired trajectory. 
- if the inputs are realistic ( possible to create). 

15 



Simulations with the theoretical situation 

During the research I have executed a lot of simulations with different situations. In appendix 
B I have showed some results of these simulations. 

In appendix B I have given an extensive review of the simulation results. The mean conclusion 
of that review is that the results are good and that the results confirm with the expectations. 
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Simulations with a practical situations 

6. SIMULATIONS WITH A PRACTICAL SITUATION 

In this chapter I will show and discuss the simulations I have executed with some practical 
situations. 1 have executed this kind of simulations to form a picture of the properties of the 
system in reality (in practice). 

Practical situation 

In reality we have to do with the following situation: 

- errors in the model of the xy table (unmodeled dynamics) 
- wrong estimated parameters 
- discontinuous inputs 
- it will cost time to determine the inputs 
- limited inputs 
- measurement errors and measurement noise 

The equations of motion in reality are ( see also 3.2 to 3.4): 

m22@ 2+m23@ 3 +‘23@ 3 +‘21@ l+w2sign(@ 2) +w22 = 

w22, w1 represents the unmodeled dynamics 
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Simulations with a practical situations 

where, 

i = 1,2,3 j = 1,2,3 k = 1,2 
miie, tie, ke , wi, are the estimated parameters (m.. = m..+m.., ...) 

‘Je Y r/  

@krm = q,kd+qCP,-CPkJ 

irm -9 im e. = q, Ir 

q h  = cp,+vp, @im = (PL+vyl are the measurements 
vp, vy are the measure errors 

u,,, uec are the discontinuous inputs 

If we use the same proof of stability as in chapter 4, it is not possible to guarantee the stability 
of the (partial unknown) practical situation. So, the big question is : At which practical situations 
will the C CïC law be applicable. Or in other terms: What is the robustness of the C CTC 
controller. 
By executing simulations with some practical situations, we have to form a picture of the 
robustness of the controller. With the simulation results we have to decide on which situations 
it is justified to apply the C C ï C  controller. 

Simulations 

We consider the next practical situation ( = measure situation): 

18 



Simulations with a practical situations 

time axis: 

Measure situation: 

1) 
2) 

3) 

On t= ti the measurements of 'pi (I~, ip2 $2 and 'p3 c& are executed. 
On t= tui the calculated inputs u,, and u,, are presented to the system. The calculation of 
the inputs costs Atr seconds. 
On t= ti+l the cyclus starts again. 

Notes: - the measure frequence = l/(Atr+Atb = l/Atm 
- During an interval tui+l-tui the inputs have a constant value 

Other aspects which plays an important role in the considered practical situation are: 

- unmodeled dynamics 
- wrong estimated parameters 
- measure errors 
- limited inputs 

The C CTC law 

The goal of applying the C C ï C  law in the practical situation is to track the desired trajectory 
qld = [cqzd, 'pldlT and its time derivative ( the same as at the theoretical situation). 

Simulation results 

I have executed a lot of simulations with different situations. In appendix C I have showed some 
results of these simulations and I have given an extensive review of the simulation results. 
The mean conclusion of that review is that the results are satisfying and that the results confirm 
with our expectations. There will be an reasonable change that the C CTC law applied on the xy 
table will answer to our desirements (stable system, small tracking errors). 
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Future 

7. FUTURE 

In the future I will execute the following research: 

1) Executing experiments 

This is the most important part of the research. -With the simulation results we have a good 
picture of the properties of the system in reality. With this knowledge we have to decide which 
situations we will consider during the experiments. 
Before I can execute the experiments I have to make the designed C CI'C law suitable for 
implementation in the program with which the controlling is executed. 
An other problem which we have to solve is the handling of the inputs. It is possible to measure 
the angular position with an acceptable accuracy, but the measuring of the angular velocities have 
a too big imaccuracy. This problem can be solved by the implementation of an identification 
algorithm. With this identification algorithm (i.e. Kalman filter) it is possible to calculate the 
angular velocities out of the measurements of the angular positions and the known system 
behaviour. 

2) Change the C CTC algorithm so that the x- and y position of the end effector of the xy 
table will track a desired trajectory. 

T With the designed C CTC algorithm it is possible to track qld= [vzd v l d ]  . The x- and y position 
of the end effector of the xy table are fixed by cp1,cp2,cp3. So, with this C CïC algorithm the x- 
and y position of the end effector are not fixed. 
The mean reason of controlling the xy table is that the end effector will track a certain desired 
trajectory. So, this have to be the final goal of applying the C C ï C  law. If I have time, I will try 
to design such a C CTC algorithm. 

20 



Conclusions 

8. CONCLUSIONS 

For the controlling of the xy table with one flexible transmission it is possible to design a control 
law ,which is based on the C CTC strate y. The goal of applying this C CTC controller is to 
track the desired trajectory qld= [v2d vidf and its time derivative. 

It can be proved that applying of the C CTC law in a theoretical situation leads to a stable 
system behaviour. 

The simulation results which are related with the theoretical situation confirm with the 
expectations, and give a good picture of the properties of the C CTC controller. 

Applying of the C CTC law in a practical situation gives no guarantee of a stable system 
behaviour. 

From the executed simulations it appears that there will be a reasonable change that the C CTC 
controller applied in a practical situation will answer to our desirements ( stable system 
behaviour, small tracking errors). 

Because of the satisfying simulation results, the next step of the research have to be the executing 
of some experiments. 
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Appendices 

APPENDICES 



The model of the XY table 

APPENDIX A: THE MODEL OF THE X Y  TABLE 

In this appendix I will give a detailed desricption of the model of the xy table ( v.d. 
Molengraft, 1989). 

I have chosen for the next model of the xy table: 

fig a l  model of the xy table 

The equations of motion of the xy table can be written as: 

M@g+c&s>g+K~+n@ - = 
(Al.l) 

A. 1 



The model of the xy table 

where, 

C = C32 C33 C3i ; Kk = 

(A1.2) 

O 0 0  

O k -k (A1.3) 
1 o ‘23 ‘211 

where, 

(A1.4) 

(A1.5) 

(A1.6) 

2 m22 = J 2 + m j  

A.2 



The model of the xy table 

m33 = <m,+m,-mt(-> 1 1  +-mt(-)2+rne-2me(-) 1 9 2r +me(-) 2 Ir 2 
d 3  d d d 

A.3 



The mode1 of the xy table 

n22 = w2sign(Q,2) 

The following parameters have been determined by local identification. 

mS= 2.3 kg, mt= 8.5 kg, me= 2.3 kg, 1= 1.25 m, d= 1 m, r= 0.01 m 

The foIlowing parameters have been determined by some identification algorithmen ( v.d 
Molengraft, 1989). 

J,= 2.15 kgm2, J,= 1.45 kgm2, wl=  0.47, w2= 0.15 

A.4 



Simulation results of some theoretical situations 

APPENDIX B: SIMULATION RESULTS OF SOME THEORETICAL SITUATIONS 

In this appendix I will show and discuss some simulation results. These results are the most 
important results of the simulations I have executed with some theoretical situations. 

Theoretical situations 

I have considered the next theoretical situations: 

1) - desired trajectory: V2d' %+a2cos(u2t) ; &d' -a2u2sin(u2t) ; .. 
(Pld= al+alcos(wlt) ; @id' -alulsin(ult) ; .. 
a2= 25 rad, u2= 10 rad/s and al= 25 rad, ml= 10 rad/s 
see 'plot O' for these trajectories. 

- spring constant: k= 1 Nm/rad 

- control gain parameters: kl= 0.1, ka= 0.01, k3= 0.01, hl= 5 and %= 5 

- integration accuracy: tol= 0.01 

- tracking error t=O: arp2(O)= O,  acp,(O)= O, av3(O)= O 
- velocity error t=O: ~ c i ) ~ ( O ) =  O, A@I(O)= O, acQ3(0)= O 

2). As situation 1 but now: 

- integration accuracy: tol= 0.001 

3). As situation 1 but now: 

- tracking error t=O: arp2(0)= -10 rad, arpl(0)= -10 rad, arp3(0)= -10 rad 

4). As situation 3 but now: 

- control gain parameters: k,= 0.5, k2= 0.05, k3= 0.05, hl= 10 , h= 10 

B. 1 



Simulation results of some theoretical situations 

5). As situation 1 but now: 

- velocity error t=O: A ~ ~ ( O ) =  100 rad/s, 100 rad/% A ~ ~ ( O ) =  100 rad/s 

6). As situation 1 but now: 

- spring constant: k= 0.1 Nmhad. 

The simulation results 

Of every situation I have made the following plots: 

tracking error cp2d-92 
tracking error (Pld-(P1 
velocity error Q2d-62 
velocity error @1d-@í 

velocity error ip3r-41~ 
elasticity 'p3-cp1 
inputs us and u, 

q3r-C11 and cp3-"1 

The structure of a page with plots is: 

Now I will give per situation the simulation results (see the following pages). 
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Desired trajectorie: plot O 

path phi2d 40 7 
path dphi2d 400 
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situation 1 

tracking error phi2 0.02 
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tracking error dphiZ I ,  1 

I 
3 

-1 i 
O 1 2 

time [SI 

phi3 and phi3r 
I 

tracking error Phil 0.04 

O 1 2 3 
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time [SI 
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O 1 2 
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situation 2 

~10-3 tr. error ohi2 
I I 

-7 I I 
O 1 2 3 

time [SI 
-e 

0.05 

CI 

d 
3 0  .- 
'- u 

N ._ 7 -0.05 
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O 1 2 3 

time (s j 
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time [sJ 

tracking error dphil o. 1 
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situation 3 

tr. error phi2 5 ,  

! 

time [SI 

- -  
O 1 2 

time [SI 
3 

." 
O 1 2 3 

time [SI 
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situation 4 
tr. error phi2 

5r 1 
I 
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time [SI 
tracking error dohi2 1001 1 

-50' i 
O 1 7 3 
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situation 5 
tr. error phi2 3 ,  
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situation 6 
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time [SI 
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Discussing the simulation results 

situation 1 

It appears that the tracking errors cp2d-cpZ7 cpid-cp, and the velocity errors @,d-cíil are not 
equal to zero, and that these errors will not converge to zero. 
According bo the theory (proof of stability) the errors have to converge to zero. However, we 
may not forget that the simulations are an approach of reality. In the case of situation i the 
integration accuracy is equal to 0.01. This means that the integration algorithm will adapt the 
time step At so that the integration error will not be bigger as 0.01. 
So, in the case of the simulations we have to do with a discontinuous situation. and we have to 
do with integration errors. That is the reason why the errors will not converge to zero ( see also 
situation 2). 

situation 2 

By reducing the integration accuracy with a factor 10 its appears that the errors will also reduce 
with a factor 10. We can conclude that the integration algorithm with a certain accuracy will 
introduce some small tracking- and velocity errors. These errors will reduce by reducing the 
integration accuracy (practical disadvantage computing time will increase). 

situation 3 

It appears that the tracking errors are controlled to zero ( in fact to the same value as in situation 
1). It also appears that the tracking error cp,-cp, will not converge to zero, and that the velocity 
error (I,,-@, will converge to zero. It is possible to explain this aspect. 

With the proof of stability I have proved that: 
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~~ ~ 

It appears that: 

t 4 c 9  c$3,-q13 = o 

In the case of cp3, there is no relation between and cps, so cp3r-cp3 will not converge to zero: 

t +Oc) cp3,-933 f 0 (A2.4) 

situation 4 

It appears by increasing the control gain parameters, that the tracking and velocity errors will 
converge faster to zero. This is in accordance to our expectations. 

situation 5 

It appears that the velocity errors are controlled to zero. 

situation 6 

It appears that if flexibility plays an important role, that the tracking- and velocity errors will stay 
small. It also appears that cpi-cp3 gets an unrealistic big value. 

Note: 

I have executed some more simulations with other springconstants, desired trajectories, control 
gain parameters, integration accuracies and start errors. The results of these simulations are in 
accordance to the expectations, and the results don’t lead to new insights. 
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APPENDIX C: SIMULATION RESULTS OF SOME PRACTICAL SITUATIONS 

In this appendix I will show and discuss some simulation results. These results are the most 
important results of the simulations I have executed with some practical situations. 

Brastisal situations 

I have considered the next practical situations: 

1) - desired trajectory: q2d' 9+a2sin(co2t), ... 
qld" al+alcos(o3t), S.. 

a2= 25 rad, co2= 1 rad/s and al= 25 rad, co1= 1 rad/s 

- spring constant: k= 1 Nm/rad 

- control gain parameters: kl= 0.5, k2= 0.05, k,= 0.05, hl= 10 and h2= 10 

- integration accuracy: can not be chosen 

- discretization: Att,= 0.001 S, Ats= 0.005 S (Atm= 0.006 S) 

- particularies: none ( no start errors, no wrong parameter estimations, no 
unmodeled dynamics, etc.) 

2) As situation 1 but now: 

- co2= 10 rad/s, col= 10 radh. 

3) As situation 2 but now: 

- discretization: Atr= 0.002 S, hts= 0.008 S (Atm= 0.01 S) 

4) As situation 2 but now: 

- discretization: Atr= 0.005 S, Ats= 0.005 S (Atm= 0.01 S) 
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5) As situation 2 but now: 

- discretization: Atr= 0.005 S, At,= 0 S (Atm= 0.005 s) 

6) As situation 2 but now: 

- discretization: Att,= 0.005 S ,  At,= 0.003 S (Atfm= 0.008 S )  

7 )  As situation 2 but now: 

- tracking errors t= O:  AC^^= -10 rad, a'p3= -10 rad 

8) As situation 2 but now: 

- tracking errors t= o: 
- velocity error t= O:  

AT%= -25 rad, B . C ~ ~ =  -25 rad 
A&= -250 rad/s 

9) As situation 2 but now: 

- wrong estimated parameters: reality: w l=  0.47 Nm model: wle= 0.3 Nm 
w2e= 0.1 Nm w2= 0.15 Nm 

10) As situation 2 but now: 

- unmodeled dynamics: reality: w l=  0.47 Nm 
w2= 0.15 Nm 

model: wle= O Nm 
w2e= O Nm 

11) As situation 3 but now: 

- spring constant: k= 0.1 Nm/rad 
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12) As situation 3 but now: 

- measure errors: - angular position + white noise vp= sprand(t) + sp= 0.1 
- angular velocity + white noise v,= Qrand(t) + Q= 1 

note: rand(t)= white noise, between -1 and 1. 

Simulation results 

I have made the same plots of every situation as of the theoretical situation ( see appendix B). 
The structure of a page with plots is the same as given in apendix B. 
Now I will give per situation the simulation results (see the following pages). 
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Discussion of the simulation results 

situation 1 

If the angular velocities co1 and w2 have a small value, the controller will control the tracking- 
and velocity errors to zero. 

situation 2 

If we chose a bigger value of co1 and co2 the tracking- and velocity errors will increase (= logical). 
However, the system stays stable. It appears that the velocity error @,,-Cp, have a big value. 
Further are the peaks in the velocity errors @2r-@2 and i$lr-@l strange. I don’t have a clear 
explanation of this phenomenom. It could be possible that numerical aspects will cause this 
peaks. 
Further, it appears that cpl-cp, has a maximum of 4 rad. In reality the slide of the xy table will 
get stuck if this difference will grow too big. The question is at which difference this 
phenomenom will taken place. The answer of this question is not exactly known. 

situation 3 to situation 6 

By variation of Atr and ats the tracking- and velocity errors will change in accordance to the 
expectations. If we chose At, and/or Ats too big, we will get a instable system behaviour. 

situation 7 and situation 8 

It appears that the start errors are controlled to zero. The tracking error q~,~-rp, will not converge 
to zero ( the same as at the theoretical situation). 
It also appears that at the beginning of the simulations, the inputs get big values. In practice this 
can give problems, because the inputs are limited. 

situation 9 and situation 10 

If the model with which we calculate the inputs (6.3 to 6.6) exists some wrong estimated 
parameters, it appears that the tracking- and velocity errors are bigger. But it appears also that 
(at the considered situations) the system behaviour stays stable ! 
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situation 11 

By decreasing the spring constant it appears that the tracking- and velocity errors are bigger but 
reasonable (instability !?). It also appears that cpi-cp3 is very big. In practice this is not possible. 
So, it is not recommended to do experiments with this situation. 

situation 12 

It appears that the presence of measure noise will cause a capricious expiration in time of the 
tracking- and velocity errors and of the inputs. In the case of situation 12 the tracking- and 
velocity errors don’t have a bigger value as in the case without measurement noise. However, 
if we chose bigger values of avp and a, ( see 6.6 to 6.8) the errors will increase. 

Note: 

I have executed some more simulations with other situations. The simulation results are in 
accordance to the expectations. The simulation results don’t lead to new insights. 

The mean conclusion of the discussion of the simulation results is that if we don’t chose a too 
extreme situation, that the results are satisfying. So, there will be a reasonable change that the 
C C ï C  controller is suitable for the controlling of the xy table. 
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