

The bit full-decomposition of sequential machines

Citation for published version (APA):
Jozwiak, L. (1989). The bit full-decomposition of sequential machines. (EUT report. E, Fac. of Electrical
Engineering; Vol. 89-E-223). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d327e645-caa1-4624-94f8-b86f86e80b6d

The Bit Full-Decomposition
of Sequential Machines
by
L. J6zwiak

EUT Report 89-E-223
ISBN 90-6144-223-0

May 1989

Eindhoven University or Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

ISSN 0167-9708

Faculty of Electrical Engineering

Eindhoven The Netherlands

Coden: TEUEDE

THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES

by

L. Jozwiak

EUT Report 89-E-223

ISBN 90-6144-223-0

Eindhoven

May 1989

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Jozwiak, L.

The bit full-decomposition of sequential machines /
by L. Jozwiak. - Eindhoven: Eindhoven University of
Technology, Faculty of Electrical Engineering. - Fig. -
(EUT report, 155N 0167-9708, 89-E-223)
Met lit. opg., reg.
ISBN 90-6144-223-0
5150 664 UDC 681.325.65:519.6 NUG1 832
Tre£w.: automatentheorie

The bit full-decomposition of sequential machines.

L. Jozwiak

Digital Systems Group, Faculty Electrical Engineering,
Eindhoven University of Technology, The Netherlands

Abstract - Control units and serial processing units of today's
information processing systems must realize complex processes, which
are usually described in the form of a sequential machine or a number of
cooperating sequential machines. Large machines are difficult to:
design, optimize, implement and verify. Therefore, there is a real need
for CAD tools, which could decompose a complex sequential machine into
a number of smaller and less complicated partial machines.

For many years, the decomposition of only the internal states of
sequential machines has been studied. However, this sort of
decomposition is not a sUfficient solution. The complexity of a circuit
implementing a sequential machine is a function not only of machine's
internal states but as well of inputs and outputs. Furthermore, the
possibility to implement a machine with today's array logic building
blocks depends not only on the number of internal states but as well on
inputs and outputs. So, there is a real need for decompositions upon the
states, inputs and outputs of a sequential machine, i.e. for full­
decompositions.

During the full-decomposition process, the input and/or state
and/or output symbols (values) can be decomposed or the input and/or
state and/or output bits. So, it is possible to perform the symbol full­
decomposition or the bit full-decomposition.

This report provides the classification of full-decompositions and
describes briefly the theoretical foundations of bit full­
decomposition.

Comparing to the symbol full-decomposition,the bit full­
decomposition has the following advantage: input and output decoders
are reduced to an appropriate distribution of the primary input and
output bits between the partial machines.

In the report, definitions of a bit partition and bit partition
pairs are introduced and their usefulness to bit full-decompositions
is shown. It is proved, that the bit full-decomposition can be treated
as a special case of the symbol full-decomposition; therefore, no new
decomposition theory is needed for this case, but the symbol full­
decomposition theory together with the theorems introduced here
constitute the theory of bit full-decomposition.

Finally, a comparison is made between the symbol and the bit full­
decompositions and some practical conclusions and remarks are
presented.

In the appendix, an example is provided that illustrates the
possibility and the practical usefulness of bit full-decomposition.

Based on the developed theory, the CAD algorithms calculating
different bit full-decompositions have been developed and
implemented. Those algorithms and the practical results are presented
and estimated in the separate paper [5].

Index Terms - Automata theory, decomposition, logic design, sequential
machines.

Acknowledgements - The author is indebted to Prof. ir. A. Heetman and
Prof. ir. M. P.J. Stevens for making it possible to perform this work, to
Dr. P.R. Attwood for making corrections to the English text and to mr.
C. van de Watering for typing the text.

CONTENTS

page

1. Introduction 1

2. Types of full-decomposition 2

3. Partition pairs and bit full-decompositions 5

4. Comparison of different sorts of full-decomposition 12

5. CAD algorithms and practical results 13

References 15

Appendix (Example) 16

1

1. Introduction.

control units and serial processing units of today's

information processing systems must realize complex processes,

which are usually described in the form of a sequential machine or

a number of cooperating sequential machines. Large and

complicated sequential machines are difficult to: design,

optimize, implement and verify. Therefore, there is a real need

for CAD tools, which could decompose a complex sequential machine

into a number of smaller and less complicated partial machines.

Array logic implementation techniques dictate also the

requirements for decomposition. One of possible approaches to the

decomposition of sequential machines is the algebraic approach.

For many years, the algebraic decomposition of only the

internal states of sequential machines has been studied [6)+

[17). However, this sort of decomposition is not a sUfficient

solution. The most important parameters such as the complexity,

speed, testability, power consumption etc., of a circuit

implementing a sequential machine are functions not only on

machine's internal states but as well on inputs and outputs.

Furthermore, the possibility to implement a machine with today's

array logic building blocks depends not only on the number of

internal states but as well on inputs and outputs. So, there is a

real need for decompositions upon the states, inputs and outputs

of a sequential machine, Le. for full-decompositions [1)+[4).

Algebraic full-decompositions can be used in order: to make it

possible to implement a given sequential machine with existing

building blocks or inside a limited silicon area; to improve some

design parameters (speed, testability, ..• J; to minimize

partially the resultant circuit and to make it possible to

optimize the separate partial machines, although it may be

impossible to optimize the whole machine.

In this report, the classification of full-decompositions is

provided, the theoretical foundations of bit full-decompositions

are briefly described and a comparison of different sorts of full­

decompositions is made.

In the appendix, an example is provided that illustrates the

possibility and the practical usefulness of bit full­

decomposition.

Based on the developed theory, the CAD algorithms that

2

calculate different bit full-decompositions have been developed

and implemented. Those algorithms and the practical results are

presented and estimated in the separate paper [5].

We close our presentations with conclusions about the

practical usefulness of full-decomposition and the CAD

algorithms developed by us.

2. Types of full-decomposition.

DEFINITION 1 A sequent:ial machine M is an algebraic system

defined as follows:

M = (I, 5, 0, ~, 1) ,

where:

I - a finite non-empty set of inputs,

5 - a finite non-empty set of internal states,

o - a finite set of outputs,

~ - the next-state function: ~: 5xI ~ 5,

1 - the output function, 1: 5xI ~ 0 (a Mealy machine),

or 1: 5 ~ 0 (a Moore machine).

When the output set, 0, and the output function, 1, are not

defined, the sequential machine M = (I, S, ~) is called a st:at:e

machine.

Let M = (I, 5, 0, ~, 1) be the sequential machine to be

decomposed. In [3][4], such a full-decomposition is presented,

where it is necessary to find two partial sequential machines, M1=

(Il,51,01,~1,11) and M2= (I 2,5 2 ,02,a 2 ,12), each having fewer

states and/or inputs and/or outputs than M. Each of them can

calculate its next-states and outputs using only the information

about its own input and its own state and, in combination, they

form a sequential machine M' that has the same input-output

behaviour or input-state and input-output behaviour as M (common

realization of the next-state and output functions - Fig. 1).

3

r --- -- --- -- --- ,
I I, ~ ~ I 0 , I J M,)- -
I '- J 6 ' I
I OdS,

OdS 2
I

I
I I

12 3 2 O 2 I -..J M2 }-- I
I

'- J ~2
I

M
L - - - - - - -- ------ J

Fig. 1 The full-decomposition of a sequential machine M
with two partial sequential machines M, and M2•
(common realization of the next-state and output
functions).

0

Instead of considering the realization of a machine M as a

whole, the realization of the next-state function, 3, can be

c'onsidered separately from the output function, ~.

It is possible to abstract from the output function), and to

decompose the state machine which is defined by I, S and the next­

state function 3. Then, it is possible to realize the output

function)', where), is treated as a function of the primary inputs

to a sequential machine M (in the Mealy case), and the states of
partial state machines M, and M2 that are obtained from a full­
decomposition of the state machine defined by I, Sand 3 (separate
realization of the next-state and output functions - Fig. 2).

rF~-------;====~---I -,
I I, 3 ' S, I I
I M, I

I
I 5, I
I S2 I

12 3
2

S2 I M2 I
I M I L- _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

Fig. 2 The full-decomposition of a sequential machine M
with the separate realization of the next-state
and output functions.

o

4

Both types of the full-decomposition above can be considered

as decompositions realizing the state and output behaviour of a

machine M, but the first type may be considered also as a

decomposition realizing only the output behaviour of M [3][4].

From the viewpoint of connections between the component

machines, it is possible to distinguish the following types of

full-decompositions:

- g parallel full-decomposition - each of the component machines

can calculate its own next-states and outputs independently of

the other component machines and only from the information

about its own internal state and the partial information about

the inputs;

- g serial full-decomposition - one of the component machines,

which is called the tailor dependent machine (M 2), uses

information about the states or outputs of the second machine,

which is called the head or independent machine (M 1), plus the

information about its own state and the partial information

about the inputs in order to calculate its own next-states and

outputs;

- g general full-decomposition - each of the component machines

uses information about the states or outputs of the other

machine, plus the information about its own state and the

partial information about the inputs in order to calculate its

own next states and outputs.

From the viewpoint of the kind of information available about a

given submachine and used by another submachine in order to

calculate its next-states and outputs, the following two types of

a full-decomposition can be distinguished:

- a decomposition with information about the states (~£);

- a decomposition with information about the outputs (~Q).

A given submachine can use the information about the "present"

or the "next" state or output of the other submachine;

consequently, the class E (present) and the class N (next) of

decompositions can be distinguished.

The sets I, Sand ° of inputs, states and outputs can be treated

as sets of symbols, but for the sets I and 0, there is another

treatment too.

contrary to the states, which are given in the form of symbols,

5

in most cases, and for which codes have to be chosen, the inputs

and outputs of a sequential machine are usually pre-assigned. In

most cases, the inputs and outputs are given in the form of vectors

of the input/output bit values, because inputs comprise direct

signals from the surroundings of the machine, while outputs are

the direct control signals sent by the machine to the

surroundings. Of course, input and output vectors can also be

treated as symbols, but the vector view of them is often useful in

relation to the full-decomposition, because it allows the input

and output bits to be decomposed between the partial machines

instead of the input and output symbols.

In this case, the input and output decoders, 01 and 9 are reduced

to the appropriate distribution of the input and output bit lines.

80, each of the types of full-decomposition considered previously

can be considered as either a sYmbol full-decomposition or a bit

full-decomposition.

Il = [I11' •• ,I1 k] 01 = [Ol l ,··,Ol p]
MI

I = [11' .. ,In] ° = [01' .. ,Om!
01/S 1 02/8 2

M2
12 = [12 1 , •• ,12 1] 02 = [021' .• ,02r]

{I1 1 ,··,I1 k } ~ {II,··,I n } , {I2 1 ,··,I2 j } ~ {II,··,I n } ,

{OIl' •• ,01 p} Ii {O l' •. ,Om} , {02 l' •. ,02 r} Ii {O l' •• ,Om}

01 U 02 = 0.

Fig. 2 The bit full-decomposition of a sequential
machine M.

3. Partition pairs and bit full-decomposition.

The concepts of partitions and partition pairs introduced by

Hartmanis [9][10][11][12] are useful tools for analyzing the

information flow in and between machines; therefore, they were

used in this work.

Let 8 be any set of elements.

DEFINITION 3.1

11 = {Bd B 1 •

6

Partition Z on S is defined as follows:

Sand BI n BJ = 0 for ifj and U BI = S},

i. e. a partition 11 on S is a set of disj oint subsets of S whose set

union is S.
For a given SES, the block of a partition 11 containing s is

denoted as: [S]lI and [S]lI = [t]lI is written to denote that sand t

are in the same block of 11. Similarly, the block of a partition 11

containing S',where S'. S , is denoted by [S']lI.
The partition containing only one element of S in each block is

called a zero partition and denoted by 11.(0). The partition

containing all the elements of S in one block is called an identity

or one partition and is denoted by 1I.(I).

Let 111 and 112 be two partitions on S.

DEFINITION 3.2 Partition product 11 1.11 2 is the partition on S such

that [S]1I 1·1I 2 = [t]1I 1·1I2 if and only if [S]1I1 = [t]1I 1 and [S]1I2 =

[t]1I 2•

DEFINITION 3.3 Partition sum 11 1+11 2 is the partition on S such

that [S]1I 1+1I 2 = [t]1I1+1I2 if and only if a sequence: s=so'
sl, ••• ,sn=t, slES for i=l •• n , exists for which either

[sl]11 1 = [sl+I]1I 1 either [sl]1I 2 = [sl+I]1I 2, 0 ~ i ~ n-l.

DEFINITION 3.4 11 2 is greater than or equal to 11 I: 11 1 ~ 11 2 if and

only if each block of 111 is included in a block of 11 2 .

Thus 111 ~ 112 if and only if 11 1 .112 = 111 if and only if 11 1+112 = 11 2,

Let 11., T SI 11 II 11 0 be the partitions on M = (I, S, 0, a, A), in

particular: 11., T. on S, lIr on I, 110 on O.

DEFINITION 3.7

(i) (11" To) is an s-s partition pair if and only if

VBElI. VXEI : Ba x • B', B'ET ••
is an I-S partition pair if and only if

VAElIr VSES : sa~ • B , BEll.
(iii) (lIS,1I0) is an s-o partition pair if and only if

VBElI, VXEI BA X • C , CEliO (Mealy case)
or

(Moore case).

7

(iv) (nI,n O) is an I-O partition pair if and only if

VAEn I VSES : slA S C , CEno (Mealy case)

or

VAEn I VSES : sl s C ,CEno (Moore case).

The practical interpretation of the notions introduced above

is as follows:

(n s' T s) is an S-S partition pair if and only if the blocks of n s

are mapped by M into the blocks of Ts. Thus, if the block of ns

which contains the present state of the machine M is known as well

as the present input of M, it is possible to compute unambiguously

the block of T s which contains the next state of M for the states

from a given block of ns and a given input, Le. the input and the

block of n s determine unambiguously the block of T s. Interpreting

the notions of I-S, S-O and 1-0 partition pairs is similar.

In the case of a Moore machine, the definition of an 1-0 pair is

trivial, because each (n I , n sl will satisfy it (the output of M is

defined by the state of M unambiguously).

DEFINITION 3.8 Partition ns has a substitution property (it is an

SP-partition) if and only if (ns,n s) is an S-S pair.

For the purpose of bit full-decomposition, the concepts of bit

partitions (as a special case of partitions) and bit partition

pairs has been introduced by us.

Let B be a set of input or output bits: B = (b l ,b 2 , ••• ,b'B 1 J.

Let T = (t l ,t 2 , ••• ,t'T,J be a set of input/output symbols.

Each input/output bit b k : b k EB, introduces a two block

partition nT(b k) on the set of input/output symbols T. In one

block of n T (b k), these symbols are contained for which bit b k has

the value~; in the second block of nT(b t) are the symbols for

which b k has the value 1. The product of partitions n T (b k) for all

the bi ts b k: b k EB defines unambiguously the set of all

input/output symbols, i.e.

r-r nT(b k) = nT(~)·
b k EB

8

DEFINITION 3.9 A partition

n B = (bl,b2, ... ,bk,(bt+l, ... ,bIBI)} on the set of bits B,

where:

- important bits: b 1,b 2 , ... ,b t are kept in separate blocks,

- don't ~ bits: bt+1, ... b n are kept in a single block

called g don't ~ block and denoted by

dcb(n),

is called a bit partition on B.

The product (.) and sum (+) operation and the ordering relation

(~) for bit part ions are normal partition operations and ordering

relations, but the block of the bit partition's product being the

product of a block (important or don't care) with an important

block is an important block and the block of the bit partition's

sum being the sum of some blocks (important or don't care) with a

don't care block is a don't care block. The zero partition n B (0) is

defined as a bit partition with an empty don't care block, i.e. n B=

n B (0) if and only if dcb(nB) = fil.

Let nIB be a bit partition on the set of input bits IB =
(ib 1 , ... , ib I I B I). Let nOB be a bit partition on the set of output

bits OB = {obi' ... ,ob lOB I} and let T s be a (symbol) partition on

the set of states S.

DEFINITION 3.10 (nIB,Ts) is an IB-S partition pair

if and only if VSES VibtE dcb(n IB):

= [S8[lbl, ... ,lblk_l),1,lblk+l), ... ,lbIIBllTs'

i.e. for each state SES, the next sates are included in the same

block of Ts independently of the values of all the bits

ib t : ibkE dcb(IB).

Let no(ob t) be the two block partition that is introduced by

the output bit ob k: obtEOB on the set of output symbols O.

9

DEFINITION 3.11 (Ts,n OB) is an S-OB partition pair

if and only if Vx<I Vs,t<SA[slTs= [tlTs Vobkj dcb(nOB):

[sl k 1 no (ob k) = [t 1xl no (ob k) ,
Le. the input value x<I and the block BTs <B define unambiguously

the value of each output bit ob k: obkj dcbmo B)'

DEFINITION 3.12 (nIB,n OB) is an IB-OB partition pair

if and only if Vs<S Vib k< dcb(n IB) Vobkj dcb(nOB):

[s 1 [i b 1 , ••• , i b (k _ 1) , 0 , i b (k + 1) , ••• , i b I I B I I 1 no (ob k l =

= [s '). [i b 1 I ••• lib (k _ 1) , 1 lib (t + 1) I ••• lib, I B l]] 7r 0 (ob t)

i.e. for each state s, the values of all the output bits

obkj dcb(nOBl are independent of the values of all the input bits

ib k < dcb (n I B l •

Let nl be a partition that is introduced on the set of input

symbols I by a set of input bits IB-dcb(nIBl, i.e.:

Let nf be a partition introduced on I by the set of "don't
care" input bits dcb(nIBl,

Le. nj = n
ib k <dcb(n l Bl

THEOREM 3.1

If (n l B' Ts) is an IB-S partition pair and nl is the partition on

I that is introduced by the set of input bits IB-dcb(nIBl,
then:

(nl,nsl is an I-S partition pair.

Proof.

From the definition of an IB-S partition pair, it follows

immediately that the block of a partition TS that contains the

next-state sax for a given state s<S and a given input x<I, is

independent of the block of a partition nl (ib k) containing the
current input x, for all ib k< dcb(n IB). Therefore, the block of

10

TS' containing the next-state S3 x depends only on s and the blocks

of partitions TC I (ib k) for ib k: ibkJ dcb(TC IB), i.e. the block of
Ts containing the next-state sax is determined unambiguously by

the present state 5 and the block of a partition TC I which
represents the product of partitions TC I (ib k) for all ib k: ib t fIB­

dcb(TC IB). 50, the partitions, TC I and Ts' constitute an 1-5
partition pair.

The following two theorems can be proved in a similar way.

THEOREM 3.2

If (Ts,TCoB) is an 5-0B partition pair and TC o is an output

partition on 0 that is introduced by the set of output bits

OB-dcb(TCoB)'
i.e. TC o = n

ob k fOB-dcb(TC oB)

then, (T"TCo) is a 5-0 partition pair.

THEOREM 3.3

If (TCIB,TCoB) is an IB-OB partition pair, TCI represents a
partition on I that is introduced by the set of input bits

IB-dcb (TC I B)
and

TC o represents a partition on 0 that is introduced by the set of
output bits OB-dcb(TCoB),
then:

(TCI,TC o) is an 1-0 partition pair.

on the set of input/output Let TC~ and TCG be two partitions

bits B and let TCf and TCi be two

input/output symbols T such that :­

TCf = n TCT(b t) and

THEOREM 3.4

partitions on the set of

7r" = T n

If two bit partitions TC~ and TCG are orthogonal, then, the

symbol partitions, TCf and TCi, introduced by them, are
orthogonal too:

i.e. if TC~oTCG = TCB(O) then: TCfoTCi = TCT(O).

11

Proof_

If 7l'~'7l'g = 7l'B (0), then: dcb(7l'~'7l'g) = dcb(7l'~) 'dcb(7l'g) = "

(from the definition of a zero bit partition) .

7['-]£" = n 7l'T (b t) n 7f T(b t) = T T
b t eB-dcb (7f B) b k edcb (7fjj)

= n 7fT (b T) = n 7fT(b
k

) = 7fT (0) •

b k eB-(dcb(7fB)ndCb(7fjj» b t eB

Similar definitions and similar theorems can be introduced and

proved for weak partition pairs.

In [3] and [4], a set of constructive theorems, concerning the

existence of different kinds Of symbol full-decompositions has

been proved. Each of these theorems stated: if, for a machine M, a

given system of I-S, S-S, s-o and 1-0 partition pairs exists and

some partitions from these pairs satisfy the appropriate

orthogonality conditions, then, a given type of a symbol full­

decomposition of M will result.

For instance, if for a machine M, two trinities of partitions:

(7f I ,7r s '7l'o) and (TI,TS,TO) exist, that:

- 7l's and ts are SP-partitions,

- (7f I ,7f s) and (tl,tS) are I-S partition pairs,

(7f I ,7fo) and (tl,tO) are 1-0 partition pairs,

- (7f s ,7f o) and (Ts,tO) are s-o partition pairs,

and

- 7f o·to = 7ro(~),

then:

a parallel symbol full-decomposition of M with the realization of

the output behaviour will result. If additionally 7f s ' Ts = 7fs (~)

then the state behaviour of M will also be realized.

Those facts have the following interpretation:

Let the partial machine MI in the parallel symbol full­

decomposi tion be constructed according to the trinity (7f I , 7f 8 ,7f 0)

and the partial machine M2 acoording to the trinity (t I , T 8 , TO) .

Let blocks of 7f I' 7f sand 7f 0 be adequately the inputs, states and

outputs of MI and the blocks of TI' ts and TO be adequately the

inputs, states and outputs of M2-

12

since rrl,rrs,rro and TI,Ts,TO form the listed above partition

pairs, based only on the information about the block of rr l
containing the input of M and the block of rrs containing the

present-state of M (i. e. information about the input and present­

state of M1), machine Ml can calculate unambiguously the block of

rrs in which the next-state of M is contained, as well as, the block

of rro that contains the output of M for the input from a given block

of rr l and for the present-state from a given block of rrs (Le. Ml

can calculate its next-state and output). Similarly, machine M2

based only on the information about its input and present-state

can calculate its own next-state and output. Since rr 0 • TO = rr 0 (.iii) ,

the knowledge of the block of rro and the block of TO in which the

output of M is contained, makes it possible to calculate this

output. So, if rr 0 • TO = rr 0 (.iii) , the machines M 1 and M 2 together can

calculate the state of M unambiguously. That means, that the

machines Ml and M2 operate independently of each other and they

realize together the output or the state and output behaviour of

M, i.e. M has a parallel symbol full-decomposition.

From theorems 3.1 - 3.3, it follows that: if certain bit

partition pairs exist, then, the appropriate symbol partition

pairs will exist and, from theorem 3.4, it follows that: if two bit

partitions are orthogonal, then, the appropriate symbol

partitions are orthogonal too.

So, the bit full-decomposition can be considered as a special

case of symbol full-decomposition. No new theory for the bit full­

decomposition needs to be developed; since, the theory for the

symbol full-decomposition described in [3][4] and supplemented

with the theorems provided in this report, can be utilized

directly for bit full-decomposition.

4. Comparison of different sorts of full-decomposition.

Symbol-full-decomposition is general while bit-full­

decomposition is a special case, Le. a given type of bit-full­

decomposition cannot exist, whereas, that of symbol-full­

decomposition can. However, for symbol-full-decomposition input

and output decoders must be realized in the form of combinational

circuits whereas for bit-ful-decomposition they are reduced to

the appropriate distribution of input and output bits between the

13

partial machines.
From the practical point of view, full-decompositions of type

N are not so attractive as decompositions of type P, because in

decompositions of type N, one of the component machines has to be

able to compute its next-state or output, before the second
component machine, using the information about the computed next­

state or output of the first machine, can compute its own next­

state or output. In this situation, the frequency of input signals

needs to be limited and a two-phase clock is required.

The decompositions with the separate realization of the next­

state and output functions are easier to find than the

decompositions with the common realization, but, using them the

suboptimal solutions can be found only, because the common parts

of the next-state and output logic cannot be shared.

In the case of serial and general decompositions, connections

between partial machines have to be implemented whereas for
parallel decompositions no connections are needed. The

complexity of combinational logic of the component machines is
also usually low for parallel decompositions (reduced

dependencies). Therefore, solving the practical cases starts

with trying to find an appropriate parallel full-decomposition

which satisfies some requirements.

5. CAD algorithms and practical results.

Based on the theory of full-decomposition provided in

(1) (2) (3) (4) and in this report, the CAD algorithms, that
calculate different parallel and serial full-decompositions,
have been developed and implemented.

The practical aspects of full-decompositions are described
more precisely in a separate paper (5).

We close our presentation with some conclusions about the
practical usefulness of full-decompositions and the CAD­
algorithms and programs developed by us.

For a benchmark of 43 medium and large (number of input bits ~
10, number of output bits ~ 10, number of states ~ 20) practical

sequential machines we got from out colleagues, we run programs
for bit full-decompositions implemented following the concept of

14

weak partition pairs.

We found good parallel bit full-decompositions for 30% of the

examples and we found good serial bit full-decompositions for 50%

of the machines. A good decomposition means: reduction of the

silicon area used for implementing a sequential machine to be

decomposed or a small increase of the silicon area, but each of the

partial machines is substantially smaller than the original

machine (improvement of the other design parameters).

Since some machines do not possess any parallel and/or serial

full-decompositions, many machines do not possess good parallel

and/or serial full-decompositions and every machine possesses

general decompositions, we are now busy developing CAD tools for

general full-decompositions.

For some large sequential machines with special internal

features (e. g. a lot of "don I t cares"), the number of SP­

partitions and/or partition pairs which have to be generated and

checked in order to find useful parallel or serial full­

decompositions can be so high, that, with the use of our programs

and computers, we are not able to calculate the decompositions in

reasonable time (two cases from our benchmark) ; however, for many

large machines we reached good results.

We are now busy developing faster full-decomposition tools

according to the concept of labelled partition pairs.

15

REFERENCES

[1] Y. Hou Trinity algebra and full-decompositions of
sequential machines, Ph.D. thesis, Eindhoven University of
Technology, The Netherlands, 1986.

[2] Y. Hou : Trinity algebra and its application to machine
decompositions, Information Processing Letters, vol.26,
p.127-134, 1987.

[3] L. Jozwiak: The full decomposition of sequential machines
with the state and output behaviour realization, EUT Report
88-E-188, Eindhoven University of Technology, The
Netherlands, 1988.

[4] L. Jozwiak: The full decomposition of sequential machines
with the output behaviour realization, EUT Report 88-E-199,
Eindhoven University of Technology, The Netherlands, 1988.

[5] L. Jozwiak, F. Vankan: Bit full-decompositions of
sequential machines algorithms and results, to be
publ ished in the Proceedings of the Canadian Conference on
Electrical and Computer Engineering, Montreal, September
1989.

[6] G. Cioffi, E. Constantini, S. de Julio : A new approach to the
decomposition of sequential systems, Digital Processes,
vol.3, p. 35-48, 1977.

[7] G. Cioffi, S. de Julio, M. Lucertini : optimal decomposition
of sequential machines via integer nonlinear programming: A
computational algorithm, Digital Processes, vol.5, p. 27-
41, 1979.

[8] A. Ginzburg : Algebraic theory of automata, N. Y .: Academic
Press, 1968.

[9] J. Hartmanis : Loop-free structure of sequential machines,
Inf. & Control, vol.5, p.25-43, 1962.

[10] J. Hartmanis Further results on the structure of
sequential machines, J. Assoc. Comput. Mach., vo1.10,p.78-
88, 1963.

[11] J. Hartmanis, R.E. Stearns Pair algebra and its
application to automata theory, Inf. & Control, vol. 7 ,
p.485-507, 1964.

[12] J. Hartmanis, R. E. Stearns : Algebraic structure theory of
sequential machines, Englewood Cliffs, N.J.: Prentice­
Hall, 1966.

[13] W .M. L. Holcombe : Algebraic Automata Theory, Cambridge
University Press, 1982. (Cambridge studies in advanced
mathematics, vol.1).

[14] Yu. V. Pottosin, E.A. Shestakov : Approximate algorithms for
parallel decomposition of automata, Autom. Contr. & Comput.
Sci., vol. 15, N02, p.24-31, 1981. (Translation of: Avtom. &
Vytchisl. Techn.).

[15] Yu.V. pottosin, E.A. Shestakov E.A. : Decomposition of an
automaton into a two-component network with constraints on
internal connections, Autom. Contr. & Comput. Sci., vol. 16,
No 6, p.24-31, 1982.

[16] M. Yoeli : The cascade decomposition of sequential machines,
IRE Trans. Electron. comput., vol.EC-10, p.587-592, 1961.

[17] M. Yoeli : Cascade-parallel decompositions of sequential
machines, IEEE Trans. Electron. Comput., vol. EC-12, p.322-
324, 1963.

16

APPENDIX
Example.

Task: implement machine sl.kis given below with a minimum

number of PLA's having 8-bit outputs.

Since the number of output bits of the machine is NOB = 6 and the

minimal number of bits needed in order to implement the internal

states of the machine is rlog 2 Nsl = 5 (number of states NS=20), it is

impossible to implement the machine with one PLA having 8 bit outputs

(NOB + rlog2 Nsl = 11 > 8).

So, we have to use at least two such PLA's and to decompose the

machine into two submachines.

We performed the task using our decomposition programs. Below, the

results reached by the programs for computing the bit serial full­

decomposition (a special case of the serial full-decomposition

without input and output decoders, but with input and output bits

distributed in an appropriate manner among the submachines) are

presented.

We reached two sUbmachines:

Ml (the head machine) with NS = 16 states and NOB = 2 output bits (NOB +

rlog2 Nsl = 6 bits)

and

M2 (the tail machine) with NS = 2 states and NOB = 4 output bits (NOB +

rlog 2 Nsl = 5 bits).

Each of these submachines is implementable with PLA having an 8-bit

output.

We reached this decomposition in 30 seconds at the APOLLO

workstation DN4000.

***** MAPPING : (M1~M2 ~M) *****
Mapping between states $1 and S2 of "1 and "2 and states of Sl.kis

S1 I S2
1 2

1 I 1 x

~ I ~ :
45 I 4 6

5 15
6 I 7 x
7 I 8 17

8
9
I 9 10

11 x
10 I 12 x
11 13 x
12 I 14 x
13 16 x
14 I 18 x
15 I 19 x
16 I 20 x

* entry = x for don't care

17

***** MACHINE sl.kis *****

1
input - I present Inext-I output-
vectorlstate state vector

-1-00-·· 1 1 000001 1- .. -0-· 14 12 011000
00- -0- .. 1 1 000001 1- .. -1- a 14 12 011000
-0- -1-·· 1 2 000011 1- .. -1 -1 14 4 011001
-1-01- .. 1 2 000011 -0- 15 17 001100
01-10-· . 1 3 001001 · -1- 15 8 001101
11·10- .. 1 4 011001 · .. ·-1 -1 12 10 101001
-1·11-· • 1 5 001011 ... ·-0-· 12 18 101000
10- -0-·· 1 6 010001 -1-0 12 18 101000
-0-···· . 2 7 000101 1- O· 9 9 100001
-1·0-· .. 2 7 000101 1-1- 9 10 101001 -1 -1- ... 2 8 001101 0-· -1-·· 9 2 000011
0-· -0-·· 3 3 001001 0-· -0-·· 9 1 000001 · .. -1 ... 3 5 001011 1- 10 10 101001
,- - -0- -- 3 4 011001 0-- -0--- 10 1 000001 ---_.--. 5 8 001101 0-· -1- .. 10 2 000011
· -0-···· 6 9 100001 .. -0- -1- 16 7 000101
·-1-···· 6 10 101001 .. -0--0- 16 19 000100 · --. ---- 4 10 101001 -0-1-·· . 16 19 000100
-0- -1-·· 7 7 000101 -1-1-· .. 16 17 001100 -1· 01- .. 7 7 000101 · -0- -0-· 13 20 100000 -1-11-· . 7 8 001101 · -0- -1-0 13 20 100000
00- -0-·· 7 11 000000 · -0- -1-1 13 9 100001 -1-00-· . 7 11 000000 · -1·· ... 13 18 101000 11-10-· . 7 12 011000 . •. -1-0- 17 17 001100 10- -0-·· 7 13 010000 · .. -1-1- 17 8 001101 01-10- . - 7 14 001000 1-· -0-·· 17 12 011000 · .• -1-·· 8 8 001101 0-· -0-· . 17 14 001000 O· ·-0-·· 8 14 001000 1- .. -0-· 18 18 101000 1-· -0-·· 8 12 011000 1···-1·0 18 18 101000 00--00- - 11 11 000000 0··-00·· 18 11 000000 00-··1-0 11 11 000000 0-·· -1-0 18 11 000000 -1-000- • 11 11 000000 0··-01-1 18 1 000001 -, -0,'-0 11 11 000000 0-· -11-1 18 2 000011 00- -01-1 11 1 000001 1- .. -1-1 18 10 101001 -1- 001 -1 11 1 000001 0-· -10-· 18 16 000010 · o· -11-1 11 2 000011 ... -1-1- 19 7 000101 -1-011-1 11 2 000011 00- -0- _. 19 11 000000 10- -01-1 11 6 010001 -1-00-· . 19 11 000000 01-100-· 11 14 001000 01-10-·· 19 14 001000 01 -1-1 .. 11 14 001000 11-10- .. 19 12 011000 01-110- . 11 15 001010 10- -0··· 19 13 010000 11- 1 ...• 11 12 011000 ·1-11 -0- 19 17 001100 100-10- - 11 16 000010 -0-·1-0- 19 19 000100 -1-010- . 11 16 000010 -'-01-0- 19 19 000100 101-101- 11 16 000010 1-0--0-· 20 20 100000 00- -10-· 11 16 000010 1- o· -1 . a 20 20 100000 10- -00-- 11 13 010000 0- - -00-- 20 11 000000 10-· -1-0 11 13 010000 0- - - -'-0 20 11 000000
101· laO· 11 13 010000 0-· -01-' 20 1 000001 0-- -00-- 14 14 001000 0-· -10-· 20 16 000010 0-·· -1·0 14 14 001000 0-· -11-1 20 2 000011 0-· -01-1 14 3 001001 1 -0- -,-, 20 9 100001 0-· -10-· 14 15 001010 1-1- 20 18 101000 O· . -11-1 14 5 001011

j

18

***** SUBMACHINE M1 *****

{(1',(2',(3',(4,6',(5,15,,(7',(8,17',(9,10',(11',(12',(13',(14',(16',(18',(19',(20')

1
input-Ipresentlnext-Ioutput-
vector\state Istatelvector

inputvector : 11 12 13 14 15 16 17 18
outputveetor : 02 05

10· ·0··· 1 4 10 '1·0'1'0 9 9 00
·1·11· ., 1 5 01 ·1·000·· 9 9 00
11·10· .' 1 4 10 00·· ·1·0 9 9 00
01·10·· . 1 3 00 00"00·· 9 9 00
• 1 ·01· .• 1 2 01 ·····1 ·0 10 14 00
·0·· , •.. 1 2 01 · .•• ·0·· 10 14 00
00· ·0··· 1 1 00 · ••. ·1·1 10 8 00
·1·00·· . 1 1 00 · ·1· •..• " " 00
·1·1· ••. 2 7 00 · ·0"1·1 11 8 00
· 1 ·0···· 2 6 00 · '0'·1·0 11 16 00
·0··· •• , 2 6 00 · -6- ·0·· 11 16 00
, •. ·0··' 3 , 10 1· ... 1·1 12 4 10
····1· .' 3 5 01 , ...• 1·0 12 10 10
0·· ·0··· 3 3 00 , ••. ·0·· 12 10 10
· ·0··· .• 4 8 00 O· •• 1 1·1 12 5 01 · . , ' 4 8 00 0·· '10·· 1Z 5 01
• ••••• O· 5 7 00 0"'01'1 12 3 00
· ••.. ·1' 5 7 00 0···· 1·0 12 12 00
01·10·· . 6 12 DO O· "00·· 12 12 00
10· ·0··· 6 11 10 ·1·1· ... 13 7 00
11 - 10· . - 6 10 10 ·0· , ... - 13 15 00
· 1 '00-·' 6 9 00 .. '0·0·· 13 15 00
00· ·0··· 6 9 00 .. ·0'-1· 13 6 00 .,." ... 6 7 00 0·· '10·· 14 13 01
· 1·01· .. 6 6 00 , .. '·1·1 14 8 00
·0'·1·· . 6 6 00 0"'11'1 " 2 01 ..•• 1· O· 7 7 00 0"'01·1 14 1 00
•.•• 1·1· 7 7 00 0····1·0

"
9 00

, •. ·0· .' 7 10 10 0·· ·00·· 14 9 00
O· ··0··· 7 12 00 ,. "·1·0 14 14 00
1·0··· .• 8 8 00 , ... ·0·· 14 " 00
1·1· •.. ' 8 8 00 ·1·01·0· 15 15 00
0-· -0-·' 8 1 00 -0- -'-0- 15 15 00
0··· , ••. ,8 2 01 · 1·11 ·0· 15 7 00
101-100' 9 11 10 10"0 .. · 15 11 10
10 .. ·1-0 9 11 10 11·10 .. · 15 10 10
10"00 .. 9 11 10 01·10 ... 15 12 00
00 .. 10· . 9 13 01 ·1·00·· . 15 9 00
101·101- 9 13 01 00"0 .. · 15 9 00
·1·010 .. 9 13 01 1·1· 15 6 00
100-10" 9 13 01 1·1 · 16 14 00
11·1 9 10 10 1· 0--1·1 16 8 00
01·110· . 9 5 01 0··· 11·1 16 2 01
01-1'1-' 9 12 00 0"'10-· 16 13 01
01·100 .. 9 12 00 0-"01-1 16 1 01
10- ·01·1 9 4 10 0 .. "1·0 16 9 00
·1·011·1 9 2 01 0 .. '00·0 16 9 00
·0 .. 11-1 9 2 01 1·0"1·0 16 16 00
,',001,' 9 1 00 1 ·0"0 .. 16 16 00
00 .. 01-1 9 1 00

j

19

***** SUBMJ\CIHNE M2 *****

(1,2,3,4,5.7 ,B, 9,11.12,13,1'.,16,18,19,20). (6. la, 15, l7n

1
S1 - S2 I input- lnext-loutPUt-

vector state vector

1 nputvector : 11 12131415 16 17 18
outputvector : 01 03 04 06

I I I 10- -0- -- 2 0001 9 I I -1-001-1 1 0001
1 1 I -1-11- - - I 0101 9 1 1 00--01-1 1 0001
I I I 11-10- -- I 0101 9 1 -1-0-1-0 I 0000
1 1 I 01 -10- -- 1 0101 9 1 1 -1-000-- 1 0000
I 1 -1- 01 - -- I 0001 9 I 00- --1-0 1 0000 , 1 I -0- -,_ .. 1 0001 9 I I 00- -00 .. , 0000
1 , I 00--0-" I 0001 9 2 I -. • , , I -'-00-" , 0001 10 ,

1
- - - - -1-0 1 HOO , 2 I --"._--. • 10 I - - - - -a-- I 1'00

2 1 I -1 - 1 - .. - 1 0111 10 1
1

- - - - -1 -1 2 Hal
2 I I -I-a I 001' 10 2 --.. -_ .. •
2 1 I -0 .. - - -- , 0011 11 1 I --,- ---- 1 1100
2 2 I ------.- • I' 1

I
--0--1-1 1 1001

3 1 I 1-,,0--- 1 0101 11 1 - -0- -1-0 1 1000
3 I -"-1-" 1 0101 II I - -0- -0-- I 1000
3 1 I a .. -0- -- 1 0101 1\ 2 I -------- •
3 2 I ----- --- • 12 I 1"--1-\ I 010\
4 1 I -------- 2 1101 12 1 I 1 .. --\-0 1 0100
4 2 I "1- .. -- 2 1101 12 1 I- - - -0- - I 0100
4 2

1
.. 0 - I 1001 12 I I 0---11-1 1 0101

5 1 ._----_. I 0111 12 1 0- - -10-- 2 0100
5 2 I .. - - - - I- I alII 12 1

1
0- --01-1 1 0101

5 2 - - - -- -0- 2 OlIO 12 1 0- - - -1-0 \ 0100
6 \ I 0\- 10- -- \ 0100 12 I I 0- - -00-- I 0100
6 I 10- -0- -- I 0000 12 2 -.. ---. - •
6 \ I 11- 10- -- I 0100 13 I I -'-1---- 2 0110
6 I -,- 00- -- 1 0000 \3 I -0-\- - -- I 0010
6 I I 00- -0--- I 0000 \3 1 I - - -0- -0- \ 00\0
6 I I -1- I 1 .. - I 01 I I 13 I - - -0- -\- I DOlI
6 I I -1-01"- I DOlI \3 2 -.. ----- •
6 I -0"1--- \ 0011 14 I 0- - - 10-- I 0000
6 2 I -------- • 14 I \- - - - 1-1 2 1101
7 1 I- - -0- -- I 0100 14 I 0---11-1 1 0001
7 I I 0- --0--- I 0100 14 I I 0---01-1 I 0001
7 I -- - - I - - - I 01 I 1 14 I 0- - - -1-0 1 0000
7 2 I 0- - -0- -- I 0100 14 I I 0- "00-- I 0000
7 2 I I- --0- -- I 0100 14 I I I- - - - 1-0 I 1100
7 2 I -- - - I - I - I 0111 14 1 I 1-- - -0-- I 1100
7 2 I .. --1-0- 2 0110 14 2 •
8 I I 0- - -0 .. - I 0001 15 I I -1-01-0- 1 0010
8 I I 0- - - I - -- I 0001 IS I I -0- -'-0- I 0010
8 I I '-1 -. - . - 2 1101 IS I I - I -11-0- 2 OlIO
8 I 1-0-- - -- I 1001 15 1 10- -0- -- I 0000
8 2 I 0"-1- .. I 0001 15 I I 11-10--- I 0100
8 2 0- - -0- _. I 0001 IS I 01 - 10- -- I 0100
8 2 I ,. -. ---- 2 1101 15 I I - I -00- -- I 0000
9 I 101-100- I 0000 IS I 00--0--- 1 0000
9 I I 10- .. 1-0 1 0000 IS I I I-I- I 0011
9 1 10--00- - I 0000 15 2 I - .. ----- •
9 I I 00- - 10-- I 0000 16 I I 1-1- - - -- I 1100
9 1 I 101-101- 1 0000 16 1 1-0--1-1 I 1001
9 I I -'-010- - I 0000 16 I I 0- - -11-1 1 0001
9 I I 100-10·- 1 0000 16 1 0-- -10,- 1 0000
9 I I 11 - I - - - - I 0100 16 1 I 0---01-1 1 0001
9 I I 01-110-- 2 0100 16 1 I 0----1-0 1 0000
9 I I 01 - I - I -- 1 0100 16 1 I 0-- -00-- I 0000
9 1 I 01 -100-- 1 0100 16 1 1-0--1-0 I 1000
9 1 I 10--01-1 2 0001 16 I I I -0- -a-- I 1000
9 I I -1-011-1 I 0001 16 2 --_. ---. •
9 I I -0- -11-' I 0001

J

Eindhoven University of Technology Research Reports
Faculty of Electrlcal Englneerlng

ISSN 0167-9708
Coden: TEUEOE

(205) ~[A~wrn~Dl.EH:N.GJi' and J.H.F. Ritzerfeld, M.J. Werter
tl EFFECTS IN DIGITAL FILTERS:~iew.
EUT Report 88-E-205. 1988. ISBN 90-6144-205-2

(206) Bollen, M.H.J. and G.A.P. Jacobs
tJrntN5IVE TESTING OF AN AL~M FOR TRAVELLING-WAVE-BASEO DIRECTIONAL
DETECTION AND PHASE-SELECTION BY USING TWONFIL AND EMTP.
EUT Report 88-E-206. 1988. ISBN 90-6144-206-0

(207) Schuurman, W. and M.P.H. Weenink
slABILITY OF A TAYLOR-RELAXED CYLINDRICAL PLASMA SEPARATED FROM THE WALL
BY A VACUUM LAYER.
EUT Report 88-E-2D7. 1988. ISBN 90-6144-207-9

(208) Lucassen, F.H.R. and H.H. van de Ven
A NOTATIoN CONVENTION IN RIGID ROBOT MODELLING.
EUT Report 88-E-208. 1988. ISBN 90-6144-208-7

(209)
IZATION OF SEQUENTIAL MACHINES: The method of maximal

adjacencies.
EUT Report 88-E-209. 1988. ISBN 90-6144-209-5

(210) Lucassen, F.H.R. and H.H. van de Ven
OPTIMAL BODY FIXED COORDINATE SYSTtMS IN NEWTON/EULER MODELLING.
EUT Report 88-E-210. 1988. ISBN 90-6144-210-9

(211) Boom, A.J.J. van den

(212)

(213)

~ONTROL: An exploratory study.
EUT Report 88-E-211. 1988. ISBN 90-6144-211-7

Zhu Yu-Cai
ONITHE ROBUST STABILITY OF MIMO LINEAR FEEDBACK SYSTEMS.
EUT Report 88-E-212. 1988. ISBN 90-6144-212-5

Zhu Yu-Cai, M.H. Driessen, A.A.H. Damen and P. Eykhoff
AlNEW SCHEME FOR IDENTIFICATION ANo-coNTROL.
EUT Report 88-E-213. 1988. IS8N 90-61"-213-3

(214) Bollen, M.H.J. and G.A.P. Jacobs
~ENTATION OF AN ALGOR~OR TRAVELLING-WAVE-BASED DIRECTIONAL
DETECT! ON.
EUT Report 89-E-214. 1989. ISBN 90-6144-214-1

(215) Hoei jmakers, M.J. en J.M. Vleeshouwers
EEN MODEL VAN DE SYNCHRONE MACHINE MET GELIJKRICHTER, GESCHIKT VOOR
REGELDOELEINDEN.
EUT Report 89-E-215. 1989. ISBN 90-6144-215-X

(216) Pineda de Gyvez, J.
LASER: A LAyout Sensitivity ExploreR. Report and user's manual.
EUT Report 89-E-216. 1989. ISBN 90-6144-216-8

(217) Duarte, J.L.

(218)

~ An algorithm for systematic state assignment of sequential
machines - computational aspects and results.
EUT Report 89-E-217. 1989. ISBN 90-6144-217-6

~OF~' M.M.J.L. van de
WARE SET-UP FOR DATA PROCESSING OF DEPOLARIZATION DUE

AND ICE CRYSTALS IN THE OLYMPUS PROJECT.
EUT Report 89-E-218. 1989. ISBN 90-6144-218-4

TO RAIN

(219) Koster, G.J.P. and L. Stok
~ETWORK TO ARTWOR~utomatic schematic diagram generation.
EUT Report 89-E-219. 1989. ISBN 90-6144-219-2

(220) Willems, F.M.J.
CONVERSES FOR WRITE-UNIDIRECTIONAL MEMORIES.
EUT Report 89-E-220. 1989. ISBN 90-6144-220-6

(221) Kalasek, V.K.I. and W.M.C. van den Heuvel
L-swltCH: A PC-program for computing transient voltages aod currents during
switching off three-phase inductances.
EUT Report 89-E-221. 1989. ISBN 90-6144-221-4

Eindhoven Universit of Technol0 Research Re orts
acu ty 0 ectrical nglneeclng

ISSN 0167-9708
Coden: TEUEDE

(222) J6~wi.k. L.
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2

(223) Jozwiak, L.
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0

	Abstract
	Contents
	1. Introduction
	2. Types of full-decomposition
	3. Partition pairs and bit full-decomposition
	4. Comparison of different sorts of full-decomposition
	5. CAD algorithms and practical results
	References

