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The bit full-decomposition of sequential machines. 

L. Jozwiak 

Digital Systems Group, Faculty Electrical Engineering, 
Eindhoven University of Technology, The Netherlands 

Abstract - Control units and serial processing units of today's 
information processing systems must realize complex processes, which 
are usually described in the form of a sequential machine or a number of 
cooperating sequential machines. Large machines are difficult to: 
design, optimize, implement and verify. Therefore, there is a real need 
for CAD tools, which could decompose a complex sequential machine into 
a number of smaller and less complicated partial machines. 

For many years, the decomposition of only the internal states of 
sequential machines has been studied. However, this sort of 
decomposition is not a sUfficient solution. The complexity of a circuit 
implementing a sequential machine is a function not only of machine's 
internal states but as well of inputs and outputs. Furthermore, the 
possibility to implement a machine with today's array logic building 
blocks depends not only on the number of internal states but as well on 
inputs and outputs. So, there is a real need for decompositions upon the 
states, inputs and outputs of a sequential machine, i.e. for full­
decompositions. 

During the full-decomposition process, the input and/or state 
and/or output symbols (values) can be decomposed or the input and/or 
state and/or output bits. So, it is possible to perform the symbol full­
decomposition or the bit full-decomposition. 

This report provides the classification of full-decompositions and 
describes briefly the theoretical foundations of bit full­
decomposition. 

Comparing to the symbol full-decomposition,the bit full­
decomposition has the following advantage: input and output decoders 
are reduced to an appropriate distribution of the primary input and 
output bits between the partial machines. 

In the report, definitions of a bit partition and bit partition 
pairs are introduced and their usefulness to bit full-decompositions 
is shown. It is proved, that the bit full-decomposition can be treated 
as a special case of the symbol full-decomposition; therefore, no new 
decomposition theory is needed for this case, but the symbol full­
decomposition theory together with the theorems introduced here 
constitute the theory of bit full-decomposition. 

Finally, a comparison is made between the symbol and the bit full­
decompositions and some practical conclusions and remarks are 
presented. 

In the appendix, an example is provided that illustrates the 
possibility and the practical usefulness of bit full-decomposition. 

Based on the developed theory, the CAD algorithms calculating 
different bit full-decompositions have been developed and 
implemented. Those algorithms and the practical results are presented 
and estimated in the separate paper [5]. 

Index Terms - Automata theory, decomposition, logic design, sequential 
machines. 
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1. Introduction. 

control units and serial processing units of today's 

information processing systems must realize complex processes, 

which are usually described in the form of a sequential machine or 

a number of cooperating sequential machines. Large and 

complicated sequential machines are difficult to: design, 

optimize, implement and verify. Therefore, there is a real need 

for CAD tools, which could decompose a complex sequential machine 

into a number of smaller and less complicated partial machines. 

Array logic implementation techniques dictate also the 

requirements for decomposition. One of possible approaches to the 

decomposition of sequential machines is the algebraic approach. 

For many years, the algebraic decomposition of only the 

internal states of sequential machines has been studied [6)+ 

[17). However, this sort of decomposition is not a sUfficient 

solution. The most important parameters such as the complexity, 

speed, testability, power consumption etc., of a circuit 

implementing a sequential machine are functions not only on 

machine's internal states but as well on inputs and outputs. 

Furthermore, the possibility to implement a machine with today's 

array logic building blocks depends not only on the number of 

internal states but as well on inputs and outputs. So, there is a 

real need for decompositions upon the states, inputs and outputs 

of a sequential machine, Le. for full-decompositions [1)+[4). 

Algebraic full-decompositions can be used in order: to make it 

possible to implement a given sequential machine with existing 

building blocks or inside a limited silicon area; to improve some 

design parameters (speed, testability, ..• J; to minimize 

partially the resultant circuit and to make it possible to 

optimize the separate partial machines, although it may be 

impossible to optimize the whole machine. 

In this report, the classification of full-decompositions is 

provided, the theoretical foundations of bit full-decompositions 

are briefly described and a comparison of different sorts of full­

decompositions is made. 

In the appendix, an example is provided that illustrates the 

possibility and the practical usefulness of bit full­

decomposition. 

Based on the developed theory, the CAD algorithms that 
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calculate different bit full-decompositions have been developed 

and implemented. Those algorithms and the practical results are 

presented and estimated in the separate paper [5]. 

We close our presentations with conclusions about the 

practical usefulness of full-decomposition and the CAD 

algorithms developed by us. 

2. Types of full-decomposition. 

DEFINITION 1 A sequent:ial machine M is an algebraic system 

defined as follows: 

M = (I, 5, 0, ~, 1) , 

where: 

I - a finite non-empty set of inputs, 

5 - a finite non-empty set of internal states, 

o - a finite set of outputs, 

~ - the next-state function: ~: 5xI ~ 5, 

1 - the output function, 1: 5xI ~ 0 (a Mealy machine), 

or 1: 5 ~ 0 (a Moore machine). 

When the output set, 0, and the output function, 1, are not 

defined, the sequential machine M = (I, S, ~) is called a st:at:e 

machine. 

Let M = (I, 5, 0, ~, 1) be the sequential machine to be 

decomposed. In [3][4], such a full-decomposition is presented, 

where it is necessary to find two partial sequential machines, M1= 

(Il,51,01,~1,11) and M2= (I 2,5 2 ,02,a 2 ,12), each having fewer 

states and/or inputs and/or outputs than M. Each of them can 

calculate its next-states and outputs using only the information 

about its own input and its own state and, in combination, they 

form a sequential machine M' that has the same input-output 

behaviour or input-state and input-output behaviour as M (common 

realization of the next-state and output functions - Fig. 1). 
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Fig. 1 The full-decomposition of a sequential machine M 
with two partial sequential machines M, and M2• 
(common realization of the next-state and output 
functions). 

0 

Instead of considering the realization of a machine M as a 

whole, the realization of the next-state function, 3, can be 

c'onsidered separately from the output function, ~. 

It is possible to abstract from the output function ), and to 

decompose the state machine which is defined by I, S and the next­

state function 3. Then, it is possible to realize the output 

function )', where ), is treated as a function of the primary inputs 

to a sequential machine M (in the Mealy case), and the states of 
partial state machines M, and M2 that are obtained from a full­
decomposition of the state machine defined by I, Sand 3 (separate 
realization of the next-state and output functions - Fig. 2). 

rF~-------;====~---I -, 
I I, 3 ' S, I I 
I M, I 

I 
I 5, I 
I S2 I 

12 3
2 

S2 I M2 I 
I M I L- _ _ _ _ _ _ _ _ _ _ _ _ _ _ J 

Fig. 2 The full-decomposition of a sequential machine M 
with the separate realization of the next-state 
and output functions. 

o 
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Both types of the full-decomposition above can be considered 

as decompositions realizing the state and output behaviour of a 

machine M, but the first type may be considered also as a 

decomposition realizing only the output behaviour of M [3][4]. 

From the viewpoint of connections between the component 

machines, it is possible to distinguish the following types of 

full-decompositions: 

- g parallel full-decomposition - each of the component machines 

can calculate its own next-states and outputs independently of 

the other component machines and only from the information 

about its own internal state and the partial information about 

the inputs; 

- g serial full-decomposition - one of the component machines, 

which is called the tailor dependent machine (M 2 ), uses 

information about the states or outputs of the second machine, 

which is called the head or independent machine (M 1 ), plus the 

information about its own state and the partial information 

about the inputs in order to calculate its own next-states and 

outputs; 

- g general full-decomposition - each of the component machines 

uses information about the states or outputs of the other 

machine, plus the information about its own state and the 

partial information about the inputs in order to calculate its 

own next states and outputs. 

From the viewpoint of the kind of information available about a 

given submachine and used by another submachine in order to 

calculate its next-states and outputs, the following two types of 

a full-decomposition can be distinguished: 

- a decomposition with information about the states (~£); 

- a decomposition with information about the outputs (~Q). 

A given submachine can use the information about the "present" 

or the "next" state or output of the other submachine; 

consequently, the class E (present) and the class N (next) of 

decompositions can be distinguished. 

The sets I, Sand ° of inputs, states and outputs can be treated 

as sets of symbols, but for the sets I and 0, there is another 

treatment too. 

contrary to the states, which are given in the form of symbols, 
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in most cases, and for which codes have to be chosen, the inputs 

and outputs of a sequential machine are usually pre-assigned. In 

most cases, the inputs and outputs are given in the form of vectors 

of the input/output bit values, because inputs comprise direct 

signals from the surroundings of the machine, while outputs are 

the direct control signals sent by the machine to the 

surroundings. Of course, input and output vectors can also be 

treated as symbols, but the vector view of them is often useful in 

relation to the full-decomposition, because it allows the input 

and output bits to be decomposed between the partial machines 

instead of the input and output symbols. 

In this case, the input and output decoders, 01 and 9 are reduced 

to the appropriate distribution of the input and output bit lines. 

80, each of the types of full-decomposition considered previously 

can be considered as either a sYmbol full-decomposition or a bit 

full-decomposition. 

Il = [I11' •• ,I1 k ] 01 = [Ol l ,··,Ol p ] 
MI 

I = [11' .. ,In] ° = [01' .. ,Om! 
01/S 1 02/8 2 

M2 
12 = [12 1 , •• ,12 1 ] 02 = [021' .• ,02r] 

{I1 1 ,··,I1 k } ~ {II,··,I n } , {I2 1 ,··,I2 j } ~ {II,··,I n } , 

{OIl' •• ,01 p} Ii {O l' •. ,Om} , {02 l' •. ,02 r} Ii {O l' •• ,Om} 

01 U 02 = 0. 

Fig. 2 The bit full-decomposition of a sequential 
machine M. 

3. Partition pairs and bit full-decomposition. 

The concepts of partitions and partition pairs introduced by 

Hartmanis [9][10][11][12] are useful tools for analyzing the 

information flow in and between machines; therefore, they were 

used in this work. 

Let 8 be any set of elements. 
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11 = {Bd B 1 • 
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Partition Z on S is defined as follows: 

Sand BI n BJ = 0 for ifj and U BI = S}, 

i. e. a partition 11 on S is a set of disj oint subsets of S whose set 

union is S. 
For a given SES, the block of a partition 11 containing s is 

denoted as: [S]lI and [S]lI = [t]lI is written to denote that sand t 

are in the same block of 11. Similarly, the block of a partition 11 

containing S',where S'. S , is denoted by [S']lI. 
The partition containing only one element of S in each block is 

called a zero partition and denoted by 11.(0). The partition 

containing all the elements of S in one block is called an identity 

or one partition and is denoted by 1I.(I). 

Let 111 and 112 be two partitions on S. 

DEFINITION 3.2 Partition product 11 1.11 2 is the partition on S such 

that [S]1I 1·1I 2 = [t]1I 1·1I2 if and only if [S]1I1 = [t]1I 1 and [S]1I2 = 

[t]1I 2• 

DEFINITION 3.3 Partition sum 11 1+11 2 is the partition on S such 

that [S]1I 1+1I 2 = [t]1I1+1I2 if and only if a sequence: s=so' 
sl, ••• ,sn=t, slES for i=l •• n , exists for which either 

[sl]11 1 = [sl+I]1I 1 either [sl]1I 2 = [sl+I]1I 2, 0 ~ i ~ n-l. 

DEFINITION 3.4 11 2 is greater than or equal to 11 I: 11 1 ~ 11 2 if and 

only if each block of 111 is included in a block of 11 2 . 

Thus 111 ~ 112 if and only if 11 1 .112 = 111 if and only if 11 1+112 = 11 2, 

Let 11., T SI 11 II 11 0 be the partitions on M = (I, S, 0, a, A), in 

particular: 11., T. on S, lIr on I, 110 on O. 

DEFINITION 3.7 

(i) (11" To) is an s-s partition pair if and only if 

VBElI. VXEI : Ba x • B', B'ET •• 
is an I-S partition pair if and only if 

VAElIr VSES : sa~ • B , BEll. 
(iii) (lIS,1I0) is an s-o partition pair if and only if 

VBElI, VXEI BA X • C , CEliO (Mealy case) 
or 

(Moore case). 
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(iv) (nI,n O) is an I-O partition pair if and only if 

VAEn I VSES : slA S C , CEno (Mealy case) 

or 

VAEn I VSES : sl s C ,CEno (Moore case). 

The practical interpretation of the notions introduced above 

is as follows: 

(n s' T s) is an S-S partition pair if and only if the blocks of n s 

are mapped by M into the blocks of Ts. Thus, if the block of ns 

which contains the present state of the machine M is known as well 

as the present input of M, it is possible to compute unambiguously 

the block of T s which contains the next state of M for the states 

from a given block of ns and a given input, Le. the input and the 

block of n s determine unambiguously the block of T s. Interpreting 

the notions of I-S, S-O and 1-0 partition pairs is similar. 

In the case of a Moore machine, the definition of an 1-0 pair is 

trivial, because each (n I , n sl will satisfy it (the output of M is 

defined by the state of M unambiguously). 

DEFINITION 3.8 Partition ns has a substitution property (it is an 

SP-partition) if and only if (ns,n s ) is an S-S pair. 

For the purpose of bit full-decomposition, the concepts of bit 

partitions (as a special case of partitions) and bit partition 

pairs has been introduced by us. 

Let B be a set of input or output bits: B = (b l ,b 2 , ••• ,b'B 1 J. 

Let T = (t l ,t 2 , ••• ,t'T,J be a set of input/output symbols. 

Each input/output bit b k : b k EB, introduces a two block 

partition nT(b k ) on the set of input/output symbols T. In one 

block of n T (b k ), these symbols are contained for which bit b k has 

the value~; in the second block of nT(b t ) are the symbols for 

which b k has the value 1. The product of partitions n T (b k ) for all 

the bi ts b k: b k EB defines unambiguously the set of all 

input/output symbols, i.e. 

r-r nT(b k ) = nT(~)· 
b k EB 
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DEFINITION 3.9 A partition 

n B = (bl,b2, ... ,bk,(bt+l, ... ,bIBI)} on the set of bits B, 

where: 

- important bits: b 1,b 2 , ... ,b t are kept in separate blocks, 

- don't ~ bits: bt+1, ... b n are kept in a single block 

called g don't ~ block and denoted by 

dcb(n), 

is called a bit partition on B. 

The product (.) and sum (+) operation and the ordering relation 

(~) for bit part ions are normal partition operations and ordering 

relations, but the block of the bit partition's product being the 

product of a block (important or don't care) with an important 

block is an important block and the block of the bit partition's 

sum being the sum of some blocks (important or don't care) with a 

don't care block is a don't care block. The zero partition n B (0) is 

defined as a bit partition with an empty don't care block, i.e. n B= 

n B (0) if and only if dcb(nB) = fil. 

Let nIB be a bit partition on the set of input bits IB = 
( ib 1 , ... , ib I I B I ). Let nOB be a bit partition on the set of output 

bits OB = {obi' ... ,ob lOB I} and let T s be a (symbol) partition on 

the set of states S. 

DEFINITION 3.10 (nIB,Ts) is an IB-S partition pair 

if and only if VSES VibtE dcb(n IB ): 

= [S8[lbl, ... ,lblk_l),1,lblk+l), ... ,lbIIBllTs' 

i.e. for each state SES, the next sates are included in the same 

block of Ts independently of the values of all the bits 

ib t : ibkE dcb(IB). 

Let no(ob t ) be the two block partition that is introduced by 

the output bit ob k: obtEOB on the set of output symbols O. 
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DEFINITION 3.11 (Ts,n OB ) is an S-OB partition pair 

if and only if Vx<I Vs,t<SA[slTs= [tlTs Vobkj dcb(nOB ): 

[sl k 1 no (ob k) = [t 1xl no (ob k) , 
Le. the input value x<I and the block BTs <B define unambiguously 

the value of each output bit ob k: obkj dcbmo B)' 

DEFINITION 3.12 (nIB,n OB ) is an IB-OB partition pair 

if and only if Vs<S Vib k< dcb(n IB ) Vobkj dcb(nOB ): 

[ s 1 [ i b 1 , ••• , i b ( k _ 1 ) , 0 , i b ( k + 1 ) , ••• , i b I I B I I 1 no (ob k l = 

= [ s '). [ i b 1 I ••• lib ( k _ 1 ) , 1 lib ( t + 1 ) I ••• lib, I B l ] ] 7r 0 (ob t ) 

i.e. for each state s, the values of all the output bits 

obkj dcb(nOBl are independent of the values of all the input bits 

ib k < dcb (n I B l • 

Let nl be a partition that is introduced on the set of input 

symbols I by a set of input bits IB-dcb(nIBl, i.e.: 

Let nf be a partition introduced on I by the set of "don't 
care" input bits dcb(nIBl, 

Le. nj = n 
ib k <dcb(n l Bl 

THEOREM 3.1 

If (n l B' Ts) is an IB-S partition pair and nl is the partition on 

I that is introduced by the set of input bits IB-dcb(nIBl, 
then: 

(nl,nsl is an I-S partition pair. 

Proof. 

From the definition of an IB-S partition pair, it follows 

immediately that the block of a partition TS that contains the 

next-state sax for a given state s<S and a given input x<I, is 

independent of the block of a partition nl (ib k) containing the 
current input x, for all ib k< dcb(n IB ). Therefore, the block of 
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TS' containing the next-state S3 x depends only on s and the blocks 

of partitions TC I (ib k) for ib k: ibkJ dcb(TC IB ), i.e. the block of 
Ts containing the next-state sax is determined unambiguously by 

the present state 5 and the block of a partition TC I which 
represents the product of partitions TC I (ib k) for all ib k: ib t fIB­

dcb(TC IB ). 50, the partitions, TC I and Ts' constitute an 1-5 
partition pair. 

The following two theorems can be proved in a similar way. 

THEOREM 3.2 

If (Ts,TCoB ) is an 5-0B partition pair and TC o is an output 

partition on 0 that is introduced by the set of output bits 

OB-dcb(TCoB )' 
i.e. TC o = n 

ob k fOB-dcb(TC oB ) 

then, (T"TCo) is a 5-0 partition pair. 

THEOREM 3.3 

If (TCIB,TCoB ) is an IB-OB partition pair, TCI represents a 
partition on I that is introduced by the set of input bits 

IB-dcb (TC I B) 
and 

TC o represents a partition on 0 that is introduced by the set of 
output bits OB-dcb(TCoB ), 
then: 

(TCI,TC o) is an 1-0 partition pair. 

on the set of input/output Let TC~ and TCG be two partitions 

bits B and let TCf and TCi be two 

input/output symbols T such that :­

TCf = n TCT(b t ) and 

THEOREM 3.4 

partitions on the set of 

7r" = T n 

If two bit partitions TC~ and TCG are orthogonal, then, the 

symbol partitions, TCf and TCi, introduced by them, are 
orthogonal too: 

i.e. if TC~oTCG = TCB(O) then: TCfoTCi = TCT(O). 
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Proof_ 

If 7l'~'7l'g = 7l'B (0), then: dcb(7l'~'7l'g) = dcb(7l'~) 'dcb(7l'g) = " 

(from the definition of a zero bit partition) . 

7['-]£" = n 7l'T (b t ) n 7f T(b t ) = T T 
b t eB-dcb (7f B) b k edcb (7fjj) 

= n 7fT (b T) = n 7fT(b
k

) = 7fT (0) • 

b k eB-(dcb(7fB)ndCb(7fjj» b t eB 

Similar definitions and similar theorems can be introduced and 

proved for weak partition pairs. 

In [3] and [4], a set of constructive theorems, concerning the 

existence of different kinds Of symbol full-decompositions has 

been proved. Each of these theorems stated: if, for a machine M, a 

given system of I-S, S-S, s-o and 1-0 partition pairs exists and 

some partitions from these pairs satisfy the appropriate 

orthogonality conditions, then, a given type of a symbol full­

decomposition of M will result. 

For instance, if for a machine M, two trinities of partitions: 

(7f I ,7r s '7l'o) and (TI,TS,TO) exist, that: 

- 7l's and ts are SP-partitions, 

- (7f I ,7f s ) and (tl,tS) are I-S partition pairs, 

(7f I ,7fo) and (tl,tO) are 1-0 partition pairs, 

- (7f s ,7f o) and (Ts,tO) are s-o partition pairs, 

and 

- 7f o·to = 7ro(~), 

then: 

a parallel symbol full-decomposition of M with the realization of 

the output behaviour will result. If additionally 7f s ' Ts = 7fs (~) 

then the state behaviour of M will also be realized. 

Those facts have the following interpretation: 

Let the partial machine MI in the parallel symbol full­

decomposi tion be constructed according to the trinity (7f I , 7f 8 ,7f 0) 

and the partial machine M2 acoording to the trinity (t I , T 8 , TO) . 

Let blocks of 7f I' 7f sand 7f 0 be adequately the inputs, states and 

outputs of MI and the blocks of TI' ts and TO be adequately the 

inputs, states and outputs of M2-
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since rrl,rrs,rro and TI,Ts,TO form the listed above partition 

pairs, based only on the information about the block of rr l 
containing the input of M and the block of rrs containing the 

present-state of M (i. e. information about the input and present­

state of M1 ), machine Ml can calculate unambiguously the block of 

rrs in which the next-state of M is contained, as well as, the block 

of rro that contains the output of M for the input from a given block 

of rr l and for the present-state from a given block of rrs (Le. Ml 

can calculate its next-state and output). Similarly, machine M2 

based only on the information about its input and present-state 

can calculate its own next-state and output. Since rr 0 • TO = rr 0 (.iii) , 

the knowledge of the block of rro and the block of TO in which the 

output of M is contained, makes it possible to calculate this 

output. So, if rr 0 • TO = rr 0 (.iii) , the machines M 1 and M 2 together can 

calculate the state of M unambiguously. That means, that the 

machines Ml and M2 operate independently of each other and they 

realize together the output or the state and output behaviour of 

M, i.e. M has a parallel symbol full-decomposition. 

From theorems 3.1 - 3.3, it follows that: if certain bit 

partition pairs exist, then, the appropriate symbol partition 

pairs will exist and, from theorem 3.4, it follows that: if two bit 

partitions are orthogonal, then, the appropriate symbol 

partitions are orthogonal too. 

So, the bit full-decomposition can be considered as a special 

case of symbol full-decomposition. No new theory for the bit full­

decomposition needs to be developed; since, the theory for the 

symbol full-decomposition described in [3][4] and supplemented 

with the theorems provided in this report, can be utilized 

directly for bit full-decomposition. 

4. Comparison of different sorts of full-decomposition. 

Symbol-full-decomposition is general while bit-full­

decomposition is a special case, Le. a given type of bit-full­

decomposition cannot exist, whereas, that of symbol-full­

decomposition can. However, for symbol-full-decomposition input 

and output decoders must be realized in the form of combinational 

circuits whereas for bit-ful-decomposition they are reduced to 

the appropriate distribution of input and output bits between the 
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partial machines. 
From the practical point of view, full-decompositions of type 

N are not so attractive as decompositions of type P, because in 

decompositions of type N, one of the component machines has to be 

able to compute its next-state or output, before the second 
component machine, using the information about the computed next­

state or output of the first machine, can compute its own next­

state or output. In this situation, the frequency of input signals 

needs to be limited and a two-phase clock is required. 

The decompositions with the separate realization of the next­

state and output functions are easier to find than the 

decompositions with the common realization, but, using them the 

suboptimal solutions can be found only, because the common parts 

of the next-state and output logic cannot be shared. 

In the case of serial and general decompositions, connections 

between partial machines have to be implemented whereas for 
parallel decompositions no connections are needed. The 

complexity of combinational logic of the component machines is 
also usually low for parallel decompositions (reduced 

dependencies). Therefore, solving the practical cases starts 

with trying to find an appropriate parallel full-decomposition 

which satisfies some requirements. 

5. CAD algorithms and practical results. 

Based on the theory of full-decomposition provided in 

(1) (2) (3) (4) and in this report, the CAD algorithms, that 
calculate different parallel and serial full-decompositions, 
have been developed and implemented. 

The practical aspects of full-decompositions are described 
more precisely in a separate paper (5). 

We close our presentation with some conclusions about the 
practical usefulness of full-decompositions and the CAD­
algorithms and programs developed by us. 

For a benchmark of 43 medium and large (number of input bits ~ 
10, number of output bits ~ 10, number of states ~ 20) practical 

sequential machines we got from out colleagues, we run programs 
for bit full-decompositions implemented following the concept of 
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weak partition pairs. 

We found good parallel bit full-decompositions for 30% of the 

examples and we found good serial bit full-decompositions for 50% 

of the machines. A good decomposition means: reduction of the 

silicon area used for implementing a sequential machine to be 

decomposed or a small increase of the silicon area, but each of the 

partial machines is substantially smaller than the original 

machine (improvement of the other design parameters). 

Since some machines do not possess any parallel and/or serial 

full-decompositions, many machines do not possess good parallel 

and/or serial full-decompositions and every machine possesses 

general decompositions, we are now busy developing CAD tools for 

general full-decompositions. 

For some large sequential machines with special internal 

features (e. g. a lot of "don I t cares"), the number of SP­

partitions and/or partition pairs which have to be generated and 

checked in order to find useful parallel or serial full­

decompositions can be so high, that, with the use of our programs 

and computers, we are not able to calculate the decompositions in 

reasonable time (two cases from our benchmark) ; however, for many 

large machines we reached good results. 

We are now busy developing faster full-decomposition tools 

according to the concept of labelled partition pairs. 
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APPENDIX 
Example. 

Task: implement machine sl.kis given below with a minimum 

number of PLA's having 8-bit outputs. 

Since the number of output bits of the machine is NOB = 6 and the 

minimal number of bits needed in order to implement the internal 

states of the machine is rlog 2 Nsl = 5 (number of states NS=20), it is 

impossible to implement the machine with one PLA having 8 bit outputs 

(NOB + rlog2 Nsl = 11 > 8). 

So, we have to use at least two such PLA's and to decompose the 

machine into two submachines. 

We performed the task using our decomposition programs. Below, the 

results reached by the programs for computing the bit serial full­

decomposition (a special case of the serial full-decomposition 

without input and output decoders, but with input and output bits 

distributed in an appropriate manner among the submachines) are 

presented. 

We reached two sUbmachines: 

Ml (the head machine) with NS = 16 states and NOB = 2 output bits (NOB + 

rlog2 Nsl = 6 bits) 

and 

M2 (the tail machine) with NS = 2 states and NOB = 4 output bits (NOB + 

rlog 2 Nsl = 5 bits). 

Each of these submachines is implementable with PLA having an 8-bit 

output. 

We reached this decomposition in 30 seconds at the APOLLO 

workstation DN4000. 

***** MAPPING : ( M1~M2 ~M ) ***** 
Mapping between states $1 and S2 of "1 and "2 and states of Sl.kis 

S1 I S2 
1 2 

1 I 1 x 

~ I ~ : 
45 I 4 6 

5 15 
6 I 7 x 
7 I 8 17 

8
9 
I 9 10 

11 x 
10 I 12 x 
11 13 x 
12 I 14 x 
13 16 x 
14 I 18 x 
15 I 19 x 
16 I 20 x 

* entry = x for don't care 
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***** MACHINE sl.kis ***** 

1 
input - I present Inext-I output-
vectorlstate state vector 

-1-00-·· 1 1 000001 1- .. -0-· 14 12 011000 
00- -0- .. 1 1 000001 1- .. -1- a 14 12 011000 
-0- -1-·· 1 2 000011 1- .. -1 -1 14 4 011001 
-1-01- .. 1 2 000011 ..... -0- 15 17 001100 
01-10-· . 1 3 001001 · .... -1- 15 8 001101 
11·10- .. 1 4 011001 · .. ·-1 -1 12 10 101001 
-1·11-· • 1 5 001011 ... ·-0-· 12 18 101000 
10- -0-·· 1 6 010001 .... -1-0 12 18 101000 
-0-···· . 2 7 000101 1- O· .... 9 9 100001 
-1·0-· .. 2 7 000101 1-1- .... 9 10 101001 -1 -1- ... 2 8 001101 0-· -1-·· 9 2 000011 
0-· -0-·· 3 3 001001 0-· -0-·· 9 1 000001 · .. -1 ... 3 5 001011 1- ...... 10 10 101001 
,- - -0- -- 3 4 011001 0-- -0--- 10 1 000001 ---_.--. 5 8 001101 0-· -1- .. 10 2 000011 
· -0-···· 6 9 100001 .. -0- -1- 16 7 000101 
·-1-···· 6 10 101001 .. -0--0- 16 19 000100 · --. ---- 4 10 101001 -0-1-·· . 16 19 000100 
-0- -1-·· 7 7 000101 -1-1-· .. 16 17 001100 -1· 01- .. 7 7 000101 · -0- -0-· 13 20 100000 -1-11-· . 7 8 001101 · -0- -1-0 13 20 100000 
00- -0-·· 7 11 000000 · -0- -1-1 13 9 100001 -1-00-· . 7 11 000000 · -1·· ... 13 18 101000 11-10-· . 7 12 011000 . •. -1-0- 17 17 001100 10- -0-·· 7 13 010000 · .. -1-1- 17 8 001101 01-10- . - 7 14 001000 1-· -0-·· 17 12 011000 · .• -1-·· 8 8 001101 0-· -0-· . 17 14 001000 O· ·-0-·· 8 14 001000 1- .. -0-· 18 18 101000 1-· -0-·· 8 12 011000 1···-1·0 18 18 101000 00--00- - 11 11 000000 0··-00·· 18 11 000000 00-··1-0 11 11 000000 0-·· -1-0 18 11 000000 -1-000- • 11 11 000000 0··-01-1 18 1 000001 -, -0,'-0 11 11 000000 0-· -11-1 18 2 000011 00- -01-1 11 1 000001 1- .. -1-1 18 10 101001 -1- 001 -1 11 1 000001 0-· -10-· 18 16 000010 · o· -11-1 11 2 000011 ... -1-1- 19 7 000101 -1-011-1 11 2 000011 00- -0- _. 19 11 000000 10- -01-1 11 6 010001 -1-00-· . 19 11 000000 01-100-· 11 14 001000 01-10-·· 19 14 001000 01 -1-1 .. 11 14 001000 11-10- .. 19 12 011000 01-110- . 11 15 001010 10- -0··· 19 13 010000 11- 1 ...• 11 12 011000 ·1-11 -0- 19 17 001100 100-10- - 11 16 000010 -0-·1-0- 19 19 000100 -1-010- . 11 16 000010 -'-01-0- 19 19 000100 101-101- 11 16 000010 1-0--0-· 20 20 100000 00- -10-· 11 16 000010 1- o· -1 . a 20 20 100000 10- -00-- 11 13 010000 0- - -00-- 20 11 000000 10-· -1-0 11 13 010000 0- - - -'-0 20 11 000000 
101· laO· 11 13 010000 0-· -01-' 20 1 000001 0-- -00-- 14 14 001000 0-· -10-· 20 16 000010 0-·· -1·0 14 14 001000 0-· -11-1 20 2 000011 0-· -01-1 14 3 001001 1 -0- -,-, 20 9 100001 0-· -10-· 14 15 001010 1-1- .... 20 18 101000 O· . -11-1 14 5 001011 

j 
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***** SUBMACHINE M1 ***** 

{(1',(2',(3',(4,6',(5,15,,(7',(8,17',(9,10',(11',(12',(13',(14',(16',(18',(19',(20') 

1 
input-Ipresentlnext-Ioutput-
vector\state Istatelvector 

inputvector : 11 12 13 14 15 16 17 18 
outputveetor : 02 05 

10· ·0··· 1 4 10 '1·0'1'0 9 9 00 
·1·11· ., 1 5 01 ·1·000·· 9 9 00 
11·10· .' 1 4 10 00·· ·1·0 9 9 00 
01·10·· . 1 3 00 00"00·· 9 9 00 
• 1 ·01· .• 1 2 01 ·····1 ·0 10 14 00 
·0·· , •.. 1 2 01 · .•• ·0·· 10 14 00 
00· ·0··· 1 1 00 · ••. ·1·1 10 8 00 
·1·00·· . 1 1 00 · ·1· •..• " " 00 
·1·1· ••. 2 7 00 · ·0"1·1 11 8 00 
· 1 ·0···· 2 6 00 · '0'·1·0 11 16 00 
·0··· •• , 2 6 00 · -6- ·0·· 11 16 00 
, •. ·0··' 3 , 10 1· ... 1·1 12 4 10 
····1· .' 3 5 01 , ...• 1·0 12 10 10 
0·· ·0··· 3 3 00 , ••. ·0·· 12 10 10 
· ·0··· .• 4 8 00 O· •• 1 1·1 12 5 01 · . , .... ' 4 8 00 0·· '10·· 1Z 5 01 
• ••••• O· 5 7 00 0"'01'1 12 3 00 
· ••.. ·1' 5 7 00 0···· 1·0 12 12 00 
01·10·· . 6 12 DO O· "00·· 12 12 00 
10· ·0··· 6 11 10 ·1·1· ... 13 7 00 
11 - 10· . - 6 10 10 ·0· , ... - 13 15 00 
· 1 '00-·' 6 9 00 .. '0·0·· 13 15 00 
00· ·0··· 6 9 00 .. ·0'-1· 13 6 00 .,." ... 6 7 00 0·· '10·· 14 13 01 
· 1·01· .. 6 6 00 , .. '·1·1 14 8 00 
·0'·1·· . 6 6 00 0"'11'1 " 2 01 ..•• 1· O· 7 7 00 0"'01·1 14 1 00 
•.•• 1·1· 7 7 00 0····1·0 

" 
9 00 

, •. ·0· .' 7 10 10 0·· ·00·· 14 9 00 
O· ··0··· 7 12 00 ,. "·1·0 14 14 00 
1·0··· .• 8 8 00 , ... ·0·· 14 " 00 
1·1· •.. ' 8 8 00 ·1·01·0· 15 15 00 
0-· -0-·' 8 1 00 -0- -'-0- 15 15 00 
0··· , ••. ,8 2 01 · 1·11 ·0· 15 7 00 
101-100' 9 11 10 10"0 .. · 15 11 10 
10 .. ·1-0 9 11 10 11·10 .. · 15 10 10 
10"00 .. 9 11 10 01·10 ... 15 12 00 
00 .. 10· . 9 13 01 ·1·00·· . 15 9 00 
101·101- 9 13 01 00"0 .. · 15 9 00 
·1·010 .. 9 13 01 .... 1·1· 15 6 00 
100-10" 9 13 01 1·1 .... · 16 14 00 
11·1 .... 9 10 10 1· 0--1·1 16 8 00 
01·110· . 9 5 01 0··· 11·1 16 2 01 
01-1'1-' 9 12 00 0"'10-· 16 13 01 
01·100 .. 9 12 00 0-"01-1 16 1 01 
10- ·01·1 9 4 10 0 .. "1·0 16 9 00 
·1·011·1 9 2 01 0 .. '00·0 16 9 00 
·0 .. 11-1 9 2 01 1·0"1·0 16 16 00 
,',001,' 9 1 00 1 ·0"0 .. 16 16 00 
00 .. 01-1 9 1 00 

j 
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***** SUBMJ\CIHNE M2 ***** 

(1,2,3,4,5.7 ,B, 9,11.12,13,1'.,16,18,19,20). (6. la, 15, l7n 

1 
S1 - S2 I input- lnext-loutPUt-

vector state vector 

1 nputvector : 11 12131415 16 17 18 
outputvector : 01 03 04 06 

I I I 10- -0- -- 2 0001 9 I I -1-001-1 1 0001 
1 1 I -1-11- - - I 0101 9 1 1 00--01-1 1 0001 
I I I 11-10- -- I 0101 9 1 -1-0-1-0 I 0000 
1 1 I 01 -10- -- 1 0101 9 1 1 -1-000-- 1 0000 
I 1 -1- 01 - -- I 0001 9 I 00- --1-0 1 0000 , 1 I -0- -,_ .. 1 0001 9 I I 00- -00 .. , 0000 
1 , I 00--0-" I 0001 9 2 I ...... -. • , , I -'-00-" , 0001 10 , 

1 
- - - - -1-0 1 HOO , 2 I --"._--. • 10 I - - - - -a-- I 1'00 

2 1 I -1 - 1 - .. - 1 0111 10 1 
1 

- - - - -1 -1 2 Hal 
2 I I -I-a .... I 001' 10 2 --.. -_ .. • 
2 1 I -0 .. - - -- , 0011 11 1 I --,- ---- 1 1100 
2 2 I ------.- • I' 1 

I 
--0--1-1 1 1001 

3 1 I 1-,,0--- 1 0101 11 1 - -0- -1-0 1 1000 
3 I -"-1-" 1 0101 II I - -0- -0-- I 1000 
3 1 I a .. -0- -- 1 0101 1\ 2 I -------- • 
3 2 I ----- --- • 12 I 1"--1-\ I 010\ 
4 1 I -------- 2 1101 12 1 I 1 .. --\-0 1 0100 
4 2 I "1- .. -- 2 1101 12 1 I- - - -0- - I 0100 
4 2 

1 
.. 0 .... - I 1001 12 I I 0---11-1 1 0101 

5 1 ._----_. I 0111 12 1 0- - -10-- 2 0100 
5 2 I .. - - - - I- I alII 12 1 

1 
0- --01-1 1 0101 

5 2 - - - -- -0- 2 OlIO 12 1 0- - - -1-0 \ 0100 
6 \ I 0\- 10- -- \ 0100 12 I I 0- - -00-- I 0100 
6 I 10- -0- -- I 0000 12 2 -.. ---. - • 
6 \ I 11- 10- -- I 0100 13 I I -'-1---- 2 0110 
6 I -,- 00- -- 1 0000 \3 I -0-\- - -- I 0010 
6 I I 00- -0--- I 0000 \3 1 I - - -0- -0- \ 00\0 
6 I I -1- I 1 .. - I 01 I I 13 I - - -0- -\- I DOlI 
6 I I -1-01"- I DOlI \3 2 -.. ----- • 
6 I -0"1--- \ 0011 14 I 0- - - 10-- I 0000 
6 2 I -------- • 14 I \- - - - 1-1 2 1101 
7 1 I- - -0- -- I 0100 14 I 0---11-1 1 0001 
7 I I 0- --0--- I 0100 14 I I 0---01-1 I 0001 
7 I -- - - I - - - I 01 I 1 14 I 0- - - -1-0 1 0000 
7 2 I 0- - -0- -- I 0100 14 I I 0- "00-- I 0000 
7 2 I I- --0- -- I 0100 14 I I I- - - - 1-0 I 1100 
7 2 I -- - - I - I - I 0111 14 1 I 1-- - -0-- I 1100 
7 2 I .. --1-0- 2 0110 14 2 • 
8 I I 0- - -0 .. - I 0001 15 I I -1-01-0- 1 0010 
8 I I 0- - - I - -- I 0001 IS I I -0- -'-0- I 0010 
8 I I '-1 -. - . - 2 1101 IS I I - I -11-0- 2 OlIO 
8 I 1-0-- - -- I 1001 15 1 10- -0- -- I 0000 
8 2 I 0"-1- .. I 0001 15 I I 11-10--- I 0100 
8 2 0- - -0- _. I 0001 IS I 01 - 10- -- I 0100 
8 2 I ,. -. ---- 2 1101 15 I I - I -00- -- I 0000 
9 I 101-100- I 0000 IS I 00--0--- 1 0000 
9 I I 10- .. 1-0 1 0000 IS I I .... I-I- I 0011 
9 1 10--00- - I 0000 15 2 I - .. ----- • 
9 I I 00- - 10-- I 0000 16 I I 1-1- - - -- I 1100 
9 1 I 101-101- 1 0000 16 1 1-0--1-1 I 1001 
9 I I -'-010- - I 0000 16 I I 0- - -11-1 1 0001 
9 I I 100-10·- 1 0000 16 1 0-- -10,- 1 0000 
9 I I 11 - I - - - - I 0100 16 1 I 0---01-1 1 0001 
9 I I 01-110-- 2 0100 16 1 I 0----1-0 1 0000 
9 I I 01 - I - I -- 1 0100 16 1 I 0-- -00-- I 0000 
9 1 I 01 -100-- 1 0100 16 1 1-0--1-0 I 1000 
9 1 I 10--01-1 2 0001 16 I I I -0- -a-- I 1000 
9 I I -1-011-1 I 0001 16 2 --_. ---. • 
9 I I -0- -11-' I 0001 

J 
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