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Summary

This paper deals with the waves which can be produced inside, as well
as in front of and behind a scattering slab, with parallel boundaries, which
contains a slightly inhomogeneous medium. The refractive index of the
latter is given as a function of the three space variables and the time,
without considering possible statistical properties. The theory treating
the contributions generated by an obliquely incident wave and due to a
successive number of scatterings, is developed with the aid of symbolic
expressions depending on partial derivatives with respect to the space-
time variables; in particular the twoo—dimensional Laplace operator of
the refractive-index distributions in planes parallel to the boundaries
is shown to play a dominant role. A resulting representation of the Born
approximation (accounting for first-order scatterings only) clearly shows
the transition from the mainly scattering behaviour of a thin slab to the
predominantly diffracting behaviour of a thick slab. The main waves
generated the individual travelling waves (termed acoustic waves) that
compose the four~dimensional distribution of the refractive index.according
to a Fourier synthesis, are connected with an axtension of Bragg's relation
for stationary periodic structures to corresponding moving structures., It
is shown how this relation is also useful for the interpretation of the
higher-order scattering contributions (plural scattering). The property
that the cooperation of all contributions, associated with any number of
scatterings, leads to a diffusion type of propagation here results from a
simple symbolic representation of the wave equation inside the scatterer.
It further appears that the contribution from a special number of
scatterings can be represented by a multi—dimensional Fourier integral the
integrand of which has a denominator again connected with the mentioned
extension of Bragg's relation. The special cases of a stationmary scatterer,
and of the conventional approximations related to predominantly forward

scattering, are included in the discussions.
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A mathematical theory connecting scattering and diffraction phenomena,

in particular Bragg-type interferences

i. Introduction

Both scattering and diffraction phenomena occur when any kind of waves
passes through an inhomogeneous medium with a given structure. The distinction
between both phenomena is rather vague, but a general characteristic of
scattering consists of its connection with local volume elements whereas
structures on a larger scale cause diffraction effects. This difference
appears from an increase of scattering effects at high frequencies whereas
diffraction phenomena, as occurring for instance in shadow regions, are best
observable at low frequencies. In this paper the direct connection between
scattering and diffraction will result from mathematical expressions depending
on functionals of differential operators, in particular on the Laplace
operator of the two-dimensional distribution of the refractive index of the
inhomogeneous medium in planesg parallel to the boundaries of the considered
slab that contains the scattering medium. Moreover, the mathematical procedure
involves simple relations for the contributions depending on a specified
number of scatterings by successive volume elements (terms of the Borm series).
In this way the transition from plural scattering to the diffusion properties
of multiple scattering becomes clear in particular. After introducing the
model of our analysis, a plane parallel slab containing the inhomogeneous also
time dependent medium, we shall deal with-the waves generated inside it by an
obliquely incident plane wave, as well as with the waves leaving the slab both
at its front side and its back. Conventional saddlepoint approximations for the
Born approximation of these latter waves will be deduced in a very simple way

from special representations of the Born approximation.

2. Description of a model for investigating scattering properties

We assume a slab 0O <rz <:D containing a medium with a given distribution

nleytd) = 1+ dnxy 44

for the refractive index referring to the waves to be considered, the

homogeneous medium outside the slab heing characterized by the normalized



refractive index n = 1. In practice we have in mind applications for which

\Jn|<3(l. Therefore, the underlying scalar wave equation

(x4 0.4 3w
vru - n(xcglx }3¢z=o

will be replaced by

1 1+ 2dnzysd) yxy

vu- e = e

In view of the scalar treatment, our theory will not be applicable at once

to vectorial situations, such as associated with Maxwell's equations; however,
we know how even then special quantities satisfy, at least in a fair
approximation, a scalar equation of the above type. As distinct from many
scattering theories, we include a possible time dependence of the refractive

index.

We observe that the scattering theory to be developed may also refer to
particles, for instance to the scattering of the electrons of an incident
beam by the individual molecules and atoms of the slab medium. In such cases
the behaviour of the particles is to be described in terms of waves of a
Schrodinger type while the scattering by a single particle can then be
ascribed to a locally concentrated medium the refractive index of which has
a spatial distribution to be determined such as to yield the given scattering
properties of the particle in question. The final refractive index of the
medium then results from a spatial convolution product of this local distri-

bution and that of the density of the scattering particles.

The wave incident from the half space z <{0 is assumed as a plane tra-

velling one, and may as such in a normalized form be given by

(2’ X Aa ig -, 4(
Uy (4,54) = € ol 4+ 4c )ﬂ

¢ (fzi <) £)
e

. (2)

—
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3. The Born series for an inhomogeneous non stationary medium

The role of the scattering time-dependent medium appears most clearly

from the following alternative representation of the wave equation (1):

2 ;w2 : D%
V-G = Ints 34 2t 3)

The corresponding Born series is to be derived from the well-known
- - A F a —_
solution of the complete wave equation (V -a d /J*(_) U= - f('x“g, %4
in terms of retarded functions, in contrast with the Born series in the
conventional treatment of stationary media which is connected with the three-
dimensiconal Helmholtz equation. In the present situation we thus arrive at

the integral equation

| 50, 4-12).- 24 (9, 4-£9)
U/EJ)=“M(R4)—;T;% el )szﬂ'_ 5w

where (P,t) is the abbreviation for the coordinates x , yp,z and the time
t of the point of observation and, similarly, (Q,t) for the points in space
over which the integration has to he extended, qu = dxq dy dz being
the corresponding volume element; further PQ indicates the distance from P
to Q. As a matter of fact, the integration only concerns the slab o'<zq*=D,

&n being zero outside the latter.

The representation (4) leads straightforwardly to a Neumann-Liouville

expansion {Born series)

b
u(ph =) uld) | .
N=0d
of the solution, with UO(E4J= U,M (84J s while the fu: * terms are

mutually connected according to the recurrence relation:

: n 5 ‘EZ ’auw 4 ‘2
(i |ty BB SECEE

P




It is well known how UN represents the effect of N sucressive scatterings

and that in its explicit representation U_ depends on a 3N-dimensional

N
integral the integrand of which contains N factors én.

It is a basic feature of our theory that, for the present, we shall
perform the integration in (&) only with respect to the transverse coordinates

xq and yq, which integration then comprises the complete plane z = 20 that

is the domain - = < xq, yq < = ,. The method will be the same as applied
)

earlier] to the simpler stationary medium.

For convenience we introduce the abbreviation

91
%_,(ﬂ‘l)-:i Sn(R4) aiv,:'[ﬁ*‘)' D

The corresponding factor in the integrand of (6) can then represented by a
Taylor expansion with respect to xq, yq, t which reads as follows in a

symbolic form:

(f)N-l (Q: 4 . _"’_f.J =

04 - %) 2 + (o -80) 2 + (-4} 5
=& o ’ Yo (xpy 05 %9, #)- ®)

In fact, the elementary expansion of the exponential here leads to the
Taylor series in question. Symbolic expressions like the present one, and
those to be derived later, cam always be converted into ordinary non-symbolic

ones by substituting a Fourier integral for the operand, in this case

RN
"ON—f (P,"):: dg:. dgo't e ! év__, {gzaégi zp:{),

— ol . 5}

o0

The application of any operator g(a/axp, B/ayp) then amounts to a multipli-
cation of the integrand of such a Fourier integral by the factor g(ikx,iky).
We emphasize that, henceforth, all symbolic expressions are to be applied

(if not indicated otherwise) to the complete part of the integrand following

it.



The substitution of the mentioned symbolic form (8) into (6) yields,

remembering (7),

u, (®, {)_-_

Qﬁ"%}s&' (ot -2 57
zrrc‘ d’v/‘f’gfg F? * 3, %-‘("rpa#pléf‘{)'

We pass from xq and yq to polar coordinates according to

X, -%=Aesp G-k =Asayp,

S0 as to obtain:

Lﬂﬁ (};vdg =
D 4T oo z\.(‘-‘”f’éxp +S¢n¢‘a3_) I/S [ZQ‘ZP 7
aliq/ch R

vélx+-[&é-zh)1

awet

ﬂ:-fa$,j})zé,1£l

The differential operators entering here have nothing to do with the
integrations for which they can just be considered as parameters. The inte~-

ration with respect to involves a zero-order Bessel function which results
g P A

u (o= O@/MJ( ) AT

/”q %)

b bdpd)-

In order to facilitate the integration with respect N we prefer

the alternative representation

JFZs- FJ W -5l L 2
u (3 4f=- [ % [ / M5 i #‘f’ Gos o2, 9);
P Vi[‘lfp*zznl
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which enables an immediate application of Sommerfeld's integral

VIth-} ffﬁ?;;;:r .
[dh l;fa:) =% __. (%) 9)
AL Pa.*z:.

We thus obtain:

Ve Sair
U (od)=-L dy £ b Codrty,d).

al_
M‘ o 34‘ K73

0

In applications of Sommerfeld's integral to complex [1 and z, as

needed here, the square rootléf’+-z‘ should have a real positive part in

view of the principle of analytic continuation., The same therefore holds for

4
¢t afr zmt Ay

when this quantity is converted into an ordinary one in its application to

the three-dimensional Fourier integral of?%b_(x »Y

p,zq,t) with respect to

X ,yp,t. We may also substitute

P
0 A S SO | f R S Oy S
Y YT V g G’ (10

provided the new square root is defined as having a positiye {(or zero)
‘imaginary part. We then arrive, yet substituting the definition (7) for
?N“l’ at the following recurrence relation connecting the contributions '

associated with two successive numbers of scattering:

: -1l &sriim-Edh .
()= L | dty & ’ o L .
¢ V_31+_9_‘. L 5.4ps 0
2
(bV—20) an



4, The splitting into forward and backward travelling contributions

The formula (11) expresses how a N-th order wave contribution
results from the preceding (N—l)th contribution. Let us assume koz >0
for the primary wave (2) which thus may be considered (if w_ > 0) as a
wave propagating towards z + + =, Therefore, we shall call this directiop_
"forward", in the sense of which the half space z < 0 constitutes the
front side, and the half space z > 0 the back of the scattering slab. In

the former half space U, represents a contribution originating from the

N
slab and thus porpagating always backwards, which is in agreement with the
invariable sign of z -z in (11), viz |z =~ z | = =(z -z ). At the back of
P q P e pa

the slab (z > D), on the contrary, we have to do with the situation
|zp—zq| = zp—zq, thus leading again to a single sign of zp—zq for this
forward travelling wave. On the other hand, inside the slab this quantity
may have different signs within the interval 0 < zd < D. This leads to two

contributions of (11) according to

MN(E/I):&L(P,‘l)-Pd;;(&“; | (12)

the individual terms of which are to be defined by:

2 ' a‘- 3" 'y
e [F f(fp-feil/a:i*s;; 5
UN(P,Jr —-5- dzq (Sﬂ-ﬁﬁ'; , (13a)
FO A
2 At ¢t Hodps zi: 4

Ié 2 _ 1
L - Tplf Tt 2t =3
2V

U, (PA=-£ | dy

oy, , |
(}Sn 342:.) « (13b)

¢
N LR N il -~y
7 Varpf' PR w4



The first contribution UN may be interpreted as a forward travelling

wave, the sign of z —zq being the same as that of the purely forward wave UN

at the back of the slab., Similarly, U, represents a backward travelling wave.

N
Obviously, we could substitute
F

. v
BzaN..l _ BLUN—i + d laN"
a(z . a {" 6){1

in the integrands of (13a) and (13b). We then infer that the Nth forward
scattering contribution originates partly from the (N-l)St forward travelling
wave, and partly from the (N-—l)St backward travelling wave, the corresponding

holding for the N-th backward scattering contribution.

It is interesting to derive new differential relations from (13). The

following equations can be verified without difficulty:

p) S o v (P«LJ ! ' J 3“’-J (14a)

_n-—.-l +- .. ‘ 2 __v-.—- -

32, 35 i a{ iy N H/I
w4t A

d 31 3* ( ! ( 9%y,
—tt TS v o1 4 n . (14b)
3, 2%t 331 ¢ ” lﬁl b e #%p

Yt o

(Gmrr—22)

Moreover, we can introduce the total forward travelling and the total backward

travelling wave defined by:
o0
& 9 N ZLJ[
u: UN D) U = N' (15)

N=o N=e



A summation of (14a) and (14b) over N = 1,2,3,... then yields, taking into

.. . . . I ¢
account that ﬁ; = u_ is identical with the primary wave (2), while u = o,

i/ —} T ,
) [/E\T‘ 31 L <
|, 13" (ufpd)= - (.fn (16a)
0% BIP‘+3§; T (’ J r (/au 35 _ i or BPPJ- ?
x5t ae‘fp @O ’

) Va). a. ‘ a:. - (J a*
O s/t luldl— ¢ . (16b)
3p xp" y" c* 34* { } ¢ 3 $ 25 1y V RL
:L a&x C.Lall. , )
(IV20)

Finally, an addition of these latter relations gives:

= N L (1 v
t)u(H) LVB + az'.:—:. 2#‘ u(ﬁllj_.u{ﬁﬁ}. (17)
BZP Bxp 33,, d

Obviously, the equations (16) and (17) take account of all multiple-

scattering effects.

In the case of a stationary medium, that is 3 &n/3t = 0, all time
dependence is contained in the factor exp (—iwot) = eXp (—ikoct) which
enters in all quantities like upr’ u, 3 u/at? etc. The equations (16) then

become:

) 3 ' — :
(SE;‘L[/'; Bip1 ap* )u(P4)_Vk}+ >+ (gn H} e
33-'9

(18b)

) H-M;;;_»_,L._. MO (6 4

3_ZP et l/k'o 2= z%:ll P4

exp*
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5. The forward-scattering approximations

In many practical circumstances all scattering processes are predo-
minantly in the forward direction so that U becomes very small compared to
. This situation admits a considerable simplification of the operator
3, I
- ‘ T % (F. 2
drpr A (F If

Let us first consider the application of the corresponding operator

a'z_ g-a.
dp* " 7"

for the stationary case to a special component of the Fourier synthesis of,

2,
Ky +
e.g., the function

5 n[ F) = [ dk

- od —

I(#J dky ¢ £é(,,,k;,k2j.

—0

(19)

F[ F‘a (e Ky Y+ky 2)

)

in the integrand. It is well known that forward scattering occurs when AO<<

The application in question results in an additional factor (kg 2 2

‘4

holds for all relevant scale lengths £ contained in the distribution of
sn(x,y,z), Ao = Zﬂ/ko being the wavelength of the incident wave. These scale
lengths correspond to the dominant components in the spatial Fourier spectrum
(19) which means that the wave numbers k N ky’ k of these components should

have a magnitude of the order of[ . We then have
£l+ g - ‘ ~ Aal
g 2 ~ 14f1 ~ 4?1 i

which quantity thus proves to be very small. Therefore, the following

approximation can be used under forward-scattering conditions:

FRT P
i 2= hifi+ = AR IV SR T 7N

ax,, 2 (20)




_]]_

while, also:

A4 2 (A - . 2=
' = {1+ éxg*+z?i;: ol 51 Vgt 1)
2, I a+ ﬂg gcl é 1£3 ' (

The application of these approximations to the equations (18a) and
{18b) yields the following wave equations for stationary forward-scattering

conditions:

D P | at

. L A — r— '
(é,+ 22 al') U= -é'i'%‘?—'&yl) (J” u), (22a)

D N
A+ 2 ﬁ“’a'i)u =(_é+ a 3 }Tj (J" <) (220)

> 4
2

The form of these equations, which only contain the first derivative of the
variable z, is typical for a propagation of diffusion type in the z direction.
This might be yet clearer from the corresponding equations for the quantities:
1\ -—-i‘or 1\ J’ l.éof 'J’
=& U and VUV =e «,

1

In the recent literature such forward—scattering approximations have been

applied to stationary scatterers, e.g., by Molyneux3) and De WolfA).

Considering next a non stationary medium, the parameter (1/c2)32/a£2
will in general involve quantities of the same order as ki since, in practical
situations, the main time dependence results from that of the primary wave;
this presumes that the relevant travelling waves contained in the four-dimensional

Fourier spectrum of én, viz.

~ P 7~ c'[é,;x‘*'g f’ézf—wﬂ
S o= 2 [k e T

- X —vy o0

- .G{A du € ik —w‘gf([\a:j)

b b o)

¢

p L7 (23)
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do have frequencies w which are much smaller than W We then can apply

approximations such as {(compare (10)):

3x‘+3&" T el T e

o L -\ A L
_ i fi_ermtaE| 9 e @ty
=T i ar c )M 2 ) (24)

F 37

6. Some expressions for the Born approximation

This approximation, viz. u = u o, only takes into - count single-

scattering effects as described by u,. Usually, it is directly derived from

some equation equivalent to our (3) ln which u is then to be replaced by upr
in the right-hand side. In our analysis the scattering part of the Born

 approximation also results from taking N = 1 in the relevant expressions,
while substituting tha primary field (2) for . We thus obtain from (6) and

(11) respectively:

B -, J,,(’.,{_.L:ﬁ :'(Z‘f;-f-ﬁl’?
”:(B")-‘-‘;;e '/"’5 Qp? /e > - (25)

and

-l s in (@ 3rb prh - 4)
v (QF’JPJ 2'?, de

4 A= ik |4y &

_2:.+%££_“;L 3+ :
o0 ax';l 23’1. C‘tSl—;_
(25a)

Splitting off the primary wave as given by (2) the latter expression can further

be reduced to:

ulodl= il Y " R RN KXz N Xy
0 fer )k (-
(‘7‘”‘ V—;") (26a) )

é;ég93§>29){l
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Using the alternative square root (see (10)} we obtain:

(P, 4)"“
&z (&%- w«l) "‘é (2o-%)-1%p-4] Vibu-is 'ﬂ’*“"é"i‘%’-’ Klessiie) n(ﬂh A
? P
Wx"%jf(&y ‘r‘) L+ ™

('Pe V“}d.

(26b)

These operational expressions transform into ordinary ones if we
substitute for &n the Fourier synthesis (23) in terms of 'travelling waves',
For convenience we introduce the term "acoustic waves" for the latter, thus
reminding the practical property that the phase velocity w/k = w/rﬁ| of the
individual components~ﬁ,w is in general very small compared to the propagation
velocity ¢ = wO/ko of an incident electromagnetic wave (compare the end of
section 5). The function G4 giving the spectrum of the acoustic waves has to
account for the fact that dn vanishes outside the slab 0 < z < D. The substi-

tution of (23) into (26a) first gives:
2 ¢ (5: Ip-es 4 "“éz&‘zﬂ*d z,,_z;]]/ &*"&‘ﬁ' %“éﬂ&é(ﬁ )t
“f{ PA)=ikse ? 5 = '
4 Vo Ao +ib =gy -
A c'{f A -t“é -2
(&Td&ﬂfﬂ,wjf % /P 29)
¥ >
and next, after an evaluation of the differential operators,

b (&% w4) f/é,aj e“:"’f“‘“”
,_.4-&-')2- (‘f.x*'ézj a‘&”’gﬂ

Kﬁ% p-tgl Y ()t 4, *af—Jz(ﬁr» 19)

0

u(?l)..z

(.Z».V‘} 0) (27)
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7. The discrimination between thin dnd thick scatterers

In order to illustrate the usefulness of symbolic expressions by an
example, we consider the Born approximation for a stationary medium in the
case of a perpendicularly incident wave
i'ﬂ.z'—% 4)

um-:e

(Kox = Koy = 0). We then obtain from (26a) for the forward-scattering part

for the single-scattering contribution:

2
(p-10) LAt iz

u (p4) )= 4} iy (r4) c/z? dnsp, 9p,%).

2 P
l/g; arp‘- é n

We further assume the applicability of the forward-scattering approximation

and thus get, using (20) in the exponent while replacing the denominator by k.,
Zp

u (=it 4, (R4 [dz e

o

(:
S l-2) Bt o) .

For a special scale length Z the order of magnitude of the expone.:
appears to be that of (zp—zq)/ (k.ofz), with the maximal value d/(kofz) if
d = zp constitutes the penetration depth at which we are observing. We can
therefore discriminate between small penetration depths for which
d << kolz v !2/)\0 for all relevant scale lengths [, and large penetration depths
for which this is not the case. The scatterer itself may be called "thin" if

evern

mim [/‘)

» K

mml being the smallest relevant Sr.‘.ale length. It is then allowed to neglect



..]5_

the effect of the exponent in (28) altogether, and we arrive at the well

known approximation for the "geometric optical region" or Fresnel zone, viz.

%
U,{P,-l) =¢‘£;u ;A [ dz Intx, 2s). (29)
5 }M m § ps 4p> %)

0
The wave function here only depends on the refractive-index distribution along
the primary ray (xp and yp cpnstant) arriving at the point of observation. We
here recognize a pure shadow effect while the factor 1 in

¥
Ut Yy ('£o£ PJZ, én (%, 8p,%)

: ~ e
U

indicates an almost pure phase modulation for a non-absorting object (8n real).

For thicker objects we have to take into account at least a few terms
of the expansion of the exponential in (28). Writing out the first terms we

find:

ot P 3 -
uU(Pil=0 I rz {P 3 A N
(30)
the second term represents focussing and defocussing effects which are inde-

pendent of the frequency in a nmon dispersive scatterer (see also the discussion

in reference 1, page 420).

For increasing penetration depths, which can only exist in "thick
objects" for which D is at least of the order:ﬂffz/lo for the relevant scale
lengths, an increasing number of terms in (30) is needed. We then enter
gradually into the diffraction or Fraunhofer region. There, the typical
diffraction phenomena depend first of all on the magnitude of 4 Aoafz and
these phenomena thus become less spectacular for increasing frequency
(decreasing wave length). This is in contrast with the order of magnitude of
ko d(<6n2>)% which determines, in view of (29), the order o:i smplitude
in the Fresnel region; the variance <6n2>. expressing the average value of
dnz, is a measure there for the possible values of én. In this latter region
the scattered wave increases with increasing frequency, and we have to do

there with "pure scattering'.



_!6_

A special application of the geometric—optical approximation (29)
may concern Rontgen diffraction by a thin object composed of a number of
parallel sheats all of which contain an identical periodic structure which,
however, may have a random lateral displacement in the consecutive sheats,
In spite of this granular structure (with a predominating periodicity) the
periodicity in the transverse coordinates x and y, existing in 6n(x,y,2)

for each individual z value, is maintained in the integral

D
/ Jn}('z;y)x) 1
2

which fines the wave—function distribution across the outer edge z = D of
the object. Therefore, the diffraction observed outside is still dominated
by the present periodicity though the latter may be less apparent due to
the mentioned lateral shifts. An explanation‘for this situation has been

5)

discussed by von Laue”™ when considering a corresponding model.

The consequences of the transition from thin to thick objects in

6)

electron microscopy have been described elsewhere .

8. A further symbolic expression for the Born approximation

The expression to be derived in this section is in particular useful
for computation of the scattered waves observed at great distances in front

or behind the scattering slab (see the next section).

We start from formula {25) in which the time shift im the dn-distribu-

tion may be accounted for as follows by introducing a delta function:
A ) od
C'gc

. & ..t'a.b-{) '
U (P;‘”:Igf? & ePQ Y in.#)e $4-2-4) (31)

We next need the four—dimensional Fourier transform of the normalized

Green function §(t-r/c)/r associated with the wave equation

(Vi 2 us- 1w d6d &) &6 604)
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This transform, the derivation.of which is given in the appendix, reads:

oo ob—lc‘

S (7[ ) ]f_u- e ) zﬁ‘,}ﬂ-f, Y45 1rut)
C{g c/ d@j dltt .
4»3‘4-1 ‘ S A e E“L:

-~ o —cO-it?

(@) &

In order to apply this formula to (31) we substitute x = xq T Xp
y = -y, 2z=2z_ =2z , s0 that the vector with components (x,vy,z)} can
q P q_,

be represented by Pgq; moreover, =< may be short for the vector with components

S1» Sy Sg Replacing further t by t - t', we thus get:
oo - ic' . |
S@_%‘)_ ,@ CTPY +iu(d-1Y
=1 | du B - ‘ (o)
2 U
P¢ s | | s |

RPN

The formula (31) can then be transformed into:

u (P 4)=

TN AGact-1)
a‘g/dle én @, 4) 0/5'/ = = ,

—o0¢¢’

or, inverting the orders of integratiom, into

U:[P .{J:
R~V 2 Lr
2 g e .-q( o Hij+u)f! }
1&,[ /d gut / / dn,4).

-0 (c

However, the Fourier inversion of (23) yields:

, f [ oillg-od)
ﬁqﬂ:w):&_ﬂ?fhf [dl e Ing, 4,
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so that the single-scattering contribution u, can be represented as follows

1
in terms of the spectral fumction G, of the '"acoustic waves':

4

R 5T du)
u}(Rflj::ZAEL dk. tiﬂ £ g 15‘(Ll ) ‘% “J

—ed =i (C)>a)

oo -i¢?

(33)

The coordinates and time of the observation peint (P,t)} only occur in
the exponential according to which the spatial and time derivatives are

equivalent with the following operators:

[ o . _d 9
Y R T asz" ts ’Sv"’j*)_”

2 i
of T

This involves the following symbolic expression replacing (33):

b —{e!
-) ((%b-51'¢Q€J
u(P4)-z£ f(f—i'-a—gaJ“w*‘ﬂ A5 | du £ PrE
c!.
-0 =i’

In view of (32) the four-dimensional integral here equals

$(4-2)
a

3
vk
so that, also,

T ) S
U,(Pj e, fg; “?"J U+t ) . )
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In practical circumstances the frequency spectrum of v will be
concentrated around the incident frequency W A convenient representation
of this spectrum is then obtained by substitution of the following Fourier

transform with respect to the time variable:

co+(¢!
SH-2) - ilyre) (- )
cro 1 dw e
?P 2T ‘ ’
- 04!

in which c¢' may assume any possible value. We then arrive at the following

final formula, to be applied in the next section:

ca+(C . _t‘{%.}-wj {(.—.Eﬂ)
U, (PJ/{J: an‘ﬁf duw ; (— dgo-“a";l_rj ""J ¢ .
y P ?p
- o0’

(34)

(e>0)

9. The Born approximation at great distances

The operators entering in (34) in the acoustica-wave spectrum G4

are only effective on the integrand of the w—integral. We find, e.g.,

) e -t (4 - tp /]

o

BXF fb -
, . - (W) (4 -5 /)
_ ({hé+4Q}_3i. I H é
T B ()t (A

Provided that

C
?P >> ? (35)

mam |w, +w]

we thus get the approximation:
- ) e - - _ &
0 o Cetd) (4-2p /) y Clag) % o (- /)
3

3XP ZP ¢ ZP ?P'
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according to which a/axp amounts to a multiplication by the factor

/ (+ «) %
c Zp
A combination with the corresponding expressions for Blayp and a/azp leads

to the following vectorial representation of these approximations:

2
3%

-A - - " » - -
if u_ marks the unit vector in the radial direection, that is the vector with

(35a)

nJ

{(&%4431
< g2

components

2
Moreover, we have
9 (),
3t
and thus obtain the following for—-distance approximation of (34) if (35) is

fulfilled for all relevant w—values:

catic’

il ) (4-8)

U(PHMWJ@/‘O ![g+ °+wuZJa9 £ C )

%

- o}

In view of the path of integration and the positive value of W s the

condition (35) amounts for ¢' > 0 to:

?P>>_ —c .

W+’
Therefore, the w integration may even refer to real frequencies (c'=0) provided.

that r_ > > cfu_.
P o]

The interpretation of (36), insofar as referring tc the contribution
of a particular frequency w of the acoustic-wave spectrum G&’ involves the

wellknown property that only the effect of one single component of this spectrum
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is observed at great distances, namely

A+

(4

wave-number vector:

i
¢

the significance of this relation will
We further notice that the geometrical
slab, as well as its thickness D, only

which has to account for the vanishing

the component characterized by the

b

&

yet be discussed later (see section il).

(37)

situation 0 < z < D of the scattering
enter implicitly in the function G4

of &n outside the slab. The different

numerical behaviour of the scattered wave on thé front side and at the back

of the slab results from the fact that

negative in the former case and positiv

Results equivalent to {36} are

. -,
the sign of the z component of u. is

e in the latter one,

usually derived from a saddlepoint

approximation of integrals like (27). The present derivation has the adventage

that the expression (34), to which the
is yet rigorous. This facilitates the d

approximation, and alse the derivation

fact the latter depend on a Taylor expansion of G

folb-igeo i) = -t

final approximation has to be applied,
iscussion of the reliability of the
of corrections to it. As a matter of

starting with:

L, @t

4

R

— s
cC

D
+;? LT Gy ) (""z‘%-: B} “—‘1'5—”@")*3’% (T 40 ) Ly,

oo

10. Waves inside the scattering slab ac

cording to the Born approximation

The distinction between forward

section 4) can also be applied to the s

and backward travelling waves (see

ingle-scattering contribution u, as

represented by (27). Obviously, this leads to a splitting inside the

travelling slab 0 <:zp (L D according to

@=£+¢J
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with

w o AR —wd
4 (24)= “m"’ ! ﬁﬁ / 1) o 7 J><
JEES- o k- (1 e,

% e Uig +00 2
x/dz (% zfrJ{[/L -, 4 ,{g }5 ;g ig

(‘ﬂs?;’_w{)
Ly Yo 4=k (ﬂ:?P' H/‘c/f/ 9"/[\“)) ° X

V-t bt o,
% / 0/4? e‘{‘?rﬁzf (‘a:%:ij (€, + x)5(£:3+%)"+ cz+£'z}'
y (tnr>o)

The integration with respect to zq is elementary, and yields, after

introducing the abbreviations:

a(;r:"__:_- gﬂz.-}-ﬁz W ) / x-l’érr— /éa;'f‘ }J @"{:\<a)

Vo b BT AAT L GF,  (nd2o)

4= Waﬁgf V- llourhe)= b, 414, ) (3ol

(38)

the following remaining four-dimensional integrals:

FlA)= 47 Er-4Y dffjdw {y (Be)e ‘B -99 -““')
o’iﬂl

A . o ACh-wtly p-n)
lfl,'(l’,«ﬁ—.: gozecf/z:?P- olj[ﬂ'[d’w §q/3f Je - A _,)’
% A

(39)
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We thus infer the existence of four different waves contained in

the representations:

. y Q[f w) 38 T - i) Gl /g‘a, f-leied) 1}
u, (P4)= go 4 _£ / Z:/ d ,,: » ,

a2t %Je‘m*r?"‘“‘"’*‘“”_ g [a@/ f/ZJuJ A, o-tar)

“":‘b/’l ’

(40)

where we have introduced the following individual wave—number vectors:

3) :?‘4 :Z«I—E,
ZJ/d = Z:-FZ-\-O(? ZE\) | (41)
B, - L+1-4%

4d

il

Gf; = unit vector in the z direction).

As a2 matter of fact, each individual acoustic wave, fixed by the set
-
(ky&), thus generates four different waves characterized by their exponential

functions. However, the first and the fourth one, both being proportiomal to

A )R- (vt

J . |
have the same wave-number vector kfm = kbm' These waves can h2 termed "modulated

£ the incident

waves" since they originate from a direet modulation of a pa..
primary wave by the acoustic wave in question. For the rest, these two waves

result from a forward and a backward scattering contribution respectively, which
is expressed by the first subscript of the corresponding labels fm and dm, while

i H

the common second label "m" refers to the concept of modulation.
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The two remaining waves in (40), proportional to
' = i R o3
. vfl;u o - (hrw)t ) wd o o f.y 2 -(%wﬂf

will be called "diffracted waves', according to which the second subscript
"d" has been introduced. The other subscript again refers to the fact that
the first of these waves results from forward scattering, but the second
one from backscattering. The length k of the wave-number vector of these
diffracted waves becomes very simple; for the "f d'" wave it can be derived

as follows:

b= 4y (frz‘}(mv T T
= :L/éaz-réijt 2 4 /écz"' z)_.r(%:k-}l_ ‘2/424&)./-?/ _ /cu,, f—»w 2

The corresponding computation for the "b 4" wave shows that

| @+ e
f,/af :’é’ = c

holds for both types of diffracted waves. We infer that these waves are

similar to a wave propagating through vacuum with a frequency w, o+ w.

Moreover, the relation

g{c[ —ggd G}-—,J@rzﬁﬁz‘\

indicates that the endpoints of the wave-number vectors for the two diffracted
.

waves, when plotted in a k-space, are connected by a line parallel tc the

z—axis. The further relation

(?;A’)x ‘"(Z;J)x "'(Z;m )x - bt b

and the corresponding one for the y components shows that the latter line
—3 A
will also pass through the endpoint of the vector kf = kb . We thus have
s m m
explained the k-space diagram of fig. 1, in which 31, 3} and B1 are

illustrated by the lengths indicated in the right-hand part of the figure.
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11. Resonances inside the scattering slab according to the Born approximation

The expressions (39) and (40) show that a resonance, that is a very
high excitation of one of the single-scattered waves by a special acoustic
=0, o

wave, might occur when o =0 or B] = 0. The latter case has very

1 1
little practical importance since, usually, the length k of the wave-number
for the relevant acoustic waves is much smaller than the corresponding value
mo/c for the incident electromagnetic wave. The condition Bl = 0 then involves

approximately

((Uofw N ﬁ,:fé\;,

()~ het by

that is koz'uO. This situation can only cccur for a nearly grazing incident

or in turn

wave.,

 Let us now consider the case @ = 0. The corresponding factor in the

integrand of the first expression (36), viz.
~
el
A q
tends to i zp for ) -+ 0. The associated contribution to the scattered wave
would thus become infinite for zp + ®, gowever, (39) has been derived for
points inside the slab (zp < D) while, even in the case of large values
of zp inside (occuring for very large D), we find the following limit for

the factor in question:

A\ <0
- td' ZP * 4
Jﬁ;ﬂ [-€ = j’e__‘&?z dy =

Z};;ao “? 0
4
JF ke
% , ? P
L”rf[dﬂ-;-l’jr r/q]lnu; = (42)

the symbol P indicates that, if necessary, a principal value should be taken

when the integration is performed with this factor in the integrand, This
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evaluation, however, will never lead teo a diverging integral in (39). The
corresponding considerations hold with respect to a5

The role of resonances’g1 = 0 and tl = 0 thus deces not look very
striking., Nevertheless its importance can be recognized from the far-distance
arproximation (36) which showed that, of all acoustic waves with a special
frequency w, the only one observable at great distances is characterized by

the wave—number vector of (37). This vector satisfies the relation

L) = Ll -

c

in which the modulus sign on the left-hand side refers to the length of

S\ ~
ot k. On the other hand, the relations d]

to the same condition when working out the equation:

(S5 Bk b= (k)= (o 2

The far field, both at the front side and at the back of the scattering slab,

= 0 and &} = 0 prove to lead

thus depends on the rescnance condition éc =0 or a) = 0.

The condition {43) turns out to be nothing else than an extension of
the well known Bragg relation for reflection or scattering against a crystal
lattice if the latter, instead of being stationary, is replaced here by the
set of parallel wave fronts W on which the amplitude of a single travelling
acoustic wave assumes, e.g.,, 1ts maximal values. These wavefronts, perpendicular
to the wave-number vector‘t {of length k), have a separation d given by

mi/cz, the formula (43)

k = 2n/d. In fact, remembering the relation ki

proves to be equivalent with:

— 1 \
w 2 Wy w
g’*+z{,,23=61+ ’ (44)

Cal
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2

FIGURE 1.
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After introducing the phase velocity v = w/k of the acoustic wave, the wave
length A = 2n/k of the incident wave, and the angle of incidence i_ (as

o o A A ©
represented in fig. 2) given by ko k= - ko k sin io, we find that (44) can

be transformed into:

b (1-%)=2d (sag 4 E), @9

which reduces in the stationary
case (v=0) to the ordinary Bragg

relation,

We yet emphasize that the
simultaneous occurence of modulated
and diffracted waves, which, in
view of (41), leads to the discussed
resonance condition if they should
be identical, completely depends con
the assumption that the scattering

body has a finite extent in one

special direction, viz. the z direc-

Fig. 2 tion. As a matter of fact the

diffracted waves would disappear
altogether if the scattering medium were infinite in all directions. This is at
once clear from fig. 1 according to which, the modulated waves being given, the
orientation of the diffracted waves depends on a line parallel to the z—-axis in
the diagram for the wave—number vectors; therefore, this orientation becomes in-
definite when the z direction loses its special significance for a body
occupying the entire space, The same conclusion is arrived at if, in (27), we
replace the finite integration interval 0 < zq < D by the infinite interval

— < zq < w in order to take account of a scatterer of unrestricted size in all
directions, The evaluation of the corresponding 2 integral in (27), with the

aid of the formulas (compare (42)):
. + L ' J
+¢o(_( T« fé' ‘Z'""(%
e ]
7w df)* .;L Iln Jm ¥=0

<0

(46)
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then leads to the following expression for the single—order scattering due
. T { e
to a primary wave upr = exp (i ko rp - wot) that travels through an infinite

scattering medium

u (BA)=
4 4 . [{{Ki‘lj'fp‘_(%{_“jl}_ ,
t:g:]‘a’gfdd g{[%w) e p []’{J@HW)}—HE% s )

—_
the §—function contribution$ only occur for k values leading to a real B1
and therefore are to be omitted when B] is complex throughout (e.g. for w,

with a small positive imaginary part).

In fact, in (47) we only recognize the occurence of modulated waves.

12. The higher—order terms of the Born series

According to the analysis of section 9 the primary wave generates, by a single
scattering act, four new waves propagating through the inhomogeneous slab

{see equ, (40})). Lt is then to be expected that, in turn, each of these waves
will again generate four further waves, this being the result of a second
scattering. Obviously, this process will be continued ad infinitum, that is,

each of the waves UN ; produced after N successive scatterings will generate
}

four new waves all of which belong to the class of U waves that are

N+1,]
generated after N+] scatterings. Starting from the four waves U1 j(j=!,2,3,4)

given in (40) we thus would obtain sixteen waves U2 J.(j=1,2,..,16). sixty-four
3

waves U3 F (j=1,2,...,64), and so on. However, we infer from the results .f
¥

section 9 that the actual number of different U] 3 waves reduced from 4 to 3
1 ]

since the wave—number vector is the same for the contributions due to forward
modulation and backward modulation respectively., Such reductions also occur
for the higher-order scattering contributions, the number of independent Uz,j
waves thus becoming only 5 instead of 16 (see the next section).

A general theory for the generation of all these new waves after each
individual scattering is to be obtained from the recurrence relation (l1). For

its application we first need a representation of U, in terms of its composing

N
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waves UN .. Since each of these waves originates after a number of successive
v]
scatterings from waves of a lower scattering order, the wave-number vector
— R .
kN ; corresponding to UN 5 will depend on the wave—number vectors associated
» »

with the chain of preceding waves from which U results ultimately. These

preceding waves Um,j (m=1,2,..,,N-1) are fixed E;Jthe wave—number components
which constitute the integration variables of the 4m—fold Fourier integral

that results from N successive applications of the recurrence relation {11),
while introducing the Fourier integrals (23) for each factor én in the relevant

integrand., We thus arrive at the following representaion for U

i 1 e g s
5{[\ "‘}JJ Z I\Q ?;\'(w‘ﬁag-r-wwﬂ).#}

This formula expresses how the generation of a special N,j wave depends

(48)

on N integrations over the complete scattering medium though the 3N integrations

over the spatial coordinates are replaced here, in the corresponding Fourier

PN —
space, by those over the components of wave-number vectors,kl,..., kN. Each
Y
vector kN depends in general on the complete set of variables contained in the
comblnatlon of the components k 'E;,..,kN and of the frequencies Wis Woaesllye

Returning to the recurrence relation (11) we observe that the operator
in its integrand acts on the quantity 5n.32UN_|/at2 as observed at the point
(xp,yp,zq) at the time t. The two factors of this quantity can be represented
as follows, introducing (23) for én, and the second-order time derivative of

(48) in order to get 32U /Btz. We thus obtain:

N-1

on (x, Jgpﬂe,e c/g—\jdw g(fwn t(ng‘)f""gv .?p-*gNzZ a3, 4)

2

SRR
%}

‘ J|{'{’—‘u;zc )f’+€’-€gly #* ﬁi.. )X

2 ..-z'(w‘,-!- ) N-l) jl
X (“13*“5*“‘*"’&—:) e ZN"J e
./
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The exponential entering in the product of these two expressions
constitutes the only factor in the integrand of (11) which depends on the
variables xp, Yp’ zq, t. Therefore, the operator az/axi + az/ayi - (1/c2)32/at2
in (11) only affects this very exponential so that this operator may be

replaced by the following non symbolic quantity:

_ L 0
%-&-—gg—;-—ﬁ{\?—l—_: %W*’ v) {EM+N4J2)'/£N;+ v, }JL

2

o (Bt W (R lg), = ) 4o @

Where_L refers to the transverse component {(perpendicular to the z-axis) of
L W N ) .
the wvector kN + kN—] i the modulus of which is only relevant.
L]

Working out the substitutions, mentioned here, in the expression (i1)

We arrive at:

UN[E,H::Z{; dk—,\ dﬁ; a/u-;...fdwN gﬂg‘*#)"'f/{\:wﬂ)'/%*“f*""’Laf\i'-l)z)‘(
(i +- -+wN_)»f- ¢ "‘{&’Nx* 4’-’4;1)’(P+[£Ng*£-g J ,,‘(J"?P }

y
P Aletfy e b))

/N,J

The elementary evaluation of the integration over zq leads to the following

(]

relation expressing the sum UN of all kN ; waves in terms of the preceding
]

kN—l i waves:
’
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ulih= [ [ [ [y ). Gl i) G

xe_ezw.+ 4 TG ,H | | } ke ¥
J /NJ Nz"’{ﬂ_{\}z ﬁ!’f fN{r N”’j32+ﬁ~‘/

@,,;%4, lhigthesisivhist } Mooy Josby Yo s Ji A, W
Nt"'{nu,‘“—ﬁpi P 1+{N’j 2+/5N' J
(53]

According to the nomenclature introduced in section 9 the four

-

contributions corresponding to the four terms occurring in the squared

brackets of (50) can be interpreted as resulting from N successive scatterings
the last of which is due to a "forward modulation' (fm), a "backward modulation"
(bm), a "forward diffraction" (fd), and a "backward diffraction"” (bd) resPecti-'
vely. In_-.\;iew of the definition of the coefficients ch and qf the wave-number
vectors k‘Nj of the individual waves, as given by (48), the information

contained in (50) can be represented as follows:

¢ :Caﬁw““' “'H‘)Nal) | CN_' ,.}
Ns- . .
g ’/m (glvz"' -',J'x'/?av J )
¢ PR A, )1 ’ Cov-r;
Nj. ety - ¢ J

@Nz ,}24-/5’”) ﬂNaj

C;; (%4-‘0;-& - Uy, ) i C‘N_,J.J‘)
(b ju ) Ao

b ¢ iy

(‘V"H"'!J}i’*/"’\ffj Ay

ajo‘““} +- '+w~..lJ 2

CNJ-.... Ja/:( P
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g;r- fd = (z\i"'{l:J )J_""/ﬁa'v z,
= Cvtbis) A B

The subseript j is an abbreviation here for the labels left open on the left-

(51a)

hand sides and which have to indicate the types of scattering (fm,bm,fd or bd)

associated with the first N-1 scatterings.

The higher-order terms of the Born series could be computed in suces-
sion with the aid of the recurrence relations represented by {(51) and (5la),

when startinf from u, (see the next section). We yet observe how the diffraction

1
determining the final N-th scattering in the case of the last two waves of (5la)

involves the relation:

7 2 (wc+u.3+-~«+wsvji
Pris. .,Jl - '

‘
o

c

13. Waves contained in the second-order term of the Born series

We first observe that an application of the general recurrence
relations (51) and (51a) for N = | yield the scattering contribution u, as
it should, if we identify u with the normalized primary wave (for which
€, = 1); for this verificat%g? we have to remember how the coefficients °Nj
and the wave-number vectors kNj are fixed by (48), while the definitions (38)
and the relation w, = koc are also to be taken into account. The first—order

scattering contributions are then fully represented by:



_34_

a B
-t e —_——
= 14 v
LA ) 0‘:/"1"
1 D
I ¢ty = i
e - » I - ¥ ,
? 4 A 4 /3

‘g-\{‘fh = {' 411-' = E+ {;l’ ' o

With the aid of these expressions we can evaluate the recurrence
formulas (51) and (51a) for N = 2, As an example we consider the determination
—
hi .. . .
of c2; bd, fm and k2; bd, fm which quantities fix the amplitude and the
wave-number vector of the contribution originating from a first scattering
of the "back diffraction" type, followed by a second scattering of the

"forward modulation” type. A straightforward application of (51) and (5la)

first yields:

b o (Y
2 4 fm R R YV WY,

Lty fn=Fr b

in which, in view of (49),

Boag =) (S AL a)

With the aid of (52) these expressions can next be transformed into:

‘ 4
[:Do(,
€

X _ [ wtd, |2 :
A, f (4 (Be-b-A) JApn

2
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z: 4d, fom --(3:*“ fj*—l:} v, -8)% = iR T,
s o, A

if we yet introduce:

A= YRS ()

All other contributions to the second-order Born term u, can be

evaluated in the same way. It is then convenient to use the further abbreviations

v
o, = £az_+£l):+é,z —/gl >

e £, +h, Fhy +f,

We thus get the following representations in which all contributions associated

with an identical wave—number vector have been put together with curly braces

kR

ti = (‘:Ue'i'u()L )}
p - .
i g fm R YA

(;j dhﬂ,ﬁzn, - - labiia% * thﬂ?f;'ﬁk
il = (T g
(, )
“%”%/‘{ = ( «oaﬁ: N

( ) &aﬂ/,g_

:f}

3

N
i

o ft = ()

- B

aﬁ W
G, dd fd = {"’f“lj E7ARITT
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1 1D°§ \

"/S’,,&
X W,y |2 | &lelb,t
sz-(mjlt{ = _( C ‘) dI

Ao -++ oy
:z tb(ﬂ}" J " f::(d ! QL /?;”z;

Sifd, dd = -(252) ’{,z;‘ ) A

S fm, 44 "‘/%W)

:t tbd,_
Cg;{t[,li = ( ) J{"i d"}ﬁfﬂl
(a,,,J-wJ gaz
RS W i O
A |
« (') A,

55y fm =

55/4("‘: (%t’-":}i

" ze tbd’ 3
), 4+ 1
S. 44 =( Sl
2 JK’”‘ ¢ df[ﬂﬂ_“f‘)ﬂ;ﬂl Z} f rr{‘ w@u-;\
- = 04’ r = !
2e l])of
_ Ja,tw)*
(:’-j (d; bm = '( ac IJ

“f@f‘" ”{l\lr .J /? 'ﬂl

We thus infer in particular that, instead of sixteen second-order waves,

only five types with different k vectors remain,
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14. The Born approximation for a general infinite scatterer

The occurence of many types of waves, as described in the last three
sections, is first of all a consequence of the finite sgize of the scattering
body in the z—direction., As remarked at the end of section 11, the "diffracted
waves'" disappear in a scatterer extending up to infinity in all directions.
This suggests to consider those contributions of the first few Born terms that
remain when leaving out all diffracted waves. Assuming B] complex throughout,

we find from (49) applying the identity:
T ¥ 2 faa+ |2
c
the following representation for the first Born term:
. Zf zL_J .
G, ( 3 et Bt (g i),
! ¢
; Woped iz .
{gj.+z“/_(_i.)
< .

Cﬁ(?y4J==-2i: ‘Jz. ofw

The question arises whether such an expression might also hold for
finite scatterers, thus as those considered sofar which only occupy the space
0 <z < D. In fact, the latter can be considered as a special case of an
infinite one for which Sh happens to vanish ocutside the mentioned space. From
what follows the above formula proves to be applicable quite generally indeed,
provided that the integration path for w is chosen properly; we remind that
the integration OVerig concerns that of each of its components kx’ky’kz along

the corresponding real axis.

For the sake of generality we shall investigate simultaneously the

two integrals

. 0t ip f[-‘w) e(’{ﬂ:}ga\._(aé_}a)ﬂ}
+ }F«r l u»+«—) ) (53)

with an w path just above or just below the real axis respectively.
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After applying a splitting into partial fractioms, while substituting the

inversion of the four-dimensional Fourier intagral (23) according to:

_c[ff—w'd
5’1 L w)- = /o/f/,!r Jn[—‘de (56)

we can reduce (53) to the following formula, vet inverting the orders of

integration,

, o[BG T 7F
f _ £°zCe_.: a% d?{{ Jf[ﬁ' 5’&’7}’6_ ?5’;
7t |24+2]

oo+l

—ca4-1) / _ { | '
wrw, +e| L+ o o] LR

A | dwe

—obXi,
(55)

The integration path of the two w contributions can be closed by
adding either an integration along the upper half of the infinite circle in
the w-plane when t-1 <0, or along the corresponding lower half of this
circle when t-1 >0, In the former case the contour for J+ does not enclose
any of the two poles atw= W + cIKK0+K}. and the integral vanishes, the
spoles in question being situated on the real axis (we assume w, as real here);
on the other hand, the contour for J- then encloses both poles which leads
to an addition of the associated residues. In the case of t-1 >0, on the
contrary, the contour for J+ encloses both poles, but that of J- involves a
vanishing integral. The corresponding elementary evaluations of the complete
W _integral in (59) in the four cases of J+.and J-,and of t-t<0 and t-tv > 0,

can be summarized by the single expression:

TZ: e_.[wﬂ—-‘{‘J { ~ i
J e BBl wauy_c|Bed]

Y

- syye 40 b fe|LeT | (4 l) Ufttd =),
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U(x) being Heaviside's unit functionm.

A substitution of this result into (55) yields, after a further

inversion of the order of integration,

JJ- _+ b'c [;/F[a‘r e_'l‘%?-yn [f'zj [{{iﬂ::r)fx

y
t{fa-l?r,, -:Z’F‘ (56)
fd{‘ {cl€+ﬂ(¥-—r)}
| B &l
The"f integral, say, can be represented as follows by introducing the new

L . §
integration vector s = K +K, with length S = |K +K|

((-F) 3 Son{el4-s) |

§

e

K=€ IEF

Th.s l.:ter integral is of the type I as investigated in the appendix, and

iR |
K = fnr-l_f—ﬂ_ ds S (15-F[) fnfelthrls}.
7o - J

thus proves to result in:

In turn, this new integral can be transformed into two integrals of the form

[ o (eh) = 7 SeA)=T dir),

thus yielding:

| Jff o
(ot g { S8 - it 22

The substitution of this expression inte (56) first gives:

BF
Jt’-—g F ..x -!, ol SNZJ'I‘)Q a{iﬂ.ﬁ}{é‘{r 1(+k’ gl) J‘é'd( _E'E;f[}}
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but, applying the properties

fe) Stx-2) = R(n) dee-),
YL L U

this can further be reduced to:

A7 7 | N
dr S0 & St 1EEL)

cEar (7~ El

- D

‘ c(gfiéhp Fl)

:__:e’{.%{ dF £ JHFJ —u'

2T | & - F

Next introducing, as in section 3, the integration peint Q and the
Y
observation point P with the components of‘f'and T, respectlvely,as coordinates,

we arrive at:

2 ~fﬁﬁy¥ ¢ ;:f;)itél PQ)
_t:i_fi‘e % e 5)1[0}%:{:%2), (57)

Hence, J+ proves to be identical with the expression (25) for the Born approxima-

tion u,. In other words, according to (53), this approximation can now be

emie ARG -l )
(P4 24, JE / ; A
)= e -

DD

We here infer that the corresponding integral for J- would represent
u if Maxwell's equations should be solved with the aid of advanced potentials
instead of retarded potentials, because the former are in accordance with the
occurrence of the argument t + p?/c instead of t ~ Pq/c in the § function of
(57}. Finally we observe that the difference J+ - J-, that is the difference

of the wvalues of u, when associated with retarded and advanced potentials
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respectively, amounts to the sum of the residues belonging to the poles
-s - - a
W= et c[ﬁ;+K1 in the above integrals. Of course, it is also possible
to evaluate the residues at each of these poles individually. This leads to

the following result:

Residue at W= - &, +¢’E\+z’ 7 .;(E: Ej?/ }4
7 fvfisw.] AT .
1.£ d/:{ -{;ﬂ“,’tfflvil(gi%:JL‘g i

i ¢ :— B S"{E) Cﬂ:ﬁ%ﬂ
(]-]) 5% Pfd&"[a/r({“dszll ..

P referring to a principal value. From the difference of these two expressions

we would obtain that the integration along a lemmiscate-shaped curve in the w
plane which encircles both poles in oppeosite direction will lead to the latter
double integral. This integral constitutes a superposition of the elementary

solutions

o

cl.-
of the wave equation for vacuum the indivi?ual contributions of which result
after a shift T in time and a displacement £ of the origin at r = 0. Apparently
such solutions, though connected with the existence of the characteristics of
the hyperbolic differential equation, never play a dominant role in propagation

theories.

15. The higher-order Born terms for a gemeral infinite scatterer

The integral (58) for the first-order Born term was originally obtained
by leaving out the "diffracted" waves in (40). Similarly, we may 1ook for the
second-order term u, as investigated in section 13, omitting then all terms
which are either completely or partly of the '"diffracted" type. We thus have
to add all "full modulated'" contributions, that is those with the wave-number
vector E: +'E3 +'E;. The necessary summation over the coefficients of the four

contributions of this type is facilitated by an application of the following
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elementary identity:

! ! { 1
" - nd
°dr°gT 09 % u,dt % #f

1{/5” /2.
18 g1 (e ] e £ e (St
The summation over the corresponding waves leads to the formula:
o AL
u (o A= [d ot /,,/w [ fully) fillw) C54
m:‘( (st Pl | g ]
t-{(g*t;\i-t}f;‘_ [Wa"f‘“’,}w])‘{}

44

A comparison of this expression with (58) suggests that the following

formula might represent all terms of the Born series:

004 |
UN(F;'F:ZN‘L:‘/JFH d{;/dw}a dafv gf/{:a‘;). 'j://é;-: a;:v,) X

— a4 d

) (%«‘ J(%W‘*w; (%4W+ <+ &y }}z
Y O TS Y ooesmeroy

Qe ) G- lagig e s @) )

X é 5 (59)

where the integration path for all frequencies Wy plnsesestd

N has been chosen

in accordance with the single one occurring in (58).

In order to verify the general validity of (59) it suffices to give a

procf by induction, showing how its validity for a special u_ involves that

N
for Unar® The proof is then complete since we know already its correctness
for ¥ = 1. Therefore, we now assume the validity of (59) for a given N value
and then apply the recurrence relation (11) in a version holding for a

general infinite scatterer not restricted tc the domain 0 < z < D.
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Obviously this version reads as follows for N replaced by N+l:

(60)

We may now substitute the expression for azuN/at2 that follows from (59); it
has to be multiplied by &n (xp yp,zq,t) for which we take the following
»

representation for its four-dimensional Fourier integral:

D .
— ‘./éwl,x:}"ré"ﬂ, & Nﬂzz;—%“ ¥)
‘Bn (’frgﬁm’@ 4 /d‘g;(: [0/ N—H ;,; [!NH)&J,VH)'Q d .
— 00
We thus obtain:
o004
. -3
(8 e fdg: ) [ A
3?;#&}@,# —60-H O

Q@J“?J' ”;9 s i) {Ci@j (Rt *“"‘9}
TR A g g

Xe

ot b ) %+ ( byt t gvvﬂg)éi*/ Gyt ‘*{?;z)% st 1]

(61)
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The effect of the operator given by the square root in (60) amounts
to the equivalent quantity

7 = | e R = o+ b (2t tme)
(>

where Im ¥ will always differ from zero since all frequency variables

Wyallny e ey, , Were assumed with a positive imaginary part ¢ before passing
to the limit ¢ + 0 in the integrals
coF LE
dw . -
—0HtE
In fact, whereas the radicand is always real for ¢ =0, it now becomes complex
throughout which enables the possibility of a square root with a positive

imaginary part. The substitution of (61) into (60) thereupon yields:

o 0
3 , )
u'NH (F:/)(J:.: L'Z.N"[oz d[,_‘ o[{: oo o “J‘:}{,H j?('[l-:“’i)"’ %[gmuww)x
—oattd

{C_Ja_.!._u,_) g (wﬁ- : -4—qu}1€ ({ﬂmc--a»ﬁw&rjlﬁ-l‘/ﬂ;w-*{ug;)#-[aa.wwmd,{}
X = f-

I RAEC T Pt Fon by (et )

X

o

" [{]2,,_2'91- (ﬂ#ji(ﬁ,i—*‘-&%zj z‘/“y*"*fl\fﬂ,‘i} “+ /ﬁoz""”""é\'ﬂi’){(’}
x [ 1y ¢

V(%i-c. . +w~+')1_ ﬂa; Foot Nﬂjx} t(t‘7+"+£f‘%f/’_
(3v>0)

(62)



7 The integral over zq (without the constant denominator) can be split
into its forward and backward scattering parts, viz, z <z and z > zp.
With the aid of the substitutions (- zp - zq and ,(= zq - zp respectively,
the zq integral, without the denominator, proves to reduce to the following

sum:

¢ [{gzn-%gmquf a/( = 4'!-" 4""5 1)[ [.{y——é"- " N"ﬁf)/ .

The new integrals are extremely simple since they converge at the upper limit
in view of the negative sign of the real part of ﬂf,' and therefore also of
the (coefficient in both exponents. The zq integral in (62), including its

constant denominator, can thus be reduced to:

{,I'/{az‘l""'*' Nf!,z)‘zP i | 4

+
— (b Aums) AT hrrh )

. il ey x) 2p
_ Fixs
(‘/ ,)z- /£01+,,+—£N+52J1

CCopr ¥t owe, 2 ) 2p
2lg

(@ﬁ--f“’NHJ‘_IE.,... F mll

—

The resulting expression for (62) itself then proves to be equal to (59) for

N replaced by N+1. This completes the proof of the very general representation
(59).
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16. Derivation of the various waves inside the scatterer from the

expression for an infinite one

Apparently the formula (59) for this expression reveals only a
single type of waves, namely with the wave—number vector'§;+...¥ﬁg and the
frequency Wt such in contrast with the variety of waves discussed
in the sections 10 and 13 for u, and Uge It is true that these latter refer
to a finite scatterer, whereas (59) has been derived for an infinite
scatterer. On the other hand, any finite scatterer can also be considered
as an infinite one since the finite size can be accounted for in the Fourier
expression (23} for &n in which Gh then has to be such to yield vanishing 6én
values for z < 0 and z > D. The question arises whether this property can be
made clear by a convenient representation of GA‘ This proves to be possible

indeed by Fourier transforming the relevant relation

dnlzys4) = dnlry 14) { Ul - U/?—D)},

U(x) (unity for x > 0, vanishing for x < 0) being again Heaviside's unit

function. Here we can apply, for the variable z, the theorem that the Fourier
transform of a product of two functions equals the convolution of the Fourier
transforms of each of its factors. The evaluation of this convelution in the

present case leads to the formula:

od

) - /-e’wﬁrw
bt (@ i

ey - ]

This expression coula Be substituted in (59) for each of its factors
GA(E;’wj); the integration, thereafter, with respect to the wave—number
components kzj would be elementary, though tedious. We thus could recover
the many types of waves such as derived before for u, and u,. This will be

2

verified below for the case of U,



_47_

The expression (58) proves to be equivalent with the following one

Y
when using the parameters J;(k,w), jl(Ezm) and Bl(kx'ky'w) introduced in

section 10: ol f}(gi‘ﬂ?‘;_{w‘;fuj'{}
u (4] = é‘/,/[ de if;);;’,——}’é—)é

— 08D

After substitution of (63), while inverting the order of integration with
]

respect to kz, we arrive at!

59 (TZ’{)::
00 eaFie i b el b )i -2t

2t}
(6‘ oA /dé /JA /dwf.,{éf byoho) 2 7 / (64)

—ob P R . .Y T ]

in which J is short for the integral over kz, viz,

]"3/;/41 e%zf@z” L e Nt -@”’f.
—o é:z“gz -/ éz*{z“"ﬂ/ [é -4’

We pass to the new integration variable s = koz + k_ and determine
the partial fractions for each of the four factors obtained when working out

the integrand. This leads to the alternative form:

[ .r'D{fLﬁ&l’} f _;{b -%js /m _ea).zpjg 7 . A e tng
'-_;n._’_ E + dS + a’S'-—-
; J;’ ' S z*‘g-z 51*/1'1 éx 1%

ol k)( T A0 F—ibax) T s s
) de & ~[d¢ £ — [ds &—t [ds—Er |,
S y_édz_ﬁ s+f, | S-hy-&
- 00 b
3 ? (0/.5’)

) L
in which @) and &E refer to kz instead of kz so that, e.g.,

Lo b p b
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All the integrals entering here can be evaluated by closing the
integration path eithér by the upper or by the lower half of the infinite
circle of the complex S-plane. Moreover, we again use the fact that w, *w
is complex with infinitesimal positive imaginary part (mo also being provided

with such an imaginary part) so that the radicant of

= [l b=l

will have a positive imaginary part as well, like B] itself. The poles at

S = Koz + K; are only apparent since they merely result from the mentioned
splitting into partial fractions; therefore, it is allowed to take the
principal values at these poles. The six different integrals then reduce to
complete or half residues at the poles § = Bl' -B]. koz + k;, or just
vanish, depending on whether or not the poles B1 and —B] are enclosed by the
contour resulting from the mentioned closing of the integration path., We thus

find, taking into account that D - Zp and zp are positive inside the scatterer,

Y AT [ _dD-3)s 4 {
> (D% D2y (B, + x)
e =0 2] dee———= ~me
ds ) )
f"'ﬂ) r"‘gdz- P4
-0 —o0
-y : . 7 ¢ 2pS tfp[ﬁ ,#gy
¢ 28 RV e - ¢
de £ =amie ;| ofs =Tree
§-A f*&x—g;
— D
- )
e ——2Me s okt ——=0

$+4 S+4

[’ ~UD-2p)g Pild-2) 7 (%
olg

These results are to be substituted into (65). The final expression
for (64) then constitutes an integral which, after replacing the integration

variable k; by k_, proves to be identical with the sum of 3 and 3} in (40).

i
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Hence the four types of waves discussed in section 10 are recovered by the

expression for u, according to the general formula (59). In the same way it

]
would be p0351ble to obtaln again the five wave types of u, by substituting (63)

for both G(kl,w )} and G(k s,y ) in the expression (59) for N = 2.

17. Comparison of the various representations for the waves inside the

scatterer. One-dimensional illustration

In the preceding section it appeared how the first-order scattering
contribution u, can just as well be considered as the superposition,
according te (40), of four different wave types (waves either forward or
backward, and either modulated or diffracted), as well as the superposition
of only one type of waves represented by the special case N =1 of (59), viz.
the formula (58). The first representation has the adventage to show an
explicit connection with the finite size (0 < z < D) of the scatterer; the
much simpler second representation could be obtained at the cost of an w-
integration in the complex plane instead of along the real axis, though the
integration path should tend to the real axis in view of the limits + = + io.
In other words, each individual acoustic travelling wave, fixed by special
values of'ﬁ and w, may be considered as causing either four different types
of undamped waves (w real) or as causing only one type of travelling waves
with negative damping, in the limit of vanishing damping (w compiex, Imw—+ + Q).
Such a situation might yet be 1llustrated for a much simpler case, the one-
dimensional wave propagation through an inhomogeneous stationary stratified

medium in a direction perpendicular to the stratification.

Let 6n be a function of z only, with én # 0 for 0 < z < D, while the

—iko(z-ct)

incident wave e travels in the z direction. The wave equatiom (1)

then reduces to

2
9_’_%_4_ 501{,4_1 5:1{:}}(;:03
which may be represented, in analogy to (3), by

d*u
du*

= -9, (66)
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where

¢l = 28 Sntd . (67

The corresponding Green function, satisfying the equation

LE g =l

as well as the radiation condition at infinity, reads

3 [ c'lg, |2}
éﬁ :;—Z;— é s

if we assume ko with a (possibly infinitesimal) positive imaginary part.

We thus find the following particular solution of (66):

o0

oo
| : iyjx-{]
wle)= [d pl] Gle-= £ |40 elf)e 4
., ) — b
In view of (67), and the primary field with the normalized amplitude eikoz, we
next arrive at the following integral equation for u:
. (8% Ry |2
ur)=e  +ib [df &ff] ufle " 7
— b
The contribution u, contained in the corresponding Born approximation
ikgz + uj )
e reads:
4 4
, o ((+1-{]
Uit)=ib, [df Sn(f) e 4 ) (68)
— 0l

From this latter expression we can derive a representation in terms
of a single type of travelling waves, corresponding to the previous "modulated"

waves, and another one containing both "modulated" and "diffracted" waves.
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We shall start with the derivation of the former and therefore introduce

the following Fourier integral
00 ~(§
Saty= [ b Gle ™

—o) —LE

(69)

which is just as well an inversion of

flh=L [ St o

as well as of the simpler expression with € = 0; the only assumption to be
made here is that G(k) given for Im k = 0 admits an analytic continuation
up to Im k = &. We next split (68) into its "forward" and "backward"
contributions (with.gy< z and " > z respectively):

4 OO0
t\ﬁa -[ ' z“ ] y
U (x)= cble Lt Suft)re Y Sl e “}, 70)

-l X
and then substitute (69) for 6n([3. A further inversion of the orders of

integration gives:

od ~{g pd

xl

wiy)=ib [ db 0] e[ dpe et gp, AhH0 )

- o —E - <

The first !f integral only converges, with the value elkﬁ/ik, provided that

Im k = -£ <0, The corresponding condition for the convergence of the second
integral to

f‘{i ‘o"' i)z
¢ £
2 ‘lo +£

requires Im k > -2 Im ko. The combined condition

.—zjm'k:,<1m4=-£(0
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can always be satisfied 1f Im k.o > 0 where Im KO may become infinitesimal
(Im K, = +0). The substitution of the above values of the twagr’integrals

leads to the final expression:

T
(1,(2)-15} oAb g[}ﬁ{z Hﬁ

— 0} _{t‘

(5 {2 P f,;) an

Obviously, the integration path in this representation in terms of
"modulated" waves only has to be complex in order to avoid the poles at k=0
and k=—2ko. It could just as well be replaced by an integration along the
real axis, apart from an identation below k=0 and above k=~2k0. This property
can be used to.arrive at the second representation for Uy along lines
corresponding to those of the derivation in the preceding section of the
formula (40), containing three wave types, from the formula (58) only
depending on "modulated" waves. We just have to substitute in (71) the one-

dimensional analogon of (63), that is the formula

. -D#-4)

/ df‘ ) L€ ,
gfj é / zm‘/é-é’j

which accounts for the finite size 0 < z ¢« D of the scattering medium. The
substitution in question yields, after another inversion of the orders of

integration,

L ‘/édjz /- _DR-B)
=2 [df 2) ¢ > 2
U (2) / f/ / 26trd) 7 (72)

where the path of integration for k has to pass, as mentioned, below the
pole k = 0 and above k = -2ko.
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With the aid of the identity

1 H 1

l
26,44 (24.48) +£’(24+!’) @- ¢ ’

!

1 _ P
ﬁ[zéd)/i-i’) 26,8" £

+

it is possible to split the k integral in (72) into six contributions each

of which can be evaluated as a residue after closing the path of integration,
either along the upper ot along the lower half of the infinite circle in the
k-plane, remembering the above mentioned indentations; in deing so it is
irrelevant whether the integration paths pass above or below k = k', or,
whether the principal value is taken there because k = k' comstitutes no
singularity of the k integrand. The final evaluation leads to the following

remaining integration over k' (which may then be replaced by k):

A POy [,,-}ljﬂ ‘ 02 ¢D [ilaf'f) g
5 zéL { g; . g;e ~F: Y
wtih=|# 5 g EC D "

-

In contrast to (72) the integration can now be performed along the
real axis itself, the complete integrand having no singularities at k = 0
or k = -Zko. In terms of the terminology of section 10 the first contribution
of (73) can be termed '"modulated", the second and third one "forward
diffracted" and "backward diffracted" respectively. We yet remark the the
same expression (73) also results from (70) by substituting there the Fourier
integral (69) for ¢ = 0; the integrations to be performed with respect to g
are then most elementary. Summarizing we have shown in this section, by a
very simple example, how the possibility of various representations by special
combinations of waves may be connected with proper choices of the integration

path for a relevant variable.

18, The total scattered wave

From the various representations discussed in the preceding sections it will
be clear that the total wave, resulting from the summation over all scattering
contributions of any order, can also be expressed in different ways. In the
sections 10 and 13 we have considered the superposition of partly "modulated"”

and partly "diffracted" contributions. On the other hand, the analysis of the
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sections 14, 15 and 16 has shown that all waves can be considered as
"modulated" provided that the integration path for the frequencies is not
taken directly along the real axis. A further possibility for the classi-
fication of all contributions is obtained by adding together all waves
travelling in a special direction independent of the associated number

of scatterings. The corresponding representation is arrived at by passing
in the integral (59) for the N-th order term uN to the new integrations

variables:
— N ) ZA
AJ' - kg 1" l([ + i J. " > __l%. ) ‘i),.. "" w + b + w . 4

(j=h2..., V)

This transformation has a Jacobi determinant with the value 1, while the

following relation can be applied when working out the transformation:
2 ' '
[ w) §UE<) - Gl on)=

= 455,90, w) (2K, 0,0 m;‘.ni,ﬁs;m. X
. gﬁia”\z’: -l N-a-) fﬂ-‘ Nt '--QIV-J ’

The summation over N = 1,2,3,... after the evaluation of we in terms of the
-
new variables then results in the following total wave when, moreover, AN

-
and QN are replaced in all terms by the common variables k and@, respectively:

AL (t&'p..w'f)
U(PA) = e(r” A 4/0/[‘/ a w— X

D4t 0

oo ooH

xfz"' Jf‘ﬂ:’ aiﬁ,,‘,,jﬁ é@'a" &"91
IR ]

N=t —ob — o O

;(h o jaf_a,,@a.,,g/,\m ol ) (00, ).

(74}
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In view of its importance we yet give an alternative derivation of
(74) which starts with the recurrence relation (6), to be represented here

as the following four—dimensional convolution:

iy (e 4= - ﬂr’c,_ {Jﬂ; %J—} ;k{[n 24 5‘%%—: ﬁjfﬂ}} (75)

The convelution of two space—time functions hl(r,t) and hz(r,t) is defined

here as:

e A= 1 s il e he b Abtosd g
T [ AES ArEae)

Obviously, N successive applications of (75) lead to the following explicit

expression for the N-th term of the Born series:

‘UN(%M"‘@T,-LQN Vi—%—]*[} (54 33’; g‘{f._ | H {&{Jg e sl ‘U}

(76)
where the (N-1)th power ' refers to N-1 steps of the type

nted) =< ﬂ-"/* w5, 4)).

The further reduction of (76) will be based on the well-known convolution

properties:

{4 64% LAY Bed =Gl - (B 4o
il ALY /w) f/r,w ) A o)

(77
in which the symbol F defines Fourier transforms according to:

4@”‘["2%@6 -] 1 L)

(78)
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Apart from these results, and the elementary way in which the
second-order time derivatives can be accounted for, we also need the formula

(32) for which we use the following representation (after the substitutions
—t
§+ ky u > ~w, while taking c' = +0):

oo +i¢

Ja(G{"%?} - { CAZ‘ de €
3 i3 . l [/"...

—0OHO

t'(ff‘._.wﬁ

(79)

It thus proves possible to .arrive at a general formula related to the operator
entering in (76),viz.

[4» { 5/4t * 2 4)}} (L) =- ___._cpr__/.ng

Next,with the aid of the transform (23) for én, we also find:

[t o Loty (£

o0+ 0
= YT ,,{Z,J dw, /g;‘]:j’%f £/£+Zf-l“’+wJ ?3(—?8—“),
—00HO

(80)

where all integrations over w, here and henceforth, are to be performed

along a line just above the real axis in the complex w-plane, in view of

the singularity of the integrand on this axis itself.

Starting from the elementary relation:

{550 g wlil] (Bo)=_wrfFd) e ‘e ~4%) 4o
- w‘,’-//; /{L é'; LWt |

we find after a first application of (80):

(5,,/2-;4) 2 [2D {54 g;a.,/zm}]) A o)
_lnrw,[df[ ofel #fﬂi vy g‘;,({‘ s~ ;).
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Applying (80) also to the further steps in the evaluation of (76) we

finally obtain the general expression:

{UN/P/!} {fw)-—

oo ¢

dfu-«![—: duy ... dw, | X

— g+

SE (:rf} fy Arhoers) [0 8 e x

X---ﬂ N4~ EN-2 5 IVI V-a-) !("{‘ Vi O“wt\f—l_)-

A reversal of both the signs of the varlables'ET,...,E;_] and Q{,...,iﬁ_l,

and of their numbering from 1 to N-1, leads to a Fourier transform which

N
c'a.

Itl

proves to be identical with that of the N-th term in (74). This general

formula has thus been verified again.

The total wave expressed by (74) constitutes the rigorous solution
of an integral equation such as considered in a vectorial version in

Born and Wolf 2 (see chapter XII) when dealing with scattering due tec a

single real acoustic or ultrasonic wave. A direct application to such an
isclated wave requires prudence in view of the w—integrations along a line
just above the real axis. For a single plane travelling acoustic wave for
which én # 0 starts at t = Q, the following representation could be used

in order to find the asscciated G4 transform:

oo 0
PR ‘Z‘ e ,
G ”z//#:fzz‘[dwe‘ k) s

27 w_a,;,

19. The higher-order Born terms at great distances (stationary scatterer)

So far, an approximation applicable at great distances beyond or in
front c¢f the scattering slab 0 < z < D has only been considered in section 9
for the Born approximation. A corresponding much less explicit approximation

can be derived for the N-th order contribution Uy either from (74) or (59).
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In this section we shall derive such an approximation for the simplified

case of a stationary medium.

For such a medium éﬁ can be fixed by the three—domensional Fourier

S fe) = fa’f .

of which enters in the special representation:

Yy lhaj= () ). (o)

integral

the transform G3

The expression (59) for u, now reduces to:

vt gy BB )
hulod)=2"4e f dl‘ﬂﬂ Y. +Z.G'lL“x
(R E -+ 80)fp
xXe (82)

The approximation yielding the simplification at great distances, viz.

(35a), reduces for the stationary medium to:

é)q: - 57 n/ tlf Qi 5

= . .o . . . .
u_ 2galn fixing the direction of observation. Splitting off the last integration

in (82), we find:

3 ,9??{;\7) (ﬂ:ffz:JFp\
f % Tt b B

—_—f;{_.kjw..,g:—c'?) d’ln—i‘

t(hf,'\i‘fﬁ‘jﬁ:
IZ;‘+--+ATI A

where the last integral equals, in view of formula (A.1) of the appendix, the




-—59_
2 ikor
quantity (2w /rp)e P, at least if we assume ko with an infinitesimal

positive imaginary part (radiation condition). Applying these remarks to

{82) we obtain:

b h e e [ - )Gl GG )
» [t - fie s 4312 8

(N>2). (83)

The corresponding expression for the Born approximation in a

stationary medium proves to read, applying (81) to (36),

) - ligtp
¢, (P,ﬁm yre ‘i - 3 44 ’fJ (84)
p

on the other hand, the next term of the Born series, that is (83) for N=2,

already leads to an integral, viz.

;;, -“”04 15 t c/é sf/a f/fl rj
tp [T~ 4> (82

In such expressions the infinitesimal positive imaginary part of kO can
——

UJ(PJHNSTT

also be accounted for by taking the integration path for the k variables .

just underneath the real axis.

A comparison of all these formulas shows that the approximation
outside the scatterer can be interpreted, for each term uj of the Born
series, as representing a radiation pattern in which, in the factors
occuring next to the spherical wave eikorﬂ/rp, the dependence on the
direction of observation enters through the occurrence of the unit vector
'ﬁ; that fixes this direction. According to (84) only a single acoustic
wave contributes to the Born approximation at great distances, whereas for
all higher-order terms a continous wave-number spectrum of such waves
contributes to the intensity observed in the direction of observation. As

a matter of fact, the wave-number spectrum for Uy results from a vectorial
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addition of the wave—number vectors
of those individual acoustic waves,
for which the sum of these vectors

amounts to a single vector

S
F<'=JziF‘“*AZjT4'(¥c&;"ﬁj‘“"4;:?J::

| 45 -4
Fig. 3 =% Y% -% (86)

This latter vector fits to the vectorial diagram of fig. 3, the geometrical
configuration of which is well known from scattering theories based only on

the Born approximation.

20. Final remarks

The aim of this article has been to show the usefulness of expressions
containing differential operators, with their special applications to scattering
and diffraction phenomena, The latter can be interpreted as interactions between
an incident wave and travelling waves of acoustic type. This interaction has

8)

been first investigated by Brillouin ‘, by working out the Born approximation
at great distances in the case of a scatterer of limited size, in a vectorial
version based on the Maxwell equations. Though represented in a quite different
form, the resonance condition derived by this author proves to be equivalent to

*
our equation (45) ).

3 -
)this can be verified by evaluating the relation o(‘2 +ﬂ'2 + an = | in formula

(28) of Brillouin's paper.

Our multiple-scattering analysis is in particular characterized by the
formula (59) or the equivalent (74). The denominator of (59) shows how all

possible resonance effects are contained in the relation

2R -(2);

(87)
where
. § . T § -3
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j being any positive integer fixing the number of scatterings (see alsoc the
remarks at the end of section 19 for a stationary medium). The j-th order
scatterings thus result from the interaction of the incident wave with
fictitious travelling waves the wave-number vector-f for each of which is
the vectorial sum of those of j different acoustic waves. In other words,
multiple-scattering effects can be ascribed to the cooperation of different
acoustic waves, a cooperation which might be compared with the one occurring
in nonlinear phenomena depending on such waves. In this connection it 1s
striking to notice the analogy of the equations (88) to those describing, e.g.,
resonance conditions for the so-called wave-wave interaction in nonlinear
plasma theory; main attention is given there to the case j = 2 which has to
do with the interaction of three waves. An essential difference between our
situation and that of non-linear theories concerns the absence in the former
of a dispersion relation. Such a relation restricts the possibilities for
resonance as discussed in textbooks, for instance in chapter I of the book

9)

of Sagdeev and Galeev”’.

The existence of resonance conditions 1s also apparent in the obser-—
vation of the individual effect of a special single acoustic wave at great
distances, either at the front side or at the back of the scattering slab.

In fact, our equation (37} shows how single scattering due to an acoustic

wave with a special wave-number vector'ﬁ is only observable if the corresponding
Vectoriiz +-? for the scattered wave is parallel to the unit vectorhﬁ; fixing
the direction of observation. The relation (37) implies the single-scattering
resonance relation (43). The extension of this property to multiple scattering
is obvicus in view of the equation (87) then replascing (43), and from the fact
that exp {i(K'? - Qt)} constitutes the exponential for a multiple-scattered
wave as occurring in the integrand of (5%). Multiple scattering associated with
the relations (88) is observable at great distances provided that the direction

of observation fixed by’T? satisfies the following extension of (37):

Z.{_ ,_.4 .Q_

the special case of this relation for a stationary scattering is given by (86).
The extension of (45) to multiple scattering is obtained by replacing d by
2ﬂ/rf|, that is by the separation of consecutive wavefronts perpendicular to
the effective wave-number vector.ﬁ; moreover, :i.D then has to refer to the angle

of incidence with respect to these wave fronts.
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We finally emphasize that no statistical considerations whatever have
been included in this paper, though many of its results are adapted to
statistical applications. As an example we mention how a statistical average
of the expression (85) for the observation of second-order scattering at
great distances will depend on the average ¢f the product of the two G3
functions entering there. The property that the statistical average of
<G3 (E?)GB(E;)> is known to be proportional to 5(E3¥E;), at least in the case
of homogeneous turbulence, here leads tc the result that the average <u2>
becomes proportional to ﬁ(k;d; - ?:). In cother words, at great distances
second-order scattering only becomes observable when due to those acoustic
waves which are also the only ones that contribute, according to (84), to

the first-order scattering.
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Appendix. Derivation of the equation (32)

We first consider the general integral

J= ]as* ‘ //s/

in which the integration should ext?EF over the entire space for which the
components SI’ 52’ S3 of the vector S constitute rectangular coordinates;

the function f(s) is assumed to depend only on the length S of this vector.

We take the S3—axis in the direction of @ so that (g'é) reduces to
836“ a being the length,of'ﬁ. Introducing next polar coordinates according
to

28 ST enp

N )

S =80Tty | Gz el

ve get:
o0

o0 2w i
fasemd '
jﬂz.j/;@ Sll/ﬁif j[iﬂ&h;ﬁ'e ) fZJ = égf & ¢ Lunfes) ’4@/‘
0 o 0 2

Taking f(s) = (sz-uzlcz)_l, we find:

s A
td S vr R0 )
éi —_— d s Jl"(le
¢ ul a 1 u*
0 er
. o0 -
, 7 (a§ (ay
= - s £ — | ds .
a L. s-4

Since a constitutes a pesitive quantity the integration path of the first
integral can be closed at infinity along the upper half of the infinite
circle in the complex S-plane, whereas the same is possible for the second

integral with respect to the lower half of this circle. Assuming



Im u < 0 the only singularity of the integrands, the pole at
s = uf/e, is enclosed by the contour integration of the second integral,

but not by that of the first one. The residue at this pole then yields:

v A
¢ as (a4
- = .
¢/'l.:é_ = 2;F;.E. ’ Cﬁ2;1CL<50J
1_h2: a
CI—

We also give for reference the corresponding expression for u replaced by -koc,
viz.

féafg . - :
A5 _€ = AN, (Rea
£ _gc:. a ‘ (J"" £0>0) (A1)

The integral to be evaluated in (32), that is

(E5 o) o
K'&’;r!a— 45 | du £ 3 (€>9; 1= /% *"”)
4

slat
CI—

coLe’

—~oa-tc!

now reduces in view of the above result, yet inverting the order of

. . . . P N |
integration (while taking™a =7T1), to

oD ~i¢!
fu g2 (24
43 z =
— ob —i¢!
oo -ie!
, 4
_ 1 dae‘“["“a')__ 8§A4-2)
ant - 2 ?
—ob it

that is the relation which had to be proved.
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