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Summary 

This paper deals with the waves which can be produced inside, as well 

as in front of and behind a scattering slab, with parallel boundaries, which 

contains a slightly inhomogeneous medium. The refractive index of the 

latter is given as a function of the three space variables and the time, 

without considering possible statistical properties. The theory treating 

the contributions generated by an obliquely incident wave and due to a 

successive number of scatterings, is developed with the aid of symbolic 

expressions depending on partial derivatives with respect to the space-

time variables; in particular the twoo-dimensional Laplace operator of 

the refractive-index distributions in planes parallel to the boundaries 

is shown to playa dominant role. A resulting representation of the Born 

approximation (accounting for first-order scatterings only) clearly shows 

the transition from the mainly scattering behaviour of a thin slab to the 

predominantly diffracting behaviour of a thick slab. The main waves 

generated the individual travelling waves (termed acoustic waves) that 

compose the four-dimensional distribution of the refractive index according 

to a Fourier synthesis, are connected with an axtension of Bragg's relation 

for stationary periodic structures to corresponding moving structures. It 

is shown how this relation is also useful for the interpretation of the 

higher-order scattering contributions (plural scattering). The property 

that the cooperation of all contributions, associated with any number of 

scatterings, leads to a diffusion type of propagation here results from a 

simple symbolic representation of the wave equation inside the scatterer. 

It further appears that the contribution from a special number of 

scatterings can be represented by a multi-dimensional Fourier integral the 

integrand of which has a denominator again connected with the mentioned 

extension of Bragg's relation. The special cases of a stationary scatterer, 

and of the conventional approximations related to predominantly forward 

scattering, are included in the discussions. 
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A mathematical theory connecting scattering and diffraction phenomena, 

in particular Bragg-type interferences 

I. Introduction 

Both scattering and diffraction phenomena occur when any kind of waves 

passes through an inhomogeneous medium with a given structure. The distinction 

between both phenomena is rather vague, but a general characteristic of 

scattering consists of its connection with local volume elements whereas 

structures on a larger scale cause diffraction effects. This difference 

appears from an increase of scattering effects at high frequencies whereas 

diffraction phenomena, as occurring for instance in shadow regions, are best 

observable at low frequencies. In this paper the direct connection between 

scattering and diffraction will result from mathematical expressions depending 

on functionals of differential operators, in particular on the Laplace 

operator of the two-dimensional distribution of the refractive index of the 

inhomogeneous medium in planes parallel to the boundaries of the considered 

slab that contains the scattering medium. Moreover, the mathematical procedure 

involves simple relations for the contributions depending on a specified 

number of scatterings by successive volume elements (terms of the Born series). 

In tnis way the transition from plural scattering to the diffusion properties 

of multiple scattering becomes clear in particular. After introducing the 

model of our analys~s, a plane parallel slab containing the inhomogeneous also 

time dependent medium, we shall deal withcthe waves generated inside it by an 

obliquely incident plane wave, as well as with the waves leaving the slab both 

at its front side and its back. Conventional saddlepoint approximations for the 

Born approximation of these latter waves will be deduced in a very simple way 

from special representations of the Born approximation. 

2. Description of a model for investigating scattering properties 

We assume a slah 0 ~z <CD containing a medium with a given distribution 

for the refractive index referring to the waves to be considered, the 

homogeneous medium outside the slah heing characterized hy the normalized 
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refractive index n = I. In practice we have in mind applications for which 

Ilnl~~I. Therefore, the underlying scalar wave equation 

v~u -

will be replaced by 

:::. 0# 

In view of the scalar treatment, our theory will not be applicable at once 

(J) 

to vectorial situations, such as associated with Maxwell's equations; however, 

we know how even then special quantities satisfy, at least in a fair 

approximation, a scalar equation of the above type. As distinct from many 

scattering theories, we include a possible time dependence of the refractive 

index. 

We observe that the scattering theory to be developed may also .refer to 

particles, for instance to the scattering of the electrons of an incident 

beam by the individual molecules and atoms of the slab medium. In such cases 

the behaviour of the particles is to be described in terms of waves of a 

Schrodinger type while the scattering by a single particle can then be 

ascribed to a locally concentrated medium the refractive index of which has 

a spatial distribution to be determined such as to yield the given scattering 

properties of the particle in question. The final refractive index of the 

medium then results from a spatial convolution product of this local distri­

bution a_d that of the density of the scattering particles. 

The wave incident from the half space z ~O is assumed as a plane tra­

velling one, and may as such in a normalized form be given by 

_e 
• (2) 
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3. The Born series for an inhomogeneous non stationary medium 

The role of the scattering time-dependent medium appears most clearly 

from the following alternative representation of the wave equation (I): 

(3) 

The corresponding Born series is to be derived from the well-known 

solution of the complete wave equation (-y1'J._ f.. ,(F/J·P) Ii -::. - f (otJ~ ~.I.) 
in terms of retarded functions, in contrast with the Born series in the 

conventional treatment of stationary media which is connected with the three­

dimensional Helmholtz equation. In the present situation we thus arrive at 

the integral equation 

,/r. ~n{t(, 4--!t-J. f,;r{q, 4-f!-)J 
, Pq . 

where (P,t) is the abbreviation for the coordinates x , 
p 

t of the point of observation and, similarly, (Q,t) for 

y ,z and the time 
p p 

the points in space 

over which the integration has to 

the corresponding volume element; 

be extended, dT = dx dy dz being q q q q 
further PQ indicates the distance from P 

to Q. As a matter of fact, the integration only concerns the slab 0 < z < D, 
q 

on being zero outside the latter. 

The representation (4) leads straightforwardly to a Neumann-Liouville 

expansion (Born series) 
<:JP 

U(~.JJ = I UN (~-I.) 
N-=l> 

of the solution, with liD (P,..(J -= ~ (P,,4) , while the fUl 

mutually connected according to the recurrence relation: 

A terms are 

hn {e;, f-~ J. d:~N;' (QJ 1-!#-J 
P4> 

(4) 

(5) 

(6) 
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It is well known how UN represents the effect of N sucressive scatterings 

and that in its explicit representation UN depends on a 3N-dimensional 

integral the integrand of which contains N factors on. 

It is a basic feature of our theory that, for the present, we shall 

perform the integration in (6) only with respect to the transverse coordinates 

x and y , which integration then comprises the complete plane z 
qq 

is the domain - m < X ,y < = The method will be the same as 
1) q q 

earlier to the simpler stationary medium. 

For convenience we introduce the abbreviation 

z , that 
q 

applied 

The corresponding factor in the integrand of (6) can then represented by a 

Taylor expansion with respect to x , Y , t which reads as follows in a 
q q 

symbolic form: 

if
N

_
1 
(q, "- - ~) -:: 

C'2 _Xp)~t- (~2 -'yp)~ +(Zg -I,.JAp , 
= .e '1",_J X,.~ ¥-p , 12,1). 

In fact, the elementary expansion of the exponential here leads to the 

(7) 

(8) 

Taylor series in question. Symbolic expressions like the present one, and 

those to be derived later, can always be converted into ordinary non-symbolic 

ones by substituting a Fourier integral for the operand, in this case 

The application of any operator g(a/ax , a/ay ) then amounts to a multipli-
p p 

cation of the integrand of such a Fourier integral by the factor g(ik ,ik ). 
x y 

We emphasize that, henceforth, all symbolic expressions are to be applied 

(if not indicated otherwise) to the complete part of the integrand following 

it. 
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The substitution of the mentioned symbolic form (8) into (6) yields,' 

remembering (7), 

We pass from x and y to polar coordinates according to 
'l. 'l. 

so as to ob tain: 

UN (p, -tJ -= 

->TJJ~I:/: ~ 
o o 

The differential operators entering here have nothing to do with the 

integrations for which they can just be considered as parameters. The inte­

gration with respect to if involves a zero-order Bessel function which resul,ts 

in 

In order to facilitate. the integration rith respect 

the alternative representation 
'. we prefer 
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which enables an immediate application of Sommerfeld's integral 2) 

00 

ftf). X ltAv) 
~~-{~ 

D 

We thus obtain: 

() 

(Z)oJ 

In applications of Sommerfeld's integral to complex f and z, as 

needed here, the square rootVf··t-%~ should have a real positive part in 

(9) 

view of the principle of analytic continuation. The same therefore holds for 

I ~~ d~ a· ------
C

L aP <lZ'p" JJp~ 

when this quantity is converted into an ordinary one in its application to 

the three-dimensional Fourier integral of \l'N-l(xP'YP,Zq,t) with respect to 

x ,y ,t. We may also substitute 
p p 

I~'" iJ" ~ .. __ -_-_ =-L 
C .. ala. ~Xpa. J:J,' 

provided the new square root is defined as having a positiv,e (or zero) 

·imaginary part. We then arrive, yet substituting the definition (7) for 

If N-l' at the following recurrence relation connecting the contributions' 

associated with two successive numbers of scattering: 

( 10) 

(11) 
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4. The splitting into forward and backward travelling contributions 

results 

The formula (II) expresses 

from the preceding (N_I)th k 
oz 

how a N-th order wave contribution 

contribution. Let us assume > a 
for the primary wave (2) which thus may be considered (if w > 

o 
0) as a 

wave propagating towards z + + ~. Therefore, we shall call this direction 

"forward ll
, in the sense of which the half space z < 0 constitutes the 

front side, and the half space z > a the back of the scattering slab. In 

the former half space UN represents a contribution originating from the 

slab and thus porpagating always backwards, which is in agreement with the 

invariable sign of z -z in (II), viz Iz - z I = -(z -z ). At the back of 
p q p q p q 

the slab (z > Dl, on the contrary, we have to do with the situation 

Iz -z I = z -z , thus leading again to a single sign of z -z for this p q p q p q 
forward travelling wave. On the other hand, inside the slab this quantity 

may have different signs within the interval a < z < D. This leads to two 
q 

contributions of (Ill according to 

the individual terms of which are to be defined by: 

, 

(I2) 

( 13a) 

( I3b) 
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'" The first contribution UN may be interpreted as a forward travelling 

wave, the sign 

at the back of 

of z -z being the same 
p q ,j, 

the slab. Similarly, UN 

Obviously, we could substitute 

as that of the purely forward wave UN 

represents a backward travelling wave. 

in the integrands of (13a) .and (13b). We then infer that the Nth forward 

scattering contribution originates partly from the (N_I)st forward travelling 

wave, and partly from the (N_I)st backward travelling wave, the corresponding 

holding for the N-th backward scattering contribution. 

It is interesting to derive new differential relations from (13). The 

following equations can be verified without difficulty: 

{~-i 

(14b) 

Moreover, we can introduce the total forward travelling and the total backward 

travelling wave defined by: 

, (15 ) 
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A summation of (14a) and (14b) over N = 1.2.3 •.•. then yields. taking into 

account that j = u is identical with the primary wave (2). while t = o. 
o 0 0 

, 

Finally. an addition of these latter relations gives: 

Obviously. the equations (16) and (17) take account of all mUltiple­

scattering effects. 

In the case of a stationary medium. that is a on/at = O. all time 

dependence is contained in the factor 

enters in all quantities like u • u, 
pr 

become: 

exp (-iw t) = exp (-ik ct) which 
2 00 

a u/at2 etc. The equations (16) the~ 

( 16a) 

(17) 

( 18a) 

(18b} 
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5. The forward-scattering approximations 

In many practical circumstances all scattering processes are predo­

minantly in the forward direction so that t becomes very small compared to 

6. This situation admits a considerable simplification of the operator 

Let us first consider the application of the corresponding operator 

for the stationary case to a special component of the Fourier synthesis of, 

e.g., the function 

The application in question 

in the integrand. It is well 

results in an additional factor (k
2 

-
o 

known that forward scattering occurs 

k 2 _ 
x 

when 

( J 9) 

holds for all relevant scale lengths ~contained in the distribution of 

on(x,y,z), A = 2~/k being the wavelength of the incident wave. These scale 
o 0 

lengths correspond to the dominant components in the spatial Fourier spectrum 

(19) which means that the wave numbers k , k , k of these components should 

1-1 x Y z 
have a magnitude of the order of • We then have 

which quantity thus proves to be very small. Therefore, the following 

approximation can be used under forward-scattering conditions: 

(20) 
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while, also: 

(21 ) 

The application of these approximations to the equations (ISa) and 

(ISb) yields the following wave equations for stationary forward-scattering 

conditions: 

(22a) 

(22b) 

The form of these equations, which only contain the first derivative of the 

variable z, is typical for a propagation of diffusion type in the z direction. 

This might be yet clearer from the corresponding equations for the quantities: 

In the recent literature such fo~ard-scattering approximations have been 

applied to stationary scatterers, e.g., by MOlyneux3) and De Wolf4). 

Considering next a non stationary medium, the parameter (l(c
2)a 2(a't2 

will in general involve quantities of the same order as k~ since, in practical 

situations, the main time dependence results from that of the primary wave; 

this presumes that the relevant travelling waves contained in the four-dimensional 

Fourier spectrum of on, viz. 
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do have frequencies w which are much smaller 

approximations such as (compare (10»: 

than w , 
o 

6, Some expressions for the Born approximation 

We then can apply 

;l" a1. 
~+J.f, 

J 
M 

(24) 

This approximation, viz. u = U o + u
1

' only takes into ~ ·count single­

scattering effects as described by u
l

' Usually, it is directly derived frcm 

some equation equivalent to our (3) in which u is then to be replaced by u 
pr 

in the right-hand side, In our analysis the scattering part of the Born 

approximation also results from taking N = I in the relevant expressions, 

while substituting the primary field (2) for u , We thus obtain from (6) and 
o 

(II) respectively: 

. (25) 

and 

(25a) 

Splitting off the primary wave as given by (2) the latter expression can further 

be reduced to: 

u, le-iH t'/I{t.-'l-iJ p.. 
/J 
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Using the alternative square root (see (10» we obtain: 

ud~j.)-;::. 
:I. t"ttC:_ W 4.

J
J) -i~%(1'p-Z;)-llr-~1 V(t.:t-i4~("ri~!Mw~+tAf 

l, l • rll1 .e. 1n@-p,'Ip,~)) 
V~X_i~t;)~t!ri ~):;'("i,Hj,j~ 

(~r~() ). 
(26b) 

These operational expressions transform into ordinary ones if we 

substitute for En the Fourier synthesis (23) in terms of "travelling waves". 

For convenience we introduce the term "acoustic waves" for the latter, thus 

reminding the practical property that the phase velocity w/k = w/ I~I of the ... 
individual components k,w is in general very small compared to the propagation 

velocity c = w /k of an incident electromagnetic wave (compare the end of 
o 0 

section 5). The function G4 giving the spectrum of the acoustic waves has to 

account for the fact that on vanishes outside the slab 0 < z < D. The substi­

tution of (23) into (26a) first gives: 

and next, after an evaluation of the differential operators, 

~ dCt:- W.411' r,((£J) e <,(tft_wl) 
u,{P,J)=ite. cit dw )( 

V( a;D~ r-(tX+~2)~ {I,,¥T~¥J ~ 
J> 

x. [.1 e llzp-~IVtc;Wl- (t.,+~.,d"'(41T'J~(Joz(xp-~). 
() 

(27) 
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7. The discrimination between thin and thick scatterers 

In order to illustrate the usefulness of symbolic expressions by an 

example. we consider the Born approximation for a stationary medium in the 

case of a perpendicularly incident wave 

(K = K = 0). We then obtain from (26a) for the forward-scattering part 
ox oy 

for the single-scattering contribution: 

We further assume the applicability of the forward-scattering approximation 

and thus get. using (20) in the exponent while replacing the denominator by k : 
o 

tp 

II . J (~ r.~(~-~) (1iF+Jf;J 
u,{e./.J=lll.~ P"01~ e. dn{~PJ:lPJZ,), (28) 

c> 

For a special scale length t the order of magnitude of the expone.' t 

appears to be that of (z -z )/(k 12). with the maximal value d/(k12) if 
p q 0 0 

d = z 
p 

constitutes the penetration depth at which we are observing. We can 

therefore discriminate between small penetration depths for which 

d« k [2 'V [2/1.. for all relevant scale lengths I. and large penetration depths 
o 0 

for which this is not the case. The scatterer itself may be called "thin" if 

even 

~ tt~) --.,;--, 
A" 

min i being the smallest relevant scale length. It is then allowed to neglect 
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the effect of the exponent in (28) altogether, and we arrive at the well 

known approximation for the "geometric optical region" or Fresnel zone, viz. 

Zp 

= i~ ",.. (P, 4) ft, t. (." ¥,,II). (29) 

o 
The wave function here only deyends on the refractive-index distribution along 

the primary ray (x and y constant) arriving at the point of observation. We 
p p 

here recognize a pure shadow effect while the factor i in 

indicates an almost pure phase modulation for a non-absorting object (on real). 

For thicker objects we have to take into account at least a few terms 

of the expansion of the exponential in (28). Writing out the first terms we 

find: 

. f (p ~ . 
~ (p,·t)c:: Uf/Z{U)1. (~c a J1 dn(x,,~p,t~}--iJ d~ {Zr'lrjJ6~ .. f-~ ~(:tM'I'J~"'" J..i 

o 
(30) 

the second term represents focussing and defocussing effects which are inde-

pendent of the frequency in a non dispersive 5catterer (see also the discussion 

in reference I, page 420). 

For increasing penetration depths, which can only exist in "thick 

objects" for which D is at least of the order of 12 fA for the relevant scale 
a 

lengths, an increasing number of terms in (30) is needed. We then enter 

gradually into the diffraction or Fraunhofer 

diffraction phenomena depend first of all on 

region. There, the typical 

the magnitude of d A 1/2 and 
o 

these phenomena thus become less spectacular for increasing frequency 

(decreasing wave length). This is in contrast with the order 0f magnitude of 

k d«on
2»l which determines, in view of (29), the order ot omplitude 

o 
. h . ,2 . h 1 f in the Fresnel reg10n; t e var~ance <un >, express~ng t e average va ue 0 

onZ, is a measure there for the possible values of on. In this latter region 

the scattered wave increases with increasing frequency, and we have to do 

there with IIpure scattering". 
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A special application of the geometric-optical approximation (29) 

may concern Rontgen diffraction by a thin object composed of a number of 

parallel sheats all of which contain an identical periodic structure which, 

however, may have a random lateral displacement in the consecutive sheats. 

In spite of this granular structure (with a predominating periodicity) the 

periodicity in the transverse coordinates x and y, existing in on(x,y,z) 

for each individual z value, is maintained in the integral 

f
J) 

dn (it; Y-J Z) dIt 
() 

which fines the wave-function distribution across the outer edge z = D of 

the object. Therefore, the diffraction observed outside is still dominated 

by the present periodicity though the latter may be less apparent due to 

the mentioned lateral shifts. An explanation for this situation has been 

discussed by von Laue5) when considering a corresponding model. 

The consequences of the transition from thin to thick objects in 

electron microscopy have been described elsewhere6). 

8. A further symbolic expression for the Born approximation 

The expression to be derived in this section is in particular useful 

for computation of the scattered waves observed at great distances in front 

or behind the scattering slab (see the next section). 

We start from formula (25) in which the time shift in the on-distribu­

tion may be accounted for as follows by introducing a delta function: 

..l. -l 00 

. I r. f J) 0 t IJ.c .,. t'w of 

t rJ,t' ~n(~Jf1i V [(.I-!j.-ty, 
P9 (31 ) 

_06 

We next need the four-dimensional Fourier transform of the normalized 

Green function o(t-r/c)/r associated with the wave equation 
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This transform, the derivation,of which is given in the appendix, reads: 

(c')o) 

In order to apply this formula to (31) we substitute x = x - x , 
q p 

y = y - y , z = z - z , so that the vector with components (x,y,z) can 

(32) 

q p q~ p -' 
be represented by Pq; moreover, s may be short for the vector with components 

sl' s2' s3' Replacing further t by t - t', we thus get: 

S(4--ft--IJ 
-----=-.1..-

p~ ~'rr3 
, I 

_otJ_/C 

t' f ri f-i u. (I. --I~ 
e 

The formula (31) can then be transformed into: 

or, inverting the orders of integration, into 

However, the Fourier inversion of (23) yields: 

;,rt, W)~ ~:)' f 'I {dJ!' -I IN -"I, '.{9, /}, 
-.... 

(c')a) 
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so that the single-scattering contribution u
1 

can be represented as follows 

in terms of the spectral function G
4 

of the lIacoustic waves": 

0<1 _ie' r.:...J. ) 

U{P.J1-2JofJt!dU e /(p~+I-u. f (t-t -tit-it). 
I .. - ..,... )1( ~ J s--• J ,~ 

_oil_Ie ( .I 
C')O) 

(33) 

The coordinates and time of the observation point (P,t) only occur in 

the exponential according to which the spatial and time derivatives are 

equivalent with the following operators: 

d . 
at == l Ll.. 

This involves the following symbolic expression replacing (33): 

In view of (32) the four-dimensional integral here equals 

:;(I-~) -----, 
t p 

so that, also, 
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In practical circumstances the frequency spectrum of u
1 

will be 

concentrated around the incident frequency w • A convenient representation 
o 

of this spectrum is then obtained by substitution of the following Fourier 

transform with respect to the time variable: 

1 
--~-

in which c' may assume any possible value. We then arrive at the following 

final formula, to be applied in the next section: 

_+ic' 

U,(P.1J= ;~'I.' jJoJ 
_ 00+/(:' 

9. The Born approximation at great distances 

The operators entering in (34) in the acoustica-wave spectrum G
4 

are only effective on the integrand of the w-integral. We find, e.g., 

-2'p 
- d"{+w) (-1- '{pic} 

(/%+LJJ :\(. i· I ) e --=-_::::.e... 1_ --~__ - ______ _ 
c 7p (tIc) ({.q, tw j tp 

Provided that 

c , 
nu.;, JW" t W I 

we thus get the approximation: 

3Xp 
rv 

{-(wo+w) 7<j> e -[(ltMwJ(I-- tp/c) 
) 

(34) 

(35) 
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according to which a/ax amounts to a mUltiplication by the factor 
p 

. (w()+ tJ;) x,­
l-e lp 

A combination with the corresponding expressions for a/ay and a/az leads 
p p 

to the following vectorial representation of these approximations: 

...l 

(35a) 

if u marks the unit vector in the radial direction, that is the vector with 
r 

components 

Moreover, we have 

and thus obtain the following for-distance approximation of (34) if (35) is 

fulfilled for all relevant w-values: 

(36) 

In view of the path of integration and the positive value of wo ' the 

condition (35) amounts for c' > 0 to: 

Therefore, the w integration may even refer to real frequencies (c'=O) provided 

that rp > > c/wo' 

The interpretation of (36), insofar as referring to the contribution 

of a particular frequency w of the acoustic-wave spectrum G
4

, involves the 

wellknown property that only the effect of one single component of this spectrum 
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is observed at great distances, namely the component characteri~ed by the 

wave-number vector: 

U:, (37) 

the significance of this relation will yet be discussed later (see section II). 

We further notice that the geometrical situation 0 < z < D of the scattering 

slab. as well as its thickness D, only enter implicitly in the function G4 
which has to account for the vanishing of on outside t~e slab. The different 

numerical behaviour of the scattered wave on the front side and at the back 
....I 

of the slab results from the fact that the sign of the z component of u is 
r 

negative in the former case and positive in the latter one. 

Results equivalent to (36) are usually derived from a saddlepoint 

approximation of integrals like (27). The present derivation has the adventage 

that the expression (34), to which the final approximation has to be applied. 

is yet rigorous. This facilitates the discussion of the reliability of the 

approximation, and also the derivation of corrections to it., As a matter of 

fact the latter depend on a Taylor expansion of G4 starting with: 

+ ..... 

10. Waves inside the scattering slab according to the Born approximation 

The distinction between forward and backward travelling waves (see 

section 4) can also be applied to the single-scattering contribution u l as 

represented by (27). Obviously, this leads to a splitting inside the 

travelling slab 0 < z (D according to 

p l' "" 
UI ;:: ul + ~ , 
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o 

The integration with respect to z is elementary, and yields, after 
q 

introducing the abbreviations: 

(38) 

the following remaining four-dimensional integrals: 
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We thus infer the existence of four different waves contained in 

the representations: 

where we have introduced the following individual wave-number vectors: 

t 
, 

~ -l 

1: - I" -+, ~ 1m i?n 

rid l\t- 1'-l, 

- at; Uz) 
D 

i#d "( + r-'1~ 
~ 

- liz 

0t unit vector in the z direction). 
z 

(40) 

(4 I) 

As a matter of fact, each individual acoustic wave, fixed by the set 
~ 

(k,~), thus generates four different waves characterized by their exponential 

functions. However, the first and the fourth one, both being proportional to 

...... ...... 
have the same wave-number vector kfm = ~m. These waves can hq termed IImodulated 

waves" since they originate from a direct modulation of a paJ.., C the incident 

primary wave by the acoustic wave in question. For the rest, these two waves 

result from a forward and a backward scattering contribution respectively, which 

is expressed by the first subscript of the corresponding labels fm and dm, while 

the common second label "m" refers to the concept of modulation. 
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The two remaining waves in (40), proportional to 

e if tid t/ - (w,,+wJ-/} 
.l 

will be called "diffracted waves", according to which the second subscript 

lid II has been introduced. The other subscript again refers to the fact that 

the first of these waVes results from forward scattering, but the second 

one from backscattering. The length k of the wave-number vector of these 

diffracted waves becomes very simple; for the "f d" wave it can be derived 

as follows: 

~fd ::; ~ t;; ::: (( +- t) ( (r f) -1. rJ/lttt) r4 + rJ't'-

= :J.(~,,"'~1r:. 2; lJo ,- +ll)+t%:'·~t- ;zlto,. +4.)" _ (We +-W)1 
-l--=-- . L • 

The corresponding computation for the lib d" wave shows that 

holds for both types of diffracted waves. We infer that these waves are 

similar to a wave propagating through vacuum with a frequency w + W. 
o 

Moreover, the relation 

~" -"" := (; -rlf'J U; := 2~ u: 
indicates that the endpoints of the wave-number vectors for the two diffracted 

J 
waves, when plotted in a k-space, are connected by a line parallel to the 

z-axis. The further relation 

and the corresponding one for the y components shows that the latter line 
-' ..... 

will also pass through the endpoint of the vector kf = k~ . We thus have 
~ m -~ 

explained the k-space diagram of fig. I, in which &1' *1 and SI are 

illustrated by the lengths indicated in the right-hand part of the figure. 
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II. Resonances inside the scattering slab according to the Born approximation 

The expressions (39) and (40) show that a resonance, that is a very 

high excitation of one of the single-scattered waves by a special acoustic 

wave, might occur when tl = 0, tl = 0 or al = O. The latter case has very 

little practical importance since, usually, the length k of the wave-number 

for the relevant acoustic waves is much smaller than the corresponding value 

wo/c for the incident electromagnetic wave. The condition a
l 

= 0 then involves 

approximately 

or in turn 

that is k 'V O. This situation can only occur for a nearly grazing incident 
oz 

wave. 

. t . 
Let us now cons~der the case ~I = O. The correspond~ng factor in the 

integrand of the first expression (36), viz . ... 
_l~ 2'p ,- e. . 

{(' 
, 

tends to i 

would thus 

l' e(, 
zp for at ~ O. The associated contribution to the scattered wave 

become infinite for z ~~. However, (39) has been derived for 
p 

points inside the slab (z 
p 

of z inside (occuring for 
p 

the factor in 

< D) ·while, even in the case of large values 

very large D), we find the followi~g limit for 

- ( 

(42) 

the symbol P indicates that, if necessary, a principal value should be taken 

when the integration is performed with this factor in the integrand. This 
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evaluation, however, will never lead to a diverging integral in (39). The 
01-

corresponding considerations hold with respect to alo 

l' .j< 
The role of resonances "I = 0 and "I = 0 thus does not look very 

striking. Nevertheless its importance can be recognized from the far-distance 

aFproximation (36) which showed that, of all acoustic waves with a special 

frequency w, the only one observable at great distances is characterized by 

the wave-number vector of (37). This vector satisfies the relation 

(43) 

in which the modulus sign on the left-hand side refers to the length of 
. ....l ....\ , .,.. 

o and ~ k + k. On the other hand, the relatwns "I = = 0 prove to lead 
0 

to the same condition when working out the equation: 

The far field, both 

thus depends on the 

at the front side and at the back of the 

o or ~ = O. 

scattering slab, 

d " t resonance con 1t1on u) = 

The condition (43) turns out to be nothing else than an extension of 

the well known Bragg relation for reflection or scattering against a crystal 

lattice if the latter, instead of being stationary, is replaced here by the 

set of parallel wave fronts W on which the amplitude of a single travelling 

acoustic wave assumes, e.g., its maximal values. These wavefronts, perpendicular 

to the wave-number vector-t (of length k), have a separation d given by 

k = 2~/d. In fact, remembering the relation k~ = w~/c2, the formula (43) 

proves to be equivalent with: 

(44) 
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After introducing the phase velocity v = w/k of the acoustic wave, the wave 

length A = 
o 

represented 

...... W 
...... 

...... 
...... 

- --

2~/k of the incident wave, and 
o ...1...:0. 

in fig. 2) given by k k = - k o 0 

....... 

...... 
-:'I 

the angle of incidence 

k sin i , we find that 
o 

be transformed into: 

i (as 
o 

(44) can 

(45) 

which reduces in the stationary 

case (v=O) to the ordinary Bragg 

relation . 

.ly- ...... :'j 

We yet emphasize that the 

simultaneous occurence of modulated 

and diffracted ~laves, which. in 

view of (41), leads to the discussed 

resonance condition if they should 

be identical, completely depends on 

the assumption that the scattering 

body has a finite extent in one 

special direction, viz. the z direc-

..... 
~ 

Fig. 2 tion. As a matter of fact the 

diffracted waves would disappear 

altogether if the scattering medium were infinite in all directions. This is at 

once clear from fig. )·according to which, the modulated waves being given, the 

orientation of the diffracted waves depends on a line parallel to the z-axis in 

the diagram for the wave-number vectors; therefore, this orient~tion becomes in­

definite when the z direction loses its special significance for a body 

occupying the entire space. The same conclusion is arrived at if, in (27), we 

replace the finite integration interval 0 

-co<z <00 in order to take account of a 
q 

< z < D by the infinite interval 
q 

scatterer of unrestricted size in aU 

directions. The evaluation of the corresponding z integral in (27), with the 
q 

aid of the formulas (compare (42»: 

(46) 
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then leads to the following expression for the single-order scattering due 

to a primary wave u = exp (i·~·~ w t) that travels through an infinite pr 0 p 0 

scattering medium 

the 6-function contributions only occur 

and therefore are to be omitted when 61 
with a small positive imaginary part). 

~ 

for k values leading to a real BI 

is complex throughout (e.g. for w 
o 

In fact. in (47) we only recognize the occurence of modulated waves. 

12. The higher-order terms of the Born series 

According to the analysis of section 9 the primary wave generates, by a single 

scattering act. four new waves propagating through the inhomogeneous slab 

(see equ. (40)). It is then to be expected that. in turn. each of these waves 

will again generate four further waves. this being the result of a second 

scattering. Obviously, this process will be continued ad infinitum, that is, 

each of the waves UN• j produced after N successive scatterings will generate 

four new waves all of which belong to the class of U waves that are 
N+I. j 

generated after N+I scatterings. Starting from the four waves U
I 

. (j=1.2.3.4) 
• J 

given in (40) we thus would obtain sixteen waves U
2 

. (j=I.2 •••• 16). sixty-four 
.J 

waves U3 . (j=I.2 ••••• 64). and so on. Rowever. we infer from the results .,,­
oJ 

section 9 that the actual number of different U
I 

. waves reduced from 4 to j 
.J 

since the wave-number vector is the same for the contributions due to forward 

modulation and backward modulation respectively. Such reductions also occur 

for the higher-order scattering contributions. the number of independent U2 . 
• J 

waves thus becoming only 5 instead of 16 (see the next section). 

A general theory for the generation of all these new waves after each 

individual scattering is to be obtained from the recurrence relation (II). For 

its application we first need a representation of UN in terms of its composing 
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waves UN .. Since each of these waves originates after a number of successive 
,J 

scatterings from waves of a lower scattering order, the wave-number vector 
--" 
k . . corresponding to UN . will depend on the wave-number vectors associated 
-~.J .J 
with the chain of preceding waves from which UN . results ultimately. These 

,J 
preceding waves U . (m=1,2, .. ,N-l) are fixed by the wave-number components 

m,J 
which constitute the integration variables of the 4m-fold Fourier integral 

that results from N successive applications of the recurrence relation (11), 

while introducing the Fourier integrals (23) for each factor on in the relevant 

integrand. We thus arrive at the following representaion for UN: 

UI,d~.f) == f-l~ jd~,. jd~ _G~rd~ . ,".-Uw,v il(~) 
(,'IF..l J. ~,. tl(vi t:-{W,r+w,+ .. tW/'J)f.f 

ptw,j.·· 
(48) 

. . ] l ~th ~ ~ LN.j e .or 

This formula expr~sses how the generation of a special N,j wave depends 

on N integrations over the complete scattering medium though the 3N integrations 

OVer the spatial coordinates are replaced here, in the corresponding Fourier 
.--" ---" 

space, ~ those over the components of wave-number vectors_ k
1

, ... , k
N

. Each 

vector ~ , depends in general on the complete set of variables contained in the 
,J ~ ~ ---" 

combination of the components k 1, k2""~ and of the frequencies wI' w2, .. ,wN, 

Returning to the recurrence relation (11) we observe that the operator 

in its integrand acts on the quantity on.a 2u
N

_ 1/at 2 as observed at the point 

(x ,y ,z ) at the time t. The two factors of this quantity can be represented 
p p q 

as follows, introducing (23) for on, and the second-order time derivative of 
2 2 (48) in order to get a uN_1/at . We thus obtain: 

Jl1 (:t'p4p,~A;:: fd~ ~WN ~ ('J~) e i(~JL x,.+~i!Jf'+JN:t. '1, -WN f.! 
-"" 
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The exponential entering in the product of these two expressions 

constitutes the only factor in the integrand of (II) which depends on the 
.222222 2 var.ables x , y , z , t. Therefore, the operator a lax + a lay - (I/c )a lat 

p p q p p 
in (II) only affects this very exponential so that this operator may be 

replaced by the following non symbolic quantity: 

whereJL refers to the transverse component (perpendicular to the z-axis) of 
~ ~ 

the vector kN + ~_I,j the modulus of which is only relevant. 

Working out the substitutions, mentioned here, in the expression (II) 

we arrive at: 

The elementary evaluation of the integration over z leads to the following 
q 

relation expressing the sum UN of all ~,j waves in terms of the preceding 

~_I,j waves: 
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xe-t'(~+ .. .-t-WNJ4-1 ('N"/.~ I{ I _ I }e(t'~~}t~ 
I ;$N,J L IN%+~N-I,jJZ-f1r1>J' fNX+CN-I.j,'t+INJ 

_ e (~~N~t-~.J,j.JK(i{INit~.J,J::j hr1wJ rpJ -+-/,!rtti'lw../,j:Z+'J~~,j,Ji>tf~A"'j.JJI,.~N.J'~!l 
fNt + ~~j:t -tftJ.,i IN% i" I"_I)J~ 't + }~i J 

(s-,,) 
According to the nomenclature introduced in section 9 the four 

contributions corresponding to the four terms occurring in the squared 

brackets of (50) can be interpreted as resulting from N successive scatterings 

the last of which is due to a "forward modulation" (fm) , a "backward modulation" 

(bm), a "forward diffraction" (fd), and a "backward diffraction" (bd) respecti­

vely. In view of the definition of the coefficients cN' and of the wave-number 
-" J . 

vectors ~j of the individual waves, as given by (48), the information 

contained in (50) can be represented as follows: 

e
Nj 

... 'J lIT! -== _( Wc+"'1~· • .f-WN~1. I 

e (8N'J.4~_V''J. +-j!fI,) 

c", d ",IJ " -t "" . .,,+.~ +-WN~' e +1".. I _ ) 

Nt ') JI 'J. fJN.J 

e tlitJAzt/NJd:Y.+(1N,jlJ> 

(iN'J.+~U~'t r(JII,i J 
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'J 1m = , .. ",1m == t+ c'i 
(j,' '.Id - ('+1;;:/ L_+ Av a:j 

(Nj' ";, Ii ~ (Cv+ 44l -IN u;, 

) 

(51 a) 

The subscript j is an abbreviation here for the labels left open on the left­

hand sides and which have to indicate the types of scattering (fm,bm,fd or bd) 

associated with the first N-l scatterings. 

The higher-order terms of the Born series could be computed in suces­

sion with the aid of the recurrence relations represented by (51) and (5Ia), 

when startinf from u
l 

(see the next section). We yet observe how the diffraction 

determining the final N-th scattering in the case of the last two waves of (5Ia) 

involves the relation: 

13. Waves contained in the second-order term of the Born series 

We first observe that an application of the general recurrence 

relations (51) and (51a) for N = I yield the scattering contribution u
l

' as 

it should, if we identify u with the normalized primary wave (for which 
o 

Co = 1); for this verificati~ we have to remember how the coefficients cNj 
and the wave-number vectors ~j are fixed by (48), while the definitions (38) 

and the relation w = k c are also' to be taken into account. The first-order 
o 0 

scattering contributions are then fully represented by: 
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-( ITn :0 (ITn 

(Id - (I: t ttl + A u;}.) 

~ (!:r t: L -AU; f,. U 
.J 

~·ld -J 

(52) 

With the aid of these expressions we can evaluate the recurrence 

formulas (51) and (5Ia) for N = 2. As an example we consider the determination 
-" 

of c2 ; bd, fm and k 2; bd, fm which quantities fix the amplitude and the 

wave-number vector of the contribution originating from a·first scattering 

of the "back diffraction" type, followed by a second scattering of the 

"forward modulation" type. A straightforward application of (51) and (5Ia) 

first yields: 

(' j%+"'it 1 C;jlt( 

lj 1~ 1m ==l ~ ~'r. +~ '~'/. -/( tJ A.rld 

(/~/m== f+ {I' J 

in which, in view of (49), 

With the aid of (52) these expressions can next be transformed into: 
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if we yet introduce: 

All other contributions to the second-order Born term Uz can be 

evaluated in the same way. It is then convenient to use the further abbreviations: 

We thus get the following representations in which all contributions associated 

with an identical wave-number vector have been put together with curly braces: 

~. I .... t.,.. (I.;.; ......... y- ~ .... 
.- ~ « 

) ) - c rJi rYf (11 ~~ 

(~j 1 .... Ir! =_t·~(w,)2. 
i. .... 

... f()t3 "'I cI,. I ~ 

~j t ..... (I (WD~~ r I.~'" 
- df'oI,.'f' ;1, j1~ 

~j ttl)(j ~ (Wc~Wlr 
guL 

"';" {.;.t An ,R,flL 

C~j'~ /1 -;:: _( ~tW,)2. IuL 

It~ (~-«t J (1, fiL 



-36-

instead of sixteen second-order waves, We thus infer in particular that, 

. . tb. different k vector&. remai,n. only fLVe types. 'l:L . 
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14. The Born approximation for a general infinite scatterer 

The occurence of many types of waves, as described in the last three 

sections, is first of all a consequence of the finite size of the scattering 

body in the z-direction. As remarked at the end of section II, the "diffracted 

waves ll disappear in a scatterer extending up to infinity in all directions. 

This suggests to consider those contributions of the first few Born terms that 

remain when leaving out all diffracted waves. Assuming S, complex throughout, 

we find from (49) applying the identity: 

f -I- _/ .,.... . t(2. (W~+W)2. "'I eI, - ~. r - , 
C 

the following representation for the first Born term: 

The question arises whether such an expression might also hold for 

finite scatterers, thus as those considered sofar which only occupy the space 

o < z < D. In fact, the latter can be considered as a special case of an 

infinite one for which Sn happens to vanish outside the mentioned space. From 

what follows the above formula proves to be applicable quite generally indeed, 

provided that the integration path for w is chosen properly; we remind that 
-' the integration over k concerns that of each of its components k ,k.k along 

x y z 
the corresponding real axis. 

For the sake of generality we shall investigate simultaneously the 

two integrals 

with an w path just above or just below the real axis respectively. 

(53) 
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After applying a splitting into partial fractions, while substituting the 

inversion of the four-dimensional Fourier int3gral (23) according to: 

we can reduce (53) to the following formula, yet inverting the orders of 

integ,ration, 

(54) 

(55) 

The integration path of the two w contributions can be closed by 

adding either an integration along the upper half of the infinite circle in 

the w-plane when t-T < 0, or along the corresponding lower half of this 

circle when t-T > O. In the former case the contour for J+ does not enclose 

any of the two poles at w = -w
o 

:;: c I.Ko +KI, and the integral vanishes, che 

,poles in question·being situated on the real axis (we assume w as real here); 
. 0 

on the other hand, the contour for J- then encloses both poles which leads 

to an addition of the associated residues. In the case of t-T > 0, on the 

contrary, the contour for J+ encloses both poles, but that of J- involves a 

vanishing integral. The corresponding elementary evaluations of the complete 

lIJ-integral in (59) in the four cases of J+ .and J-,and of t-T < 0 and t-T > 0, 

can be summarized by the single expression: 
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U(x) being Heaviside's unit function. 

A substitution of this result into (55) yields, after a further 

inversion of the order of integration, 

...... k The k integral, say, can be represented as follows by introducing the new 
~~..... - ..... -l 

integration vector s = K +K, with length S = IK +KI, o 0 

Th. 0 L,ter integral is of the type I as investigated in the appendix, and 

thus proves to result in: 

.~....l r ('E.o f 
K = ~ ~ ds ~ G ¢-11 s) 

/r,.-f/ tJ 

~fc(.l--ds }-

In turn. this new integral can be transformed into two integrals of the form 

all f JA Ct1(cA1J::::.. 7r [{eA)=¥' diAl, 
o 

thus yielding: 

J:-r { -l -' I..... .../} 

K' =.EI e S {I-r- /tp_!j _ J(I_T+ t':F~ . 
C" It, _ 11 c. . 

The substitution of this expression into (56) first gives: 

1 ~ 2. r..l rtF ( J"i _fW:r' { -> ""'I /:1 <lIIl 
d±:± .21fJ df I~-tl Jolt- ~h(f.7'Je "lJf±(.(.-T~ d(T_,+/t'~1 rtf-.I-~JJ' 
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but, applying the properties 

!I (x) d(x-Xc)._ ~(Xcj J(:r- 7foJ) 

J 

this can further be reduced to: 

Next introducing, as in section 

observation point P with the components 

we arrive at: 

IJ~ I r:~rlj = _i, 

3, the integration point Q and the 

of t and ,t, respectively, as coordinates, 

(57) 

Hence, J+ proves to be identical with the expression (25) for the Born approxima­

tion u 1" In other words, according to (53), this approximation can now be 

represented by 

d(r.tf)t:-(W<l~H} 
e. 

(58) 

We here infer that the corresponding integral for J- would represent 

u 1 if Maxwell's equations should be solved with the aid of advanced potentials 

instead of retarded potentials, because the former are in accordance with the 

occurrence of the argument t + p~/c instead of t - pq/c in the 0 function of 

(57). Finally we observe that the difference J+ - J-, that is the difference 

of the values of u 1 when ag~ociated with retarded and advanced potentials 
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respectively, amounts to the sum of the residues belonging to the poles 

w = -w + c~ +t\ in the above integrals. Of course, it is also possible 
0-0 

to evaluate the residues at each of these poles individually. This leads to 

the following result: 

at W= - '1+' I (4-(1 c/ . -.\ . ) 1 if f! It wJ ij(K.,1-tJ'tf-(WofW)/.j 
1. 1!. d tlw J'f > e . 

o It.' +-tl ~l:""'~~" . 

Residue 

J~ f....l1 JJ /~J l(tf-u;,,-r) 
~ 11- 7 J ~ ,'/2, P dr oIi nlr,'f) e J 

4 L_ J+ + lrc {1-r}': Itt_tiL 
e" 

P referring to a principal value. From the difference of these two expressions 

we would obtain that the integration along a lemmiscate-shaped curve in the w 

plane which encircles both poles in opposite direction will lead to the latter 

double integral. This integral constitutes a superposition of the elementary· 

solutions 

I 

+l._r. 
co. 

of the wave equation for vacuum the individual contributions of which result 
--' 

after a shift T in time and a displacement f of the origin at r = O. Apparently 

such solutions, though connected with the existence of the characteristics of 

the hyperbolic differential equation, never playa dominant role in propagation 

theories. 

15. The higher-order Born terms for a general infinite scatterer 

The integral (58) for the first-order Born term was originally obtained 

by leaving out the "diffracted" waves in (40). Similarly, we may look for the 

second-order term u
2 

as investigated in section 13, omitting then all terms 

which are either completely or partly of the "diffracted" type. We thus have 

to add all "full modulated" contributions, that is those with the wave-number 

vector i\, +.£; + ~. The necessary summation over the coefficients of the four 

contributions of this type is facilitated by an application of the following 
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elementary identity: 

t -- .... oI.t 
+ 

ott «t -
it~1' <i,'" a(.:11 fl., 1. 

The summation over the corresponding waves leads to the formula: 

u (p- -1):= "i2 0t,jdtJ dw/jdwJ. ;dt,,~J f,t(w.) (~' )( 
:L ) J" P {1f.+f,I"-~~""")1-Hlt .. t,+tj':('it~;1-w .. tJ 

y.e. 
If {t ... f, +-t:.)r:- (w.+w.:1-wJ~ J 

A comparison of this expression with (58) suggests that the following 

formula might represent all terms of the Born series: 

oO+!'i! 

U~l~4j:=:). N {/'fdt, ... dI; f~9. " dw,v ~ ({;>-,J" }~/~ '7v) X 

_ U()~/J 

It {t~W~ ec+1+"-j- , . (Wc-1~ +. /kiv-I Jy )( 
IIL:+ t,1':..tD~W!N· " ·f I ttl/t.· +ltJ /'=-(:tt-W1" .ft.JNJ1 

i~{J:r~+ .... ~ J ~-("?+"11-' . + WwH) 
) 

(59) 

where the integration path for all frequencies w1,wZ, ... ,w
N 

has been chosen 

in accordance with the single one occurring in (58). 

In order to verify the general validity of (59) it suffices to give a 

proof by induc tion, showing how its validity for a special uN involves that 

for uN+I ' The proof is then complete since we know already its correctness 

for N = I. Therefore, we now assume the validity of (59) for a given N value 

and then apply the recurrence relation (II) in a version holding for a 

general infinite scatterer not restricted to the domain 0 < Z < D. 
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Obviously this version reads as follows for N replaced by N+l: 

(60) 

We may now substitute the expression for a2~/at2 that follows from (59); it 

has to be multiplied by on (x y ,z ,t) for which we take the following p, p q 
representation for its four-dimensional Fourier integral: 

We thus obtain: 

i"1C'4J.,, fy(C>H+tJ f~;. .. (%~··:~P-
K 

{\t\r:I:.e~~"'It}····{ It+·· +r.:f- ((DC~'~+"ivY1 

)( e if tI"K+" + 4l/J Kp+ (10/1+" dN+l,/J)$+f14t+"+~+-!.t)~-(t.t,f' -f"lvtt)l.) 

(61 ) 
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The effect of the operator given by the square root in (60) amounts 

to the equivalent quantity 

r '=' v- (I~"l:r" t-R,v+I,><.r - (I,~ + .. ~iN+I, ¥-t+-Cu,+, /WNi-U 2. l 

(7-. V-- >0 
where 1m V-will always differ from zero since all frequency variables 

w
l
.w2 •.•.• wN+

1 
were assumed with a positive imaginary part 0 before passing 

to the limit E + 0 in the integrals 
c:::ao .. (" r . d,,;. -. 

_00 ..... f-

In fact. whereas the radicand is always real for E = O. it now becomes complex 

throughout which enables the possibility of a square root with a positive 

imaginary part. The substitution of (61) into (60) thereupon yields: 

0:> +.'0 

UN+-,{UJ~L.).NLld(. .. de. I~w"" d~+. f;(.(,wJ., ~(l;:IJwN-H)X 
_ oIJ+rD 

'111p-itl KWot ~-I"1.ttj~(J")(t .. ~~,,J ~(J'3t. ·t-/Nlij) L + (-Lx+' _"-~:t)rt J 00 , 

~ ~~e __ ~======~~===============-__ __ 
(lA.'ei-;' +WN~I r- (I." t .. +-I'.l+/J]{J :'(I''I+ .. +-iN+~jP-

- co 

(J.,. V-> () ) 
(62) 
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The integral over z (without the constant denominator) can be split 
q 

into its forward and backward scattering parts, viz. z < z and z > z • 
q p q P 

With the aid of the substitutions (' • z - z and r a Z - z respectively, p q. q p 
the z integral, without the denominator, proves to reduce to the following 

q 
sum: 

The new integrals are extremely simple since they converge at the upper limit 

in view of the negative sign of the real part of i~ and therefore also of 

the ~ coefficient in both exponents. The z integral in (62), including its 
q 

constant denominator, can thus be reduced to: 

-
- (V--y- (J()X+"+~N+V·t 

/ (i~'J. t- •• +- iN<-" 'X) lp 
1. t'e 

The resulting expression for (62) itself then proves to be equal to (59) for 

N replaced by N+l. This completes the proof of the very general representation 

(59). 
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16. Derivation of the various waves inside the scatterer from the 

expression for an infinite one 

Apparently the formula (59) for this expression reveals only a 
-' ~ 

single type of waves, namely with the wave-number vector ko+"'+~ and the 

frequency wo+ ... +wNt such in contrast with the variety of waves discussed 

in the sections 10 and 13 for u 1 and u2• It is true that these latter refer 

to a finite scatterer, whereas (59) has been derived for an infinite 

scatterer. On the other hand, any finite scatterer can also be considered 

as an infinite one since the finite size can be accounted for in the Fourier 

expression (23) for on in which G4 then has to be such to yield vanishing on 

values for z < 0 and z > D. The question arises whether this property can be 

made clear by a convenient representation of G4 • This proves to be possible 

indeed by Fourier transforming the relevant relation 

U(x} (unity for x > 0, vanishing for x < O) being again Heaviside's unit 

function. Here we can apply, for the variable z, the theorem that the Fourier 

transform of a product of two functions equals the convolution of the Fourier 

transforms of each of its factors. The evaluation of this convolution in the 

present case leads to the formula: 

l
eO - ij) (J" - M 

;1((1x)11J4Jw)~ J~ f,/17)J!/):,~J -'--l:-"-""ll
z
-_-;'"J

t
-:-'j- (63) 

_cO 

This expression could be substituted in (59) for each of its factors 
-1 

G4 (K.,w.}; the integration, thereafter, with respect to the wave-number 
J J 

components k . would be elementary, though tedious. We thus could recover 
ZJ 

the many types of waves such as derived before for u1 and u2. This will be 

verified below for the case of u
l

. 
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The expression (58) proves to be equivalent with the following one 

when using the parameters ~ (k,w), ~I (it,w) and SI (kx,ky'w) introduced in 

section 10: 

00 ... 0 

~ (pA)~ Jej"( llW 
_011,"0 

After substitution of (63), while inverting the order of integration with , 
respect to k , we arrive at: 

z 

Ii, (p.'+): 

"" f"" fOIl .!cUT,a i/'tI.,,+AJJ(pt{I.~~)Jp -/"!ft.JJI~ 1 
~~'Id~1( dA:J JAz' dw fV(~J";)4:w) (? /II j: (64) 

._0/>-"" ._0/) _011+10 

in which J i·s short for the integral over k , viz. 
z 

We pass to the new integration variable s ~ k + k and determine 
oz z 

the partial fractions for each of the four factors obtained when working out 

the integrand. This leads to the alternative form: 

1".j,' , 
in which ~I and ~I refer to kz instead 

+' 
J, = ~()'1.-r4 - /I, (4'~j) 

of k so that, e.g., 
z 
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All the integrals entering here can be evaluated by closing the 

integration path either by the upper or by the lower half of the infinite 

circle of the complex S-plane. Moreover, we again use the fact 

is complex with infinitesimal positive imaginary part (wo also 

with such an imaginary part) so that the radicant of 

that w + w 
o 

being provided 

will have a positive imaginary part as well, like 8 1 itself. The poles at 

S = K + K' are only apparent since they merely result from the mentioned oz z 
splitting into partial fractions; therefore, it is allowed to take the 

principal values at these poles. The six different integrals then reduce to 

complete or half residues at the poles S = 81, -8 1, k + k', or just oz z 
vanish, depending on whether or not the poles BI and -BI are enclosed by the 

contour resulting from the mentioned closing of the integration path. We thus 

find, taking into account that D - Z and z are positive inside the scatterer, p p 

_/(D _tl' j! 
e ::.0 

S-A 

.." ..., 
/ i'" (r,.{R.'rf~J f·, i ZpS ,'fil 1p 

e '" lTri e . cis e -::: rri e 
s-/f, J s-g6'1.-l~ 

_00 

- cO 

0:> 
_i(lHpJf iIM)-1pJ {~ iZpJ' 

f' ~ ::=. -2. n " e ~ =0 
J 

S+ It ~ + (11 
_cb -"" 

These results are to be substituted into (65). The final expression 

for (64) then constitutes an integral which, after replacing the integration 

variable k' by k , z z proves to be identical with the t sum of u
l 

and *1 in (40) . 
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Hence the four types of waves discussed in section 10 are recovered by the 

expression for u j according to the general formula (59). In the same way it 

would be possible to obtain again the five wave types of u
2 

by substituting 
-' J 

for both G(kj,w j ) and G(k2 ,w2) in the expression (59) for N = 2. 

17. Comparison of the various representations for the waves inside the 

scatterer. One-dimensional illustration 

In the preceding section it appeared how the first-order scattering 

contribution u
l 

can just as well be considered as the superposition, 

according to (40), of four different wave types (waves either forward or 

backward, and either modulated or diffracted), as well as the superposition 

(63) 

of only one type of waves represented by the special case N = of (59), viz. 

the formula (58). The first representation has the adventage to show an 

explicit connection with the finite size (0 < a < D) of the scatterer; the 

much simpler second representation could be obtained at the cost of an w­

integration in the complex plane instead of along the real axis, though the 

integration path should tend to the real axis in view of the limits + 00 + io. 

In other words, each individual acoustic travelling wave, fixed by special 

values of t and w, may be consider.ed as causing either four different types 

of undamped waves (w real) or as causing only one type of travelling waves 

with negative damping, in -the limit of vanishing damping (w complex, Imw+ + OJ. 

Such a situation might yet be illustrated for a much simpler case, the one­

dimensional wave propagation through an inhomogeneous stationary stratified 

medium in a direction perpendicular to the stratification. 

Let on be a function of z only, with on F 0 for 0 < z < D, while the 
. . -iko(z-ct) 
incident wave e travels in the z direction. The wave equation (1) 

then reduces to 

which may be represented, in analogy to (3), by 

(66) 
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where 

The corresponding Green function, satisfying the equation 

~t ~ I.,zf == -[(Xl, 

as well as the radiation condition at infinity, reads 

~lr~ i ii./l/ r --e 
- 2. 4 ) 

if we assume k with a (possibly infinitesimal) positive imaginary part. 
o 

We thus find the following particular solution of (66): 

(67) 

In view of (67), and the primary field with the normalized amplitude e ikoz , we 

next arrive at the following integral equation for u: 

00 

U (%) -== e + rl. d( J'n({) U(J} e . I-J~ X f II'f /'&0 1%-11 

_00 

The contribution u\ contained in the corresponding Born approximation 
ik Z + u\ 

e 0 reads: 

00 

Ud'!.) :. iJt) fd r drr (f) e 
t'J,,((+ /z-fl) 

_00 

(68) 

From this latter expression we can derive a representation in terms 

of a single type of travelling waves, corresponding to the previous "modulated" 

waves, and another one containing both "modulated" and "diffracted" waves. 
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We shall start with the derivation of the former and therefore introduce 

the following Fourier integral 

00 -IE 

J'n(:t)= r di ffJje ;'lx.) 

-c() -L£ 

which is just as well an inversion of 

;(R)=~ (ck 
-00 

as well as of the simpler expression with 8 = 0; the only assumption to be 

made here is that G(k) given for 1m k = 0 admits an analytic continuation 

up to 1m k = 8. We next split (68) into its "forward" and "backward" 

contributions (with « z and r > z respectively): 

~ 00 .'f /~~1(JI' (' //'1 _i6.t~'f£ /!'f :z.ilo~· 
U,{<X)-::; tfO -e J orJ dnl~)+e fa. no; e ~ 

_cD Z 

and then substitute (69) for 6n«(). A further inversion of the orders of 

integration gives: 

~-IE 2 ~ 

u,,~ ~ illd~ f/I}{ .,1.14 e U'.-e -i~fr, ;~l.·ljr I 
_~~, _w Z 

(69) 

(70) 

The first r integral only converges, with the value e ikz/ ik, provided that 

1m k = -8 < O. The corresponding condition for the convergence of the second 

integral to 

requires 1m k > -21m k • The combined condition 
o 
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can always be satisfied if 1m k > 0 where 1m K may become infinitesimal o 0 

(1m K = +0). The substitution of the above values of the two ( integrals 
o 

leads to the final expression: 

Obviously, the integration path in this representation in terms of 

(71 ) 

"modulated" waves only has to be complex in order to avoid the poles at k=O 

and k=-2k • It could just as well be replaced by an integration along the 
o 

real axis, apart from and above k=-2k . This property 
o 

an identation below k=O 

can be used to.arrive at the second representation for u
l

' along lines 

corresponding to those of the derivation in the preceding section of the 

formula (40), containing three wave types, from the formula (58) only 

depending on "modulated" waves. We just have to substitute in (71) the one-

dimensional analogon of (63), that is the formula 

oD -tPII-/~ 
f (I) ::: f.~l f aj _I_-e __ 
J l1(i (i-I') 

_00 

which accounts for the finite size 0 < z < D of the scattering medium. The 

substitution in question yields, after another inversion of the orders of 

integration, 

00 

",(:)~$-fl' fllJ 
_ cO 

I 
-ibit-II} -e -------) 
f-t-f'l 

where the path of integration for k has to pass, as mentioned, below the 

pole k = 0 and above k = -2k . o 

(72) 
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With the aid of the identity 

f 

it is possible to split the k integral in (72) into six contributions each 

of which can be evaluated as a residue after closing the path of integration, 

either along the upper or along the lower half of the infinite circle in the 

k-plane, remembering the above mentioned indentations; in doing so it is 

irrelevant whether the integration paths pass above or below k = k',or, 

whether the principal value is taken there because k = k' constitutes no 

singularity of the k integrand. The final evaluation leads to the following 

remaining integration over k' (which may then be replaced by k): 

In contrast to (72) the integration can now be performed along the 

real axis itself, the complete integrand having no singularities at k = 0 

(73) 

or k = -2k . In terms of the terminology of section 10 the first contribution 
o 

of (73) can be termed "modulated", the second and third one "forward 

diffracted" and "backward diffracted" respectively. We yet remark the the 

same expression (73) also results from (70) by substituting there the Fourier 

integral (69) for E = 0; the integrations to be performed with respect to , 

are then most elementary. Summarizing we have shown in this section, by a 

very simple example, how the possibility of various representations by special 

combinations of waves may be connected with proper choices of the integration 

path for a relevant variable. 

18. The total scattered wave 

From the various representations discussed in the preceding sections it will 

be clear that the total wave, resulting from the summation over all scattering 

contributions of any order, can also be expressed in different ways. In the 

sections 10 and 13 we have considered the superposition of partly "modulated" 

and partly "diffracted" contributions. On the other hand, the analysis of the 
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sections 14, 15 and 16 has shown that all waves can be considered as 

"modulated" provided that the integration path for the frequencies is not 

taken directly along the real axis. A further possibility for the classi­

fication of all contributions is obtained by adding together all waves 

travelling in a special direction independent of the associated number 

of scatterings. The corresponding representation is arrived at by passing 

in the integral (59) for the N-th order term ~ to the new integrations 

variables: 

....12 -w-l-w+·.+W" i - C I J 

{j==I,~".,Nj 

This transformation has a Jacobi determinant with the value I, while the 

following relation can be applied when working out the transformation: 

The summation over N = 1,2,3, ..• after the evaluation of ~ in terms of the 
......lI 

new variables then results in the following total wave when, moreover, AN 
~ 

and QN are replaced in all terms by the common variables k and~. respectively: 

. /r'-t 11 fOUt /"" ti Il c' (fit _ w J) 
£( 6~ , .. Wo1'J ,:L d. tJ, e 

a (pJ.f) = e + . W -}=-(-t,_-(,)-",--J<.. 
_ oC _00+10 C .. 

(74) 
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In view of its importance we yet give an alternative derivation of 

(74) which starts with the recurrence relation (6), to be representeo here 

as the following four-dimensional convolution: 

The convolution of two space-time functions hl(r,t) and h2(r,t) is defined 

here as: 
00 

R, (~I)* t~fi:+)= ffUd{ "4 tit,. ci1- I,~,,/;)d ~~-f~d-~"-~JI--d= 
_.... = JJI[k ~(f:r) Il./t-:..I, +-7-) 

Obviously, N successive applications of (75) lead to the following explicit 

expression for the N-th term of the Born series: 

(76) 

where the (N-I)th power refers to N-I steps of the type 

dn(~ f) dJ... [cf(/-f) *" 'tftt 4,1} W t ):/. 

The further reduction of (76) will be based on the well-known convolution 

properties: 

f () /t. -1,'* I. {f' .. oj (1 w) = (.2 ~'I I./. F- ({ w) {F (f; 6)). 
ti, L i) 'J J..) f ~ J ' 

{I, (t:4-}"J~/)J/(w)= f'Fftlw' ~F(I((Nj I~F(tt;UJ-wj 
(77) 

in which the symbol F defines Fourier transforms according to: 

(78) 
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Apart from these results, and the elementary way in which the 

second-order time derivatives can be accounted for. we also need the formula 

(32) for which we use the following representation (after the substitutions 
...J 
S'" k, u ... -w, while taking c' = +0): 

0<>+-10 

J' {4- iJ ~ -Lf1fdW 
t '11(3 • 

. _cbf<O 

(79) 

It thus proves pos~ible to .arrive at a general formula related to the operator 

entering in (76),viz. 
, 

Next,with the aid of the transform (23) for on, we also find: 

where all integrations over w, here and henceforth, are to be performed 

along a line just above the real axis in the complex w-plane, in view of 

the singularity of the integrand on this axis itself. 

Starting from the elementary relation: 

{in (r.4 fa (Ja6~j.JfF (tt.JJ= _ w~~{ fn ff:-t) e l(t: f_ woJ1
r
!( w); 

::: _ UltJ 2./r ((- ~ w_wl
J 

we find after a first application of (80): 

(Sn(t~4) ~~'- rl(:-:~{ dn((t) ';;'Uoft;J) }J)p ({ w) = 

-='rrrwo'-fdt. I cluJ, Ir.'~::t: ~(t+f,,~I) ;,J-t~-4i-wJ 
_D4+<D I ca. 
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Applying (80) also to the further steps in the evaluation of (76) we 

finally obtain the general expression: 

"4.' [- 3;... J IV f ~ joD+ifJ 
_--"=-=-C~~ dT,. " df" d"1 .. , dwv I X 
"fl'" w" IV-I' I -f 

I -~ ~ 
_ Q()+< 0 

.... ~ w, W~"'"1V_1 

'~.,. ~ (lrv_>/III_LlJ 4JN-I-'7V~J {"f-C-r,;:J_W,,_W,v-lj. 
A reversal of both the signs of the variables ~"" '~I and tL.j, ... ,<liN_I' 

and of their numbering from I to N-I, leads to a Fourier transform which 

proves to be identical with that of the N-th term in (74). This general 

formula has thus been verified again. 

The total wave expressed by (74) constitutes the rigorous solution 

of an integral equation such as considered in a vectorial version in 

Born and Wolf 7) (see chapter XII) when dealing with scattering due to a 

single real acoustic or ultrasonic wave. A direct application to such an 

isolated wave requires prudence in view of the w-integrations along a line 

just above the real axis. For a single plane travelling acoustic wave for 

which on f 0 starts at t = a, the following representation cQu1d be used 

in order to find the associated G
4 

transform: 

19. The higher-order Born terms at great distances (stationary scatterer) 

So far, an approximation applicable at great distances beyond or in 

front of the scattering slab a < z < D has only been considered in section 9 

for the Born approximation. A corresponding much less explicit approximation 

can be derived for the N-th order contribution uN' either from (74) or (59). 
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In this section we shall derive such an approximation for the simplified 

case of a stationary medium. 

integral 

For such a medium J'n can be fixed by the three-domensional Fourier 

,ott 
e J 

the transform G
3 

of which enters in the special representation: 

The expression (59) for ~ now reduces to: 

(81) 

II (p.j.) =~ Ni:Ne _i%+fd(. .. .It £((J ~/tj.~. f;1t:J X 

N J ~t+t;J:Jd~ .. ~flCf ... +t;I';.'j 

i(R:+-t;r' -+-t:J r;: 
xe 

(82) 

The approximation yielding the simplification at great distances, viz. 

(35a), reduces for the stationary medium to: 

.-I 
u again fixing the direction of observation. Splitting off the last integration 

r 
in (82), we find: 

where the last integral equals, in view of formula (A.I) of the appendix, the 
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quantity 
2 ik r 

(2" /rp)e 0 p at least if we assume 

positive imaginary part (radiation condition). 

(82) we obtain: 

k with an infinitesimal 
o 

Applying these remarks to 

The corresponding expression for the Born approximation in a 

stationary medium proves to read, applying (81) to (36), 

on the other hand, the next term of the Born series, that is (83) for N=2. 

already leads to an integral, viz. 

In such expressions the infinitesimal positive imaginary part of k can 
..... 0 

also be accounted for by taking the integration path for'the k variables 

just underneath the real axis. 

A comparison of all these formulas shows that the approximation 

outside the scatterer can be interpreted, for each term u. of the Born 
] 

series, as representing a radiation pattern in which, in the factors 

occuring next to the spherical wave eikorp/rp' the dependence on the 

direction of observation enters through the occurrence of the unit vector 

It that fixes this direction. According to (84) only a single acoustic 
r 

wave contributes to the Born approximation at great distances, whereas for 

all higher-order terms a continous wave-number spectrum of such waves 

contributes to the intensity observed in the direction of observation. As 

a matter of fact, the wave-number spectrum for ~ results from a vectorial 

(84) 

(85) 
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addition of the wave-number vectors 

of those individual acoustic waves, 

for which the sum of these vectors 

amounts to a single vector 

(86) 

This latter vector fits to the vectorial diagram of fig. 3, the geometrical 

configuration of which is well known from scattering theories based only on 

the Born approximation. 

20. Final remarks 

The aim of this article has been to show the usefulness of expressions 

containing differential operators, with their special applications to scattering 

and diffraction phenomena. The latter can be interpreted as int.eractions between 

an incident wave and travelling waves of acoustic type. This interaction has 

been first investigated by Brillouin8), by working out the Born approximation 

at great distances in the case of a scatterer of limited size, in a vectorial 

version based on the Maxwell equations. Though represented in a quite different 

form, the resonance condition derived by this author proves to be equivalent to 

our equation (45)*). 

*)this can be verified by evaluating the relation «,2 +~,i + j,2 = 

(28) of Brillouin's paper. 

in formula 

Our multiple-scattering analysis is in particular characterized by the 

formula (59) or the equivalent (74). The denominator of (59) shows how all 

possible resonance effects are contained in the relation 

(87) 

where 

(88l. 
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j being any positive integer fixing the number of scatterings (see also the 

remarks at the end of section 19 for a stationary medium). The j-th order 

scatterings thus result from the interaction of the incident wave with 

fictitious travelling waves the wave-number vector~ for each of which is 

the vectorial sum of those of j different acoustic waves. In other words, 

multiple-scattering effects can be ascribed to the cooperation of different 

acuustic waves. a cooperation which might be compared with the one occurring 

in nonlinear phenomena depending on such waves. In this connection it is 

striking to notice the analogy of the equations (88) to those describing, e.g., 

resonance conditions for the so-called wave-wave interaction in nonlinear 

plasma theory; main attention is given there to the case j = 2 which has to 

do with the interaction of three waves. An essential difference between our 

situation and that of non-linear theories concerns the absence in the former 

of a dispersion relation. Such a relation restricts the possibilities for 

resonance as discussed in textbooks, for instance in chapter I of the book 

of Sagdeev and Galeev9). 

The existence of resonance conditions is also apparent in the obser­

vation of the individual effect of a special single acoustic wave at great 

distances, either at the front side or at the back of the scattering slab. 

In fact, our equation (37) shows how single scattering due to an acoustic 

wave with 
~ 

vector k 
o 

a special wave-number vector~ is only observable if the corresponding 
-> 

+ k for the scattered wave is parallel to the 

the direction of observation. The relation (37) implies 

unit vector -u" fixing 
r 

the single-scattering 

resonance relation (43). The extension of this property to multiple scattering 

is obvious in view of the equation (87) then replascing (43), and from the fact 
...:>..:. 

that exp {i(K r - Qt)} constitutes the exponential for a multiple-scattered 

wave as occurring in the integrand of (59). Multiple scattering associated with 

the relations (88) is observable at great distances provided that the direction 

of observation fixed by'; satisfies 
r 

{\i< 
the following 

w -+..Q. o • 
c .) 

extension of (37): 

the special case of this relation for a stationary scattering is given by (86). 

The extension of (45) to multiple scattering is obtained by replacing d by 
..l 

2n/IKI, that is by the separation of consecutive wavefronts perpendicular to 
..... 

the effective wave-number vector K; moreover, i then has to refer to the angle 
o 

of incidence with respect to these wave fronts. 
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We finally emphasize that no statistical considerations whatever have 

been included in this paper, though many of its results are adapted to 

statistical applications. As an example we mention how a statistical average 

of the expression (85) for the observation of second-order scattering at 

great distances will depend on the average of the product of the two G
3 

there. The property that the statistical average of 
-> . ...l 

known to be proportional tel O(k
1
+k

2
), at least in the case 

of homogeneous turbulence, here leads to the result that the average <u
2

> 
. ...l ~ 

becomes proportional to o(k u - k ). In other words, at great distances 
OrO 

second-order scattering only becomes observable when due to those acoustic 

waves which are also the only ones that contribute, according to (84), to 

the first-order scattering. 
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Appendix. Derivation of the equation (32) 

We first consider the general integral 

lis}, 

in which the integration should extend over the entire space for which the 
~ 

components 51' 52' S3 of the vector S constitute rectangular coordinates; 

the function f(s) is assumed to depend only on the length 5 of this vector. 

We take the 53-axis in the direction of 'it so 

53 a, a being the length of -to Introducing next polar 

to 

J J 

we get: 

J - j-", ~Y f:~} e ,.,-~ /trJ -
D 0 0 

Taking f (s) (2 2/ 2)-1 s -u c , we find: 

........... 

[& f' , 4 S 
.A;. (4S) J dt e Ifrr 

S 
Sl._ ~ <l. S'l._~ 

C .. 
0 

c .. 

-~~ { r:s 

eo 
IltS -idS e - s-!! c 

-00 _01) 

.>..,> that (a s) reduces to 

coordinates according 

lis). 

-

e _1'<t,S }. 

s-~ c. 

Since a constitutes a positive quantity the integration path of the first 

integral can be closed at infinity along the upper half of the infinite 

circle in the complex 5-plane, whereas the same is possible for the second 

integral with respect to the lower half of this circle. Assuming 
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1m u < a the only singularity of the integrands, the pole at 

s = u/c, is enclosed by the contour integration of the second integral, 

but not by that of the first One. The residue at this pole then yields: 

We also give for reference the corresponding expression for u replaced by -k c, 
o 

viz. 
.~...1 

d~ e f 
14S 

S' -J''':~;'''_-lc-.z. 

The integral to be evaluated in (32), that is 

now reduces in view of the above result, yet inverting the order of 

integration (while taking 1 = '1), to 

J(-I-iJ 
) 

that is the relation which had to be proved. 

(AI) 
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