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Abstract 

In this paper an optimal deterministic identification 
problem is solved in which a new measure for the 
misfit between data and system is minimized. It is 
shown that the misfit can be expressed as the Han­
kel norm of a specific operator. Optimal autonomous 
models are obtained by factorizing an optimal Hankel 
norm approximant of the Laplace transformed data 
matrix. An upperbound on the misfit between model 
and data is derived for a class of non-autonomous 
models of prescribed complexity. The identified au­
tonomous systems are viewed as closed-loop behav­
iors of a feedback interconnection of two systems. 
Stability of these feedback interconnections is dis­
cussed. 
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1 Introduction 

In the usual methods of system identification uncer­
tainty of models is expressed as uncertainty in the pa­
rameters defining the model. In traditional axiomatic 
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frameworks this uncertainty is given a stochastic in­
terpretation in the sense that deviations of nominal 
parameter values are modeled by prescribed proba­
bility distributions. The recent interest in determin­
istic techniques to quantify model uncertainty stems 

. mainly from the present inability of robust control 
theory to cope with probabilistic assumptions on es­
timated model parameters. 

A mathematical description of model uncertainty re­
quires a quantification of a distance measure between 
models. In the context of deterministic system identi­
fication a distance measure needs to be specified be­
tween observed data and models belonging to an a 
priori specified set of candidate models. It is impor­
tant that this misfit criterion is chosen independent of 
the parametrization of the model class and indepen­
dent of the way individual models are represented. 
As such, parametrization and representation issues 
should be clearly separated from the model identifi­
cation problem. 

In the present paper we consider a deterministic iden­
tification problem using model sets of prescribed com­
plexity. We restrict attention to the class of linear 
time-invariant systems and introduce a rriisfit criteria 
for the distance between data and elements in this 
model class. The proposed misfit function is indepen­
dent of model representations and is characterized as 
the Hankel norm of an operator which is determined 
by the data and a specific (co-inner) kernel represen­
tation of the model. Optimal approximate models 
with prescribed complexity are characterized in this 
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way. 

In the last section of this paper we will view these 
optimal models as the closed-loop behavior of a plant­
controller feedback interconnection. Internal stability 
of these interconnections is characterized in an input-

I output independent context and it is shown how the 
! class of all stabilizing controllers for a given plant (or 

the class of all plants stabilized by a given controller) 
can be parametrized. 

2 Models and data 

• Consider a finite set of observed time series 

wi:Z+--d¥, i=l, ... ,n (2.1) 

where W denotes the signal space which is assumed 
to be a q dimensional real vector space, i.e., W 
lR?q. We address the problem to identify linear time­
invariant systems that model these time series. 

Let 12(Z+,lR?q) (or It for short) denote the set of 
time series w : Z+ ~ lR?q for which Ilwll~ := 
I:tEZ+ wT(t)w(t) < 00. It is assumed throughout 

that Wi E It for all i = 1, ... , n. 

Definition 2.1 An 12 system is a system E = 
(Z+, lR?'l, 8) with time set Z+, signal space lR?'l and 
behavior 8 £; 12(Z+, JR?q). 

Denote by S~ the class of all h systems E 
(Z+, JR? 'l, 8) defined on the time set Z+ whose behav­
ior 8 £; It is a linear shift-invariant and closed sub­
set of 12(Z+, JR?q). This class of linear time-invariant 
systems has been extensively studied in the work of 
Willems [8] and Heij [5] and corresponds to the class 
of systems whose behavior can be represented as the 
(It -) kernel of a finite number of polynomial differ­
ence equations in the system variables or, alterna­
tively, as the (/2-) solution space of a linear time­
invariant state space system with finite dimensional 
state space. 

Definition 2.2 A system E E sg is said to be 
autonomous if there exists t E Z+ such that the 
mapping 11" : 8 -+ 81[1,t1 defined by the restriction 
1I"t(w) := wl[l.tj is injective. 

Definition 2.3 A system E = (Z+.JR?q, B) is unfalsi­
fted by the data (2.1) if Wi E B for i = 1, ... , n. We 
call a system El = (Z+.JR?q, Bd more powerful than 
E2 (Z+,JR?Q,82) if Bl £; B2 . 
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This defines a partial order £; on systems in sg by 
defining El ~ E2 if El is more powerful than E 2· 
Equivalently. El will be called a subsystem of E2 if 
El C E2 . The most powerful unfalsifted system (for 
the data (2.1)) is that system EMPUM E sg which is 
unfalsified by (2.1) and which is more powerful than 
any other E E S~ which is unfalsified by (2.1). In the 
following we use the fact that EMPUM E sg exists and 
is unique for any set oftime series (2.1) which belong 
to It. See [5, 8, 9]. 

3 Models for data 

In this section we address the question to characterize 
all systems E E sg which are unfalsified by the data 
(2.1). 

Define the Laplace transform of the data sequences 
Wi by putting 

W(z) := W(1)z-1 + W(2)z-2 +.... (3.1) 

where z E C and Wet) := [WI (t) ... Wn (t)], t E Z+ 
denotes the data matrix. We will assume the follow­
ing. 

Assumption 3.1 W(z) is rational and analytic for 
all z E C with Izi < 1. 

Specific examples of data sets that satisfy assump­
tion 3.1 include finite sets offrequency response mea­
surements, spectral data, or polynomial-exponential 
data series. See [6] for a methodology to approxi­
mate data sets by polynomial-exponential time series 
which satisfy assumption 3.1 using risk minimization 
techniques. 

Let EMPUM = (Z+,JR?q,BMPUM) denote the most pow­
erful unfalsified model for this data and let IT denote 
the shift (lTw)(t) = wet + 1). 

Proposition 3.2 EMPUM tS well deftned and au­
tonomous. Its behavior 

is the smallest linear shift invariant finite dimen­
sional and closed subspace of It that contains Wi for 
all i = 1, ... , n. 
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Proof. See e.g. [2, 8]. • 
To represent 8 MPUM introduce the power series 

where z E IC and 8i are constant real matrices of 
dimension 9 x q. Assume that 8 E H;;, (all entries 
of 8(z) are analytic and bounded functions for z E. 
IC with Izi < 1). Then 8 represents a linear time­
invariant system through the difference equations 

8(0")10 O. 

Formally, (3.2) defines the h system E 
(Z+,lRq

, 8(8» E S~ with 

(3.2) 

8(8) := {1o E It 18(0")10 = O}. (3.3) 

Let 8 denote the Laplace transform of 8. Then E is 
in the frequency domain equivalently described by 

8 {w E 'Ht I (11+8w)(z) 0, z E q. 

Here, 'Ht denotes the image of It under the Laplace 
transform and 11+ denotes the canonical projection 
11+ : £2 --+ 'Ht. 

The most powerful unfalsified system EMPUM admits 
an 'H-;;' kernel representation which is obtained as fol­
lows 

Theorem 3.3 Let W = 8;;,1um W be a left co­
prime factorization aver H;;, of W. Then E MPUM = 
(Z+, IRq, 8MPUM) where 8 MPUM = 8(8mpum ) or, equiv­

alently, 8MPuM = ker 11+8MPuM • 

Once EMPUM is known, a system E is unfalsified by 
the data (2.1) if and only if EMPUM ~ E. 

Theorem 3.4 Let EMPUM be represented by 8 MPUM 

and let E = (Z+, IRq, 8(8)). Then the fol/owing state­
ments are equivalent. 

1. EMPUM ~ E 

2. 8 = A8MPUM for same rational A E H;;'. 

All unfalsified models E E S~ are therefore generated 
by EMPUM by premultiplying 8 MPUM with rational el­
ements in H;;'. We will use this result in section 4 
below. 
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4 Optimal approximate models 

4.1 Model complexity 

In this section E = (Z+, IRq, 8) belongs to S~ and it 
is supposed that 8 = 8(8) with 8 a rational element 
in H;;,. 

Definition 4.1 The complexity c(E) of Eis a pair 
c(E) = (m(E), neE)) where m(E) = q - rank (8) and 
neE) is the McMillan degree of 8. 

In this definition m(E) + neE) is to be interpreted as 
the total degree of freedom to uniquely determine a 
trajectory in E. This consists of the dimension m(E) 
of the input space in a (and hence any) input-output 
representation of E and the dimension neE) of the' 
space of initial conditions (or t~e state space dimen­
sion in any minimal state space representation of E). 
Introduce a lexicographic ordering on system com­
plexities as follows. Define c(Et} ::5 C(E2) if· 

{ 

meEt) = m(E2), neEd = n(E2) or 
meEd < m(E2), n(E l ) = n(E2) or 
meEt) m(E2), n(E l ) < n(E2} 

Since autonomous systems E E S~ have finite dimen­
sional behavior, it follows that their corresponding 
kernel representations have full rank or, equivalently, 
m(E) = O. Therefore, the least complex systems are 
the autonomous ones. 

4.2 Misfits 

The discrepancy between model and data is formal­
ized by the definition of a misfit function between the 
data (2.1) and models in S~. We assume that the 
data is represented by the matrix W defined in (3.1). 
The misfit is defined as follows 

Definition 4.2 The misfit between 8 and W is de­
fined as 

{ < W X,"II > I v E 81., x E 'H
2
-. } d(8, W) := sup IIv llll x ll 

Here, 

81. {v E 'Ht I < v, 10 >= 0 for all w E 8} 

A. + is the orhogonal complement of 8 III 'Hz and W 
is viewed as a multiplicative operator W : 'H:;;' --+ 

L2 , W:x ~ Wx. 
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Clearly d(8, W) ;::: 0 and d(8, W) 0 if, and only if 
E is unfalsified by the data. Note that the misfit is 
independent of representations of E E S~. In other 
words, d(8, W) is a non-parametric criterion. 

The following theorem relates the misfit to the Hankel ' 
norm of a specific operator. See also [7] for other 
characterizations of the misfit d(8, W). 

Theorem 4.3 Let E E S~ and let its behavior 8 = 
8(8) where 8 is co-inner, i.e. 88* = I. Then 

where II . IIH denotes the induced operator (or Hankel) 
norm of the composite function 11+8W viewed as a 
mapping from 1f2 to 1ft. 

Co-inner kernel representations of systems in S~ in­
deed exist. 

Proposition 4.4 The behavior 8 of every system 
E E S~ admits a representation 8 = 8(8) with 8 
co-znner. 

4.3 Optimal identification 

The approximate modeling problem consists of find­
ing low complexity models which minimize the misfit 
between model and data. Precisely, given the data 
(2.1) together with prescribed complexity (m, n), find 
systems E E S~ with c(E) j (m, n) such that the mis­
fit d(8, W) is minimal. A complete solution for the 
case where m = 0 is given in the following result. 

Theorem 4.5 Let W be given by (3.1) and let E MPUM 

be the most powerful unfalsifted model for W. Suppose 
that c(EMPUM) = (0, N) and let 

U1 ;::: U2 ••• ;::: UN > 0 

denote the singular values of W. Denote by Wn E 
H 00 an optimal Hankel norm approximant of W of 
McMillan degree:::; n. Let En = (Z+, W,8n ) be the 
most powerful unfalsifted model associated with Wn . 

Then 

1. En is autonomous. 

2. d(8n , W) = Un+l. 

3. d(8~, W) ;::: d{8n , W)} for all E~ E S~ with 
c(E~) j c(En), 
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4· if En ~ I:~ then d(8~, W):5 Un+!' 

Proof. See [7]. • 
Note that c(En} = (0, n*) with n" :::; n the McMillan 
degree of Wn . Conclude from Theorem 4.5 that 

En = argmin{d(8, W) lEE S~,c(E):::; (O,n)} 

For given data (2.1), Theorem 4.5 leads to the fol­
lowing constructive method for the computation of a ' 
kernel representation of En. 

1. Compute an optimal Hankel norm approximant 
Wn E Hoo of W with McMillan degree n [4]. 

2. Let Wn = 8~!UM n Wn be a left coprime factor­
ization over H;" ~f Wn . 

3. Put 8n = 8(8) := ker8MPuM,n(u). 

The optimal approximate model is then given by 
En (Z+, IRq, 8 n ) whereas all models which have En 
as subsystem have misfit:::; Un+l. 

5 Stabilization of systems 

In this section kernel representations of autonomous 
systems are used as descriptions of closed-loop be­
haviors. A "closed-Ioopl!! behavior consists of the 
interconnection of two /2 systems E1' and Ec which 
will be referred to as the plant and' the controller, 
respectively. 

Definition 5.1 Let Ep and Ec be elements of Si. 
Their interconnection is defined as the system Eint := 
Ep 1\ Ec (Z+, ]Rq, 8ind where 8int = 81' n 8 e• 

Hence, interconnection and intersection are synony­
mous. It is easily seen that Eint again belongs to S~ . 

Definition 5.2 The interconnection Eint = E1' 1\ Ec 
is called a feedback interconnection if Eint is au­
tonomous. 

lin this input-output independent context the traditional 
looping configuration of input and output signals is not 
implied. 
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Definition 5.3 A feedback interconnection ~int :::: 

(Z+, lR'l, B) is said to be internally stable if 

B:::: {w E I~C(Z+,lR'l) I 6(a-)w:::: O} 

for all 6 for which B :::: B(6). Here, l~oc(Z+,lRq) 
denotes the set of locally square summable time series 
w : Z - lR'l. In that case, ~c is called a stabilizing 
system for ~p and ~p is said to be stabilized by ~c. 

Stated otherwise, in an internally stable feedback 
interconnection the set of locally square summable 
solutions of (3.2) coincides with the set of square 
summable solutions of (3.2). In particular this im­
plies that the locally square summable solutions wet) 
of a feedback interconnected system converge to zero 
as t - 00. 

Let 6 be a non-singular q x q rational matrix with en­
tries in H;;,. Suppose that 6 represents a feedback in­
terconnection ~int :::: (Z+, lR q, Bind, i.e. Bint :::: B(6). 
Since the behavior of both plant and controller con­
tain Bint as a subset we derive the following property 
as an immediate consequence of Theorem 3.4. 

Proposition 5.4 Let ~int be a feedback interconnec­
tion of ~p and ~c and let its behavior Bint = B(6) 
with 6 E 1i;;'. Then there exist Ap , Ac E 1i;;, such 
that 

Bp :::: B(Ap 6) 

Be B(Ac6). 

(5.1) 

(5.2) 

Conversely, if A :::: (A: A~)T is a unit in H;;, then the 
interconnection of (5.1) and (5.2) yields the feedback 
interconnection ~int with behavior Bint = B(6). 

In order to investigate internal stability of inter­
connected systems it is common to introduce ficti­
tious signals in a plant-controller configuration. Let 
6 E 1i;;, be as in Proposition 5.4 and consider the 
equation 

iii::::6(O")w (5.3) 

Introduce the system ~ full :::: (Z+,lR 2'1, BCull) with full 
behavior . 

BCull :::: ({w, w) E It I (5.3) is satisfied}. 

Note that Bfull = B([6 - I]) . . Let 7rw and 7rw de­
note the canonical projections 7rw (w, iii} := wand 
7rw(w, w) ::::: iii. Internal stability is then character­
ized as follows. 
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Theorem 5.5 Let ~int be a feedback interconnection 
and let ~ftlll be its associated full behavior. Then the 
following statements are equivalent. 

1. ~int is internally stable. 

2. 1rwBftlll = It. 
3. there exists a non-singular 6 E 11.;;, such that 

6- 1 E 1i00 and Bint :::: B(6). 

4. for all non-singular 6 E 1i;;, for which Bint :::: 
B(6) there holds 6-1 E 11.00 ' 

Theorem 5.5 has the interpretation that internal sta­
bility is equivalent to the property that the fictitious 
signal w in Bfull can be considered as a free variable 
in It. Since for all tV E It, 7rwBfull is autonomous, 
the variables (w, w) of ~full can be partitioned into a 
q-dimensional input variable wand a q-dimensional 
output variable w 6- 1w which belongs to It when­
ever ~int is internally stable. The poles of the feed­
back interconnection are the invariant zeros of 6 or, 
equivalently, the poles of 6- 1• 

Suppose that Ap E 11.;;' has rank p < q and consider 
the systems ~p and Ep with behavior Bp ::::: B(Ap6) 
and Bp := B(Ap), respectively. Let ~c and Ec be de­
fined analogously. We address the question to charac­
terize the class of controllers ~c E sg which stabilize 
~p. First observe that ~p can be viewed as the inter­
connection ~full A Erull,p where 

Brull,p::::: {(w,w) E It I iii E Bp} 

That is, 

Bp = 1rw(Brull n Bfull,p) 

We remark that the number m(~p) :::: q p > 0 
corresponds to the dimension of the input space in 
any input-output representation of ~p. 

Theorem 5.6 Suppose that ~int is an internally sta­
ble feedback interconnection with behavior Bint = 
B(6). Then the following statements are equivalent. 

1. ~p A ~c is an internally stable feedback intercon­
nection. 

2. Ep A Ec is an internally stable feedback intercon­
nection. 

3. A::::: [A: A~Y is non-singular and A-I E 11.00 
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The Laplace transform Bp of Bp is given by 

Bp {w E 1-lt I ll+Ap<3w = O} 

= {w E 1-lt 1< ApElw, v >= 0 \::Iv E 1-lt} 
= {w E 1-lt 1< 61, El* A;v >= 0 \::Iv E 1ft} 

{w E 1-lt I 61 E [El* A; 1-l tY } 
rim El* A;lJ. 

where <3* E H 00 denotes the dual of El E H;;'. There­
fore, the behavior of Ep can equivalently be repre­
sented as the orthogonal complement (in 1-lt) of the 
1-lt image of <3* A;. 
The following result provides a characterization of 
stabilizing systems for Ep. 

Theorelll 5.7 The following are equivalent 

1. Ec stabilizes Ep. 

'1. '1. + 2. Bp + Be 1-lz 

3. Be B(AeEl) where A ( ~; ) is a non-

singular q x q matrix and (AEl)-l E 1-l00 • 

The above Theorem 5.7 provides a characterization of 
all stabilizing controllers of the linear time-invariant 
system Ep. Note that input/output representations 
of Ep and/or Ec are not necessary to provide such a 
characterization. 
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