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Summary

Mobile manipulator systems can be used for many applications including
assembly, transportation, and inspection. A mobile manipulator has to be
integrated on a mobile base, which is driven by several wheels. For smooth
motion, this mobile base must be able to move free in any direction, it must have
three degrees of freedom of motion in the plane. A mobile robot with this property
is cailed a hoionomic mobiie robot.

The ordinary mobile robots are all non-holonomic: they only have two degrees of
freedom of motion in the plane. There are many different mechanisms that can
be used to achieve holonomic motion. In this report, a mobile base with caster
wheels (also called office chair wheels) will be discussed.

This mobile base has several wheel modules. Each wheel module has two DC
motors: one for driving and one for steering. To translate the base velocity to
wheel velocities, a kinematical model of the base is needed. This model is
derived in chapter 2.

To achieve the desirable velocity, two controllers are needed, one for the
steering velocity and one for the driving velocity. The design and implementation
of the controller is discussed in chapter 4 and chapter 5.
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1. Overview of problem

1.1 Design

The mobile base consists of two parts: a platform and several wheel modules. A
wheel can be actuated (active) or passive. When a wheel is active, it is powered
by two DC motors, one for steering and one for driving. In figure 1.1, a caster
wheel is shown.

The shape of the platform and the number of active and passive wheels depend

P 2 on the application the base is used for. The
same goes for the offset (b in figure 1.1), the
radius of the wheel and the position of the
several wheels on the platform.

An active wheel is placed in a wheel module with
two DC motors, two encoders and two amplifiers.

One wheel module was already designed,
produced and available for tests.

Figure 1.1: caster wheel

1.2 Control problem

There are two levels in the control problem: task level and wheel level.
The figure below gives an overview of the control on task level.

v A i
robot Controller wheels Mobile

——P
R —— (task) Robot Base

robot, measured

Figure 1.2: Control on task level

The mobile base must be able to follow presciibed trajectories, called tasks. A
task is specified in terms of the velocity vector of the robot base as a function of
time. This task must be translated into corresponding steering and driving
velocities for the several wheels.
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To realize the desired wheel velocities, a controller has to be designed for each
DC motor. In figure 1.3 the basic control loop for the wheel velocities is shown
schematically.

Steering or
driving velocity Controller | Plant >
1
Figure 1.3: Control on wheel level

For each wheel velocity (steering and driving) a different controller is needed.

Because slip between the actuated wheels and the ground may occur, a second
controller (figure 1.2) is necessary to guarantee the desired path of the base is
followed. Therefore an independent measurement of the robot velocity is needed.
This can be done with an optical sensor for example. Using the error between the
actual and desired velocity of the robot base, the controller in figure 1.2 corrects
the specified task at specific time intervals. This is done at a much lower
frequency than the control on wheel level.

1.3 Main objective
The research described in this report consists of two parts:

e Deriving a kinematical model that describes the relationship between robot
velocities and wheel velocities.

¢ Design of a controller for the steering and driving velocity of one wheel.

The kinematical modeling is described in chapter 2. Chapter 3 handles the used
hardware and software and in chapter 4 a dynamical model of the system is
derived. Finally, in chapter 5, the implementation and tuning of the controller is
discussed.
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2. Kinematical model

As mentioned in chapter 1, the task of the mobile base is given in terms of
movement of a point on that base. To translate this task to wheel velocities, a
kinematical model of the mobile base is needed. The derivation of this model is
presented in this chapter.

2.1 Mobile base

In figure 2.1 an open-chain mechanism of the caster wheel is given. It has three
degrees of freedom, called wheel variables: steer ¢, drive p and twist at the

wheel contact & .

Figure 2.1: open-chain mechanism of caster wheel

Figure 2.2 shows a schematic view of the mobile platform with four wheels on it.

Figure 2.2: schematic view of the mobile base
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The position of a wheel on the base is specified in terms of hy and hy. These are
the distances to a fixed coordinate frame in space (figure 2.2). This frame can be
fixed anywhere on the base.

The velocity of the robot is given in terms of forward velocity y , sideward velocity

% and angular velocity 8. The shape of the platform, the number of wheels, the
wheel parameters b and r, and the positioning of the wheel on the platform (the
parameters hy and hy), depend on the application the base is used for. Their
influence is not considered in this report.

2.2 Assignment of coordinate frames

The robot is modeled as a multiple closed-link chain. Coordinate frames are
assigned at both ends of each link. For the caster wheel the links are the floor,
the robot body and the steering link. Three joints connect these links: the wheel,
the steering axis, and the mid-point of the robot.

Consequently there are two coordinate frames at each joint. If a wheel is
considered in isolation (figure 2.3), it has three links, three joints and six
coordinate frames.

z z
SB RBA
SL y RF v
> >
y4
Y
F Y cL
CF
Figure 2.3: Coordinate frames isolated wheel (side view)

The instantaneous frame RF (robot-floor) is used to specify the velocities and
accelerations of the robot relative to the floor, independently of the robot position
at the instant of observation. The instantaneous contact frame CF (contact-floor)
is used to calculate wheel velocities and accelerations relative to the floor. These
frames are instantaneously fixed with respect to the floor and not to the robot. At
the instant these frames are considered, they are coincident with the frames
attached to the robot, frame RF coincides with frame RB (robot-body) and frame
CF coincides with frame CL (contact-link).

The floor coordinate frame F is stationary, and serves as a reference frame for
the motion of the robot. The robot frame RB is located at the robot, and serves to
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define the location of the robot with respect to the floor frame for external
kinematics.

Two frames are attached to the steering joint. Frame SB (steering-body) is
attached to the body and frame SL (steering-link) to the link. The angle between
these two frames is the steering angle, ¢.

in figure 2.4 a schematic overview of the coordinate frame of a singie caster
wheel is shown.

Y
‘A RrB
™ | RF
e e SR
X

—————————

hy

Figure 2.4: Coordinate frames isolated wheel (top view)

The parameters hy and hy describe the position of the wheel in reference with a
point on the base. The offset of the caster wheel is given by b.

Now that all coordinate frames and variables are specified, the kinematical model
of the mobile base can be derived.

2.3 Equations for kinematical modeling

2.3.1 One wheel

The next equations describe the relationship between the instantaneous velocity
of the robot and the velocity vector for one wheel [1].

s = aVa =8 3 6f 2.1)

Equation 2.1 denotes the relative velocity of the robot base (RB) to the floor (RF).
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In this equation Jn pseudo IS the pseudo Jacobian matrix for wheel n.

RB . RB RB RB
cos HCL,, —sin HCL,, P, = Pss,
. RB RB RB RB
npseudo s QCL,, €os HCL,, - D CL,,. p SB,
0 0 1 -1
Where

*g., = sum of the angles between the two frames = ¢

L

®p,, = vector from frame RB to frame CL

This vector is the sum of vector “p, and *p_, (figure 2.5).

Figure 2.5: vector diagram for the two frames

I {— h, +bsin(go)}
CL
—h,—bcos(p)

The pseudo-velocity vector of a wheel contains four components:

—_ ny
Vn pseudo ~ | CF

2.2)

(2.2a)

(2.3)

2.4)
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cF v, is the instantaneous linear velocity of wheel » with respect to the floor
“ay, is the instantaneous velocity of wheel » around the contact point

SBa)SL"is the angular velocity of the steering link around the hip joint

In this vector the first component is zero for the caster wheel, because there is no
linear velocity in the x-direction (it is assumed there is no side slip). The second
component equals rp and the third and fourth component are respectively &

and ¢.

The physical velocity vector contains all wheel variables. The linear velocity is
calculated form the angular velocity of the wheel (“v., =rp). The pseudo

velocity vector can then be related to the physical velocity vector by a wheel
matrix W:

Vpseudo = Wa Vi physica (2.5)
0 0 ooy

Vaeso = o 1 g @m(=9) (2.52)
0 0 1L P =9)

The physical wheel Jacobian is derived in a similar way (equation 2.6).

I physical = T pseudo Wa (2.6)

Using equations (2.2), (2.2a), (2.3) and (2.5a) the physical Jacobian is

—rsin(*” O:.) RBpCLy _RBpSBy —rsin(p) - hy —bcos(p) hy
J, =| rcos(®8,) -po.  Chs. |=| reos(p)  h —bsin(p) —h, (2.7)
0 1 -1 0 1 -1

Now a relationship is derived between robot speed and the velocities of one
wheel:

F =J Z} (2.8)
Z @
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The determinant of the Jacobian is —br . These values are never zero, hence the
Jacobian is always invertible. This means that it is always possible to calculate
the wheel velocities given the base velocity vector.

2.3.2 Composite robot equation

Now the Jacobian for one wheel is known, the composite robot equation can be
derived. Here two wheels are considered.

First the inverse solution will be derived and then the forward solution. The
inverse solution is used to compute the wheel velocities, given a robot velocity.
The forward solution is used to compute the robot velocity, given the separate
wheel velocities.

2.3.21 Inverse solution

In section 2.1, a variable is introduced for twist at the roll contact (5 ). This must
be done otherwise the wheel would be fixed to the floor. This variable cannot be
actuated. It is therefore necessary to separate the actuated (steering and driving
velocity) and the unactuated wheel variables.

v =J v +J v (2.9)

robot na ” wheela nu | wheelu

Where

J . =the Jacobian associated with the actuated wheel variables
J . = the Jacobian associated with the unactuated wheel variables

\4 = vector with the actuated wheel variables (o and ¢)

wheel

\4 = vector with the actuated wheel variables (6)

wheel u

For one wheel this equation will be (derived form equation 2.7):

X —rsin(p) A, |-, —h, —bcos(p)
y|=| rcos(p) —h, ['D} +| h -bsin(p) | (2.9a)
0 0 -1 1

Now, the composite robot equation can be determined.
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—Il x _ Jla O Jlu 0 qa _
__IZ Z - O J2a O J2u qu B
[—rsin(p,) A, 0 0  —h,—bcos(p) 0 A
FCOS(¢1) - hxl O O hxl _bSin(¢l) O ¢1 (2' 1 O)
0 -1 0 0 1 0 2,
0 0 —rsin(g,) l’:y2 0 —~hy2 —bcos(p,) || ¢,
0 0 rcos(p,) —h, 0 h,—bsin(p,) | o,
0 0 0 -1 0 1 1.6, ]
Where /1 and /> are 3*3 identity matrices.
This can be written as:
AV, =B, (2.11)
The composite inverse equation is
: “ q,
qp=B Avrobotzli- :l (212)
q,
B is always invertible (determinant B = r**b?), so there is always a solution.
_lbl- [-sin (p )y cos(p)/r '(hy1 sin(p, ) +h,, cos(p,))/¥ ]
b | |-cos@)b -sin(@)/b (ysin(p,)hycos(p)b)lb |
Jo) . -sin(p, )/r  cos(p, )/r '(hyz sin(p,)+h,, cos(p,)/r ¥ 2.13)
§b2 'COS((DZ)/b -sin ((02)/17 (hx2 Sin(¢2)'hy2 COS((DZ)—b)/b 9 .
G| |-cos(p )b -sin(g)/b  (h,sin(g )-h,cos(p )b |-
6,] [-cos(p, )b -sin(@,)/b  (h,sin(,)-h,, cos(p,))/b |
And
(,0'1 1 -sin(g, )/r  cos(g )/r -(hyl sin (@, )+h, cos(p, )/r P
i = @ | _|-cos(p)/b -sin(p )b (h,sin(p,)-h, cos(p,)-b)/b 5 (2.13a)
oy | |-sin(e)r cos(py)ir -(hy, sin(g,)th,, cos(p,))/r 5 '
L6, | |-cos(p, )b -sin(p, )b (h,sin(p,)-h,, cos(p,)b)/b |- -
Or
Vuheel = J—lvrobot (2 14)

10
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Now a relationship is derived between the robot velocities and the separate
wheel velocities. Given the desired robot velocity, the according wheel velocities
can be computed using the inverse Jacobian (equation 2.13a).

2.3.2.2 Forward solution

The forward solution can be computed using equation 2.11 and is a least square
estimate, because A is a non square matrix.

Viobot = (ATA)_I ATqu (2 1 5)
A
. . : P
X —rsin(p) h, -—rsin(p,) h, —h,-bcos(p) —h,—bcos(p,) pl
3= |7 cos(p,) —h, rcos(p,) —h, h,-bsin(p)  h,-bsin(p,) 2 1(2.16)
. 2
L0 |0 -1 0 -1 1 ! -l &
1
KeF3
Or
Viobot = vaheel (2 1 7)

The last two components of v, ., ¢, and &, are not sensed. Therefore it is

more appropriate to write the sensed forward solution instead. This is done in a
way similar to the actuated inverse solution (equation 2.18).

[1 0 0 hy+bcos(p) O T -
X
01 0 —h,+bsin(gp,) O i
001 -1 0 g )
1 000 h,+bcos(p,) | . |
O
01 00 —h,, +bsin(p,) | '
o)
0 01 0 -1 - oS
- N _ (2.18)
~-rsin(p) h, 0 0
rcos(¢)) —h, O 0 —,['71
0 -1 0 0 ¢
0 0 —rsin(g,) h, | P,
0 0 reos(p,)  —h, | @,
0 0 0 -1 |
Or
Ap,=Byq, (2.19)

11
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Where

A%
P, =[ ’_°b°‘} and q, and ¢, are respectively the non-sensed and sensed wheel
q,

variables.

In appendix 1, the used Matlab script is given to compute equation 2.19.

Because A, is not a square matrix, the inverse cannot be computed. Instead a

least square estimate is used.

(i vl |

p,=(A,"A)'A "B, (2.20)

5

The relationship between the sensed wheel variables and the robot velocities is
determined by using equation (2.20).

. A
x .
pl=a# 2.21)
6| |
P,

With this equation, the robot velocities can be computed, given the wheel
velocities. The composite Jacobian in this equation is very complex and therefore
not given here.

2.3.3 More wheels

The kinematical model of the robot can be extended for more wheels. Then the
inverse actuated model has the form of equation 2.13a.

2 [-sin (p)/r  cos(p)ir  ~(h,sin(g)+h, cos(p)/r |
b | |-cos(p )b ~sinfg )b (hysin(p,)-h, cos(@,)-b)b

P -sin(@, )/r - cos(@,)lr - ~(h,sin(@,)+h,, cos(p,)/r E:
4 =| 6, |=|-cos(o )b ~sin(p, )b (hysin(p,)-hy, cos(p,)-b)b | 5 (2.23)

| |-sinte )i cos(p )i -(h,sin(p,)+h, cos(@, )r
b, ] |-cos(p, )b -sin(@, )b (h,sin(p,)-h, cos(p,)-b)/b |

Where n is the number of wheels.

Appendix 2 gives the used Matlab script to compute equation 2.23.

12
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To fully describe the robot velocities only three wheel variables have to be
actuated. This can be done by taking any three rows in the matrix of equation
2.23 and then inverting this 3 by 3 matrix. However, there can be configurations
where this matrix is not invertible (determinant is zero). Then another wheel
variable is necessary to get out of the singular point. To guarantee that there is
always a solution, at least four wheel variables have to be actuated.

2.4 Niodei vaiidation

In the previous section the inverse and forward solution are derived. To validate
these equations, two tests are performed.

2.4.1 Mathematical validation

Using equation (2.14), the separate wheel velocities can be computed for any
given value of the robot velocity vector. Then equation (2.21) can be used to

1Y VWV UL Vv L AR VLAV

check if the derived kinematical model is correct.

When the model is mathematically correct, the output of equation (2.21) must
equal the input of equation (2.14):

Py
P,
P,
P,

=J =Jv

wheel

X
= JJ_lvrobot = Viobot = y (222)
4

D e R

Various simulations have
been done. In figure 2.6 one
simulation is shown. The
robot velocity is given and the e
Wheel Velocities are “o 0.1 0.2 0.3 0.4 yod-:t 0.6 0.7 0.8 0.9 1
computed according equation T T —derved ydot
2.14. Then the derived N P
Jacobian is used to compute o AN Ve AN A
the robot velocity according p N
equaﬂon 221 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
The error is plotted in figure osl T
2.7. The error is due to the o
numerical integration. st S
The same applies for the T S B ¥ S S 1R
other simulations.

— derived xdot
o P N SN actual xdot o

N =2 o AN
r v// ]
o

-

derived tetadot
— actual tetadot |

. ) Figure 2.6: Mathematical validation
The used Matlab script is

given in Appendix 3.

13
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Nli‘ T

1 ) ) L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error tetadot
T

x10™ error xdot
4 T T T
2t i ) 1
o N ,MWW%«WWWMWMWWM%WWM
2+ s -
.4 1 L i L 1 L 1 1
[} A 0.2 03 0.4 0.5 0.6 0.7 a8 09 1
x1o™ error ydot
4 T
2r
obs |
2F
-4
[}

10
vy M{’» ? |l iﬁqk’\#&‘ﬁ}%m%wwmp—wwwmwwwww J%fﬁ @l.x»
ki
0.
10‘5

X10°

e N (=] N R
T

~ ) L I I L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 2.7: error
2.4.2 Physical validation

To test the physical correctness of the inverse model (2.14), it was simulated
using Simulink. The orientation of the coordinate frames is shown in the figure
below. There are two active wheels and one passive wheel. In the simulations
the following dimensions were specified.

D Wheel 1 Wheel 2
y h,[cm] | -10 10
TAD 0 h,Jem] | -10 -10
: rfem] [4 4
x Blcm] |05 0.5
Table 2.1

ym; yb: 2X

Figure 2.8: orientation coordinate frames

The corresponding wheel velocities have
been calculated given the desired robot

velocity v,,,=[t 7 6land the starting
angles g, =[p,, o,,] of the steering links.

14
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Wheelvelocities for v=[0 5 0] , phi,=[0 0] Wheehelocities for v=[0 -5 0] , phiy =[pi pi]

_.25 . —— . : — . - 25 : . . . : . ; -
w
3, — rho,dot | | g Jl —— rho,dot
% rho, dot £ tho,dot |]
8 1.5F 4 8,150 |
o " _
£ 1 £ L
s 1 < ! 1
3 3
8 05¢ 1 805t ,
[} [«]
£ 5 . . . : . . . . € o . ‘ . . . . . . .

0 02 04 06 08 t 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Time [s] Time [s]

15 ‘ . - 15 . . .
2 B phigot || 5 | -— phi,dot
2 phi,dot £ phi,dot i
3 8 2 |
€. 05+ 1 8. 05] i
e N
= =
Q. =9
w 0 @ Or
3 3
'cF-O.S - g 'U_-O.S - 4
s 4 . . . . . R . s 4 . . . . : ; . . .

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Time {s] Time [s]
Figure 2.9a: positive velocity in y-direction Figure 2.9b: negative velocity in y-direction

The results from figure 2.9 show that when a positive velocity in y-direction (5 cm
per second) is specified at a zero starting angle (figure 2.9a), both driving
velocities are equal and positive. The magnitude of the velocities equals 5/4 =
1.25 rad/s (w =v/r). The steering velocity is equal to zero, as expected.

When the starting angle equals = (figure 2.9b), a negative velocity in y-direction
gives the same results, as expected.

Wheelvelocities and orientation for v=[5 0 0] , phi,=[0 0] Wheelwelocities and orientation for v=[0 0 2] , phi =[0 O]
w15 210 :
3 3
g s tho, dot g —— rtho,dot |
z 1 /S thodot 11 8 5 rho,dot
" / _gN i
£ £ |
& 0.5 {1 & 04
s | 3 |
Q . . . ; o 5% ; . . ,
£ % 0.2 0.4 0.6 0.8 150 0.2 0.4 0.6 0.8
Time [s —_ Time [s
@ 0 KHA..I.[.ne[ ! . : o 60 T T [s] .
K4 - k-]
3 P g —— phi, dot
é« ) N . phi _gN4O N phi,dot
55/ PR 0
=3 )4 3 20 \ ‘
g‘_ /'/ '8v \"\ X
£ ol : . . s £ 0 S— . ; .
2 o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Time (s] Time [s]
0 . . - 3 . :
—_ N e phi = ) phi
k=) AN 1 K
8 -0.5 \\ _________ phiz i B ol / phl2
N N EN i
s -1 N i a H
o TS o3 4
=15} T 1 5 |/
s a i
2 L s L L 0 1 L L .
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8
Time {s] Time [s]
Figure 2.10a: positive velocity in x direction Figure 2.10b: angular velocity

15
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Figure 2.10a shows the simulation results of applying a positive velocity in the x-
direction. To obtain the correct orientation, both wheels have to turn over a
negative angle of n/2 radians. This results in a negative steering velocity, which
finally reaches zero as the angle approaches n/2. In that case only a positive
driving velocity exists.

When oniy an anguiar velocity is specified (figure 2.10bj, both wheels start
turning at a different speed until a constant angle is obtained. The final angle of
wheel 1 is different from that of wheel 2. From that time on the steering velocity is
equal to zero.

More tests have been performed and their results were satisfying the
expectations.

16
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3. Experimental setup

In this chapter the experimental setup will be discussed. Figure 3.1 gives an
overview of the experimental setup.

Hardware Software

Figure 3.1: Overview hardware and software configuration

3.1 Hardware

The velocity is a result of the torque, generated by a dc motor (for specifications
see [2]). The motor torque is proportional to the input current to the motor, which
is supplied by a (pulse width modulated) ampilifier (for specifications see [3]). This
current is linearly dependent on the input voltage applied to the amplifier. The
motors are powered by a regulated power supply.

Figure 3.2 shows the velocity control loop. The control output will be the voltage
that is applied to the amplifiers: a change in voltage will lead to a change in the
wheelvelocity.

vV I
Controller Ampilifier Motor

_ > (motor) > ’
desired
velocity

Ts
Differentiation Encoder
]
Figure 3.2: Velocity control loop

The input to the controller is the actual wheel velocity, which is obtained after
differentiation of the encoder measurement (resolution: 1000 lines/rev).

17
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For the communication between the hardware and software, a data acquisition
card is used. It is connected to the real world by a 50 pins connector. The board
is accessed through a set of registers. For detailed descriptions of the register
and the connector-pin assignment the reader is referred to the online hardware
documentation [4]. The output voltage of the DAC channels of the board ranges
from —10 to +10 volts.

2 Sc‘lﬂ\llnv

o
F oware

The controller, together with the software for data acquisition is written in C++
language and is running on a PC in a Windows 2000 environment. Because
Windows is not really suited for ‘hard’ real-time applications, a software program,
called RTX, is used to run the controller software. RTX adds real-time capabilities
to Windows by adding a real-time subsystem, known as RTSS, to Windows 2000
(figure 3.2). Instead of using the Windows 2000 scheduler, RTSS performs its
own real-time thread
scheduling. All RTSS thread
scheduling occurs ahead of all

Windows scheduling, including

Main Function

Windows-managed interrupts. Load Signals
In this case it enables

application  components  or N
modules that require Hardware
deterministic and high-speed Initialization
response times along with other \
non-real-time applications to Start Timer loop
work together. RTX comes with

a set of real-time C-functions.

For a detailed description of Read Encoders

these the reader is referred to

the RTX reference and user v/

guide. Evaluate controller Loop
In this section only the main /

working principle of the control Send voltage to

software is discussed. The amplifiers

complete program code is in

appendix 4 and 5. Save data

Refer to figure 3.3. First the

reference signal(s) are loaded. i funtion

Here the setpoint for the SO

velocity is specified. In the

hardware initialization step, the

program creates a piece of Figure 3.3: Working principle of the control program

shared memory for fast read
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and write access during operation. A periodic timer is created, the encoders are
reset and access to the registers of the data acquisition card is enabled. After the
initialization the timer loop is started. During the period time of the timer the
encoders are read, the control law is evaluated and a voltage is send to the
amplifiers at each sample time.

After completion of the timer loop, all data are saved to a binary file, and the

program is terminated.

19
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4  System identification

To design the velocity controller the relation between the process input and
output has to be known. The input is the voltage sent to the amplifier and the
output the angular velocity of the motor (figure 4.1).

\

Figure 4.1: Transfer function

The objective of this chapter is to find a proper estimation of the process transfer
function H and investigate the behavior of the system. In section 4.1 a simple
model is derived, to get a first insight in the system. In order to estimate the
parameters of the model, a system identification is performed, and validated.

4.1 Simple model

The input to the system is the voltage sent to the amplifier. The ampilifier output

current / is linearly dependent on this voltage V:

I= s (4.1)
KE

The torque T that the motor delivers is proportional to the current drawn from the
power supply:

T=K,I (4.2)
Combining 4.1 and 4.2 we can write for the torque:
r=2ry (4.3)

E

A simplified model of a DC motor that relates the motor torque to the shaft
velocity @ and acceleration @ is given by equation 4.4:

T=Ji+Bao (4.4)

J is the motor inertia and B a damping constant. Combining equations 4.3 and
4.4 and taking the Laplace transform, gives the transfer function between V and

H(s)=—2=—"— (4.5)

Where k=K, /K, and 7=B/J. The relation between the input voltage and the
output velocity can be described with this first order model.
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4.2 Transfer function estimation

In this section a model of the process is derived, based on input-output data.
First the structure of the model has to be chosen. The parameters in this model
are then estimated by adjusting the parameters until the output of the model
approximates the measured output. Here an ARX model (auto regression) is
chosen. It has the following structure:

A(@)y(2) = B(qyu(t ~ nk) + e(?) (4.6)

Where

—hna

Alg)=1+a,q”"' +..4+a,q

4.7
B(q)=b, +b,q" +...+b,q7"" @.7)
Equation 4.6 is a differential equation that reiates the current output y(t) to a finite
number of past outputs y(t-k) and inputs u(t-k). A(q) is the output polynomial of
order na where B(q) is the input polynomial which is of order nb. The delay
associated with the input is specified by nk.

4.2.1 Identification data set

The input-output data set, used for the identification is shown in figure 4.2. The
process is excited by a swept sine wave of constant amplitude (7 volts), which
contains frequencies ranging from 0,1 to 100 rad/s. The corresponding output
(angular velocity) is measured as a function of time.

20
,,,,,,,,, Input (voltage}
—— Output {velocity)

- -
w = o
T T T

=

voltage (V) and velocity (rad/sec)

:
o
T

=
T

.15 1 i i 1 1 1 L 1 : i
0 20 40 60 80 100 120 140 160 180 200
time (s)

Figure 4.2: System identification data set

From this data the coefficients of A(q) and B(q) are estimated using the arx
routine in Matlab.
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The order of the input and output polynomials, nb and na, have to be specified,
as well as the delay nk. From section 4.1 can be concluded that a first order
model is the most appropriate. The delay is set to 1 sample, which is common for
systems under sampled data control. This results in the following process
transfer function estimate, which is plotted in the bode diagram in figure 4.3:

H(s) = As) __235 “.8)
V(s) s+1.6
if% \\\\\\ "
T~

" 1w s
Frequency (rad/sec)

Figure 4.3: Bode diagram of ARX model
This system has a bandwidth of 2 radians per second.

Also higher order ARX identifications have been done. In those cases the
obtained frequency response is almost the same as figure 4.3.

4.3 Model validation

Figure 4.2 shows that there is a difference between the positive and negative
amplitudes of the velocity. The gain is not equal in both cases. This is due to the
fact that the friction is different in both turning directions. The effect of friction is
also visible in the ‘dead zone’ that occurs when the velocity changes from
positive to negative sign. Apparently the process is not completely behaving like
a linear system.

To validate the derived model, some experiments and simulations are performed.
The output, predicted by the model (equation 4.8), is compared to the output of
the physical system, using the same input. The results are shown in figures 4.4
to 4.6.

in figure 4.4, the input is a sine wave with amplitude of 10 volts at different
frequencies (0.1, 1, 5, 10 and 50 radians per second).
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30
20 ]‘1 /’\ ﬂ [ 20 /-\
%\10 }‘ ,-’ { e. ; g 14 i g
8 b J Lo 10171 F] / i A 5}
E LU U U B B
&10 L 1 HB H ] VL v
> ,-? 4 ¥ i > E H i f [ > _
ol | S

vy
-30 -20 10

0 10 20 o] 5 10
time (s) time (s)
10 sine( 50* )
6 15
—— Measured output
4 1 — Model output

@ )}
g ]
:,;0 >0
G ko]
Ko S
22 i>9.5

LIES
<

-
[3
<

Figure 4.4:

1
time {s)

Model validation: sine wave input

In figure 4.5, the input is a sine wave with an amplitude of 5 volts at different
frequencies (0.1, 1, 5, 10 and 50 radians per second).

5 sine( 0.1%)
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5sine( 1*t)
10

5 sine( 5% t)

(=] (&4
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)
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time (s)

Figure 4.5:

0.5 1
time (s)

15

—— Measured output
Model output

Model validation: sine wave input
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For both inputs, the measured output and model output are not the same. The
phase is good, but the gain is not predicted correctly. This is due to the effect of
the friction, which is different in positive and negative turning direction.

Figure 4.6 shows the results for a positive and a negative step with an amplitude
of 5 and 7 volts.

Step, amplitude 5 Step, amplitude -5
S s—— 0
//" P it
st )
) / 2
B :f'/ ;E; -
ERAY 8 y
2 |/ g N
0 ™
2 8 T
o] 1 2 3 4 5 o] 1 2 3 4 5
time (s) —— Measured output time (s)
Step, amplitude 7 -~ Model output Step, amplitude -7
15

w 5

BN
of . -10 W"‘*

5 - — -15
0

velocity (rad/s)
w
R
velocity (rad/s)

time (s) time (s)

Figure 4.6: Model validation: step input

Again the gain is not the same for the experiment and the model.
4.4 Conclusion

The validation resuits show that the main difference between the outputs,
predicted by the model, and the measured output of the physical system, is the
output amplitude. As mentioned earlier, this is due to the effect of the friction,
which is different in positive and negative turning direction.

The main shape and phase of the predicted output corresponds well to the
measured output.
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5 Controlier implementation

To achieve the desired wheel velocity, a controller has to be designed. In the
previous chapter, a first order model for the DC-motor is estimated. The model is
used to design the controiler, which will be discussed in this chapter.

5.1 Choice of controller

The system that has to be controlied is a first order system. To achieve desirable
behavior of a first order system, usually a Pl controller is used.

Pl control has the transfer function C(s)=K (l + %} .

I

Where T, =2z and fin Hz.

This results in the following frequency-response for the controller (figure 5.1):

Magritida’(dB):

Phiase. (Heg)

1+ 6" 1wt i
Efequensy.(radisec)

Figure 5.1: Frequency response of Pl control forK=5and T, =2

5.2 First tests

To get some insight in the effect of the controller, some simple experiments were
conducted. First a P controller (K=1) is implemented for a third order setpoint (for
Matlab script see Appendix 6) in the velocity (upper left part of figure 5.2). The
figure shows the measured position and velocity, the velocity error and the input
to the process.
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Reference:velodity. Measured. angular velocify Velogity eror.
“

[radfs]
[radrs]
&

ifs] ' tis] gs

‘Referenceé:angular.displacement.  Measured angular displacement Plantinput
49 20 — : ;

s} T ousr s v
Figure 5.2: Setpoint and results for P controlier with K =1

The measured angular velocity shows strange steps. These are due to the
differentiation that is necessary to compute the velocity from the angular
displacement.

The plant input stays below 10 volt. That means that the shown input is the
actual input to the process. When the controller computes an input higher than
+10 volt or lower than —10 volt, the input is set to respectively +10 and —10 volt.

The simulation results of the ARX-model (chapter 4) are presented in figure 5.3.

Angular velogity: Velocity-ermor

o

i4
ts] it

Angular displacement Displacément-error

{rad]

: Z s [
tisl tis}

Figure 5.3: Simulation results for K = 1 with a sample time of 0.001 seconds
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The simulation results and the experimental results show the same behavior,
except for the steps in the actual velocity.

Because the error in the velocity and the displacement are quite big the K value
can be further increased, to decrease these errors. The next figure shows the
result for K = 40. Also the (theoretical) bode plot of the open loop (CH) is shown.
The theoretical bandwidth equals 100 radians per second. The real bandwidth is
expected to be much lower.

UI\H\J\IL

Referencevelocity ~ Measured-angular velocity:

Velocity grror
15 : :

12

[rad/s]
[rad/s)
[rad/s]

2 - 4 & o 2
fIs] [s] fis]

Réference angular.displacément 'Measured anaulardisplacement’ Plant input
— 40 T oy 40 T T

40

Bode Diagram

Magnitude (dB)

Phase (deg)

g

Frequency (radfsec)

Figure 5.4: Setpoint and results for P controller with K = 40
Lower figure shows the open loop

27



Kinematics, analysis and control of a powered caster vehicle

There is not a visible trend in the velocity error. For the simulation the figures
look the same as in figure 5.2, only with a different scaling. The main difference
between simulation and experiment is that in the simulation the trends are clearly
visible.

With these parameters, the process input exceeds the maximum absolute value,
which is 10 volts. In that case, the sent voltage will be equal to plus or minus 10

volts,

Referencevelocity. Measured:angularvelocity Velogity srror
; : i5 T T 06 - :

[rad/s]

fls} tfs] 1fs]
Reféfence anglilar displacement. Measured angllar displacemient. Plantinput
40 1 49 T 5 T ”

Bode Diagram

&%

LTl

Magnltude (dB)

Phase (deg)

5’ 15 1¢' 10
Frequency (rad/sec)

Figure 5.5: Results for K =32 with a sample time of 0.01 seconds
Lower figure shows the open loop
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When the sample time is decreased to 0.01 seconds, the measured angular
velocity is smoother and the trends are better visible (figure 5.5).

By increasing the sample time, the closed loop behavior changes. Instability will
occur sooner for a higher sample time.

5.3 Results

A lot of experiments have been done for sample times of 0.001 and 0.01
seconds. In this chapter some results are presented and discussed.

5.3.1 High sample frequency

For the setpoint in figure 5.2, several values for K and f were implemented. Every
experiment is preceded by a simulation. The next figure shows the results for K =
4, f = 32 and a sample time of 1 millisecond.

‘Displacement-error Yelocity-error

[rad/s]

o

T i Displagetnent-error
s ]

{rad]
[racis]

tis] ' : sl
Figure 5.6: Errors for experiment and simulation for K = 4; f = 32; Ts = 0.001

The error in the displacement is almost the same for the simulation and the
experiment. The measured velocity error is very noisy. For this sampie time, the
value and shape of the velocity error doesn't change for several settings of the
control parameters (due to the noise introduced by the differentiation). The
influence of these settings are better visible in the displacement error. Here, the
error in the displacement has a maximum of 0.01 radians.
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If the f value is further increased, the error in the displacement decreases. For

K = 8 and f = 64, the results are shown in figure 5.7.

16° Displacement:error

fisl

{rad/s]

frad/s]

%

Velocity efror-

s

Velocity.emor

{{s]
Figure 5.7: Errors for experiment and simulation for K = 8; f = 64; Ts = 0.001

The maximum error in the displacement for this experiment is 0.0044 radians.
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The best results are obtained with K = 8 and f = 256 (figure 5.8). The maximum
error in this case is 0.0021 radians.

wA6° Displacement-emror \ie]gcity eiTor

[rad/s]

" s

. {radis]

Magnilude (dB)

Phase (deg)

w @
Frequency {rad/sec)

Figure 5.8: Errors for experiment and simulation for K = 8; f = 256; Ts=0.001
and bode plot of the open loop (lower figure)

Further increasing of K and/or f leads to unstable behavior. For these unstable
settings, the discrete poles, which are computed in Matlab, are indeed larger
then 1.
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5.3.2 Lower sample frequency

To decrease the differentiation noise and to make the trends in the errors more
visible, the sample time is increased to 0.01 seconds.

Displacement-error. Velocity error
: - T 0:4 ; T

6.04

[rad/s)

sl f s

%107 Displacefent error Vielocity eifor

5] i fs]

Figure 5.9: Errors for experiment and simulation for K= 4; f = 8; Ts=0.01

Now the trend in both the displacement and velocity error are the same for the
experiment and the simulation. For these settings, the maximum velocity error is
approximately 0.2 radians per second. Further increasing of K and f leads to
instability.

One disadvantage of a low sample frequency is that the values for K and f cannot
be significantly increased, due to the instability of the system.

According to the shape of the velocity error in figure 5.9 it can be expected that a
feedforward would result in better performance.
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5.4 Conclusion and recommendations

A lot of tests have been conducted and the important results are shown in this
chapter. Every time the resuits of the experiment are compared with the resulits
of the simulation. Due to the noise, caused by the differentiation, the trends,
clearlily visible with the simulations, are not visible in the experiments with a high
sample frequency. By reducing the sample frequency, the trends can be made
clear. This sample frequency is too low to really reduce the error. Better results

are achieved with the higher frequency, but then the noise intensity is too high.
The displacement error could be minimised to 0.0021 radians.

The differentiation noise can be reduced by using a higher order approximation
(for example quadratic or cubic) for the velocity obtained from the position
measurement.

Due to a lack of time the implementation of a feedforward and development of
the controller for the steering velocity could not be achieved.
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Conclusion and recommendations
Kinematical modeling of a powered caster vehicle.

A kinematical model for a mobile base, driven by a number of caster wheels,
has been derived and validated. Both the inverse and the forward solution
were computed. The inverse solution is used to compute the wheel
velocities, given a robot veiocity. The forward solution is used to compute the
robot velocity, given the separate wheel velocities.

A Matiab script is writien, that computes a symbolic expression for the
Jacobian and it’s inverse. In this case the position of the wheels on the base
and the number of active wheels are variable.

Velocity control of a separate wheel module

In order to design the velocity controller, an input output model was estimated
for the process. This model has been used in simulations, to design a PI
controller. This Pl controller has been implemented on the real system. For
high sample frequencies, the noise intensity, due to the differentiation, was
too high to see what really happened to the velocity error. By decreasing the
sample frequency, the trends became more visible, but the stability off the
system descreased.

Due to lack of time, the steering velocity controller has not been designed.

Recommendations

The differention of the encoder value, to obtain the velocity, caused a lot of
noise in the control loop. The influence of this was reduced by decreasing the
sample time. A better solution would be to use a higher order approximation
(quadratic or cubic) for the velocity obtained from the position measurement.

Better performance can also be achieved by adding a feedforward to the
driving velocity controller.
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Appendix 1 Forward solution

clc;
% Symbolic v g {extend for : hyd oeto

Sy 3 ox
syms phil phi2 hxl hx2 hyl hy2 r

TS TR

hx=[hx1,hz2];
hy=[hyl, hy2];

V=AY

zeros (1,1);
Bs = zeros(1,1);
An = sym(An);

Bs = sym(Bs);

; phi s = 2; sig s = 3;g=3;m = 1;w = 1;k = 1;p = 1;s = 4;
3*N;
fwv_s(l,i) == 1
* 1 == rho_s

Bs (k:k+2,m)

rho s = rho_s
-1 == phi_ s
Bs(k:k+2,m) = [hy(l,w); ~hx(l,w); -11;
phi s = phi s + 3;

‘f 1 == sig s
Bs(k:k+2,m) = [-hy(l,w) -~ b*cos(phi(l,w)); hx(1,w) -
b*sin(phi(l,w)); 11;

[-r*sin(phi(l,w)); r*cos(phi(l,w)); 0];
+ 3;

sig s = sig s + 3;
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+ + + +

W wwr

~e

e o~

~s

[r*sin(phi(l,w)); -r*cos(phi(l,w)); O0];

+ 3;

[~hy (1,w); hx(1l,w);

+ 35

[hy (1,w)

+ 3;

36

+ b*cos (phi(l,w)); -hx(l,w) +

b*sin{(phi(l,w));
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Appendix 2 Inverse solution

clear all;

oy nmore w

r b;

i2 hxl hx2 hyl hy2

Lor each wneell

wyeveyd g

% re The DOosi and ¢ 15 e
hx=[hxl,hx2]; ¢ Extend for more wheels [hxl ----- hx4]
hy=[{hyl, hy2]; % Extend for more wheels [hyl —---—- hyd]

Extend for more wheels [phil -—-- phi4]

oP

[-sin (phi(i))/z, cos(phi(i))/z,
—(hy(i)*sin(phi(i))+hx(i)*cos(phi(i)))/r;
-cos (phi(i)) /b, -sin(phi (1)) /b,
(hx (1) *sin(phi (i))-hy (i) *cos (phi(i))-b)/bl;
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Appendix 3 Validation

clear all; close all; clc;

tfinal

1,
tstep = 0.001
t = 0 tstep tfinal;
a = (tfinal/tstep) + 1;

xdot = gin(2*pi*5.*t);
ydot = sin(2*pi*2.*t);
tetadot= sin(2*pi*l.*t};

rhil = zeros(l a);
phi2 = zeros(l,a);
phil(1l,1) = phll_O,
phiz2(1,1) = phi2 0;
A=[1 0 0; 01 0; 001; 1 00; O10; 00 11:

ra
Jinv = [-sin(phil(i))/r cos(phil(i))/r
- (hyl*sin(phil (i) )+hxl*cos(phil(i)))/r;
-cos(phil(i))/b —51n(ph11(1))/b
- (~sin (phil (i) *hxl+b+cos(phil(i))*hyl)/b;
-sin(phi2 (i))/ cos(phi2 (i))/r
—(hyZ*SLH(ph12( ))+hx2*cos(phi2(i)))/r;
-cos(phi2(i))/b  -sin(phi2(i))/b
- (=~ 51n(ph12( ))*hx2+b+cos(phi2(i))*hy2)/b;
—cos{phil(i))/ —sin(phil(i)) /b
- (= 81n(ph11(1))*hx1+cos(ph11(1))*hyl)/b
—cos (phi2 (1)) / -sin(phi2 (i)) /b
- (-

51n(phi2(i))*hx2+cos(phi2(i))*hy2)/b];

vrobotl=[xdot (1,1);ydot(1,1) ;tetadot(1,1)];

vwheel (:,1i)=Jinv*vrobotl;

o~

phil(1,1+1) phll(l 1)+vwheel(2
phi2 (1,1+i)=phi2 (1, i) +vwheel (4,
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vrobot (:, i

subplot (3,1,1)
title('xdot');
subplot (3,1,2)
title('ydot');
subplot (3,1, 3)

0.5*[-

r*sin(phil(i)) hyl -r*sin(phi2(i)) hy2
~hyl-b*cos(phil(i}) -hy2-b*cos(phi2 (1))

r*cos (phil(i)) -hxl r*cos (phi2 (1)) ~hx2
hxl-b*sin(phil(i)) hx2-b*sin(phi2 (1))
0 -1 0 ~1
1 1]

)= J*vwheel ( : rl>;

,plot (t, vrobot(l,:), t, =xdot)
legend('derived xdot', 'actual xdot');
,plot{t, vrobot(2,:), t, ydot)
legend('derived ydot', 'actual ydot'):;
plot(t, vrobot(3,:), t, tetadot)

title('tetadot'); legend('derived tetadot', "actual tetadot');
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Appendix 4 CPP source file

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fstream.h>
#include <iostream.h>
#include "rtapi.h"
#include "sensldef.h”

o~ 3 e oy o A oy
and cthexr constants

#define BASE ADDRESS (PUCHAR)O0x200
#define BASE ADD ((PUCHAR) (0x200))
#define PORT DAl ((PUSHORT) (BASE ADD+0x10))

#define pi 3.14159265358%979

for timer and shared

HANDLE hThreadTimer;
HANDLE hShmData;
HANDLE hSharedMem;

Data data;
PData pdata;

/ - o
/7 i Vi

N £ e
verline

R S ; PR o
‘ables and cons

double ydot d[5000];
double y d[5000];
double w[50007];

double timerinterval;
double error;

double derror;

double ierror;

double u;

double K = 4;

double £ = 10;

double Ti = 1/(2*pi*f);
double D = 0.05;

double enc 0;
double time = 0;
int ii = 0;

int g
int p = 0;
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definitions

/30 ke e ke ke e e e e ke sk e e ke ke ke skl e ok ek R o Sk sk ok o e i ok ke ok sk ke ke sk kol ok ki e ok Sk R kR R kR R R R R

3

Y EYLS
- j{

void analog out (int channel, double voltage)

{

double t voltage=0.0;
int dig;

- ST age Lo 3
if (voltage >10.0) t voltage = 10.0;
else if (voltage < -10.0) t voltage = -10.0;
else t voltage = voltage;

t voltage = -t voltage;

/7 Convert age al 13
dig = (int)(819l * (t voltage+10)/20.0)

RtWritePortUshort ( (PUSHORT) ( (USHORT) PORT DAl+ (USHORT) (channel*2)),
(USHORT) dig) ;

e vk vk ok kS o ok ke ok sk ok ok ok g kR T o ok ok ok ok e ko ok ok v ok sk ok e ok sk ok ok sk o ok ok o ok ok Sk o i ok ok ok e ok e ok ke ok o ok sk ok Sk ok ok e ok ok

vold RltZeroCntr (int channel)

{

PUCHAR addpuc, addpucl;

rese o .
RtertePortUchar(addpuc, (UCHAR)OXZO),

.

g mode

RtertePortUchar(addpuc, (UCHAR) 0x68) ;

: unused output pins
RtertePortUchar(addpuc, (UCHAR) 0x80) ;

(X1 guadrature mods
RtertePortUchar(addpuc, (UCHAR) Oxcl);

RtertePortUchar(addpuc, (UCHAR) 0x04) ;

/7 er register address

addpucl=(PUCHAR) (BASE ADDRE3S + 0x400 + 0x0e);
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Uy el

(UCHAR) 0x3a) ;

r:
(UCHAR)Ox7a);
ter:

RtertePortUchar(addpucl (UCHAR) Oxba) ;

Fokhdrddk bk khbrhhkhbdhhobdhkihbdbdhiddhhrbbhdbdhdbbhhdhbhrbdhdrbhibdhhdddhidbbhhdthrdbdhirdtis

<
H

VS
s

do Fe e e ok ke koAb ke ok :
long R1tReadCntr{int channel)
{

PUCHAR addpuc, addpucl;
ULONG cntl,cntm,cnth, cntr;

/7 channel 1 LA to
Tha

addpuc

s C T 1 . to

count portion I the
addpucl = (PUCHAR) (BASE_ADDRESS + 0x01);

counter latch

LIPLTL [a R IRt

:
}_._I
o
- x,
ry
}_J
&

aC

RtReadPortUchar(addpucl)

Q
3
t
=]
I

24

ose

/ Te enable counting
if (abs (cntr-enc)>5000) {
cntr = cntr - 16777216;

enc = cntr;

return{cntr);
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pdata->1i = 1;
pdata->ydot r{p] = ydot _d[p];
pdata->y m[p]
pdata->e[p]
pdata->t[p]
pdata->ydot m[p] =

1
O

i
[eNeoNe]

~e

Ne e

p++;

I Save

g++;

.
[

pdata- >y m[pdata >i] = 2*p1/12000*thReaantr(1)

r velocity to structure
pdata >ydot m[pdata >i] = ((pdata->y m[pdata->i])-

(pdata~>y m{pdata->i-11))/timerinterval;

. i g displac
(pdata >ydot _r[pdata~->i])-{pdata- >ydot _m[pdata->i]):

;7
7 <
r’ 7 o)

v IZCT LY
pdata-> e[pdata—>i] = error;

)y /timerinterval;

nt ti

cury Lo structure

pdata >t[pdat ->i]l= time;

one
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if |

ii++

7/
if |

}

if |

}

if |

}

if |

if |

the cards is
ii> 5000) {
pdata->run program = false;
analog out (0, 0);}

4

Save data to b
ii == 5000) {
FILE *fpydot m;

if((fpydot_m=fopen("g:\\measured data\\ydot m2","wb"))==NULL) {
printf ("Cannot open file.\n");
return;

}
fwrite (pdata->ydot m, sizeof pdata->ydot m, 1, fpydot m) ;
fclose (fpydot m);

ii == 5000) {
FILE *fpy m;

if((fpy_m=fopen("g:\\measured data\\y m2","wb"))==NULL) {
printf ("Cannot open file.\n");
return;

}

fwrite (pdata->y m, sizeof pdata->y m, 1, fpy m);
fclose (fpy m);

ii == 5000) {
FILE *fpydot r;

if ((fpydot r=fopen("g:\\measured data\\ydot r2","wb"))==NULL) {
printf ("Cannot open file.\n");
return;

}

fwrite (pdata->ydot r, sizeof pdata->ydot_r, 1, fpydot r);
fclose (fpydot r);

ii == 5000) {
FILE *fpu;

if ( (fpu=fopen ("g:\\measured data\\u2", "wb"))==NULL) {
printf ("Cannot open file.\n");
return;

}

fwrite (pdata~>u, sizeof pdata->u, 1, fpu);
fclose(fpu);

ii == 5000) {
FILE *fperror;
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}

/e Rk

if ( (fperror=fopen ("g:\\measured datal\\error2", "wb"))==NULL) {

printf ("Cannot open file.\n");
return;
}
fwrite (pdata->e, sizeof pdata->e, 1,
fclose (fperror);

}

if (ii == 5000) {
FILE *fpyr;

fperror);

if { (fpyr=fopen("g:\\measured datal\\yr2","wb"))==NULL) ({

printf ("Cannot open file.\n");
return;
}
fwrite (pdata->yd, sizeof pdata->yd, 1,
fclose (fpyr);

FIRST)

int main() {

LARGEyINTEGER Period;
int g = 0;
FILE *fp;
/7 Set timer period (10000 = 1 miil
Period.QuadPart = 10000;
timerinterval = 0.001;

/ Load seipoint

printf ("Cannot open file\n");
return 1;

}

fread(ydot_d, sizeof ydot_d, 1, fp);

fclose (fp);

printf ("Cannot open file\n");
return 1;
}
fread(y d,

sizeof y d, 1, fp);

fclose (fp);

ate shared v and sef the timer

RtCreateSharedMemory (PAGE_READWRITE,
MSGSTR SHM DATA,

hShmData

Il

45

fpyr):

e e S e ke e e de ke ke koo ek ok ok ke k ok kR ok ok Frkkd bk kb hhk A b bk d Ak hkx Ak b hkh b hkkhh kb hk Rk
H

dede ok ok ke ek ke okok

PR R R R R R A R R R R A o i R L e e

if((fp=fopen("g:\\Transferfunction\\velocity","rb"))==NULL) {

0, sizeof(Data),

(LPVOIDY*)

&pdata) ;



if (!

'_J.
Fh

}

/7
/
;o

B e I/0 address space for ac
RtEnablePortIo (BASE ADD, Ox1F) ) {
RtPrintf ("RtEnablePortIo error = %$d\n",GetLastError());

=

88

TN wge o ren 1oy e
ALWays use

if (! (hThreadTimer =

RtCreateTimer(NULL,O,TimerHandler,NULL,RT_PRIORITY_MAX,
CLOCK_FASTEST) ) ) {

printf ("SHUTDOWN: ERROR: Could not create the timer.\n");

ExitProcess(l);

{IRtSetTimerRelative{ hThreadTimer, &Period, &Period)){

printf ("SHUTDOWN: ERROR: Could not set and start the timer.

ExitProcess(1l);

Reset e

RltZeroCntr (1) ;

7/
/7

while

}

ResumeThread (

ol jo

et
R - L

12 A e

(pdata->run program == 1 ) {
Sleep (500);

printf ("End of program!!!\n");

return 0;
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\n") ;




Appendix 5 Header file

#define MSGSTR SHM DATA "Message.ShmData"

struct Data {

long 1i;
int run program;
double y m[5000]; // measured angular displacement

double ydot r[5000]; // reference speed
double ydot m[5000%; // measured angular velocity

double e[5000]; // error array
double t{50007]; // time array
double ul[5000]; // plant input

}s

Y of pointer To data structure

typedef Data *PData;
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Appendix 6 Generation of setpoint and simulation

D,

2 o et i i 0 5

o SHEIW.y

TABLES FOR BB

etpoint Tor simplink and RT¥ and compute
5 sim zaiazzm variables for Shnulink file testmdl

clear all; close all; clc;
Ts =0.001; % Samgzie time
Seiiode! acoonding

Kp =2.521;
tau_p = 1.648;

K =8

f =32 1 {H#]

Time =35; ;

STime = Time + I; ion Hme in Simulink
a =7 %% Amplitude setpoint (adinst 18)

t1=0:Ts:(Time/8);
yl=a*t1.”2;
dy=yl(max(size(t1)))-y1(max(size(t1))-1);
dx=t1(3)-t1(2);
b=dy/dx;
y2=b*tl+a*tl(max(size(t1)))"2;
y3a=-a*t1./2;
j=max(size(t1));
for1=1: max(size(t1));
y3(i)=y3a(j)+2*a*t1 (max(size(t1))) 2+b*t1(max(size(t1)));
1=i-5
y4=y3(max(size(y3)))*ones(1,2*max(size(t1)));
y5=-a*t1./2+2*a*t1(max(size(t1)))"2+b*t1(max(size(t1)));
y6=-b*t1+a*tl (max(size(t1)))"2+b*t1(max(size(t1)));
j=max(size(tl));
for i =1 : max(size(tl));
y7()=y1G);
i=i-L
end
ydot=[y1(1:(max(size(t1)}-1)), y2(1:(max(size(t1))-1)),
y3(1:(max(size(t1))-1)), v4(1:2*(max(size(t1))-1)),
y5(1:(max(size(t1))-1)), y6(1:(max(size(t1))-1)),y71;

t=0:Ts: Ts*max(size(ydot))-Ts;
figure;plot(t,ydot);
% Save setpolnt for veloolly for simulink

setpoint = [t;ydot];
save setpoint.mat setpoint;

% Setpoint for angular d

‘«3 ~F

e velooity 10 get sefpoint for angle

egration of seipoing
Y(l) =0;
i=1;

48



for 1= 2:max(size(ydot));
y(@@) = 0.5*(ydot(j+1) + ydot(j)y*dx+y(i-1);
=it

ond

figure;plot(t,y);

Y% Bave setpoint for velocity and angular displacement for R
[fid]=fopen('velocity','w");

COUNT = fwrite(fid,ydot,'double’);

ST = fclose(fid);

[fid]=fopen(‘displacement’,'w");

COUNT = fwrite(fid,y,'double");
ST = felose(fid);
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