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Abstract 

This report is devoted to the problem of asymptotic regulation of the output of a dynamic system, 
which is subject to  disturbances generated by an exosystem. As an introduction, some results on 
the output regulation problem for linear systems are reviewed. For nonlinear systems necessary and 
sufficient conditions for the solvability of the regulator problem are considered under the assumption 
of neutral stability of the exosystem. The basic concepts involved in these conditions such as the 
regulator equations and the internal model are described. The extension of these results for nonlinear 
systems with uncertainties are discussed further. Several approaches towards approximate solutions 
of the output regulation problem are reviewed. Finally, two examples for which the neutral stability 
assumption does not hold, but the output regulation problem is still solvable are considered. 

1 Introduction 

In the context of the output regulation problem we consider systems modeled by equations of the form 

with state x E X c Rn, input u E U c Wm,  measured output y E R', regulated output e E Rp and 
exogenous disturbance input w E W c RT generated by the exosystem 

We assume that f (2,  U, w) ,  h,(x, w ) ,  hT(x,  W )  and S ( W )  are ck functions (for some large k) of their 
arguments and also that f (0, 0,O) = 0, hm(O, 0 )  = 0, h, (0,O) = 0 and s (0 )  = 0. 

In general the regulator problem can be formulated as follows: 
Find a feedback controller of the form 

such that for the closed loop system (1)-(3) the regulated output converges t o  zero: e ( t )  -+ 0 as t + m. 

In many cases the additional requirement of asymptotic stability of the closed loop system (I), (3) 
with w -- 0 is set. In this case the problem is referred to as the output regulation problem with internal 
stability. This problem will be considered throughout the rest of the report. In the presence of parametric 
uncertainties either in equations (1) or (2) the regulation problem is called structurally stable or robust 
output regulation problem as will be specified in the sequel. 



A lot of control problems can be put in the framework of the regulator problem. A simple example 
is asymptotic tracking of certain classes of reference outputs and asymptotic rejection of undesired dis- 
turbances. In this case system (2) generates both the reference signah and disturbances, and e is the 
tracking error (for example e might be equal to x - w, if both x and w belong to the same space). 

A physical example of the output regulation problem is the automatic smooth vertical landing of an 
aircraft (or a helicopter) on the deck of a ship, which, due to the waves, is subject t o  a motion. The 
problem is to synchronize the vertical position of the aircraft with the unknown periodic motion of 
the vessel. The aircraft dynamics can be described by nonlinear equations of the form x = f (x, u, p ) ,  
y, = ha(%), where u is the input (for example the thrust), y, is the vertical position of the aircraft and p 
is a vector of uncertain parameters (mass, inertia, etc.). The motion of the ship can be approximated by a 
sum of a fixed number of sinusoids with unknown frequencies, phases and amplitudes. Thus its dynamics 
can be described by linear equations of the form w = S,w, y, = h , ~ ,  where y, is the vertical position 
of the deck of the vessei. All the eigenvalues of S, are simple and lie on the imaginary axis ('oecause the 
system generates only sinusoids and constants). Such exosystem satisfies the neutral stability assumption, 
which plays an important role in the theory presented in the sequel and will be explained later. In terms of 
the output regulation problem this equation is an exosystem. The matrix S, depends on the uncertainty 
vector w, which corresponds to the unknown frequencies of the sinusoids. The initial conditions of the 
exosystem correspond to unknown phases and amplitudes of the sinusoids. The measurement available 
for feedback is the distance between the aircraft and the deck of the ship (y = y, - y,). The problem 
is to find a controller of the form (3) rendering the distance between the aircraft and the deck tend to 
zero, i.e. e(t) = y,(t) - y,(t) -+ 0 as t -+ CQ, for all uncertainties p and w from given sets M, 0 and for 
all initial conditions of the aircraft and ship dynamics from a given set I. This problem has been solved 
for the case of a vertical takeoff and landing aircraft [6] and it has been approached for the case of a 
helicopter in [8]. The problem presented above is still abstract, i.e. some conditions are not taken into 
account. In particular in practice an additional requirement that e(t) must remain nonnegative must be 
set (otherwise we allow the plane to crash onto the deck). 

The rest of the report is organized as follows. The linear regulator problem is considered in Section 2. 
Section 3 is devoted to the problem of the local output regulation of nonlinear systems. The problem of 
approximate output regulation is considered in Section 4. The output regulation problem for nonlinear 
systems with uncertainties is discussed in Section 5. Section 6 covers examples of solutions to the regulator 
problem for complex dynamical systems. Conclusions in Section 7 finish the report. 

The sources of the report are the following. Section 2 is based mostly on [I] and [2]. Sections 3, 5 and 
Appendix are based on [I]. Section 4 is based on [I] and [lo]. The results of Section 6 are taken from [5]. 

2 Output regulation for linear systems 

In the case of linear systems equations (I), (2) take the form 

i = h f B ~ + - P w  

Y = CmxCQmw 

e = CTx + QTw, 

w = Sw. 

The problem of output regulation is to find, if possible, a feedback law 

I = F C f G y  

u = Ht 

such that 

(a) the equilibrium (x, E )  = (0,O) of the unforced closed loop system 

x = Ax+BHE 

i = FJ+GC,X 



is asymptotically stable (internal stability), 

(b) the forced closed loop system 

is such that e(t) + 0 as t -+ m for every initial condition (x(O), [(O), w(0)) (output regulation). 

If (7) is required to be asymptotically stable, then the matrix 

must have all eigenvalues with negative real part. It can be shown that necessarily (A, B) must be 
stabilizable and (C,, A) must be detectable. On the other hand, asymptotic decay of the regulated 
output requires a more subtle condition, which is based on the following result. 

Lemma 1 Consider the closed loop system (8) and suppose that matrix (9) has all eigenvalues urth 
negative real part. Suppose the eigenvalues of the matrix S have nonnegative real part. Then, 

lim e(t) = 0 
t--too 

for each initial condition (x(O), J(O), w(0)) if and only if there exist matrices Il and C satisfying 

Remark 1. The condition on the spectrum of S is not restrictive, since the stable modes of S corresponding 
to its eigenvalues with negative real part decay exponentially and thus they do not affect the asymptotic 
behaviour of the error e. Hence we can neglect their effect. 

Remark 2. In the case that y = e (i.e. Cm = C, =: C and Q, = Q, =: Q) equations (11) take the form 

The idea lying behind Lemma 1 is simple. The closed loop system (8) has two complimentary invariant 
subspaces RSt and Rust. The first one is the stable subspace Rst = {(x, J, w)lw = O} corresponding to 
the eigenvalues of the stable matrix J. The second subspace corresponds to the eigenvalues of S and it 
is equal to 

Kst = {(x, [, w)Ix = nw, J = Cw, w E W T ) .  

The first two equations of (11) mean that hst is invariant for the system (8), while the last equation 
says that the error e is zero on h S t .  Rust is globally attractive. Thus any solution of (8) converges to 
Rust on which the error e is zero. 

Lemma 1 illustrates the basic idea of solving the regulator problem: the closed loop system (8) ((1)-(3) 
in the nonlinear case) must have an invariant attractive set such that the regulation error on this set is 
zero. In the case of linear systems this set is the invariant subspace hSt, which is globally defined and 
globally attractive. In the nonlinear setting of the problem such set can be a manifold and it can be only 
locally defined and locally attractive. 



Now consider the problem of robust output regulation. Within this part we assume that y = e (i.e. 
Cm = CT =: C and Qm = QT =: Q) and that the number of inputs and outputs is the same (u E Rm, 
e E Rm). 

Robust linear regulator. A fixed controller of the form (6) is a robust regulator at {Ao, Bo, Co, Po, Qo) if: 
(i) it solves the problem of output regulation for the plant characterized by the nominal set of parameters 
{Ao, Bo, Co, Po ,  Qo), 
(ii) it solves the problem of output regulation for each perturbed set of parameters {A, 3, C, P, Q), as 
long as the latter is such that the corresponding unforced closed loop system remains stable, i.e. is such 
that the matrix 

(GAG B F H )  
Notice, that if (F, G, H) are the matrices of a robust regulator, then by Lemma 1 equations (12) must 
be solvable for any perturbed {A,  B, C, P, Q) as long as (13) remains stable. If we denote = H E  and 
consider only the first and the last equation of (12); we conclude that the equations 

must be solvable for any { A ,  B, C, P, Q} specsed in (ii). In particular they must be solvable for the fixed 
matrices ({Ao, Bo, Co} and any P, Q. Equations (14) are called the regulator equations. 

The main result concerning the existence of a robust regulator is contained in the following theorem. 

Theorem 1 Consider the plant 

with exosystem (5). Suppose the eigenvalues of S have nonnegative real parts. There exists a robust 
regulator a t  {Ao, Bo, Co, Po, Qo) zf and only if the following conditions hold 

A1 the pair (Ao, Bo) i s  stabilizable, the pair (Co, Ao) i s  detectable 

A2 the matrix 

has independent rows for each A, which i s  a n  ezgenvalue of S. 

Condition A1 is a natural necessary condition discussed above. It is known from linear control theory 
that A2 is equivalent to the solvability of equations (14) for the fixed matrices {Ao, Bo, Co) and any P ,  
Q. Thus it readily follows that A2 is a necessary condition of a robust regulator existence. The proof of 
sufficiency of conditions A l ,  A2 is omitted here, see [I]. 

Remark. Conditions A l ,  A2 concern the existence of solutions of the regulator equations (14) for fixed 
{Ao, Bo, Co) and any P,  Q. The solvability of the regulator equations for some pair P,  Q can be expressed 
in geometric terms as a certain property of the largest controlled invariant subspace V* of the extended 
system 

x = Ax + Pw+Bu 
,& = Sw 

contained in ker(C,). Details can be found in [I]. See also [ll] for extensive treatment of the geometric 
approach to linear multivariable control. 



We proceed with the construction of a robust regulator. Without loss of generality, suppose that the 
matrix S has been transformed into a block-diagonal matrix of the form 

in which Smin is a matrix whose characteristic polynomial coincides with the minimal polynomial1 of S. 
Let q denote the dimension of Smin and let cP be a qm x qm matrix defined as 

(the block Smi, is repeated m times in a, where m is the number of input and output components of 
(4). Let N and F be matrices, of dimensions qm x m and m x qm respectively, such that the pair (a ,  N) 
is controllable and the pair (I?, cP) is observable. Such matrices exist due to the special structure of a. 
Finally, choose matrices K ,  L and M such that 

has all eigenvalues with negative real part. Such matrices exist due to the assumptions Al ,  A2 and the 
construction of N ,  r (this is not trivial, but the explanation is omitted here). Using matrices a ,  N, r 
and K, L, M thus defined, we construct a robust regulator of the form (6) with 

One may notice that the regulator consists of two components: 

The component (17) provides a control signal capable of keeping x in the set {xlx = Ilzu} (if the system has 
been initiated on this set), on which the error is zero. The second component (18) makes the trajectories 
on this set globally asymptotically attractive. The matrix IP contains m "copies" of the exosystem, in 
other words it incorporates an "internal model" of the exosystem. 

-3 lneorem i can be extended to the case of different ixrmbei- of kpt and outpit coqxmer,ts. IE this czse 
a robust regulator may exist only if the number of output components does not exceed the number of 
input components. In general the secalled Internal Model Principle holds [ll]: 
A regulator synthesis i s  structurally stable only if the controller utilizes feedback of the regulated variable, 
and incorporates in the feedback path a suitably duplicated model of the dynamic structure of the esogeneous 
signals which the  regulator is required to  process. Thus a robust regulator exists only if the measured 
variable includes the regulated variable. The treatment of the linear regulator problem for the case when 
the regulated and the measured outputs do not coincide can be found in [ll].  

The internal model principle shows the limitations of linear controllers. Namely, if the exosystem contains 
uncertainties (which is the same to say that the exosystem is an unknown representative of a known 

l A  polynomial d(X) = X k  f a k - l ~ k - l  + . . . + a0 is called minimal for a square matrix S  if d (S )  = sk + a k - l ~ k - l  + 
. . . + aoI = 0 and d(X) has the lowest degree among the polynomials having this property. A minimal polynomial always 
exists and is unique. Its degree is less than or equal to  the dimension of S. See [3] or any other good book on linear algebra 
for details. 



family of exosystems), there exist no linear controller solving the problem of robust output regulation. 
Otherwise such controller must have contained internal models of all the exosystems from the family. This, 
if the family has an infinite number of entries, is not possible for a finite dimensional linear controller. 
Exosystems generating harmonic signals of unknown kequencies is a simple example of such situation. 
Nonlinear controllers may allow to overcome this problem. For example in [9] an adaptive controller for 
tracking harmonic signals of unknown frequencies is presented. 

3 Output regulation for nonlinear systems 

In this section we consider the problem of local output regulation of nonlinear systems given by the 
equations 

x = f (x, U, W) (19) 

e = h(x,w). 

It is assumed that e ,  being the regulated and measured output, has the same number of components as 
the control input (u E Rm, e E Rm). The disturbance w is generated by the exosystem 

The major assumption on the exosystem used in the sequel is that (20) is neutrally stable. This means 
that the equilibrium w = 0 is a stable equilibrium (in the sense of Lyapunov) of (20) and the system is 
Poisson stable. Recall that a system is called Poisson stable if for any wo the solution $Jt(wo) starting 
at wo is defined for all t E R and for every neighborhood V of wo and every T > 0 there exist tl > T, 
t2 < -T such that (wo), $Jt, (wo) E V. In particular neutral stability implies that the exosystem has 
a critically stable linearization. An important representative of neutrally stable exosystems is a linear 
system generating harmcnic signals w ( t ) .  

The problem of Local Output Regulation can be formally posed in the following terms. 
Given a nonlinear system of the form (19) with exosystem (20) find, ifpossible, a controller of the form 

such that: 
(a)  the equilibrium (x ,E)  = (0,O) of the unforced closed loop system 

i s  locally asymptotically stable in the first approximation (internal stability), 
(b) the forced closed loop system 

i s  such that 
lim e ( t )  = 0 

t 4 m  

for initial conditions (x(O), ((O), w(0)) in a neighborhood of the equilibrium (O,0, 0) (local output regula- 
tion). 

To proceed further define the following matrices 



and denote the dimension of the state space of controller (21) as v, i.e. J E BV. 

It is readily seen that the first approximation of (22) is given by 

x = Ax+ BHJ 

i = F ~ + G C X .  

Since by condition (a) system (25) must be stable, i.e. the matrix 

is required to have all eigenvalues with negative real part, then (A, B) must be stabilizable and (C, A) 
must be detectable. Tne output reguiatioii property of the forced closed bop system (23) relies fir, the 
following Lemma, which is a mdinear analog of Lemma 1. 

Lemma 2 Consider the closed loop system (23). Suppose the exosystem i s  neutrally stable. Suppose the 
Jacobian matr ix  (26) has all the eigenvalues with negative real part. T h e n  

lim e(t) = 0 
t+cc 

for each initial condition (x(O), J(O), w(0)) in a neighborhood of the equilibrium (O,0, 0) if  and only i f  
there exist mappings n : Wo -+ R" and a : Wo + R" (where Wo c W i s  a neighborhood of w = 0), with 
~ ( 0 )  = 0 and a(0) = 0 such that  

for a l lw  E Wo. 

The idea of this lemma is based on Center Manifold Theory. Indeed, consider the forced closed loop 
system (23) and note that the Jacobian of the right-hand side, at the equilibrium (x, J, w) = (0,0, O), has 
the following form 

where J is a matrix with all eigenvalues with negative real part, and S is a matrix with all eigenvalues 
with zero real part. Thus the system in question has a center manifold M ,  (defined in some neighborhood 
of the origin), which is the graph of the mapping (x, 6 )  = (n(w), a(w)). The first two equations of (27) 
are equivaient to invariance of the center manifoid, whiie the third one claims that the iegiilstbn error 
e is zero on M,. Due to the assumptions of the lemma the center manifold is locally attractive. Thus 
every solution of (23) starting close enough to the origin converges to the set M,, on which the error e 
is zero. 

Remark 1. Although Lemma 2 is formulated for the case when the measured and regulated outputs 
coincide (y = e), it is possible to alter the conditions of the lemma to  include the case y $ e. 

Remark 2. There is still one open question for me in this lemma (as well as in subsequent results based 
on Lemma 2). The proof of sufficiency in Lemma 2 is done by presenting a center manifold being the 
graph of the mapping (x, J) = (~(w), a(w)), on which the error e is zero. Since the center manifold is 
attractive, the claim is that all solutions will converge to this manifold. But in general a center manifold 
is not unique. What happens if there is another center manifold on which the error is not zero'? On which 
of these manifolds will a solution converge (since dl of them are attractive)'? 
One possible way to avoid this unpleasant situation in the proof of the sufficiency is to demand that all 



solutions of the first two equations in (27), satisfying ~ ( 0 )  = 0, a(0) = 0, must also satisfy the third 
equation. Or instead, as a simple corollary of the previous statement, one can demand uniqueness of 
solutions of the first two equations in (27), satisfying ~ ( 0 )  = 0, a(0) = 0. But such corrections make the 
sufficient conditions much harder to check. 

Notice, that if there exists a controller solving the local output regulation problem then, by Lemma 2, 
there necessarily exist mappings T : Wo -+ R" and c : Wo -+ IWrn (where Wo C W is a neighborhood of 
w = 0), with ~ ( 0 )  = 0 and c(0) = 0 such that 

for all w E r/Yo. To concll-tde that, it suBces to set C(W) = O(F(W)) in the first equation or' (27). 

Equations (28) are called the regulator equations. The first of these equations expresses the property that 
the graph of the mapping x = ~ ( w )  is an invariant manifold of the composite system 

while the second expresses the property that the error map e = h(x, w) is zero at  each point of this 
invariant manifold. Let w*(t) denote the exogenous output corresponding to the initial condition w*. If 
the initial state of the plant is precisely 

x* = T(w*) 

and the input to the plant is precisely equal to 

u* (t) = c(w* (t)) 

then x(t) = ~ ( w * ( t ) )  and due to the second equation in (28) we have e(t) = 0 for all t 2 0. This argument 
shows that the control input generated by the autonomous system 

from the initial state w(0) = W* is precisely the input needed to obtain, for the corresponding exogenous 
input w*(t), a response producing an identically zero error (provided that the initial condition of the 
plant is appropriately set, i.e. x* = ~ ( w * ) ) .  

This interpretation leads to the intuition that a controller solving the problem of local output regulation 
must generate an input consisting of two components: the first component u*(t) = c(w*(t)) capable 
of yielding e(t) = 0 for all t whenever the initial state of the system is appropriately set (namely x* = 
~ ( w * ) ) ,  and the second component capable of rendering the particular trajectory x*(t) = ~ ( w * ( t ) )  locally 
expor,er,tia&jr stable. 

The property of a controller to be able to generate its output u equal to the one generated by the system 
(30) can be formalized in the notion of immersion. Let {X, f ,  h) denote the autonomous system 

with state x E X and output y E Rm, in which we suppose f to be a smooth vector field and h a smooth 
mapping, with f (0) = 0 and h(0) = 0. 

System immersion. System {X, f ,  h} is immersed into the system {X', f', h') if there exist a smooth 
mapping r : X -+ XI, satisfying r(0) = 0 and 



such that 

for all x E X .  

The two conditions in this definition express the property that any output response generated by {X, f ,  h }  
is also an output response of { X I ,  f', h'). Recalling the discussion above we can conclude, that system 
(30) must be immersed into any controller solving the local output regulation problem. 

Now we are ready to formulate necessary and sufficient conditions for the solvability of the local output 
regulation problem. 

Theorem 2 Consider the plant (19) with exosystem (20). Suppose the exosysterr, i s  neutrally stable. The 
problem of local output regulation i s  solvable if and only i f  there exist mappings x = n j w )  and u = c (w) ,  
with n ( 0 )  = 0 and c(0) = 0 ,  both defined i n  a neighborhood Wo C W of the origin, satisfying the conditions 

for all w E Wo and such that the autonomous system with output 

i s  immersed into a system 

defined on a neighborhood Eo of the origin i n  R", i n  which d (0 )  = 0 and y ( 0 )  = 0 and the two matrices 

are such that the pair 

(NAC :), (:) 
i s  stabilizable for some choice of the matrix N ,  and the pair 

i s  detectable. 

Remark 1. Stabilizability/detectability conditions on the pairs (36)  and (37) implicitly include conditions 
of stabilizability of the pairs (A, B), (a, N )  and detectability of the pairs (C, A) and (I?, @). 

Remark 2. Solvability of the regulator equations (32) can be expressed as a certain property of the zero 
dynamics of the extended system 

See Appendix or [?I for details. 



The controller solving the problem is constructed in the following way. Let N be defined as in the theorem 
and the matrices K, L, M are chosen such that 

has all eigenvalues with negative real part. Such matrices exist due to conditions (36), (37). Then the 
controller is constructed as 

As it has already been mentioned, the controller consists of two parts. The first one, corresponding to 
El, provides the control signal capable of keeping the state of the system on the manifold with zero error 
(if the system is initiated on this manifold). The second component, corresponding to to, makes the 
trajectories on this manifold locally exponentially attractive. 

The local nature of the obtained results is explained by the fact that in general a solution of the regulator 
equations (28) and the correspondent center manifold are defined only locally. If a global solution of the 
regulator equations and a global internal model (the system {Eo, 4, y) into which {W, s, c )  is immersed) 
are found, then the closed-loop system 

Li: = f (5, Y(E), W) 

E = 4%) 

possesses a globally defined invariant manifold on which the regulated output e is zero. Thus the problem 
in question reduces t c  the problem of rendering this invaria~t manifnld attractive. If the set of attraction 
of this manifold is required to be the whole space, then the problem is referred to as the global output 
regulation problem. If the set of attraction must contain any a priori f i e d  set, then the problem is called 
the semiglobal output regulation problem. See [l] for results concerning these two problems. 

4 Approximate output regulation for nonlinear systems 

Theorem 2 gives necessary and sufficient conditions for the solvability of the output regulation problem 
in the form of 'existence'-like conditions. As it has been shown in the previous section, to  construct a 
controller solving the problem, one has to solve the mixed partial differentialjalgebraic regulator equations 
(32) and find a correspondent internal model (34) satisfying stabilizability/detectability conditions (36), 
(37). In general, such construction of an internal model is not an easy task, since it requires (at least) 
solving the regulator equations (to solve a partial differential equation (PDE) is not an easy task by 
itself). A ~sua!  appxach ir, d e a k g  ~::ith PDEs is tt= find appreximzte ins te~d nf exact snlutbns. This 
suggests the idea of using an approximate internal model, to the purpose of obtaining approximate output 
regulation. Several results were obtained in this direction. 

In [I] the approximate output regulation problem is formulated and solved in the following way. It is 
shown, that if the exosystem is linear (w = Sw) and neutrally stable it can be shown that for any integer 
p > 0 it is always possible to find a linear internal model (of suitable dimension depending on p) with the 
property that the corresponding controller yields an error, which asymptotically converges to a function 
E(t) satisfying an estimate of the form 

where E : R>o - -+ R>o - is a function such that 



i.e. is infinitesimal of order higher than p as r + 0. 

The controller giving such approximate output regulation is constructed in the following way. First, let P 
be the set of all polynomials of degree less than or equal t o p  in the variables wl, . . . , w, with coefficients 
in Rm and vanishing at w = 0. P is indeed a finite dimensional vector space over R. If s(w) is linear in 
w and k(w) E P, then 

is still a polynomial in P. Observe that the mapping 

is a linear mapping from a finite dimensionzl vector space to itself and let 

denote its minimal polynomial. Let ap E Rqxq be a matrix having minimal polynomial d(X). Due to the 
structure of (Pp it is always possible to find a vector Np E Rqxl and a vector rp E IRIXq such that the pair 
( ap ,  Np)  is controllable and the pair ( rp ,  a p )  is observable. Using the triplet a,, Np, rp thus determined, 
set 

f a, 0 . . .  0 \ 

where E Rmwmq, N E Rmqxm, r E Rmxmq . The triplet ( a ,  N, r )  defines a system consisting of the 
aggregate of m identical copies of the linear system characterized by the triple (ap,  Np, rp) .  

Suppose now that the pair (A, B) is stabilizable and the pair (C, A) is detectable, and the matrix 

matrix 

( ( A  L ( c  7) 0) (:I)-) K 

has all eigenvalues with negative real part. 

Then the controller solving the problem of approximate local output regulation (as specified above) is 
given by 



The conditions, under which we can construct this controller solving the problem, are: linearity and 
neutral stability of the exosystem, stabilizability/detectability of the pairs (A, B) and (C, A), and non- 
singularity of the matrix (40) for every A, which is a root of d(X). 

Another approach to approximate output regulation is based on approximation of the regulator equation 
solutions by the Taylor series expansion [4]. The corresponding approximate solution is then used in 
construction of a feedback law yielding the approximate output regulation. The approximate output 
regulation problem is defined in [lo] in the following way: Given t > 0, design a state feedback control 
law of the form u = $(x, w) such that the closed-loop system 

has the property that, for all sufficiently small initial conditions xo and wo, the ciosed-loop system has a 
bounded solution for all t 2 0 and 

Both approaches presented above suffer from the following drawback. The controllers designed in those 
ways can achieve satisfactory output regulation only if w(t) is small. This is, for example in the second 
case, because the Taylor-theorem based approximation is valid only in a sufficiently small neighborhood 
of the origin. If there exist an exact solution of the regulator equation and a correspondent internal 
model, which are defined globally (and thus the output regulation problem can be solved globally), then 
a regulator, achieving approximate output regulation only locally, is not satisfactory. 

A method to solve the problem of approximate output regulation avoiding (partially) the above mentioned 
drawback is given in [lo]. It  is based on a neural network approach. This approach allows to approximate 
a given function f E Ck over m y  given compact set r by a function f̂  of a special form. Finite order 
derivatives of f up to order k also approximate the correspondent derivatives of f over I?. Application of 
this methodology to the regulator equations gives the results presented in [lo]. 

Prior to formulating these results consider the special form, in which approximations of the regulator 
equation solutions will be found. Let p E Ck((B, k > 2, be non-constant and bounded real-valued 
function. Consider functions ii(w) and t(w) in the following form: 

where NT,  NC are integers, ayj, . . ., azj, a&, . . ., a&j, byj, . . ., b;j, b&, . . ., b& are scalars and &, . . ., 
,BEj, PTj, . . ., PLj are q-dimensional row vectors (q IS the dimension of the exosystem). Such mappings 
(41) are called three-layer feedforward neural networks, where w is the input, ii and E - the outputs, N" 
and NC - the number of hidden neurons, and all the rest parameters are called the weights of the neural 
network. 

The following lemma proves the possibility of approximating 
functions of the form (41) with arbitrarily small inaccuracy. 

the solutions of the regulator equations by 



Lemma 3 Let ~ ( w ) ,  c(w) be a solution of the regulator equations (28), defined in a neighborhood W of 
the origin, and ~ ( w )  E Ck(w) ,  c(w) E ck(w)). Let Q = {n(w), c(w), w)lw E W } ,  G a n  open, connected 
subset of Q relatively compact in Q, and WG the projection of G onto W. Then, given any E ,  > 0, there 
exist two functions +(w) E ck(WG) and E(w) E c k ( w G )  of the form (41) such that %(O) = 0, E(0) = 0 
and satisfying, for all w E WG7 

By this lemma we see that ~ ( w )  and c(w) can be approximated by the functions of the form (41) not 
only in some neighborhood of the origin, but in any compact set inside the domain of ~ ( w )  and c(w). 
This is a more 'global' result compared to approximations based on the 'Tayior theorem. The inaccuracy 
E ,  can be transiated into the inaccuracy of the approximate output regulation, as stated in the followiag 
theorem. 

Theorem 3 Suppose the exosystem is neutrally stable, the matrix K is chosen such that A + BK is 
stable, where A = %(0,0, O), B = %(0,0,0). Such K exists if (A,  B) is stabilizable. Let +(w), E(w) 
satisfy (42), (43) for some sujjiciently small 6, .  Then, 

(i) For all sujjiciently small xo, wo, the closed loop system 

has a unique bounded solution x(t) defined for all t 2 0, and 

Although approximations +(w) and E(w) can be defined in a 'rather big' compact set WG the result of 
the theorem is still local. This is because of the linear stabilizing feedback term K(x - %(w)), which in 
general can stabilize a nonlinear system only locally. Probably, other stabilizing feedbacks, which act 
more 'globally', may bring approximate output regulation for initial conditions from an a priori given 
fixed set. 

Lemma 3 states only the possibility to approximate ~ ( w )  and c(w) by functions of the form (41), but 
does not provide a procedure how to find the approximations. In order to describe this procedure let 
us first introduce some notations. Denote the weights of the neural networks (41) for both %(w) and 
E(w) as y. The dimension SN of the vector y is determined by the numbers N" and NC respectively. To 
explicitly indicate the reliance of the neurai network approximations on the weights, we will adopt the 
notation +(w, y) and E(w, y) in the sequel. By Lemma 3, for some given E ,  > 0, there exist numbers N", 
NC and a parameter vector E RSN such that 

for all w E F, where F C WG is some compact subset of Rq 

Next let J(y, w) = 



Clearly, if for some 'y 

both inequalities (48) will be satisfied. 

Since J(y, w) depends on both y and w, there is no effective numerical method to solve (50). To circumvent 
this difficulty, we discretize (50) by letting 

where rd is a subset of r consisting of finitely many elements of I?. If for some N", N C  and 'y E IRSN 

then we have inequalities (48) satisfied for all w E rd. When rd is sufficiently dense in r, we have a 
reason to believe that thus defined %(w, +) and C(w, 'y) are good approximations of solutions of (48) for 
all w E r. 

Since, for each fured N" and Nc, Q(y) relies only on the parameter y, the optimal weights that minimize 
Q(y) can be searched by any mimization technique. For example, applying the steepest descent method 
leads to the following update law of the weight vector: 

j = 0,1, . . ., with Xj  being the step size. Thus, the problem of looking for the approximation solution of 
the regulator equations is converted into a parameter optimization problem. 

Though gradient-based methods do not necessarily bad to a weight that minimize Q(y), there is no need, 
in practice, to really search for the optimal weight. What are needed are some values of N", Nc and 
weight y that make Q(y) sufficiently small. Of course, the particular values of N", NC are not known a 
przori. Therefore, iteration on N", NC is often inevitable. 

5 Output regulation for nonlinear systems with uncertainties 

In many situations regulated nonlinear systems contain uncertainties. In this section we consider a 
nonlinear plant modeled by equations of the form (19) in which we explicitly introduce a vector p E Rp 
of unknown parameters, which are constant in time, that is 

Without loss of generality, we suppose p = 0 is the nominal value of the uncertain parameters and we 
~ I S O  assume f (s, u, w, p) and h(x, w, p) to  be Ck functions of their arguments. Moreover we assume 
f (O,O, 0, p) = 0 and h(O,O, p)  = 0 for each value of p. 

The problem of output regulation for nonlinear systems with uncertainties can be described as follows. 

Structurally stable output regulation. Given a nonlinear system of the form (51) with exosystem 

find a controller of the form (21) such that for some neighborhood M of p = 0 in Ep and for each p E M: 
(a) the equilibrium (x, [) = (0,O) of the unforced closed loop system 



is locally asymptotically stable in 
(b) the forced closed loop system 

the first approximation (internal stability), 

is such that 
lim e ( t )  = 0 
t+w 

for each initial condition (x(O),  [(O), w ( 0 ) )  in a neighborhood of the equilibrium ( 0 , 0 , 0 )  (local output 
regulation). 

- .lo formulate the main resuit on the structuraiiy stable output regidation problem kt iis first introduce 
the followkg notation: 

Theorem 4 Consider the plant (51) with exosystem (52). Suppose the exosystem i s  neutrally stable. 
The problem of structurally stable local output regulation i s  solvable if and only if there exist mappings 
x = r a ( w ,  p )  and u = c a ( w , ~ ) ,  with r a ( O ,  p )  = 0 and ca(O, p)  = 0 ,  both defined in a neighborhood 
Wo x M c W x IWP of the origin, satisfying the conditions 

for all (w, ,u) E Wg x M and such that the autonomous system with output 

i s  immersed in to  a system 
E = 4(E) 
u = r(E), 

defined on  a neighborhood So of the origin in RV, in which 4(O) = 0 and y ( 0 )  = 0 and the two matrices 

are such that the pair 

i s  stabilizable for some choice of the matria: N ,  and the pair 

( C ( 0 )  0 ) ,  ( B(0)r a ) 
i s  detectable. 

Theorem 4 is a straightforward consequence of Theorem 2. In fact one can include the vector of parameters 
p into the exogeneous signal, which results in the augmented exogeneous signal w a  = (w, p)T .  With this 
notation, the "family" of plants (51) can be viewed as a single plant modeled by equations of the form 
(19) ,  namely 



The augmented exosystem will have the form 

It is neutrally stable (if the initial one is neutrally stable). Thus, applying Theorem 2 to systems (60), 
(61) we obtain Theorem 4. 

Theorem 4 establishes necessary and sufficient conditions for the existence of a controller of the form (21) 
which solves the problem of local output regulation for any nonlinear system in the parameterized family 
(51), when the parameter p ranges over some neighborhood M of p = 0 in the parameter space Rp. 
The problem of robust local output regulation corresponds to the case of p ranging over an a priori fixed 
compact set M* in the parameter space. To this end observe that if some fixed controller solves, for any 
u in M*, the problem of local output regulation, then, necessary conditions of Theorem 2 must hold for 
every p E M*. In particular, then, for every p E M*, equations (55) must have a solution s = 7ra(w, p) ,  
u = ca(w, p) defined in a neighborhood W: of the origin in W, and the autonomous system with output 

is immersed into a system 
i = 4 ~ )  
u = ~ ( 0 ,  

(which is the same for all p E M*) defined on a neighborhood E0 of the origin in R", with (b(O) = 0 and 
y(0) = 0 and the pair of matrices 

is detectable. 

Moreover since the controller, which solves the problem, is required to stabilize for every value of p the 
linear approximation of the plant at the equilibrium (x, w) = (0,O) 

the latter must be robustly stabilizable on M*.  This means that there must exist matrices F, G, H such 
that 

has all eigenvalues with negative real part for all p E M* 

Sufficient conditions for the solvability of the robust local output regulation problem are based on some 
technical results from linear robust control theory (see [I] Lemma 4.3 for details). 

A critical aspect of the design of the internal model for the purpose of achieving asymptotic regulation is 
the necessity of knowing exactly the parameters of the exosystem. Actually, this is the only parameter 
in the entire problem, to which the described method is sensitive. It is well known that, even in linear 
systems, if the parameters of the exosystem (for example -frequencies of a harmonic oscillator) and those 
of the internal model do not match exactly, a sizable steady-state error may occur. New recent approaches 
to the design of internal models have shown that also this kind of 'sensitivity' can be eliminated and that 
the accurate knowledge of the parameters of exosystem is no longer a requirement (see [7], [9] for details). 

6 Regulation for complex dynamical systems 

The essential assumption in the local output regulation theory discussed in Sections 3-5 is the requirement 
of neutral stability of the exosystem. In many cases this condition is not satisfied. This happens, for 



instance, if the exosystem possesses a chaotic attractor in which several equilibrium points with unstable 
linearization are embedded. As follows from the examples below, in some cases, although the exosystem 
is not neutrally stable, the problem of output regulation is still solvable. Both of the following examples 
concern the problem of controlled synchronization, so first we shall formulate this problem. 

Consider two systems 

and 

where both x and w are in Rn. System (62) is the so-called transmitter and system (63) is the receiver. 
We assume that the f ,  s ,  h are sufficiently smooth and that f (0, 0,O) = 0, h(0) = 0. The question is to 
seek a dynamic feedback of the form 

such that for the resulting closed loop dynamics (62)-(64), no matter how they are initialized, we know 
that asymptotically x and w will match, i.e. 

lim Ilx(t) - w(t)ll = 0. 
t++w 

This problem is referred to as the controlled synchronization problem. If the additional requirement of 
closed loop stability of the unforced closed loop system 

is set, the problem is referred to as controlled synchronization problem with internal stability. Obviously, 
in this way controlled synchronization problems can be considered as the output regulation problems 
discussed in Sec. 1. 

The first example concerns solving the controlled synchronization problem for Lur'elike systems, i.e. 
linear systems with a nonlinear output-dependent feedback loop. 

Theorem 5 cons ider  the transmitter 

and receiver 

with w, x E Rn, u E Rm and Q a mapping of appropriate dimensions, and A, B, C matrices of appropriate 
dimensions. Under the assumption that (C, A) is detectable and (A, 3) i s  stabilizable, the controlled 
synchronization problem with internal stability i s  solvable. 

In general, the transmitter (67) can be unstable at the origin. Thus the assumption of neutral stability 
of the exosystem (utilized in Sec.3 and 4) is vidated, although the regulator problem is still solvable. 



Another example is controlled synchronization of coupled Van der Pol systems. As transmitter dynamics 
we take a Van der Pol system of the form 

As receiver dynamics, we take the following controlled 'copy' of (69): 

It is known that the origin is the only equilibrium point of (69), and it is an unstable focus. Moreover 
(69) has a unique limit cycle C that is exponentially attracting for all initial conditions w(0) E EX2 - (0). 
Thus exosystem (69) does not satisfy the neutral stability assumption. 

Let G(t) be a periodic solution that starts on C, and let T denote its period. Define 

It is shown in [5] that if cr. = 1, ,6 > max{-p, 11, then there exist such c* that the controlled synchre 
nization problem with internal stability is solvable by the static (high-gain) error feedback 

for all c > c* 

These two examples show that although the assumption of neutral stability of exosystem (which is an 
essential assumption in the theory developed in 111) does not hold, the output regulation problem can 
still be solvable. This motivates further research aiming at obtaining general conditions of solvability 
of the output regulation problem for nonlinear systems with exosystems exhibiting complex dynamical 
behaviour. 

7 Conclusions 

The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed 
trajectories and/or asymptotic rejection of undesired disturbances is a central problem in control theory. 
In this report we have reviewed some of the results regarding this problem. First, we considered the 
!inear =&put regu!zt;im pr&!elny. 111 thk case, its solvability is equivdent to the solvability of some linear 
matrix equations, called the regulator equations. For nonlinear systems similar results are obtained based 
on Center Manifold Theory. In particular, necessary and sufficient conditions for the solvability of the 
output regulation problem for nonlinear systems are presented. The assumption of neutral stability of the 
exosystem plays a crucial role in this analysis. One of these conditions is the solvability of the nonlinear 
regulator equations. In this case, they are mixed nonlinear algebraic/partial differential equations. Their 
solvability can be expressed in geometric terms, as stated in Appendix. Another concept involved in the 
output regulation problem for nonlinear systems is the internal model. As in the linear case, the controller 
solving the problem must incorporate in the feedback loop a kind of a "duplicate" of the exosystem. 
The same type of reasoning is applied to nonlinear systems with parametric uncertainties, resulting in 
necessary and sufficient conditions for the solvability of the structurally stable output regulation problem. 
In general, it is difficult to find a solution to the regulator equations, which is necessary for constructing the 
controller solving the problem. We can avoid this difficulty by solving the problem of approximate output 
regulation instead of exact. Several approaches for solving the approximate problem were reviewed. The 
assumption of neutral stability of the exosystem is crucial for the results presented. At the same time we 



have considered examples of nonlinear systems for which this assumption is not satisfied, but for which 
it is still possible to solve the output regulation problem. This fact sets further directions for research in 
the field of output regulation. 
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Appendix 

In this appendix we will consider geometric results from [l] concerning solvability of the regulator equa- 
tions. For simplicity we restrict ourselves to the particular case of systems which are affine in the input: 

In this case the regulator equations have the form: 

It can be shown that solvability of equations (72) is closely related to the properties of the zero dynamics 
of the extended system Ce: 



where 

Let us first recall the notion of zero dynamics. For this purpose, consider a system affine in input: 

in which x E X C Rn, U E  Rm, y E Rm, f(0) = 0 ,  h(0) = O .  

Let M be a smooth connected submanifold of X which contains the point x = 0. The submanifold M is 
said to be locally controlled invariant if there exist a smooth mapping u : M 4 Rm, and a neighborhood 
U of the origin in R", such that the vector field f"(x) = f (x) +g(x)u(x) is tangent to M for all x E M n U .  

An output zeroing submanifold is a connected submanifold M of X which contains the origin and satisfies 
the following: 
(i) M is locally controlled invariant 
(ii) h(x) = 0 for all x E M. 
In other words, an output zeroing submanifold is a submanifold M of the state space with the property 
that for some choice of feedback control u(x) the trajectories of the closed-loop system 

which start in M stay in M for some time and the corresponding output is identically zero in the 
meanwhile. 

If M and M' are connected smooth submanifolds of X which both contain the point x = 0, we say that M 
locally contains M' if for some neighborhood U of the origin M n  U > M'nU. An output zeroing manifold 
is locally maximal if, for some neighborhood U of the origin, any other output zeroing submanifold M' 
satisfies M n U > M' n u .  The construction of a locally maximal output zeroing submanifold is illustrated 
in the following statement. 

Proposition 1 Part I: Define a nested sequence of subsets Mo 3 M1 > . . . of X in the following way. 
Set  Mo = {x E X : h(x) = 0). At each k > 0, suppose that, for some neighborhood Uk-1 of 0, Mk-lnUk-l 
i s  a smooth manifold, let Mkp1 denote the connected component of Mk-l nukp1 which contains the origin 
(A?lk-l i s  nonempty because f (0) = 0) and define Mk as 

dirn(span(g1 (x), . . . , gm(x))) = const 

dim(span{gl (x), . . . , gm (x)} fl T, Mk*) = const 

for all x E a*. Then, the manifold Z* = A?lk* i s  a locally maximal output zeroing submanifold. 

Part 2: If, in addition, 
dim(span{gl (XI, . . ., gm (x) )) = m 

span{gl(x), . . . , gm(x)} n TxZ* = 0 

at x = 0, then there exists a unique smooth mapping u* : Z* ---f Rm such that the vector field 

is  tangent to Z*. 



Suppose the hypothesis listed in this Proposition are satisfied. Since the vector field f * ( x )  is tangent to 
Z * ,  the restriction of f * ( x )  to Z* is a well-defined vector field on Z*. In what follows by f * ( x )  we will 
always indicate the restriction of f * ( x )  to Z * .  The submanifold Z* is called the (local) zero dynamics 
submanifold and the vector field f * ( x )  is called the zero dynamics vectorfield. The pair ( Z * ,  f *) is called 
the zero dynamics of the system (75) .  

Let C denote the system 

with f (x), g ( x )  and h(x,O) the same as in (74) ,  that is in C,. Now we can formulate the main result 
concerning solvability of the regulator equations (72) .  

Theorem 6 Suppose systems C and C, satisfy the conditions of Proposition 1. Let (Z:, f,*) denote the 
zero dynamics of C,. Then  there exist smooth mappings x = ~ ( w ) ,  with ~ ( 0 )  = 0 ,  and u = c ( w ) ,  with 
c(0)  = 0, both defined in a neighborhood W0 c W of 0 ,  satisfying equations (72), i f  and only if the zero 
dynamics of C ,  have the following properties: 

i )  in a neighborhood of x ,  = 0 the set 

i s  a smooth submanifold. 

i i )  there exists a submanifold Zs of Z,*, of dimension T ,  which contains the origin, such that 

i i i )  2, i s  locally invariant under f,*, and the restriction o f f :  t o  Zs i s  locally difleomorfic t o  the vector 
field s ( w ) ,  which characterizes the exosystem. 
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