

From a data-model to generated access-and store-patterns

Citation for published version (APA):
Tesfay, T. A., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2015). From a data-model to generated access-and store-patterns. [EngD Thesis]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f78e9f02-dcb1-44ba-b4d3-1ec76931f0ea

From a data-model to
generated access- and

store-patterns

Tesfahun Aregawy Tesfay
August 2015

From a data-model to generated access- and store-patterns

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

ASML Netherlands B.V. Eindhoven University of Technology

Steering Group Rogier Wester

Ronald Koster
Wilbert Alberts
Tim Willemse

Date August 2015

Document Status public

The design described in this report has been carried out in accordance with the TU/e code of scientific conduct.

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN ISBN: 978-90-444-1382-3

Abstract This report describes the design and implementation of a repository generation tool that is

used to generate repositories from domain models of the ASML TWINSCAN system. The
TWINSCAN system handles a huge volume of data. In the current TWINSCAN SW
Architecture, data transfer is combined with control flow. Data transfer to a component that
is not under the sender’s control must be performed through a common parent in the
hierarchy. There are several problems with this approach with respect to execution,
encapsulation, and locality of change. These problems drive the need to separate data,
control, and algorithms of the scanner’s software architecture. To tackle these problems, the
main objective of this project was to design and implement a repository generation tool for
generating data repositories from domain models. The structure of this data is defined by a
domain model in an implementation independent formalism. The tool supports several
flavors of repositories. As a result of the flexibility of the architecture, it is possible to
switch between technologies and implementation patterns without touching domain models.
The repository generation tool is tested through continues architecture and design reviews
by supervisors, unit tests, and tests by stakeholders in the real environment. The results
obtained in this project are being used in an active ASML project within the Metrology
group. The results have improved productivity and increased efficiency.

Keywords

Model-driven architecture, model-driven engineering, PDEng, domain models,
implementation models

Preferred
reference

T.A. Tesfay From a data-model to generated access- and store-patterns, SAI Technical
Report, August 2015. (ISBN: 978-90-444-1382-3)

Partnership This project was supported by Eindhoven University of Technology and ASML.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the Eindhoven University of Technology or
ASML. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the Eindhoven University of Technology or ASML, and shall not be used for
advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report is
accurate and up to date, Eindhoven University of Technology makes no warranty,
representation or undertaking whether expressed or implied, nor does it assume any legal
liability, whether direct or indirect, or responsibility for the accuracy, completeness, or
usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the
intent to infringe the copyright of the respective owners.

Copyright Copyright © 2015. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the Eindhoven University of Technology and ASML.

Foreword
ASML has become a large company in many aspects such as the number of systems being sold, the amount of
complexity handled within the system’s design and the number of employees working on it. It is a well-known
fact that growth comes with the challenge of remaining agile. In order to remain competitive, an efficient design
and production process is of outmost importance. With respect to software, this means that the effort, needed to
get from a conceptual idea to an implementation installed on a system, should be as small as possible.

Within the software architecture group, a number of architects have been investigating the application of Model
Driven Engineering methods and tools to improve the efficiency of creating software. One of the areas being
investigated is the domain of data modeling as executing ASML systems create and manipulate a lot of data. In
order to support the design of data models, a prototype has been developed within ASML that allows definition
of data structures with their relations and generation of repositories that can be installed on the system.

In order to become usable for a large population of software designers, the prototype needs to be matured into a
production worthy tool. As the SW architects have been very busy keeping the prototype running and supporting
its users, insufficient resources were available to mature it. That is the moment we decided to define an OOTI
assignment which attracted the attention of Tesfahun.

The assignment consisted of reevaluating the requirements imposed on such tool, creating a good design and
implementation of a tool that allows definition of data structures and generation of an implementation of the
data structures and the repositories. Not a small task.

Tesfahun decided to take the challenge and apply for the task. He got invited for an application interview where
the assignment was explained. Besides discussing the assignment, also an impression of the candidate needs to
be gained. Tesfahun plays soccer and when I asked about it he told me that he plays as defender. When
confronting an attacker, he literally stated: “… either the man has to go or the ball has to go...” That was the
moment that we were convinced about his motivation and decided to accept his application.

During the assignment he has clearly communicated how he would be able to contribute. That led to adjusting
the assignment such that more focus has been put on the code generation part. One project within ASML was
selected to utilize the prototype for data design. Though in general it is not advised to depend on the work of a
student for a product that needs to be delivered in time to customers, we decided to use the work of Tesfahun
within the context of an actual ASML project.

The ASML team executing the project has put real pressure on Tesfahun and his flexibility and motivation have
been stress tested as well as his product. The team is really satisfied and they are appreciating the benefits of the
improved productivity. Large quantities of code are being generated now that otherwise would need laborious
manual typing.

Given his motivation and ambition, we are sure that Tesfahun is a valuable asset for every project and we are
confident that this young man will mature into a very skilled software designer and capable architect.

Wilbert Alberts and Ronald Koster
SW architects ASML.

iii

Preface
This report describes the results of the project ‘From a data-model to generated access- and store-patterns’
carried out by Tesfahun Tesfay at ASML, Veldhoven, The Netherlands. This project is performed over the last
nine months as a partial fulfillment to obtain the Professional Doctorate in Engineering (PDEng) degree in
Software Technology, from the Eindhoven University of Technology.

The main objective of this project is to design and implement a repository generation tool for generating
repositories from domain models based on configuration settings. This repository generation tool is built based
on a flexible architecture. This flexible architecture allowed separation of domain models from repository
implementation technology details. Switching between different implementation patterns and technology
choices is easily possible without touching domain models.

This project is carried out by the author, Tesfahun Tesfay, under the supervision of Ronald Koster and Wilbert
Albers from ASML and Tim Willemse from the Eindhoven University of Technology.

The report is intended for everyone who is interested in the application of model-driven architecture to tackle
data aspects of complex systems. Basic understanding of software engineering, model-driven architecture, and
model-driven engineering is assumed.

This report is organized such that readers are guided smoothly from the problem through to the solution. The
first four Chapters present the context, the thorough analysis of the problem, the domain, and the requirements
consecutively. In Chapter 5, the architecture of the repository generation tool is described. In this chapter, the
goal of the individual components and the relationships between them is described. In Chapter 6, each of these
components in the architecture is opened up and discussed in detail. In both chapters, the architectural and
design tradeoffs are documented. In Chapter 7, relevant notes are given about the implementation of each
individual component in the architecture. Chapter 8 presents the testing techniques applied to ensure the quality
of the tool and support its evolution in the future.

In Chapter 9, the results obtained in this project are summarized. The features that should be supported in the
future are also presented. In Chapters 10, the project management strategy applied in this project is discussed. In
Chapter11, technical reflections on the design criteria that are selected in this project are presented. A brief
person reflection of the author on the organizational and technical aspects of the project is also presented.

Tesfahun Aregawy Tesfay
Date August, 2015

v

Acknowledgements
With this project, I conclude the two years PDEng degree program, commonly known as OOTI, at the
Eindhoven University of Technology (TU/e). This program has given me the opportunity to tackle several real
world problems by applying the knowledge I have gained from education through the years. Excluding
workshops and assignments, the project described in this report is the fifth project I have worked on over the
course of this program. I would like to thank the people who contributed to the successful completion of the
program as well as this project.

I would like to thank my supervisors at ASML: Wilbert Alberts and Ronald Koster. Without your continuous
guidance and support, the successful completion of this project would not have been possible. The feedback and
discussions during the weekly and PSG meetings were invaluable.

I would like to thank my TU/e supervisor, Tim Willemse, for the motivation and useful feedback he has given
me over the course of this project. Thank you for taking time out of your busy schedule for coming to ASML
during every PSG meeting.

I would like to thank Matija Lukic and Sander Kersten for contributing their knowledge regarding the generated
repositories, and for using, and testing my tool starting from day one. It was a great feeling to see you happy and
using my tool in a real ASML project. Thank you and all of your colleagues for having me in your motivating
workplace during my collocation.

I would like to thank Sven, Sofia, Ashu, Theo, Niels, Yuri, and others who contributed their domain knowledge
and experience. I would also like to thank Rogier Wester for allowing me to carry out this project in his group.

I would like to express my deepest gratitude to the PDEng program director, Ad Aerts, for giving me the chance
to face the challenging roles and projects I am interested in. I would like to thank all the PDEng coaching staff
for helping me in different professional skills along the way. I would like to thank Maggy de Wert for
dedicating her time to answer my questions regarding all kinds of procedures and for the motivation she has
given me during my stay at the TU/e. I would also like to thank my friends and colleagues from the OOTI.

I would like to thank my mother, Mebrhit, and all my family for their support and prayers. I would like to thank
my wife, Maereg (Magi), for her patience and support every single day. I would like to thank my beautiful
daughter, Bethany (Betu), for joining my family and for being such a nice daughter. I am truly blessed to have
you in my life.

I thank God for giving me wisdom and strength to successfully complete the program.

Tesfahun Aregawy Tesfay
Date August, 2015

vii

Executive Summary
ASML is the leading provider of lithography systems in the world. These lithography systems are complex
machines that are critical to the production of integrated circuits (ICs) or chips. The TWINSCAN system is the
most important product line of the ASML lithography systems. The ASML TWINSCAN produces up to 200
wafers per hour. These wafers are 300 mm diameter and are exposed at 22 nm resolution.

The TWINSCAN system handles a huge volume of data. In the current TWINSCAN SW Architecture, data
transfer is combined with control flow. Data transfer to a component that is not under the sender’s control must
be performed through a common parent in the hierarchy. There are several problems with this approach with
respect to execution, encapsulation, and locality of change. These problems drive the need to separate data,
control, and algorithms of the scanner’s software architecture.

To tackle the data handling problems, the main objective of this project was to design and implement a
repository generation tool for generating data repositories from domain models. The tool is accompanied by a
means to flexibly select from a set of implementation patterns, allowing the generation of an implementation of
data repositories and access interfaces from a domain model. The structure of this data is defined by a domain
model in an implementation independent formalism. As a result of the flexibility of the architecture, it is
possible to switch between technologies and implementation patterns without touching domain models. This
tooling support reduces development time and increases efficiency.

The repository generation tool consists of an Implementation Model Language that helps users specify choices
of implementation patterns without polluting their domain models with implementation details. To maximize
flexibility, this language is based on the recipe-ingredient relationship in a traditional cookbook. To maximize
productivity and facilitate learning the Implementation Model Language and its syntax, the tool contains an
Implementation Model Wizard capable of creating initial implementation models from domain models. To early
discover errors in the implementation model before code generation, the tool is equipped with an
Implementation Model Validation. This protects the tool from producing a code that does not compile or a
wrong code that compiles. The tool consists of a repository generator component to allow generation of
repositories from domain models based on the recipes in implementation models. This is realized by providing
several code generation modules.

The repository generation tool is tested through continues architecture and design reviews by supervisors, unit
tests, and tests by stakeholders in the real environment.

The results are being used in an active ASML project within the Metrology group. The productivity of the group
is significantly improved. They have already generated 600+ files of C++ code using the tool. Manipulation of
domain models is very easy with the repository generation tool. The effort and time required to see changes in a
domain model reflected in the generated code is reduced to a one button click.

ix

Table of Contents
Foreword .. i

Preface .. iii

Acknowledgements .. v

Executive Summary... vii

Table of Contents ... ix

List of Figures ... xiii

List of Tables ... xv

1. Introduction .. 1

1.1 Context .. 1

1.2 The TWINSCAN SW Architecture .. 2
1.2.1. Components (CC) ... 2

1.3 Problem Area .. 2

1.4 Outline .. 3

2. Problem Analysis .. 5

2.1 Data Handling in the TWINSCAN SW Architecture.. 5

2.2 Separation of Data, Control, and Algorithms ... 6

2.3 Project Objective ... 8

2.4 Stakeholders .. 9
2.4.1. ASML Software Architecture Group ... 9
2.4.2. TU/e ... 9
2.4.3. ASML Metrology Group ... 9
2.4.4. ASML SW Development Environment Group ... 10

2.5 Design Opportunities ... 10

3. Domain Analysis ... 11

3.1 Domain Model ... 11

3.2 Domain Model Language .. 11

3.3 Domain Model Concepts ... 12
3.3.1. DomainModel ... 13
3.3.2. Entities ... 13
3.3.3. Mutability ... 13
3.3.4. Volatility .. 13
3.3.5. ValueObjects .. 13
3.3.6. Enumerations .. 14
3.3.7. PrimitiveTypes.. 14
3.3.8. Compositions and Attributes ... 14
3.3.9. Associations.. 14
3.3.10. Multiplicities ... 14

x

3.3.11. MultiplicityConstants .. 14
3.3.12. Relationships between Entities and ValueObjects .. 14

3.4 Core Domain Model .. 15

3.5 From domain models to generated repositories .. 15

3.6 Implementation choices ... 16
3.6.1. Storage ... 16
3.6.2. Orientation .. 16
3.6.3. Communication .. 16
3.6.4. ID Strategy ... 16
3.6.5. Target Identifier .. 17
3.6.6. ASML SW Component ... 17
3.6.7. Visibility ... 17
3.6.8. Target Path ... 17
3.6.9. Target Language ... 17

3.7 Repository Interface Semantics .. 17

3.8 Repository Implementation .. 19

4. System Requirements ... 21

4.1 MoSCoW ... 21

4.2 Requirements for the repository generation tool... 21
4.2.1. Must Have Requirements (MReq) ... 21
4.2.2. Nice to Have Requirements (NReq) .. 24
4.2.3. Won’t have requirements (WReq) ... 25

4.3 Use cases .. 26

4.4 Use case description .. 28
4.4.1. Create imp-model use case .. 28
4.4.2. Generate from Wizard use case ... 28
4.4.3. Generate Code use case ... 29
4.4.4. Validate Model use case .. 29
4.4.5. Test Code use case .. 30

5. System Architecture ... 31

5.1 High Level Architecture ... 31

5.2 Architectural Notations ... 32

5.3 The Adapted MDA-based Approach ... 33

5.4 The 4+1 Architectural Model... 34

5.5 Logical View ... 34

5.6 Deployment View ... 36

5.7 Architectural Principle .. 37
5.7.1. Domain Model Elements ... 37
5.7.2. Ingredients .. 37
5.7.3. Recipes ... 37

5.8 Implementation Model Architecture ... 37

6. System Design ... 41

6.1 Implementation Model Language Design ... 41

xi

6.2 Modeling Ingredients ... 42
6.2.1. Modeling Ingredients as separate concepts .. 42
6.2.2. Modeling ingredients as attributes of recipes ... 44

6.3 Modeling Recipes .. 45
6.3.1. EntityRecipe ... 49
6.3.2. ValueObjectRecipe ... 50
6.3.3. EnumerationRecipe ... 51
6.3.4. TypeRecipe ... 52
6.3.5. DomainModelRecipe .. 53

6.4 Implementation Model Editor .. 54

6.5 Template Language Selection .. 55

6.6 Repository Generator Design .. 55
6.6.1. GenerationController .. 56
6.6.2. Generators .. 58
6.6.3. GenerationHelper .. 59
6.6.4. Supported features .. 59

6.7 Implementation Model Wizard ... 59
6.7.1. Default Conventions ... 60

6.8 Implementation Model Validation .. 61

7. Implementation... 63

7.1 Implementation Model Language ... 63

7.2 Implementation Model Editor .. 63

7.3 Repository Generator .. 63

7.4 Implementation Model Wizard ... 63

7.5 Implementation Model Validation .. 64

8. Testing... 65

8.1 Acceptance testing ... 65
8.1.1. Review ... 65
8.1.2. Implementation Model Validation ... 65
8.1.3. Build Tests.. 65
8.1.4. Test Cases ... 65
8.1.5. Release Tests .. 66

8.2 Regression Testing .. 66

8.3 Requirements Revisited .. 66

9. Conclusions ... 68

9.1 Results ... 68

9.2 Future Work .. 68

10. Project Management ... 70

10.1 Approach ... 70

10.2 Project Planning .. 71

10.3 Risk Management ... 72

xii

11. Project Retrospective .. 73

11.1 Reflection ... 73

11.2 Design opportunities revisited .. 73

Glossary ... 74

Bibliography .. 75

Appendix 1 – Implementation Model Concrete Syntax ... 76

Appendix 2 – Implementation Model defining only ingredients .. 77

Appendix 3 – Implementation Model defining only super recipes ... 78

Appendix 4 – Implementation Model defining recipes for code generation 79

Appendix 5 – The Identified Requirements for the domain model language 80

About the Author .. 83

xiii

List of Figures
Figure 1: IC Manufacturing process, showing the life of a wafer. .. 1
Figure 2: The TWINSCAN dual stage system, one wafer in the measure station ... 2
Figure 3: Data Handling in the TWINSCAN SW Architecture, the purple arrows represent data and control

flows combined. ... 5
Figure 4: The Proposed Solution Direction based on separate control, .. 6
Figure 5: Data handling, blue arrows represent data flow and orange arrows represent control flow with and/or

without IDs.. 7
Figure 6: Project Objective .. 8
Figure 7: Stakeholders .. 9
Figure 8: Domain Model Language Metamodel, class hierarchy. .. 11
Figure 9: Domain Model Language Metamodel, attributes and associations class hierarchy 12
Figure 10: Domain Model Language Metamodel, multiplicity class hierarchy .. 12
Figure 11: Example Core Domain Model .. 15
Figure 12: Example Extension, WaferStage Domain Model ... 15
Figure 13: Lot Entity Interfaces.. 18
Figure 14: Interfaces for clone oriented repositories. ... 18
Figure 15: Heap implementation classes of the code that must be generated for the Entity 'Wafer' 19
Figure 16: Boost interprocess implementation classes that must be generated for the Entity 'Wafer' 20
Figure 17: The main use cases, showing the interactions of primary actors with the repository generation tool. 27
Figure 18: Process View, showing the order in which the use cases of the repository generation tool are

executed. ... 27
Figure 19: Reference Architecture, showing the components that realize the required functionalities. The grayed

out components are existing components.. 31
Figure 20: The MDA-based approach ... 33
Figure 21: The Adapted MDA-based Approach .. 34
Figure 22: Logical View of the Repository Generation .. 35
Figure 23: Logical View of the Implementation Model Wizard... 35
Figure 24: Logical View of the Implementation Model Validation .. 36
Figure 25: Deployment view of the repository generation tool, together with the DCA Tool. 36
Figure 26: Implementation Model Architecture, Scalability .. 38
Figure 27: Implementation Model Architecture, dependency between imp-

models and domain models .. 39
Figure 28: Implementation Model Language Metamodel ... 41
Figure 29: Ingredients Metamodel, Ingredients are modeled as separate concepts .. 43
Figure 30: Example TargetIdentifiers .. 44
Figure 31: Recipes Metamodel ... 45
Figure 32: Composite Pattern... 46
Figure 33: Super EntityRecipe that can be reused in specialized recipes. .. 46
Figure 34: Specialized CoreModelEntityRecipe contained inside SuperEntityRecipe 47
Figure 35: Specialized CoreModelEntityRecipe extends SuperEntityRecipe ... 47
Figure 36: Extension across the parent recipe concept ... 49
Figure 37: EntityRecipe Metamodel.. 50
Figure 38: ValueObjectRecipe Metamodel .. 51
Figure 39: CoreModelValueObjectRecipe, ValueObjectRecipe instance .. 51
Figure 40: CoreEnumerationRecipe, EnumerationRecipe instance without out LiteralMappings 51
Figure 41: CoreEnumerationRecipe, EnumerationRecipe instance with EnumerationLiterals 52
Figure 42: EnumerationRecipe Metamodel .. 52
Figure 43: DoubleTodouble, TypeRecipe instance .. 52
Figure 44: TypeRecipe Metamodel ... 53
Figure 45: DomainModelRecipe Metamodel .. 53
Figure 46: SuperDomainModelRecipe, DomainModelRecipe instance .. 54
Figure 47: CoreDomainModelRecipe extending SuperDomainModelRecipe .. 54
Figure 48: Dependency graph, showing the dependency between the template modules that realize the repository

generator. .. 56
Figure 49: Iteration over the implementation model to extract Entities and ValueObjects for code generation . 57
Figure 50: Sequence of decisions made to determine the ingredients needed for a specific code generation task

 .. 57

xiv

Figure 51: Validation without code generation ... 62
Figure 52: Validation during code generation ... 62
Figure 53: Code Snippet of the getIngStorage() getter API in OCLinEcore. .. 63
Figure 54: Backlog snippet for repository generation, from the ninth iteration .. 70
Figure 55: Project plan .. 71
Figure 56: Expected Vs Actual Velocity in man hours, for the total of 11 long-sprints in this project 71
Figure 57: Implementation Model Concrete Syntax .. 76
Figure 58: Ingredients ... 77
Figure 59: super recipes that can be reused in other recipes .. 78
Figure 60: An implementation model that can be used as a direct input for code generation 79

xv

List of Tables
Table 1: Relationships between Entities and ValueObjects ... 15
Table 2: Must Have Requirements (MReq) .. 21
Table 3: Nice to Have Requirements (NReq) ... 24
Table 4: Won’t have Requirements (WReq) ... 25
Table 5: Language Modeling Language Notations that are used in the rest of this report. 32
Table 6: Modeling ingredients as separate concepts and Modeling ingredients as attributes of recipes. 42
Table 7: Comparison of Composite pattern and Extension based design approaches 48
Table 8: Choice of a Language for Textual Syntax specification ... 54
Table 9: Choice of a Template Language for realizing M2T ... 55
Table 10: Comparison of code generation approaches ... 58
Table 11: Summary of features supported by the code generator. .. 59
Table 12: Implementation model default conventions for the wizard.. 60
Table 13: Test Cases for the generated repositories ... 65
Table 14: Must Have Requirements (MReq) – revisited ... 66
Table 15: Nice to Have Requirements (NReq) – revisited .. 67
Table 16: Won’t have Requirements (WReq) – revisited ... 67
Table 17: Summary of features supported by the code generator. .. 68
Table 18: Identified Requirements for the domain model language.. 80

1

1.Introduction

This chapter provides the context for this project with a brief introduction to ASML, their most important
product, and the software architecture of this product. This chapter also gives the outline of this report.

1.1 Context
ASML is the leading provider of lithography systems in the world [1]. These lithography systems are complex
machines that are critical to the production of integrated circuits (ICs) or chips. The TWINSCAN system is the
most important product line of the ASML lithography systems.

Manufacturing ICs in the semiconductor industry requires a number of process steps, from slicing a cylinder of
purified silicon material into wafers through to packaging, as shown in Figure 1. A wafer is a sliced and
polished silicon material on which layers of images of patterns are created during exposure. These images of
patterns are contained in a flat quartz plate called a reticle. The ASML TWINSCAN system performs one of the
process steps of the IC manufacturing process, called the lithography process, i.e. Step 5. The TWINSCAN
system is responsible for exposing wafers as quickly and as accurately as possible based on the performance
specifications: productivity, overlay, and imaging (resolution).

The ASML TWINSCAN produces up to 200 wafers per hour. These wafers are 300 mm diameter and are
exposed at 22 nm resolution.

Figure 1: IC Manufacturing process, showing the life of a wafer.

2

The TWINSCAN machine contains two stages that are used for positioning wafers. A stage can be either at the
measurement (metrology) station or at the exposure station at a time, as shown in Figure 2. At the measurement
station, a wafer is measured in XY and Z directions. Metrology is the science of this measurement. The result of
this measurement is used at the exposure station to expose a layer on a wafer correctly based on an image of a
pattern on a reticle. Each layer can be repeated for a group of wafers. This group of wafers is called a lot.

Figure 2: The TWINSCAN dual stage system, one wafer in the measure station

 and one wafer in the expose station.

1.2 The TWINSCAN SW Architecture
The TWINSCAN Software Architecture supports the operations of the TWINSCAN system. These operations
include wafer measurement and exposure, calibration, diagnostics, and scheduling of tasks within the
TWINSCAN system. Furthermore, it provides interfaces to the external environment.

The TWINSCAN software architecture is organized into Functional Clusters (FC), Building Blocks (BB),
Components (CC), Layers (LA), Release Parts (RP), and Assemblies (AS). The component (CC) is the most
relevant part of this organizational structure.

1.2.1. Components (CC)
An ASML software component (CC) is a basic unit of the TWINSCAN software development. A CC may
correspond to a physical structure of the TWINSCAN or to general purpose functionality. CC is contained in
exactly one Layer (LA) and exactly one Building Block (BB). Software components are assigned to layers based
on their responsibility. For example, the software components responsible for controlling the flow of tasks are
assigned to the Controllers Layer. The components responsible for measurement and exposure of wafers are
assigned to the Metrology Layer.

1.3 Problem Area
The problem that we tackled in this project involves data aspects of the TWINSCAN software architecture. The
goal of this project is to improve data flow, storage, and sharing within and across ASML software components
in the TWINSCAN software architecture. This problem is discussed in detail in Chapter 2.

3

1.4 Outline
This report is further structured as follows:

Chapter 2 provides the problem analysis, the project stakeholders, and an overview of the design opportunities
 and challenges in this project.
Chapter 3 presents the result of a thorough analysis of the problem domain.
Chapter 4 presents the requirements for this project.
Chapter 5 describes the high level system architecture and architectural tradeoffs made in this project.
Chapter 6 discusses the detailed design of the components in the reference architecture. The tradeoff design
 decisions that guided the design process are also documented.
Chapter 7 explains the implementation aspects of the system.
Chapter 8 explains the testing strategies applied in this work.
Chapter 9 concludes this work.
Chapter 10 presents the project management, planning, and risk management strategies applied in this work.
Chapter 11 reflects on the development process of this project. The design criteria selected for this
 project are also revisited.

5

2.Problem Analysis

The problem area that we tackled in this project is introduced in Chapter 1. The purpose of this chapter is to
discuss data handling in the TWINSCAN SW Architecture, the problems associated with data handling, the
proposed solution direction that initiated this project, as well as to present the main objectives of this project.
The stakeholders and their intentions are discussed. The identified early design opportunities and challenges are
also presented.

2.1 Data Handling in the TWINSCAN SW Architecture
In the current TWINSCAN SW Architecture, data transfer is combined with control flow. Furthermore, data
transfer to a component that is not under the sender’s control must be performed through a common parent in
the hierarchy. A simplified version of a common example of this situation is shown in Figure 3. Input data,
required to process a lot, is given through the main controller component. This input data is pushed down to the
sub-controller component. Part of this input data is required in the measurement station, and the other part in the
exposure station. The sub-controller component pushes the right input data down to the right components.

Figure 3: Data Handling in the TWINSCAN SW Architecture, the purple arrows represent data and control

flows combined.
The software components in the measurement station, measure wafers and store the measurement results for a
later use. This measurement result is required by the components in the exposure station to accurately expose
the wafer. Therefore, this measurement result needs to be transferred from the measurement station to the
exposure station. According to the current TWINSCAN SW Architecture, the sub-controller component pulls
the measurement result up from the measurement station and pushes it down to the components in the exposure
station. This is because the sub-controller component is the common parent of the measure station and exposure
station. There are several problems with this approach. The main ones are described below.

 Execution
Data is copied many times from the producer component to the consumer component. This creates a direct
impact on the CPU load, memory, disk, and network resources.

6

 Encapsulation
Since the information needed at lower level components is also known at higher level components, it is not easy
to verify whether high-level components are not using a data intended for lower level components.

 Locality of Changes
A data related software change in one component propagates to many components. For example, changing the
measurement result data structure in the components of the measurement station causes the sub-controller
component to change.

In the TWINSCAN system, since there are several components involved in the data transfer, these problems are
far worse than what is depicted in Figure 2.

2.2 Separation of Data, Control, and Algorithms
To tackle the problems associated with the data handling in the current TWINSCAN SW Architecture, the
solution direction shown in Figure 4 is proposed. The proposed solution is based on the separation of control
services, durative services, and domain services.

 Control Services
Control services determine the execution order of tasks in the system. Control services are designed by using
state machines. Control services instruct durative services, and request the creation and destruction of data
objects from domain services. Control services request decision values from domain services. Control services
are also responsible for the availability of data required by durative services.

 Durative Services
Durative services are algorithms and hardware actions that take time and tasks that need and produce data.
Durative services store and retrieve data by using domain services.

 Domain Services
Domain services implement data storage, retrieval, concurrency, persistence, integrity, and transactionality
based on the domain models of the TWINSCAN system.

Figure 4: The Proposed Solution Direction based on separate control,

durative, and domain services.

7

The main goal of the separation of data, control, and algorithms is to tackle the problems associated with data
handling, such as execution, encapsulation, and locality of change. In this approach, the measure input data,
exposure input data, and measurement results are stored in their respective repositories, as shown in Figure 5.
The sub-controller component is not bothered by data transfer anymore except for IDs. The main controller
component directly stores the measurement input data in the measurement data repository and the exposure
input data in the exposure data repository. Upon receiving the IDs, the components in the measurement and
exposure stations access the required input data and measurement result from their respective repositories.
While synchronization and life cycle management may be an issue in the new design, we believe that the
benefits of the separation of data and control outweigh the constraints introduced.

Unlike the previous approach, data is not being copied unnecessarily from component to component. We see
that the measurement input data, exposure input data, and measurement results are not being copied to the sub-
controller component. This improves the execution cost regarding CPU load, memory, disk, and network
resources. Data encapsulation has also improved. This is because components only access data that is intended
for them. Furthermore, changes to the measurement result data structure in the measurement station do not cause
the sub-controller component to change. This way localization of change is improved.

Figure 5: Data handling, blue arrows represent data flow and orange arrows represent control flow with

and/or without IDs

The separation of data, control, and algorithms has initiated this project. The scope of this project is within the
domain services. In this approach, domain data models, domain models for short, need to be defined. To realize
sharing data between and/or within processes at runtime, instances of the domain model need to be stored in
repositories.

8

2.3 Project Objective
The TWINSCAN system handles a huge volume of data. To tackle the problems associated with the current data
handling architecture of the TWINSCAN system, data is stored in repositories. The structure of this data is
defined by a domain model. A working TWINSCAN contains the repositories holding the data as defined by
this domain model.

This approach is supported by a tool that allows designers to define domain models in an implementation
independent formalism and generate the implementation. This tooling support reduces development time and
increases efficiency.

The main objective of this project is to design and implement a repository generation tool for generating
repositories from domain models based on implementation choices made by users, as depicted in Figure 6. This
repository generation tool must be based on a flexible architecture. This flexible architecture keeps domain
models separated from repository implementation technology details. Switching between different repository
implementation flavors and technology choices must be easily possible without touching domain models.

Figure 6: Project Objective

9

2.4 Stakeholders
The stakeholders involved in this project are shown in Figure 9. The interests of these stakeholders and their
representatives are also discussed.

Figure 7: Stakeholders

2.4.1. ASML Software Architecture Group
This project is carried out at ASML within the Software Architecture Group. The ASML Software Architecture
Group is responsible for defining, maintaining, and improving the TWINSCAN software architecture, and
introducing new efficient technologies. In this project, they are interested in improving the efficiency of data
handling in the TWINSCAN system. They are represented by the supervisors from ASML (Ronald Koster and
Wilbert Alberts) and Sven Weber. As a data architect, Ronald Koster is one of the main users of the repository
generation tool. For example, he uses the tool to enforce architectural rules.

2.4.2. TU/e
TU/e is the main stakeholder of the execution process of this project. They are interested in the technological
design of the project, the criteria used to evolve the design, and the final report. The interests of the TU/e are
represented by the university supervisor, Tim Willemse, the trainee, Tesfahun Tesfay, and the program director,
Ad Aerts.

2.4.3. ASML Metrology Group
The ASML Metrology Group is responsible for the measurement and correction of the position of wafers for
accurate exposure. Software architects and software engineers within the Metrology department are the main
users of this tool. In this project they are represented by Matija Lukic, Sofia Szpigiel, and Sander Kersten. They
are the main stakeholders for the generated code.

10

2.4.4. ASML SW Development Environment Group
The ASML Software Development Environment Group is responsible for the deployment and integration of the
TWINSCAN software tooling. In this project, they are interested in the ability of the tool to be deployed in the
Eclipse-based WindRiver Workbench. They are represented by Sander Van Hoesel and Ruud Goossens.

2.5 Design Opportunities
The most important design opportunities and challenges identified in this project are: flexibility, reusability, and
scalability. These design challenges were identified through analysis of requirements, problem domain, and
discussions with stakeholders. During the identification and selection of these design challenges, the criteria for
the evaluation of technological designs described in [2] are also considered. These criteria are used throughout
the course of the project to improve the design of the repository generation tool.

 Flexibility
To reduce the complexity of software change, flexibility is required with respect to how data is handled in the
TWINSCAN software architecture. Keeping proper coupling between domain and technology concepts is one of
the most important design challenges in this project. It is necessary that domain models are decoupled from
repository implementation and technology details. The repository generation tool must allow users to flexibly
select from different repository implementation and technology choices.

 Reusability
The design challenge here is to realize code generation with a minimum effort. This is achieved by reusing
existing model fragments as much as possible.

 Scalability
The scalability design challenge is identified to allow the solution to handle bigger domain models of the
TWINSCAN system regarding data.

Economical Realizability and Societal Impact [2] are selected as non-relevant for this project. Since the project
was based on a fixed budget, the analysis of financial implications was not necessary. Therefore, economical
realizability was not relevant for this project. The health hazard prevention mechanisms of the TWINSCAN
system are implemented in the hardware. Since this is a software only project, societal health and well-being
analysis was not necessary. Therefore, Societal Impact was selected as the second non-relevant criterion for this
project.

11

3.Domain Analysis

The problem analysis is described in Chapter 2. The purpose of this chapter is to present the result of a thorough
analysis of the domain.

3.1 Domain Model
Domain models are at the heart of the domain services. A domain model captures the relevant data concepts of
the lithography process executed on the TWINSCAN machine. The model also captures the relationships
between these data concepts. The ideas behind these modeling concepts and relationships are inspired by the
principles of domain driven design [3].

3.2 Domain Model Language
To simplify modeling data aspects of the TWINSCAN system, ASML is developing a domain model language
specifically for modeling data. The development of this language is outside of the scope of this project.
However, the thorough identification of the requirements for this language has been within the scope of this
project. These requirements are shown in Appendix 5. The development of this language has continued to
mature throughout the course of this project. Graphical and textual syntaxes are defined for this language. The
core domain model in Figure 11 and non-core domain model in Figure 12 are modeled by using this domain
model language.

The Metamodel of domain model language, showing the total structural class hierarchies is shown in Figure 8.

Figure 8: Domain Model Language Metamodel, class hierarchy.

The Metamodel of the attributes and associations of this language is shown in Figure 9. Associations and
attributes are TypedElements. These associations and attributes have Multiplicities.

12

Figure 9: Domain Model Language Metamodel, attributes and associations class hierarchy

The Metamodel of the multiplicities used to model the association ends between different data concepts is
shown Figure 10.

Figure 10: Domain Model Language Metamodel, multiplicity class hierarchy

Since the inputs for the repository generation tool are domain models written in the domain model language, the
relevant domain model and language concepts are explained in the upcoming sections.

3.3 Domain Model Concepts
Domain models are composed of a number of data concepts of the TWINSCAN system. These data concepts are
conceptually different and must be handled differently. For example, Lot and Lotinfo in the domain model in
Figure 11 are different and must be handled differently. In order to handle these data elements correctly during
repository generation, a number of domain modeling concepts are identified by inspecting the domain model
language, reviewing books [3] and internal documents, and through interviews with all stakeholders. These
modeling concepts are described below.

13

3.3.1. DomainModel
The concept DomainModel represents the container for all other elements in the domain model. The instances of
this DomainModel can be core or non-core. The core model contains common data elements that can be reused
across multiple functions of the TWINSCAN. Non-core domain models contain data elements that are specific
to a certain function. Non-core domain models can refer to the core domain model. However, core domain
models can not refer to non-core domain models. Core and non-core models are further explained in Section 3.4
with examples.

3.3.2. Entities
Entities represent domain model elements that have a lifecycle and an identity, for example, wafers and lots.
Every entity is considered to be unique and is identified by an ID. Entities with exactly the same attributes are
considered to be different and are uniquely identifiable. This prevents confusing Entity instances with other
Entity instances. For example, a particular physical wafer is always unique and should never be confused with
another wafer. Properties of this wafer can change through time. However, the identity of this particular wafer
continues to be the same. Data corruption is one of the severe consequences of mistaken IDs of Entity instances.
Entities are stored in their own repositories. In the domain model language, Entity is represented as Entity, as
shown in Figure 8.

3.3.3. Mutability
Mutability is a property of Entities. Immutable Entities are Entities that can never be updated after creation.
Mutable Entities are Entities that can be updated after creation.

The mutability of ValueObjects is determined by the mutability of the Entities they are part of. ValueObjects are
considered to be immutable when they are part of immutable Entities. ValueObjects that are part of mutable
Entities are considered to be mutable. Instances of the same ValueObject can have different mutability based on
the mutability of the entity instances they are part of.

In the domain model language shown in Figure 8, mutability is defined as a property of Entities. This property is
named as immutable and it can be true or false.

3.3.4. Volatility
Volatility is a property of Entities. Non-volatile Entities are Entities that survive the TWINSCAN system restart.
Volatile Entities are Entities that do not survive the system restart.

The volatility of ValueObjects is determined by the volatility of the Entities they are part of. ValueObjects are
considered to be volatile when they are part of volatile Entities. ValueObjects that are part of non-volatile
Entities are considered to be non-volatile. Instances of the same ValueObject can have different volatility based
on the volatility of the entity instances they are part of.

In the domain model language shown in Figure 8, volatility is defined as a property of Entities. This property is
named as volatile and it can be true or false.

Non-volatile Entities can only be stored in a persistent repository. Volatile Entities can be stored in memory or
persistent repositories.

3.3.5. ValueObjects
ValueObjects represent domain model elements that have no identity. ValueObjects with the same value are
considered to be equal. A ValueObject is identified by its attributes. ValueObjects are used to describe parts of
an entity. For example, in the domain model in Figure 11, the ValueObject Lotinfo is part of the entity Lot.

ValueObjects are not stored in their own repositories. They are stored together with the entity they are part of.

In the domain model language, ValueObjects are defined as specializations of structured elements.

14

3.3.6. Enumerations
Enumerations are used to specify a list of elements represented as enumeration literals. Enumerations are used to
describe Entities and ValueObjects. In the domain model language, Enumerations are defined as specializations
of Types.

3.3.7. PrimitiveTypes
PrimitiveTypes are used to specify the primitive data types that are used to define domain models. In the domain
model language, primitive types are treated as ordinary Types.

3.3.8. Compositions and Attributes
Composition represents a whole/part relationship between elements in the domain model. In a composition
relationship, the whole is also called a container. In this relationship, an instance of the part can only be
contained in, at most, one instance of the container. If the container is deleted, the part is also deleted with it.
However, the part can be deleted without deleting the container.

In the context of this work, compositions and attributes are considered to be equal. The part can be represented
as an attribute of the container. In our domain, we only consider composition of ValueObjects. Entities and
ValueObjects can contain ValueObjects.

3.3.9. Associations
Associations represent a unidirectional relationship between domain model elements. In our domain, we only
consider associations towards Entities. Associations from an Entity or a ValueObject to an Entity are allowed.
Associations towards ValueObjects are not allowed.

In the domain model language, associations are defined as TypedElements. Associations are contained by
structured elements, i.e., Entities and ValueObjects.

3.3.10. Multiplicities
In the domain model language, we have three kinds of multiplicities:

i. Entity Multiplicity
Entity Multiplicity is a property of Entities. It determines the number of entity instances that can be stored
in a repository.

ii. Association Multiplicity
Association Multiplicity is a property of associations. It is used to specify the allowed number of source and
target instances involved in the association relationship.

iii. Compositions / attributes Multiplicity
This multiplicity determines the allowed number of instances that can be contained by each instance of the
container. The container can be an entity or a ValueObject.

Multiplicities are shown by using an interval of integers with a lower and an upper bound. In the domain model
language, multiplicities are represented as Multiplicities, as shown in Figure 10. It is mandatory that
multiplicities are explicitly specified.

3.3.11. MultiplicityConstants
MultiplicityConstants can be used to specify multiplicity ends. MultiplicityConstants should be given a value.
Once defined, these MultiplicityConstants can be reused in multiple places. In the domain model language,
these constants are represented as MultiplicityConstant.

3.3.12. Relationships between Entities and ValueObjects
The relationships between Entities and ValueObjects follow a number of rules. As an association points to
something that must be identifiable, associations can only point to Entities. There was no reason to identify a
part of a bigger whole. Therefore, Entities are disallowed to be contained. These rules are summarized, as shown
in Table 1.

15

Table 1: Relationships between Entities and ValueObjects

Relationship Type Composition Association
VO1 VO2 YES (Member variable) NO
E VO YES (Member variable) NO
VO E NO YES (Navigability)
E1 E2 NO YES (Navigability)

3.4 Core Domain Model
A core domain model is a model of the core data aspects of the TWINSCAN system. Core domain models are
owned by and can only be modified by ASML data architects. These models are stable models and are used
across multiple ASML software components. Core models do not depend on non-core models. An example of
such a core domain model is shown in Figure 11. This core domain model contains a number of data elements,
namely Machine, Lot, Wafer, Chuck, LotInfo, ChuckEnum, and the Primitive Types such as Double and String,
and the relationships between them. Each Lot belongs to a Machine and contains one LotInfo. Zero or more
Wafers belong to a Lot. Zero or one wafer may be loaded on a Chuck for measurement or exposure. This
implies that a Chuck may also be empty.

Figure 11: Example Core Domain Model

Other domain models reuse elements from the core domain model whenever applicable. For example, the
domain model shown in Figure 12 reuses the element Machine and the Type String from the core domain model
shown in Figure 11.

Figure 12: Example Extension, WaferStage Domain Model

3.5 From domain models to generated repositories
Domain models are specified in an implementation independent formalism by using the domain model
language. The data as present on the scanner, as an instantiation of the domain model, needs to be stored in a

16

repository. In order to reduce development time and increase efficiency, the implementation of these
repositories is generated automatically by using the repository generation tool. The tool must provide a flexible
way of configuring repository implementation choices without touching domain models.

A designer designs the domain model with the goal of generating code implementing the data concepts and
generating code that implements repositories for Entities. This code then will be executed on the TWINSCAN
system.

3.6 Implementation choices
Implementation choices allow generation of different flavors of repositories for different domain models. These
concepts are: storage, orientation, communication, ID strategy, target identifier, target language, ASML SW
component, Visibility, Target Path.

3.6.1. Storage
The storage concept answers the question ‘where to store Entity instances?’ All Entities in a domain model must
be stored in a repository. This repository can be memory (boost implementation), database, or disk based. The
concept storage allows the selection of one of these storage types. Depending on this choice, Entity instances are
stored in the right repository.

3.6.2. Orientation
The concept orientation answers the question ‘how to access and update repositories containing Entities?’ with
respect to orientations two classes of repositories are identified:

i. Clone – oriented repositories
These types of repositories provide explicit update operations to update entity instances. Clients work
on a local clone of the Entities in the repository. Clients of these types of repositories do not see each
other’s changes to the local clones of Entities. Changes are visible only when they are updated in the
repository. These types of repositories are applicable to both in memory and on disk repositories.
Since clients clone Entities from repositories and update changes in the repository, these repositories
are less efficient with respect to execution.

ii. Reference – oriented repositories

These types of repositories do not provide an explicit update operation. Instead, clients operate directly
on the entity by referring to it by its ID. Any modification is directly performed on the instance present
in the repository. Clients of Entity instances stored in these types of repositories see each other’s
changes instantly. These repositories are applicable to in memory storage. They are not practical for
databases and disk based repositories.

3.6.3. Communication
The concept Communication provides the possibility to select whether an entity must be stored in
intraprocess/local or interprocess/shared repositories.

i. Intraprocess repositories
These types of repositories are stored in a local memory. Intra-process repositories can only be accessed
from within the same process that actually creates/opens them.

ii. Interprocess repositories

These types of repositories are stored in a shared memory.

3.6.4. ID Strategy
Entities are domain model elements that have a unique identity. The concept ID Strategy is used to configure the
implementation of the concepts that identify Entities. This unique identity can be realized by using one of uuid,
increasing integer, random string, or random number. Multiple ID strategies are necessary because the chosen
ID strategy might affect the performance. For example, searching elements in a database by their UUID is far
less efficient than using an incremented integer. However, incremented integers are much harder to keep unique
over multiple executions.

17

3.6.5. Target Identifier
This concept is used to specify a preferred target identifier for a Type in the domain model. This target identifier
can be new or from a legacy code. This concept is used during repository generation. For example, if the domain
model contains the type Double, it is necessary to identify what this Double type corresponds to in the target
implementation language during code generation. It might also be necessary to import legacy header files in
order to use the target type. This target identifier is used to specify these targets.

3.6.6. ASML SW Component
This concept is used to specify target ASML software component, which will be used to store the repository
implementation during code generation.

3.6.7. Visibility
The concept visibility provides a flexible way of specifying whether a model and the corresponding generated
code is visible outside of the ASML software component or not.

3.6.8. Target Path
The concept targetPath provides a flexible choice of where to store the generated artifacts with respect to the
location of the domain model.

3.6.9. Target Language
This concept is used to specify the target implementation language and the extension of header files. This
concept provides two options: C++ and python.

3.7 Repository Interface Semantics
Depending on the choices of the implementation specific concepts and decisions made at the domain modeling
level, different repositories are needed. This is illustrated below with an example for clone-oriented repositories.
The Entities and ValueObjects of clone-oriented repositories must provide the following interfaces:

 Getters for the EntityId (valid only for Entities)
o Returns own ID

 Getters for all attributes i.e. ValueObjects and Types
o Return const reference

 Getters for all associations
o Return the ID

 Setters for all attributes
o Take const reference

 Setters for all associations
o Take an ID

These interfaces are illustrated with an example for the Entity Lot, as shown in Figure 13. The Entity Lot is
represented in the core domain model in Figure 11.

18

Figure 13: Lot Entity Interfaces

Entity clones are independent of each other. Changes to a local clone of the Entity do not influence other clones.
Updating an Entity clone to a repository does not change the contents of other clones. Removing an Entity from
a repository does not change the contents of all clones of the Entity. It is possible to have multiple clones of the
same Entity with different contents.

These repositories must provide interfaces for:

 Adding a new Entity instance
 Updating an existing Entity instance
 Getting a clone of an existing Entity instance based on ID
 Getting a clone based on an ID of an associated Entity instance
 Removing an Entity instance based on an ID

These interfaces are illustrated with an example for the Entity Lot, as shown in Figure 14. The Entity Lot is
present in the core domain model in Figure 11.

Figure 14: Interfaces for clone oriented repositories.

19

3.8 Repository Implementation
To demonstrate the repository implementation that must be generated by the repository generation tool, example
implementation classes are given for the intraprocess/heap and interprocess communication options. The
implementation classes in Figure 15 show the heap based repository implementation that must be generated for
the Entity Wafer. The Entity Wafer is present in the core domain model in Figure 11.

Figure 15: Heap implementation classes of the code that must be generated for the Entity 'Wafer'

The implementation classes in Figure 16 show the repository implementation that must be generated with the
interprocess communication option selected for the Entity Wafer.

20

Figure 16: Boost interprocess implementation classes that must be generated for the Entity 'Wafer'

21

4.System Requirements

The problem and a thorough domain analysis are presented in Chapters 2 and 3 consecutively. The purpose of
this chapter is to present the requirements considered for this project, their priority, and the main use cases
derived from these requirements.

4.1 MoSCoW
MoSCoW [4] is a requirement prioritization technique containing the following levels:

1. Must Have (M) Requirements
The requirements under this category must be satisfied for the product to be accepted.

2. Should Have (S) Requirements

The requirements under this category should be satisfied if possible. It is not acceptable that all of the
requirements in this category are completely ignored.

3. Could Have (C) / Nice to Have Requirements

The requirements under this category could be satisfied if time and resources are available. The
requirements under this category are referred to as Nice to have requirements in the rest of this report.

4. Won’t Have (W) Requirements

The requirements under this category will not be satisfied in the scope of this project. However, since
they will be considered in the future, they can influence the design.

4.2 Requirements for the repository generation tool
The requirements for the repository generation tool were collected through interviewing with all stakeholders,
brainstorming during weekly meetings with stakeholder and supervisors, analyzing existing documents, and
prototyping.

Together with stakeholders and supervisors, the identified requirements were prioritized by using a suitable
subset of the MoSCoW technique. Although they are realized differently, all functional and nonfunctional
requirements and constraints were prioritized according to their importance regardless of their category. The
Must Have, Nice to have, and Won’t have requirement levels of MoSCoW are selected for this project.
Although the Won’t Have requirements will not be satisfied in the scope of this project, the provided solution
architecture and design should not prohibit realization of these requirements in the future.

The Must Have and Nice to have requirements for the repository generation tool are described in detail based on
the ASML EPS document format. The rationale behind each of these requirements is given. The test strategies
that were used for testing each of these requirements are also explained.

4.2.1. Must Have Requirements (MReq)
The Must Have requirements regarding the Implementation Model Language and code generation are described
in Table 2.

Table 2: Must Have Requirements (MReq)

ID Description, Rationale, and Testing Ref.
MReq 1 Description: The repository generation tool must clearly separate domain

model and implementation model concepts. It must be possible to develop
domain models without polluting these models with implementation and
technology details.

Rationale: If the domain and implementation model concepts are not
separated, domain models would be highly coupled to specific
implementation technology. This would make changing implementation
technology without changing domain models impossible.

ASML
Architecture

Group

&

ASML
Metrology Group

22

Testing: This is tested by reviewing the design. The test passes if no
implementation specific concepts are added to the domain model language;
it fails otherwise.

MReq 2 Description: The tool must support dependencies between different
implementation models. It should be possible to refer to one model from
another. In this situation the referred model must stay unchanged.

Rationale: without this feature, it would not be possible to reuse existing
implementation models.

Testing: This is tested by reusing an existing implementation model while
creating another model. It was possible to reference from the new model to
the existing model. The referred model also stayed unchanged. This is also
tested through reviews by supervisors and stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 3 Description: The implementation model language must support selection of
implementation choices regarding the concepts:

 MReq 3.1: Storage.
 MReq 3.2: Orientation.
 MReq 3.3: Communication.
 MReq 3.4: Target Identifier.
 MReq 3.5: ID Strategy.
 MReq 3.6: ASML SW Component.
 MReq 3.7: Visibility.
 MReq 3.8: Target Path.
 MReq 3.9: Target Language.
The detailed description of these concepts can be found in Section 3.6 of
Chapter 3.

Rationale: Without the ability to easily change these settings, it would not be
possible to make implementation choices for repository generation without
touching the domain model.

Testing: This is tested by creating implementation models based on a
domain. The ability to create instances of each of these concepts is also
tested. This is also tested through reviews by supervisors and stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 4 Description: The tool must provide a textual editor for creating
implementation models.

Rationale: For usability reasons, such as ease of use, convenience, and the
ability to easily compare and merge model instances, stakeholders preferred
a textual editor over a graphical one.

Testing: This is tested by creating several implementation models for several
domain models model by using this textual editor. This is also tested
through reviews by supervisors and stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 5 Description: The tool must provide a wizard for generating default
implementation models. These implementation models must be directly
usable without modification.

Rationale: Without this wizard, learning and getting started with the tool
would not be easy.

Testing: This feature is tested by using the wizard to generate
implementation models for a domain model. This is also tested through

ASML
Architecture

Group

23

reviews by supervisors and stakeholders.

MReq 6 Description: The implementation model language must support sharing
common settings between different implementation models with a minimal
modification.

Rationale: Without this feature, creating implementation models would be
time consuming and could involve writing more lines of code than required.

Testing: This is tested by creating multiple implementation models and
reusing model fragments to avoid repeating information in multiple models
as much as possible. This is also tested through reviews by supervisors and
stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 7 Description: the tool must support code generation for boost intraprocess
(heap or local memory) clone-oriented repositories.

Rationale: These kinds of repositories are required by another project within
the Metrology group.

Testing: This is tested by generating boost intraprocess clone-oriented
repositories for a domain model. The generated code has built successfully.
The correctness of the generated code is tested by using unit tests. The
correctness of design of generators and languages are also tested through
reviews by supervisors and stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 8 Description: the tool must support code generation for boost interprocess
(shared memory) clone-oriented repositories.

Rationale: These kinds of repositories are required by another project within
the Metrology group.

Testing: This is tested by generating boost interprocess clone-oriented
repositories for a domain model. The generated code has built successfully.
The correctness of design of generators and languages are also tested
through reviews by supervisors and stakeholders.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 9 Description: Using the implementation models with the existing version
management tools must be easily possible.

Rationale: Without this feature, it would not be possible to store and manage
implementation models by using the existing version management tools.

Testing: This is tested by creating an implementation model and storing
them in a GIT master branch. A new branch is created and the
implementation model is modified. It was possible to view the differences
and merge the new branch with the master branch.

ASML
Architecture

Group

MReq 10 Description: It must be possible to use the tool standalone on an ASML
computer.

Rationale: ASML software architects want to use the tool standalone on an
ASML computer. For example, the data architect uses the tool standalone to
create implementation models for core domain models and generate code
from them. If the tool cannot be used standalone on an ASML computer,
these architects will not be able to use it. Furthermore, the tool will be used
to analyze the system’s behavior by people who are not using the ASML
SW development environment. Therefore, the tool as a whole must be
runnable outside of the ASML software development environment.

ASML
Architecture

Group

24

Testing: This is tested by using the tool standalone on an ASML computer.

MReq 11 Description: The solution must be scalable against the number of elements
in a domain model. It must support repository generation from a domain
model with at least 100 Entities and 10 model imports.

Rationale: It is expected that models are of this size when applied within the
TWINSCAN system architecture.

Testing: This is tested by creating a domain model with 100 Entities and 10
model imports and generating a repository from this model.

ASML
Architecture

Group

MReq 12 Description: the tool must support validation of implementation models
against several validation rules defined by ASML data specialists and
software engineers before repository generation.

Rationale: Without this feature, it would not be possible to identify invalid
models that will result in generating code that does not build, or worse, code
that builds but produces incorrect or unexpected results when deployed in
the TWINSCAN system.

Testing: This is tested by validating a set of valid and invalid models.
Overviews of the validation errors that are automatically detected are shown.

ASML
Architecture

Group

MReq 13 Description: Regression tests must be provided to ensure that generated
repository implementation via the new version of the tool does not break the
functionality provided in the previous version.

Rationale: Without this feature, it would not be possible to identify
problems introduced during the evolution of the repository generation tool.
The behavior we want to test is not whether the generator is deterministic,
but if changes in the generation process do not lead to unwanted effects in
the generated code.

Testing: This is tested by running regression tests after repositories are
generated from domain models via a new version of the repository
generation tool.

ASML
Architecture

Group

&

 ASML
Metrology Group

MReq 14 Description: The solution must be based on open source technologies.

Rationale: The tool is deployed in the Eclipse-based WindRiver Workbench.
If the solution would be based on proprietary technologies, there would be a
possibility of vendor lock-in and unnecessary software costs.

Testing: This choice of technologies is discussed with supervisors and with
the ASML Software Development Environment Group.

ASML
Software

Development
Environment

Group

4.2.2. Nice to Have Requirements (NReq)
The Nice to have requirements regarding implementation models and repository generation are described below:

Table 3: Nice to Have Requirements (NReq)

ID Description, Rationale, and Testing Ref.
NReq 1 Description: the tool must support code generation for Boost

Intraprocess (Heap or local memory) reference-oriented repositories.

Rationale: These kinds of repositories are required by another project
within the Metrology group.

ASML
Architecture Group

&

25

Testing: This is tested by generating Boost Intraprocess reference-
oriented repositories for a domain model. The correctness of the
generated code is tested by using unit tests.

ASML
Metrology Group

NReq 2 Description: the tool must support code generation for Boost
Interprocess (Shared Memory) reference-oriented repositories.

Rationale: These kinds of repositories are required by another project
within the Metrology group.

Testing: This is tested by Boost Interprocess reference-oriented
repositories for a domain model. The correctness of the generated code
is tested by using unit tests

ASML
Architecture Group

&

ASML

Metrology Group

NReq 3 Description: The tool must be deployable in the ASML’s Eclipse-based
WindRiver Workbench for Linux environment. Since ASML is moving
towards the Eclipse Luna, the tool must be based on the Luna version of
Eclipse.

Rationale: ASML software architects and software engineers use the
Eclipse-based WindRiver Workbench as a development environment. If
the tool cannot be deployed in the WindRiver Workbench, it will not be
handy to be used by these architects and software engineers.

Testing: Since the ASML WindRiver workbench does not yet support
Eclipse Luna, the deployability of the tool is tested in an Eclipse Luna
in a standalone ASML computer. The tool will also be sent to the
ASML Software Development Environment Group for testing.

ASML
Architecture Group

&

ASML

Software
Development

Environment Group

NReq 4 Description: The tool must support relating the generated code to the
version of the repository generation tool, the domain model, and
implementation models.

Rationale: Without this feature, it may not be easy to trace the versions
of domain and implementation models, version of the tool from which
this code is generated during maintenance and diagnostics.

Testing: This is tested by manually checking the generated code. The
test passes if the generated code contains information about the versions
of the domain model, the repository generation tool, and the
implementation model, it fails otherwise.

ASML
Metrology Group

4.2.3. Won’t have requirements (WReq)

Table 4: Won’t have Requirements (WReq)

ID Description, Rationale, and Testing Ref.
WReq 1 Description: the tool supports C++ code generation for database

repositories.

Rationale: Without this it will not be possible to store non-volatile
Entities in database repositories.

Testing: This is tested by generating a database repository
implementation for a domain model containing non-volatile Entities.
The correctness of the generated code is tested by using unit tests.

ASML
Architecture Group

&

ASML
Metrology Group

26

WReq 2 Description: the tool supports C++ code generation for disk based

repositories.

Rationale: Without this it will not be possible to store non-volatile
Entities in disk based repositories.

Testing: This is tested by generating a disk based repository
implementation for a domain model containing non-volatile Entities.
The correctness of the generated code is tested by using unit tests.

ASML
Architecture Group

&

ASML
Metrology Group

WReq 3 Description: the tool supports python code generation.

Rationale: Without this it will not be possible to generate python
repositories from domain models.

Testing: This is tested by generating a python repository implementation
for a core domain model. The correctness of the generated code is tested
by using unit tests.

ASML
Architecture Group

&

ASML
Metrology Group

4.3 Use cases
The main interactions between the primary actors and the repository generation tool are described by using the
use case diagram shown in Figure 17. The primary actors are identified from the stakeholders discussed in
Chapter 2. These primary actors are stakeholders that directly interact with the system and initiate a service to
accomplish a certain goal. The user actor represents the ASML data architects and software engineers. Since the
activities of the data architects and software engineers do not differ, they are both mapped to the generic user
actor.

27

Figure 17: The main use cases, showing the interactions of primary actors with the repository generation tool.

The order in which these use cases are executed is described by using the activity diagram in Figure 18.

Figure 18: Process View, showing the order in which the use cases of the repository generation tool are

executed.

28

4.4 Use case description
The detailed description of the use cases introduced in the previous Section is given below. These detailed use
case descriptions are written using the templates defined by Cockburn [5].

4.4.1. Create imp-model use case
Use Case RGT1
Name: Create imp-model
Scope: Repository Generation Tool (RGT)
Level: User goal
Primary Actor: User (Data Architect (DA) or Software Engineer (SE))
Stakeholders & Interests: DA – wants to define implementation models for core domain models.
 SE – wants to define implementation models for extension domain models.
Precondition: domain model exists.
Minimal Guarantees: Users are able to generate default implementation model from their domain
 model through a wizard.
Success Guarantees: DA/SE has created imp-model.

Main Success Scenario:

1. User selects storage kind.
2. User selects orientation kind.
3. User selects communication.
4. User selects ID strategy.
5. User selects target implementation language.
6. User selects target ASML component.
7. User selects visibility for the generated code.
8. User selects the domain model elements for which this implementation model is applicable.

Extensions:

1a – 8a. User does not know how to create implementation models:
 1a1 – 8a1. RGT provides a wizard from which a default implementation model can be generated.

1a – 7a. User wants to use settings from existing implementation models.
 1a1 – 7a1. RGT provides a means to reuse these settings.

4.4.2. Generate from Wizard use case
Use Case RGT2
Name: Generate from Wizard
Scope: Repository Generation Tool (RGT)
Level: User goal
Primary Actor: User (Data Architect (DA) or Software Engineer (SE))
Stakeholders & Interests: DA – wants to generate default imp-model from core domain model.
 SE – wants to generate default imp-model from extension domain model.
Precondition: domain model exists.
Minimal Guarantees: RGT warns when users try to overwrite existing domain models.
Success Guarantees: DA/SE has generated default implementation model.

Main Success Scenario:

1. User selects domain model.
2. User requests default imp-model generation through a wizard.
3. RGT checks if imp-model with the default name exists already.
4. RGT presents warning messages if imp-models already exist.
5. User decides to generate the default imp-model.
6. RGT generates the default imp-model from the domain model.

29

Extensions:

1a. User does not want to overwrite existing imp-models:
1a1. RGT gives users the ability to quit the imp-model generation.

4.4.3. Generate Code use case
Use Case RGT3
Name: Generate Code
Scope: Repository Generation Tool (RGT)
Level: User goal
Primary Actor: User (Data Architect (DA) or Software Engineer (SE))
Stakeholders & Interests: DA – wants to generate code from core domain model based on imp-model
 for this core domain model.
 SE – wants to generate code from extension domain model based on imp-
 model.
Precondition: imp-model and its corresponding domain model exist.
Minimal Guarantees: RGT – does not generate code for invalid models
 RGT – informs the user that models are invalid.
Success Guarantees: DA/SE has generated code from domain models based on their imp-models.

Main Success Scenario:

1. User requests code generation.
2. RGT checks if models are valid.
3. RGT generates code.

Extensions:

2a. RGT detects invalid models
 2a1. RGT reports about violated rules to the user.
 2a2. User quits code generation or corrects his models.

4.4.4. Validate Model use case
Use Case RGT4
Name: Validate Model
Scope: Repository Generation Tool (RGT)
Level: User goal
Primary Actor: User (Data Architect (DA) or Software Engineer (SE)), RGT
Stakeholders & Interests: DA – wants to validate the imp-model for his core domain models.
 SE – wants to validate the imp-models for his extension domain models.
 RGT – wants to check validity of models before code generation.
Precondition: imp-model and its corresponding domain model exist.
Minimal Guarantees: RGT – reports violated rules to the user.
Success Guarantees: DA/SE has validated his model.

Main Success Scenario:

1. User/RGT requests model validation.
2. RGT checks model validity.
3. RGT reports violated rules to the user.

Extensions:

None

30

4.4.5. Test Code use case
Use Case RGT4
Name: Test Code
Scope: Repository Generation Tool (RGT)
Level: User goal
Primary Actor: User (Data Architect (DA) or Software Engineer (SE))
Stakeholders & Interests: User – wants to check if previous features are not broken after code
 generation with a new version of the RGT.
Precondition: Repository generation tool has changed.
Minimal Guarantees: RGT – reports the results of this check to the users.
Success Guarantees: DA/SE has checked the new generation does not break previous features.

Main Success Scenario:

1. User requests regression test run.
2. RGT runs tests.
3. RGT reports results to the user.

Extensions:

None

31

5.System Architecture

The requirements for the repository generation tool are discussed in Chapter 4. The purpose of this chapter is to
describe the high level architecture of the repository generation tool and document the architectural tradeoffs
made in this project.

5.1 High Level Architecture
The Repository Generation Tool enables users to generate repository implementation from domain models
based on choices in implementation models. The reference architecture of the Repository Generation Tool
consists of several components that realize the different functionalities that it provides. The dependencies
between these components are shown in the architecture. The details of these dependencies are discussed in
Section 5.4 in the 4+1 Architectural Model [6]. The high level reference architecture is shown in Figure 19.

Figure 19: Reference Architecture, showing the components that realize the required functionalities. The

grayed out components are existing components.

The different components in the reference architecture are briefly explained below.

1. Implementation Model Language
This component represents a domain specific language for defining implementation models.
Implementation Models, imp-models for short, are the choices made by software engineers regarding
repository implementation technology details and the domain model elements for which this
implementation model is applicable. To allow referring to domain model elements from implementation
models, the implementation model language depends on the domain model language.

2. Implementation Model Editor
This component represents a textual editor for implementation models. Since the syntax rules in the
implementation model editor require metaclasses from the implementation model language, this component
depends on the implementation model language.

3. Repository Generator
This component represents several modules containing various model-to-text transformation templates to
enable users to generate repository implementations from domain models based on implementation models.
To be able to process both implementation and domain models during code generation, this component
depends on the implementation model and domain model languages.

4. Implementation Model Wizard
This component is a model-to-text transformation module to realize generation of initial implementation
models from domain models for usability reasons. The generation of implementation models is from textual

32

and/or graphical representations of the domain model. This component depends on the implementation
model language, implementation model editor, domain model language, and domain model editor.

5. Implementation Model Validation
This component represents an implementation model validation module to identify invalid implementation
models when generating code. To be able to process both implementation and domain models during
validation, this component depends on the implementation and domain model languages.

6. Domain Model Language
This component represents an existing domain specific language for defining domain models. This
component does not depend on any other component in the reference architecture. Since the goal of the
repository generation tool is generating code from domain models, all components in the reference
architecture except the Implementation Model Editor depend on the domain model language.

7. Domain Model Editor
This component represents existing textual and graphical editors for domain models. Since the syntax rules
in the domain model editor require metaclasses from the domain model language, this component depends
on the domain model language.

5.2 Architectural Notations
The structural and behavioral aspects of the architecture of the repository generation tool are described using a
combination of UML and an ASML specific language called Language Modeling Language. The Language
Modeling Language is used for modeling language architectures, dependencies, and model transformations
within ASML. Since the language is under development, there is no literature reference for the notations used in
this language. Therefore, the semantics of the notations that are used in the rest of this report are provided in
Table 5.

Table 5: Language Modeling Language Notations that are used in the rest of this report.

No.

Notation Semantics

1

This notation represents a language definition.

2

This notation represents a model-to-text transformation.

3

This notation represents an editor of a language.

4

As indicated by its stereotype, this notation represents language
dependency.

5

The semantics of this notation is determined by its stereotype. If its
stereotype is <<edits>>, it represents the relationship between a
language and an editor. If no stereotype is specified, it represents input
or output language definitions of a transformation.

33

5.3 The Adapted MDA-based Approach
Model Driven Architecture (MDA) is an approach to software systems in which the specification of system
functionality is separated from the specification of the implementation on a specific technology [7]. In this way,
MDA promises a long-term flexibility with respect to technology choices. To realize flexibility in our
architecture by decoupling domain models from repository implementation technology details, two MDA-based
approaches are considered. These approaches are: the MDA-based approach shown in Figure 20 and its adapted
lightweight version shown in Figure 21. To help readers understand the correspondences between our models
and the MDA models, a brief description is given below.

1. Domain Models
Domain models represent the data aspects of the TWINSCAN system. These models are purely about data
regardless of repository implementation technology-specific details. These domain models correspond to
the Platform Independent Models (PIM) of the MDA. Domain models conform to the Domain Model
Language.

2. Implementation Models (imp-models)
Implementation Models, imp-models for short, are the choices made by software engineers regarding
repository implementation technology details and the domain model elements for which this
implementation model is applicable. The goal of these implementation models is twofold: it prevents
pollution of the domain model with implementation details and it allows the generation of different
repositories from the same domain model to facilitate storing and sharing of data at run-time. These models
correspond to the platform specific information added to the PIMs while generating Platform Specific
Models (PSM) in the Model-to-Model Transformation (M2M) step of the MDA. Implementation models
conform to the Implementation Model Language.

3. Repository Generator
The Repository Generator performs the generation of a repository implementation from domain models.
The Repository Generator corresponds to the Model-to-Text Transformation (M2T) step of the MDA.

In the MDA-based approach, the input to the Repository Generator is a PSM, as shown in Figure 20. PSMs are
automatically derived from domain models and implementation models through a M2M. During this
transformation step, the repository implementation-specific information contained in imp-models is incorporated
into domain models. To realize the ability to refer to domain model elements from implementation models, we
introduce a dependency between the Implementation Model and the Domain Model Languages.

Figure 20: The MDA-based approach

In the adapted MDA-based approach, the implementation models and domain models are direct inputs to the
Repository Generator, as shown in Figure 21.

34

Figure 21: The Adapted MDA-based Approach

The main difference between the two approaches is the input models to the RepositoryGenerator. In the MDA-
based approach, the PSM is the input to the RepositoryGenerator. In this approach, the PSMGenerator and
PlastformSpecificLanguage definition are required to derive the PSM from domain models and imp-models.
This approach is in line with the original MDA approach of the Object Management Group (OMG). In the
adapted MDA-based approach, the domain models and imp-models are direct inputs to the RepositoryGenerator.
Since we do not have PSMs in this approach, the PSMGenerator and PlatformSpecficLanguage definition that
are necessary in the previous approach are not required. With respect to functionality, both approaches fit for
our purpose.

Since the PSMGenerator and PlatformSpecificLanguage components are not required, the adapted MDA
approach is lightweight. Furthermore, since a similar approach is being used in other projects within ASML,
stakeholders preferred the adapted MDA approach over the MDA-based approach. Therefore, we selected the
adapted MDA-based approach in this project.

5.4 The 4+1 Architectural Model
The 4+1 Architectural Model describes a system by using multiple views to separately address the concerns of
multiple stakeholders [6]. The different aspects of the repository generation tool are described by using selected
views of the 4+1 architectural model. The dependencies between the components in the reference architecture
are described in the logical view. The deployment of the repository generation tool is described in the
deployment view. Although the use case view of the 4+1 architectural model is relevant for this project, it is not
described in this section. This is because the system level use cases are detailed in Chapter 4.

5.5 Logical View
In this view, the high level architecture of the repository generation tool is described by focusing on different
parts of the architecture at a time. The dependencies between the Implementation Model Language, Domain
Model Language, Repository Generator, Implementation Model Editor, Domain Model Editor, and Target
Language are shown in Figure 22. The Implementation Model Editor edits the Implementation Model
Language. To allow referring to domain model elements from implementation models, the Implementation
Model Language depends on the Domain Model Language. The Repository Generator component takes
implementation models that conform to the Implementation Model Language and domain models that conform

35

to the Domain Model Language as an input. The Repository Generator produces repository code in the selected
target implementation language.

Figure 22: Logical View of the Repository Generation

The dependencies between the Implementation Model Wizard, Implementation Model Language, and Domain
Model Language components are shown in Figure 23. The Implementation Model Wizard component takes
domain models that conform to the Domain Model Language as an input and produces implementation models
that conform to the Implementation Model Language.

Figure 23: Logical View of the Implementation Model Wizard

36

The dependencies between the Implementation Model Validation, Implementation Model Language, and
Domain Model Language components are shown in Figure 24. The Implementation Model Validation takes
implementation models and domain models as an input and produces error messages that conform to the
selected error reporting format.

Figure 24: Logical View of the Implementation Model Validation

5.6 Deployment View
The repository generation tool is integrated with a bigger data modeling tool suite called a DCA Tool. The
Domain Model Language and Domain Model Editor in which the repository generation tool depends on are part
of the DCA Tool. The repository generation tool, together with the DCA Tool, is entirely deployed within
eclipse. The Eclipse Modeling Framework provides a runtime environment to all of the components in these
tools, as shown in Figure 25.

Figure 25: Deployment view of the repository generation tool, together with the DCA Tool.

37

5.7 Architectural Principle
The core architectural principle behind the major functionalities of the Repository Generation Tool is the recipe-
ingredient approach in a cookbook. This principle is briefly explained in this section. The detailed design of this
architectural principle is presented in Chapter 6.

The architecture of the Repository Generator and Implementation Model Language components is inspired by
the analogies of meals, recipes, and ingredients in a cookbook. The generated code resembles the meal to be
cooked by the generator. For this, the generator uses a recipe represented by an implementation model. The
recipe consists of ingredient that state details affecting the generation process. The ingredients can be reused in
multiple recipes. So, configuration details can be reused over multiple recipes.

To maintain a high flexibility, the repository generator and the implementation model language components are
designed to work based on the recipe-ingredient architectural principle. The implementation model language
component deals with the creation of recipes and ingredients. Recipes specify the repository implementation
details as ingredients and refer to the domain model elements for which code must be generated. The main
ingredients of the implementation model language are the repository-implementation-specific concepts
explained in Chapter 3. To generate the right repository from the domain model, the repository generator
component requires an implementation model containing a recipe. This recipe combines the ingredients and
refers to domain model elements. The referred domain model elements are elements for which this recipe is
applicable. The repository generator generates the right repositories based on the recipes in the implementation
model.

This recipe-ingredient based flexible architecture allows ASML data architects and software engineers to easily
define specific recipes or change ingredients whenever different repositories are needed. The decision to model
ingredients as a separate concept in the implementation model language is to allow reusing ingredients in
multiple recipes.

5.7.1. Domain Model Elements
The domain model elements that are considered during repository generation are: Entities, ValueObjects,
Enumerations, Types, and DomainModels. Code is generated for Entities, ValueObjects, Enumerations, and
Types. Repositories are generated only for Entities. ValueObjects do not have dedicated repositories. They are
stored together with the Entities they are part of. Each of these elements of domain models is explained in
Chapter 3 as part of the domain analysis.

5.7.2. Ingredients
The main ingredients for repository generation are: storage, orientation, communication, ID strategy, target
identifier, and target language. Each of these ingredients is explained in Chapter 3.

5.7.3. Recipes
Recipes combine selected ingredients and refer to domain model elements for repository generation. In this
project we identify five Types of recipes. These recipes are: EntityRecipe, ValueObjectRecipe,
EnumerationRecipe, TypeRecipe, and DomainModelRecipe. These recipes specify ingredients for each of the
domain model elements they refer to.

5.8 Implementation Model Architecture
We have seen that an implementation model is composed of recipes and ingredients. In this section, we focus on
the relationships of implementation models and domain models. The Language Modeling Language which is
used to model language architectures within ASML does not allow modeling dependencies between model
instances. Therefore, to help visualize the Implementation Model Architecture with examples, UML object
diagrams are used. To tackle the scalability design challenge, the architecture allows definition of multiple
implementation models of manageable size per domain model. For example, it is allowed to create three
implementation model instances that correspond to a single domain model instance, as shown in Figure 26. In
this way, the architecture can handle arbitrarily large domain models.

In general, an implementation model can be one of the following types:

1. Implementation model containing only ingredients, as shown in Appendix 2.

38

2. Implementation model containing only super recipes that can be extended by specific recipes, as shown
in Appendix 3.

3. Implementation model containing recipes that can be used as a direct input for code generation, as
shown in Appendix 4.

4. Implementation model containing combinations of the above which may be used for code generation.

It is up to the users to decide on how to organize their implementation models. However, the first and second
types of models should never be used as a direct input for code generation. They should only be used to support
code generation. The implementation models containing recipes for a domain model and its elements are used as
a direct input for code generation.

Figure 26: Implementation Model Architecture, Scalability

To be able to compose bigger models from smaller ones, a domain model can refer to elements of another
domain model. For example, DomainModel1 imports DomainModel2, as shown in Figure 27. In this situation,
the implementation model corresponding to DomainModel1 which is ImplementationModel1 must import the
implementation model corresponding to DomainModel2 which is ImplementationModel2. This helps the code
generator find code generation recipes for the referred elements of DomainModel2.

39

Figure 27: Implementation Model Architecture, dependency between

imp-models and domain models

41

6.System Design
The high level architecture of the repository generation tool is discussed in Chapter 5. The purpose of this
chapter is to discuss the detailed design of the components in the reference architecture. These components are:
Implementation Model Language, Implementation Model Editor, Repository Generator, Implementation Model
Wizard, and Implementation Model Validation. The tradeoff design decisions that guided the design process are
also documented.

6.1 Implementation Model Language Design
The implementation model language is a domain specific modeling language used to specify implementation
details of a domain model for repository generation. At the heart of the implementation model language design
is the recipe-ingredient philosophy. Recipes are created by selecting appropriate ingredients and the domain
model elements for which this recipe is applicable. These recipes guide the code generator in generating the
right repositories from a domain model. To realize the implementation model language, various metamodels are
defined. Since the repository generation tool must be based on open source technologies that are deployable in
Eclipse, the Eclipse Modeling Framework (EMF) [8] is selected as the metamodeling framework in this project.
EMF provides Ecore as the metamodeling language. Therefore, the various metamodels of the implementation
model language are defined in Ecore.

Part of the metamodel of the implementation model language is shown in Figure 28. The concept
ImplementationModel is the container of all implementation model elements. All concepts in the
implementation model language are NamedElements. ImplementationModel contains zero or more Ingredients,
Recipes, and Imports. The decision to model the multiplicities of the ingredient, recipe, and import associations
as zero or more each is to allow creation of implementation model instances with only Ingredients or only
Recipes. The concept Import allows importing domain models and implementation models into scope. The
imported domain models are reused or referred to from implementation models while defining recipes. The
ImplementationModel concept provides getAllRecipes() API to retrieve all recipes that are in the scope of the
implementation model. This includes recipes that are imported.

Figure 28: Implementation Model Language Metamodel

42

6.2 Modeling Ingredients
Ingredients represent the possible options of configurable parameters for repository generation from a domain
model. These ingredients are used while defining a recipe. Modeling ingredients as separate concepts and
modeling ingredients as attributes of recipes are two complementary modeling paradigms that have been
considered for this work. In the effort of finding a balance between the two paradigms, they are compared to one
another according to selected criteria: scalability, simplicity, localization of change, and reusability, as shown in
Table 6.

Table 6: Modeling ingredients as separate concepts and Modeling ingredients as attributes of recipes.

No. Criteria Ingredients as separate concepts Ingredients as attributes of recipes
1 Scalability + -
2 Simplicity - +
3 Localization of

change
+ -

4 Reusability + -

Since the ingredients are expected to grow in the future, the scalability criterion is selected as relevant while
modeling ingredients. As can be seen from this comparison table, modeling ingredients as separate concepts is
more scalable than modeling ingredients as attributes of recipes with respect to the number of parameters of an
ingredient. Modeling ingredients as attributes of recipes is not suitable when the ingredient has its own
parameters.

Furthermore, modeling ingredients as separate concepts has scored higher with respect to localization of change.
Since the metamodel of recipes need to change in order to support newly introduced ingredients, the criterion
localization of change is selected as relevant while modeling ingredients. Over the course of this project, we
have observed that the ingredients change more often than the recipes. It is recommended to model concepts that
change more often separately from concepts that are stable. Therefore, modeling ingredients as separate
concepts has scored higher than modeling ingredients as attributes of recipes with respect to localization of
change.

However, modeling ingredients that are not parameterized as separate concepts can be overkill. Modeling
ingredients as attributes of recipes is a lightweight alternative when ingredients are not parameterized. For this
reason, the modeling ingredients as attributes paradigm has scored higher than modeling ingredients as separate
concepts with respect to simplicity. However, in the modeling ingredients as separate concepts paradigm,
simplicity is improved by proving a functionality to generate initial ingredients through a wizard.

Modeling ingredients as separate concepts allows the ingredients to be reused over multiple recipes. Modeling
ingredients as attributes of recipes makes ingredients tightly coupled with a particular recipe. Reusing these
tightly coupled ingredients is not easily possible. Therefore, modeling ingredients as separate concepts has
scored higher than modeling ingredients as attributes of recipes with respect to the criterion reusability.

In most of the criteria, since modeling ingredients as a separate concept has scored higher than modeling
ingredients as attributes of recipes, the modeling ingredients as separate concepts is used extensively. However,
to benefit from the simplicity of modeling ingredients as attributes of recipes, we have decided to apply both
approaches whenever appropriate. The DomainModelRecipe and EnumerationRecipes are specifically designed
based on the combination of both paradigms.

6.2.1. Modeling Ingredients as separate concepts
The metamodel of the ingredients modeled as separate concepts is shown in Figure 29. The ingredients with a
finite number of values that are not expected to grow in the foreseeable future are modeled as Enumerations.
Furthermore, the ingredients modeled as Enumerations cannot be parameterized. OrientationKind and
CommunicationKind are good examples for this scenario. The ingredients that are expected to be extended are
modeled as classes. These ingredients can be extended through parameterization and/or inheritance hierarchy.
For this reason, the ingredients Storage and TargetLanguage are modeled as inheritance hierarchies.

43

Figure 29: Ingredients Metamodel, Ingredients are modeled as separate concepts

Each of the concepts in the ingredients metamodel is discussed below.

1. Storage
The concept Storage is needed to determine where to store domain models. It provides the options: Memory,
Database, and Disk based repositories. The Storage concept is modeled as an abstract super type of the abstract
concepts Memory, Database, and Disk. To simplify shared memory management and interprocess
communication, the Boost library is chosen as a preferred in memory storage implementation [9]. Boost is the
only concrete storage option supported at the moment.

2. Orientation
The concept Orientation is needed to determine how to update repositories containing data as defined by domain
models. It provides the options: CloneOriented, ReferenceOriented, and PartialCloning. These three options are
modeled as an enumeration, namely OrientationKind.

3. Communication
The concept Communication is needed to determine how to share repositories between processes. This concept
is modeled as a concrete type of the concept ingredient. Communication provides the options: Intraprocess and
Interprocess. These options are modeled as an enumeration, namely CommunicationKind. Intraprocess
represents heap (local memory) implementation of repositories that can be used within one process. Interprocess
implies a repository implementation that can be shared between processes.

4. ID Strategy
The concept IDStrategy is needed to determine how to uniquely identify Entities in a repository. This concept is
modeled as a concrete type of ingredient. IDStrategy provides the options: UUID, String, Incrementing Integer,
and Random Number. These options are modeled as an enumeration, namely IDStrategyKind.

5. TargetIdentifier
TargetIdentifier is needed to encapsulate identifier names and, if necessary, include filenames for system and/or
user defined files. These TargetIdentifiers are used to map Types in the domain model to corresponding target
artifacts during code generation. For example, consider the implementation model snippet shown in Figure 30.

44

Figure 30: Example TargetIdentifiers

Each of the TargetIdentifiers in the implementation model snippet above is briefly discussed below.

i. double
This defines an identifier named double. This TargetIdentifier can be used while mapping a Double Type in the
domain model to the primitive type double in C++.

ii. string
This defines an identifier named string. This TargetIdentifier can be used while mapping a String Type in the
domain model to the primitive type string in C++. This ingredient includes a system file reference for the C++
string primitive type.

iii. dateTime
This defines an identifier named dateTime. This TargetIdentifier is used while mapping dataTime Type in the
domain model to a C++ legacy date time. This ingredient includes a user defined file reference for the
PLXAtimestamp type.

iv. scanner
This defines an identifier named Scanner. This TargetIdentifier can be used as a target name of the artifacts that
must be generated from a Type in the domain model during code generation.

6. TargetLanguage
The concept TargetLanguage is needed to determine which implementation language to use for the repository
implementation. This concept is modeled as an abstract subtype of the abstract concept ingredient.
TargetLanguage provides the options: C++ and Python. At the moment only C++ is supported with a possibility
to choose file extensions for header files. The file extensions for C++ header files are: HPP and H. These file
extensions are modeled as enumerations, namely HeaderExtensionKind.

6.2.2. Modeling ingredients as attributes of recipes
In the previous section, the ingredients that are modeled as separate concepts are presented. In this section, the
ingredients that are modeled as attributes of recipes are introduced. These ingredients are: component, visibility,
and target path. These ingredients are modeled as attributes of the DomainModelRecipe.

1. Component
To minimize configuration complexity, models and the generated code are stored together within one ASML
software component. Users are provided with a flexible way of specifying an ASML software component for
storing the generated code. This is realized by using the component ingredients, which is modeled as an attribute
of the DomainModelRecipe. It gives the option of providing a component to the entire domain model.

45

2. Visibility
The concept visibility provides a flexible way of specifying whether a model and the corresponding generated
code is visible outside of the ASML software component or not. It provides the options: Internal and External.
These options are modeled as an enumeration, namely VisibilityKind. Internal models and code are meant to be
used within one component. External models and code contain elements that are shared or referred to by other
models and code from external ASML software components.

3. TargetPath
The concept targetPath provides a flexible choice of where to store the generated artifacts with respect to the
location of the domain model. This is modeled as a string attribute of the DomainModelRecipe.

6.3 Modeling Recipes
Based on an extensive domain analysis and discussions with stakeholders, five kinds of recipes are identified:
EntityRecipe, ValueObjectRecipe, TypeRecipe, EnumerationRecipe, and DomainModelRecipe. The Metamodel
of these recipes is shown in Figure 31. The getElements() API is used to retrieve the domain model elements
that are referred to by each of the recipes.

Figure 31: Recipes Metamodel

To minimize the effort required to create recipes, two design options are considered. These design options allow
reusing existing super recipes as much as possible. The first design option is combining the composite pattern
with the recipe-ingredient approach to allow nesting sub-recipes within super recipes. The second design option
is introducing extension to the recipe-ingredient approach to allow extending super recipes by special ones.

1. Composite pattern
The composite pattern [10] based approach allows nesting specialized sub-recipes inside super recipes. The
metamodel of this design approach applied to EntityRecipes and EnumerationRecipes is shown in Figure 32.

46

Figure 32: Composite Pattern

This design approach minimizes the effort required to create a recipe by allowing reusing super recipes while
defining sub-recipes. For example, the SuperEntityRecipe shown in Figure 33 is reused while defining the
specialized CoreModelEntityRecipe, as shown in Figure 34. The SuperEntityRecipe specifies the ingredients:
storage, orientation, communication, and strategy.

Figure 33: Super EntityRecipe that can be reused in specialized recipes.

Sub-recipes inherit ingredients from their container super recipes. Users can also redefine ingredients in sub-
recipes according to their needs. For example, the CoreModelEntityRecipe inherits the ingredients specified by
the SuperEntityRecipe and redefines its own communication.

We can see that the CoreModelEntityRecipe is contained inside the SuperEntityRecipe. Therefore, defining
specialized sub-recipes require modification of stable super recipes. Since sub-recipes are physically contained
inside super recipes, maintaining and creating new sub-recipes require modifying the stable super recipes. This
is against the Open/Closed principle of software design. In our context, this principle means that models must be
open for extension and closed for modification.

47

Figure 34: Specialized CoreModelEntityRecipe contained inside SuperEntityRecipe

Furthermore, the composite pattern based approach has a consequence on how ownership is managed within
ASML. We have stable implementation models that correspond to core domain models. These implementation
models are owned and can only be modified by ASML data architects. ASML software engineers are not
allowed to modify these stable implementation models. Software engineers can only reuse these implementation
models without modifying them. Unfortunately, in the composite pattern approach, the only way to reuse these
stable super recipes is to define specialized sub-recipes inside them, as shown in Figure 34.

2. Extension
In this design approach, specialized recipes extend super recipes. The ingredients in the super recipe are
inherited by the specialized ones. Users can also redefine ingredients in the specialized recipes according to their
needs. The Entities, ValueObjects, Types, Enumerations, and DomainModels that are referred to by super
recipes are not inherited. Every recipe for code generation needs to define its own Entities, ValueObjects,
Types, Enumerations, and DomainModels. If it would be possible to inherit Entities, ValueObjects, Types,
Enumerations, and DomainModels, the code generator would, for example, generate more than one repository
for a single entity. To minimize complexity and ambiguity, special recipes can extend only one super recipe. In
this way, we tackled the well-known multiple inheritance diamond problem. In our context, extending multiple
recipes would lead to an ambiguity on which version of ingredient to obtain from super recipes. These rules also
apply to the composite pattern based approach.

Unlike the composite pattern based approach, this design approach allows reusing stable super recipes without
having to modify them. This is realized by the ‘extends’ feature of recipes. Super recipes are physically located
outside of the specialized recipes. Therefore, specialized recipes can be maintained without having to modify the
stable super recipes and vice versa. For example, the CoreModelEntityRecipe in the implementation model
snippet in Figure 35 extends the SuperEntityRecipe in the implementation model snippet in Figure 33.

Figure 35: Specialized CoreModelEntityRecipe extends SuperEntityRecipe

An ingredient can be defined inside a recipe or inherited from the hierarchy of its super recipes. The order of
extension hierarchy determines the value of these ingredients. To find the value of ingredients in a recipe, the
ingredient is checked inside this recipe. If the value of the ingredient is not defined inside this recipe, its direct

48

super recipe is checked. If the direct super recipe has defined that ingredient, the search stops and the value of
the ingredient is returned. The search for the value of an ingredient continues until the recipe is the highest
recipe in the extension hierarchy. In the implementation model snippet in Figure 35, the ingredients: storage,
orientation, and ID strategy are not defined inside CoreModelEntityRecipe. Therefore, the direct super recipe of
the CoreModelEntityRecipe, which is SuperEntityRecipe is checked. Since the SuperEntityRecipe has defined
these ingredients, the search stops and the values are returned. If an ingredient is defined neither in a specialized
recipe nor its super recipes, default conventions are applied. To automate this entire search operation, we have
developed special getter APIs for each of our ingredients. These special getter APIs are embedded into the
definition of the implementation model language in OCLinEcore.

Furthermore, ASML data architects are able to own implementation models for core domain models. This is
because ASML software engineers are able to use this core implementation models though the ‘extends’ feature
without modifying stable super recipes.

The composite pattern and extension based approaches are both implemented and compared to one another with
respect to the selected criteria: reusability, maintainability, and ownership. The result of this comparison is
shown in Table 7.

Table 7: Comparison of Composite pattern and Extension based design approaches

No. Criteria

C
om

po
si

te

 p
at

te
rn

E
xt

en
si

on
 Motivation

1 Reusability + + As explained in Section 2.5 reusability is one of the design
criteria selected in this project. Reusability is selected to
minimize the effort required to realize code generation by
reusing existing model fragments. Both the composite pattern
and extension based approaches allow reusing super recipes.

2 Maintainability - + In the composite pattern based approach, specialized recipes
are physically stored inside super recipes, as shown in Figure
34. Therefore, whenever new specialized recipes are
introduced or existing ones change, stable super recipes are
modified. However, in the extension based approach,
specialized recipes are stored outside of super recipes, as
shown in the implementation model snippet in Figure 35.
Therefore, the extension based approach is more maintainable
than the composite pattern based approach.

3 Ownership - + ASML data architects own stable implementation models that
correspond to core domain models. These implementation
models can be reused by software engineers without modifying
them. The composite pattern based approach does not allow
reusing these stable implementation models without modifying
them. However, the extension based approach allows reusing
these stable implementation models without modifying them
through the ‘extends’ feature of recipes. Therefore, the
extension based approach is preferred over the composite
pattern based approach with respect to the criterion Ownership.

As shown in this comparison table, the extension design option scored higher than the composite pattern based
approach. Therefore, the extension design option is selected.

The extension references are introduced across individual recipes instead of the parent super recipe concept. The
decision to model the extension references across individual recipes instead of the parent super recipe is to
prevent the mistake of extending the wrong recipes. For example, if the extension reference would be in the
parent super recipe, as shown in Figure 36, it would be possible to extend EntityRecipes by

49

EnumerationRecipes. Extending EntityRecipes by EnumerationRecipes is not sensible to our domain. This is
because EntityRecipes are intended to only be extended by other specialized EntityRecipes and
EnumerationRecipes are intended to only be extended by other specialized EnumerationRecipes.

However, if the extension references are across each of the recipes, as shown in Figure 31, we can only extend
recipes that are meaningful according to the rules of our domain. Therefore, the mistake of extending
EntityRecipes by EnumerationRecipes is prevented.

Figure 36: Extension across the parent recipe concept

6.3.1. EntityRecipe
EntityRecipes with the relevant ingredients are applied to Entities. EntityRecipe contains the choices of
ingredients and a reference to the list of Entities whose repositories should be generated based on this recipe.
The ingredients that are applicable to EntityRecipe are: Storage, Orientation, Communication, IDStrategy, and
TargetIdentifier. An EntityRecipe provides specialized getter APIs for each of these ingredients. The Metamodel
of EntityRecipes is shown in Figure 37. Examples of EntityRecipe instances are shown in Figure 33 and Figure
35.

To allow the application of the same EntityRecipe across multiple Entities, the multiplicity of the entity
reference relationship is modeled as zero or more. This multiplicity starts from zero to allow creating a super
recipe containing the most common ingredients that cannot be applied to any particular entity. Special recipes
can extend this super recipe, redefine necessary ingredients, and finally refer to the applicable Entities in the
domain model. This applies to all kinds of recipes.

50

Figure 37: EntityRecipe Metamodel

6.3.2. ValueObjectRecipe
ValueObjectRecipes with the relevant ingredients are applied to ValueObjects. ValueObjectRecipe contains the
choices of ingredients and a reference to the list of ValueObjects whose code should be generated based on this
recipe. The ingredient that is applicable to ValueObjectRecipe is TargetIdentifier. A ValueObjectRecipe
provides a specialized getter API for the ingredient TargetIdentifier. The Metamodel of ValueObjectRecipes is
shown in Figure 38. An example ValueObjectRecipe instance is shown in the implementation model snippet in
Figure 39.

51

Figure 38: ValueObjectRecipe Metamodel

Figure 39: CoreModelValueObjectRecipe, ValueObjectRecipe instance

6.3.3. EnumerationRecipe
EnumerationRecipes with the relevant ingredients are applied to Enumerations. EnumerationRecipe contains the
choices of ingredients and a reference to the list of Enumeration Types whose code should be generated based
on this recipe. The ingredient that is applicable to EnumerationRecipe is TargetIdentifier. An
EnumerationRecipe provides a specialized getter API for the ingredient TargetIdentifier. The Metamodel of
EnumerationRecipes is shown in Figure 42.

Figure 40: CoreEnumerationRecipe, EnumerationRecipe instance without out LiteralMappings

EnumerationRecipe contains zero or more LiteralMappings. The concept LiteralMapping is introduced to
EnumerationRecipes to allow mapping EnumerationLiterals in the domain model into enumeration literals in a
legacy code.

52

Figure 41: CoreEnumerationRecipe, EnumerationRecipe instance with EnumerationLiterals

Figure 42: EnumerationRecipe Metamodel

6.3.4. TypeRecipe
TypeRecipes with the relevant ingredients are applied to Types. TypeRecipe contains the choices of ingredients
and a reference to the list of Types whose code should be generated based on this recipe. The ingredient that is
applicable to TypeRecipe is TargetIdentifier. A TypeRecipe provides a specialized getter API for the ingredient
TargetIdentifier. The Metamodel of EnumerationRecipes is shown in Figure 44.

Figure 43: DoubleTodouble, TypeRecipe instance

53

Figure 44: TypeRecipe Metamodel

6.3.5. DomainModelRecipe
DomainModelRecipes with the relevant ingredients are applied to domain models. DomainModelRecipe
contains the choices of ingredients and a reference to the list of domain models whose code should be generated
based on this recipe. The ingredients that are applicable to DomainModelRecipe are: component, visibility,
targetPath, and TargetLanguage. A DomainModelRecipe provides a specialized getter API for the ingredient
TargetLanguage. The Metamodel of DomainModelRecipes is shown in Figure 45.

Figure 45: DomainModelRecipe Metamodel

54

Figure 46: SuperDomainModelRecipe, DomainModelRecipe instance

Figure 47: CoreDomainModelRecipe extending SuperDomainModelRecipe

6.4 Implementation Model Editor
For usability reasons, such as speed and convenience, stakeholders preferred a textual editor for the
implementation model language over a graphical one. Therefore, only a textual editor is provided. Since
EMFText [11] and Xtext [12] can be used for specifying the textual editors of Ecore-based metamodels, they are
both considered for this work. To select the most suitable language from these two competitors, they are
compared to one another with respect to the criteria: simplicity, expertise, community support, and suitability.
The result of this comparison is shown in Table 8.

Table 8: Choice of a Language for Textual Syntax specification

No. Criteria

E
M

FT
ex

t

X
te

xt

Motivation

1 Simplicity + - EMFText is a lightweight syntax specification
language compared to Xtext.

2 Expertise + - ASML SW Architects have used EMFText to specify
the textual syntax of the domain model language.
Therefore, it was possible to find local support
whenever necessary.

3 Community support - + Xtext is the standard textual modeling language in the
Eclipse community. It has more active developer
community support than EMFText.

4 Suitability + - Xtext derives metamodels from the syntax
specification. While existing Ecore-based metamodels
can be used to generate a textual editor, this is not a
natural fit for Xtext. However, EMFText does not
derive metamodels from the syntax specification.
Existing Ecore-based metamodels are used as a basis
for creating textual editors. Since we have designed the
implementation model language Ecore-based
metamodel before defining the syntax, EMFText is
more suitable for our purpose than Xtext.

55

As can be seen from the comparison table, EMFText scored higher than Xtext in most of our criteria. Therefore,
EMFText is selected as the textual syntax specification language for the implementation model language.

6.5 Template Language Selection
Various components in the reference architecture, such as the Repository Generator, Implementation Model
Wizard, and Implementation Model Validation components are entirely or partially designed based on the M2T
approach of the MDA. Therefore, it was necessary to select an appropriate template language for realizing the
M2T approach. The Acceleo [13] and Xtend [14] template languages are considered for realizing M2T in this
work. To select the most appropriate M2T language for this project, these two template languages are compared
to one another with respect to the criteria: expertise, standardization, and suitability, as shown in Table 9.

Table 9: Choice of a Template Language for realizing M2T

No. Criteria

A
cc

el
eo

X
te

nd
 Motivation

1 Expertise + - Since we have a better expertise in Acceleo than Xtend,
Acceleo is the preferred M2T language than Xtend
with respect to expertise.

2 Standardization + - Acceleo is a standard code generation template
language based on the OMG specification for code
generation.

3 Suitability + + Acceleo and Xtend are both suitable for code
generation based on EMF models. Xtend integrates
seamlessly with Java. Acceleo provides a full-featured
IDE for developing code generation and a back door
for accessing Java services.

As can be seen from the comparison table above, the Acceleo template language has scored higher in two of the
three criteria. Therefore, the Acceleo template language is selected as the M2T language in this project.

6.6 Repository Generator Design
This component is responsible for generating the right repositories based on the ingredients of a recipe. In
addition to the ingredients specified in each of the recipes, this component considers the choices made at the
domain modeling level. These domain modeling level choices are volatility, immutability, multiplicities, and the
relationships between the domain model elements. The repository generator component consists of the various
modules shown in the dependency graph in Figure 48.

56

Figure 48: Dependency graph, showing the dependency between the template modules that realize the

repository generator.

The various modules in the RepositoryGenerator component can be grouped into three categories based on
responsibility. These are the GenerationController, the various generation modules, and the GenerationHelper.
Each of these categories is discussed below.

6.6.1. GenerationController
This module is the central controller of all the other transformation modules. It determines which transformation
module gets called based on the ingredients in a recipe. The main challenges in the design of this module are:
how to extract the ingredients from a recipe and how to better organize the other modules to generate code from
the domain model elements that are referred to from this recipe. To tackle this challenge, two design approaches
are considered. These approaches are: Visitor/Decorator and Straightforward approaches. Each of these two
design options are briefly discussed below.

1. Visitor/Decorator based approach
This approach is based on the visitor and decorator design patterns [10]. Typically, the strategy that comes to
mind when confronted with the problem of visiting an object structure is the visitor pattern. The visitor pattern is
used to visit every recipe and extract the corresponding ingredients and the referred domain model elements.
Furthermore, the visitor pattern is used to visit domain model structures to generate code for each of the
elements that are referred to from this recipe.

57

Since neither the domain model nor the implementation model languages are designed having the visitor pattern
in mind, directly applying the visitor pattern to the implementation and domain models is not possible. The
difficulty is that these models do not have the accept(Visitor :Object) method. This problem is tackled with the
decorator pattern. The Recipes of the implementation model language and Types of the domain model language
are decorated with the accept(Visitor :Object) method.

2. Straightforward approach
In this approach, the extraction of the domain model elements from a recipe is performed sequentially. The
controller iterates over the implementation model, taking all the recipes into account. The extraction of Entities
and ValueObjects to generate Entity interfaces, repository interfaces, and ValueObject interfaces is shown in the
sequence diagram in Figure 49.

Figure 49: Iteration over the implementation model to extract Entities and ValueObjects for code

generation

The controller determines the ingredients needed for a specific generation task through sequence of decisions
until the remaining decisions are trivial enough to be handled by the individual generation templates. The
decisions taken to determine the ingredients for code generation from Entities are shown in the activity diagram
in Figure 50.

Figure 50: Sequence of decisions made to determine the ingredients needed for a specific code generation

task

58

To select the most appropriate approach out of these two candidates, they are compared to one another based on
the criteria: design reuse, fitness for selected technology, code analyzability, ease of use from controller, lines of
code (LOC), and localization of change. The result of this comparison is shown in Table 10.

Table 10: Comparison of code generation approaches

No. Criteria

V
is

ito
r/

D
ec

or
at

or

St
ra

ig
ht

fo
rw

ar
d

 Motivation

1 Design reuse + - As indicated by its name, the Visitor/Decorator based
approach is based on the visitor and decorator design
patterns. The design and implementation strategies of these
patterns can safely be reused and tailored to solve the
problems at hand. However, the Straightforward approach is
developed from scratch.

2 Fitness for selected
Technology

- + Acceleo is selected as the model-to-text transformation
template language in this project. Unfortunately, the visitor
and decorator patterns are not a natural fit for this selected
template language. As indicated by the name, the
Straightforward approach was straightforward to implement
in Acceleo.

3 Code Analyzability - + To implement the Visitor/Decorator patterns in Acceleo, a
number of unnecessary indirections are introduced. This
makes the code less analyzable compared to its counterpart
implementation in the straightforward approach.

4 Ease of use from controller + - In the Visitor/Decorator based approach, users of the
GenerationController need to call only two methods:
visit(Visitor: Object) and accept(Element: Object). In the
Straightforward approach, many methods are involved.

5 Lines of code (LOC) - + For comparison purposes the same functionality of the
BoostIntraprocess repositories are implemented in both
design approaches. The Visitor/Decorator based approach
was implemented in 129 lines of code and the
Straightforward approach in 111.

6 Localization of Change + + For comparison purposes a new hypothetical recipe is
introduced into the domain model language. Localization of
the changes required to support this new recipe were
comparable in both design approaches.

According to the result of this comparison, the Straightforward approach has scored higher than the
Visitor/Decorator based approach. Therefore, the Straightforward approach is selected as the design strategy for
realizing the Repository Generator.

6.6.2. Generators
The various generators for repositories, Entities, ValueObjects, and Factories are responsible for generating the
right code based on the ingredients in their corresponding recipes. These generators are coordinated by the
GenerationController module.

59

6.6.3. GenerationHelper
The GenerationHelper module contains a number of queries that assists the various generators during code
generation. This GenerationHelper does not depend on other modules.

6.6.4. Supported features
Repository generation is supported for the features summarized in Table 11.

Table 11: Summary of features supported by the code generator.

Category Features Supported Options
Implementation Model
/Ingredients

Storage Boost
Orientation Clone
Communication Intraprocess / Heap

Interprocess / Shared Memory
IDStrategy UUID
TargetIdentifier
TargetLanguage C++, H and HPP header extensions
Component
Visibility Internal

External
targetPath

Domain Model Entity Volatile
Mutable
Contains ValueObject
Contains Enumeration
Contains Type
Contains legacy type
Association with other Entity
Elements can be from other models,
the same namespaces.

EntityMultiplicity Zero or more
ValueObject Contains ValueObject

Contain Enumeration
Contains Type
Association with other Entity
Elements can be from other models,
the same namespaces.

Enumerations
Multiplicities Zero or more

Integer
Infinity
MultiplicityConstant

6.7 Implementation Model Wizard
The repository generation tool provides a wizard for generating default implementation models from both the
graphical and textual representations of domain models. This wizard helps users in learning and getting quickly
started with the tool. Users can use the wizard to easily generate initial implementation models containing all
kinds of recipes and ingredients. These implementation models can be used for learning the implementation
model language and its syntax. Furthermore, these models can also be reused in other implementation models as
much as possible. For example, the ingredients can be reused while defining other recipes.

Two design approaches are considered for realizing this implementation model wizard: model-to-model
transformation (M2M) and model-to-text transformation (M2T). These two design approaches are compared to
one another based on selected relevant criteria: expertise and flexibility.

60

The design and implementation of the Repository Generator component is based on the M2T approach. During
the design and implementation of this component, we developed expertise in the design techniques, tools, and
languages of the M2T based approach. Therefore, the implementation model wizard can be realized in a short
period of time by applying the M2T approach. The downside of this approach is that the wizard needs to change
whenever the concrete syntax of the implementation model language changes. This makes the wizard less
flexible. The flexibility could have been improved following the M2M based approach. In the M2M approach,
models can be created independent of the concrete syntax. These models can later be serialized using the
concrete syntax. However, extra time and effort is required to gain the same level of expertise as in the M2T
based approach. Therefore, given the short time budget, we decided to realize the implementation model wizard
by applying our accumulated expertise in the M2T based design approach.

6.7.1. Default Conventions
The Implementation Model Wizard creates initial implementation models by applying default conventions.
After comprehensive analysis of the domain and discussions with stakeholders, the relevant default conventions
for the initial implementation model created through the wizard are identified. These identified default
conventions and the motivations behind these choices are show in Table 12.

Table 12: Implementation model default conventions for the wizard.

Implementation Model
Element

Ingredient/
applicable to Default Motivation

EntityRecipe Storage Boost This is the only supported type of
storage implementation strategy.

Orientation Clone This is the only supported
orientation at the moment.

Communication Intraprocess Simplicity
ID Strategy UUID This is the only supported ID

Strategy at the moment.
Target Identifier Entity name Simplicity
Entities that this recipe
is applicable

All Entities in the
domain model Convention

DomainModelRecipe Component No default convention
Target path The same location as

domain model convention

Target Language C++, HPP C++ is a requirement, HPP is a
convention.

Domain Models that this
recipe is applicable

The domain model
corresponding to the
implementation model.

Convention

ValueObjectRecipe Target Identifier ValueObject name Simplicity
ValueObjects that this
recipe is applicable All ValueObjects convention

EnumerationRecipe Target Identifier Enumeration name Simplicity
Enumeration that this
recipe is applicable All enumerations Convention

Literal Mapping Mapped to exactly the
same literals Convention

TypeRecipe Target Identifier Type name Simplicity
Types that this recipe is
applicable All primitive types Convention

61

6.8 Implementation Model Validation
The Implementation Model Validation component is responsible for validating the input Implementation
Models for code generation. An early detection of incorrect models prevents the problem of generating code that
does not build, or worse, a code that builds but produces incorrect results when deployed in the TWINSCAN
system. To tackle this problem, various validation rules are identified. The main validation rules are given
below.

1. All elements for code generation must have a recipe.
2. All elements for code generation must have exactly one recipe.
3. All ingredients of the recipes for code generation must be explicitly set i.e. no default values are

allowed during code generation except TargetIdentifiers.
4. Visibility in the implementation models

a. External can refer to any other External.
b. External can never refer to any Internal.
c. Internal can refer to Internal only within the same component.
d. Internal can refer to External within any component.

5. There are 3 classes of implementation models (for a style purpose combination is not allowed)
a. An implementation model must contain only ingredients.
b. An implementation model must contain only super recipes.
c. An implementation model must contain code generation recipes for exactly one domain model

and the elements within it.
6. All elements in the domain model must have recipes in the implementation model (style).
7. Unsupported features must not be selected in the implementation model.

Two design options are considered during the realization of the Implementation Model Validation: OCL
invariants and Acceleo template and/or query. To select the most appropriate design approach, the two are
compared to one another with respect to maturity. The maturity criterion refers to how well these two
approaches integrate with the Eclipse Modeling Framework. The Eclipse Modeling Framework provides a
runtime environment to the repository generation tool, as shown in Figure 25. The Acceleo template and/or
query are more matured than the OCL invariants with respect to integration with the Eclipse Modeling
Framework. Due to the immaturity of the environment, the OCL invariants-based approach presented error
messages that cannot be easily related to the cause of these errors. The Acceleo template and/or query -based
approach produces readable custom error messages defined by ourselves. Therefore, the Acceleo template
and/or query -based approach is selected as the most appropriate design approach for realizing the
Implementation Model Validation component.

The Implementation Model Validation is designed to work in two complementary ways. These are:

1. Validation Without code generation
The goal of this Implementation Model Validation is to be able to identify errors without code generation. This
could be before and/or after code generation. Validation without code generation is described in the sequence
diagram shown in Figure 51.

62

Figure 51: Validation without code generation

2. Validation during code generation
The goal of this Implementation Model Validation is to identify errors during code generation. Validation
during code generation is described in the sequence diagram shown in Figure 52.

Figure 52: Validation during code generation

63

7.Implementation

The high level architecture and the detailed design of the repository generation tool are discussed in Chapters 5
and 6 consecutively. The purpose of this chapter is to describe the most important implementation aspects of the
repository generation tool.

7.1 Implementation Model Language
The metamodel of the implementation model language is realized in Ecore. Ecore is the standard modeling
language provided by the Eclipse Modeling Framework. The specialized getter APIs in the implementation
model are implemented in the OCLinEcore Language [15]. The code snippet in Figure 53 shows how the
getIngStorage() getter API is implemented in OCLinEcore. This getter API realizes the extension rules of
EntityRecipes. If storage is not defined in the recipe itself, this getter API looks for storage in the recipes that
this recipe extends. These rules are explained in the design of the implementation model language in Chapter 6.
If storage is not defined and if the recipe does not extend another recipe, storage with default value of
oclundefined is returned. This situation is checked in the generators and validators by using the oclIsUndefined
() method of OCL.

Figure 53: Code Snippet of the getIngStorage() getter API in OCLinEcore.

The rest of the specialized getter APIs are implemented in a similar fashion.

7.2 Implementation Model Editor
As discussed in Chapter 6, during the design of the implementation model language editor, EMFText is selected
as the textual concrete syntax specification language. Therefore, the concrete syntax of the implementation
model language is specified in EMFText, as shown in Appendix 1. Keywords are represented as strings. Pascal
Casing (upper camel casing) is adopted as a standard for writing implementation models. Attributes are an
exception to this standard. Attributes are written in lower camel casing. Pascal Casing is chosen because of the
relative familiarity of stakeholders with this standard.

7.3 Repository Generator
As explained in the design of the repository generator component in Chapter 6, Acceleo is selected as the
model-to-text (M2T) transformation language. Two elements of the Acceleo language are used. These elements
are templates and queries. Templates are used to generate the code and queries are used to encapsulate complex
expressions that manipulate model elements. Templates and queries are contained in a module. A module can
import other modules. Acceleo allows calling plain Java services from templates and queries. For traceability
reasons, Acceleo strongly recommends using Java services from queries instead of templates [16]. Let
expression is the other Acceleo language construct that has been used extensively.

7.4 Implementation Model Wizard
This component is implemented in Acceleo and Java. The functionality of the implementation model wizard that
generates the initial imp-models is implemented in Acceleo. The functionality of the implementation model
wizard that prevents overwriting files containing implementation models unintentionally is implemented in Java.
Plain Java services are used to find names and locations of models during implementation model generation.
These java services are called from queries as recommended by Acceleo.

64

7.5 Implementation Model Validation
As discussed in Chapter 6, Acceleo templates and/or queries are selected as the implementation language for
realizing the implementation model validation component. Since Acceleo queries are better than Acceleo
templates in performance, they are used extensively. The results of a query evaluation are computed once and
stored in a cache. This stored evaluation result is used when the query is called several times with the same set
of parameters [16]. Java services are used to clean old validation results before new results can be displayed.

65

8.Testing

The purpose of this chapter is to discuss the testing techniques applied in this project.

8.1 Acceptance testing
Acceptance tests are provided at different levels to ensure that the repository generation tool is built according to
the specifications. Each requirement is tested according to the test plans presented in Chapter 4. In addition to
these tests, several fine-grained tests are identified during the realization phase of the requirements. These fine-
grained tests resulted in various useful unit tests.

The test plans presented in Chapter 4 for each requirement are executed during five main test activities.

8.1.1. Review
The first line of defense to ensure the quality of the repository generation tool and the generated code was
reviewing results. Results were reviewed by the supervisors and stakeholders at all phases of the project
development process. During the planning session, several fine-grained acceptance tests are identified for each
feature that must be verified through manual review and inspection. These acceptance tests are identified
together with the stakeholders and supervisors. These tests must be satisfied to an acceptable level before a
feature can be considered for further tests.

8.1.2. Implementation Model Validation
The goal of this test is to ensure that predefined data modeling rules are not violated. Implementation models
must be validated without errors before code generation can be performed. The Implementation Model
Validation rules are described in Section 6.8 in detail.

8.1.3. Build Tests
The goal of this test was ensuring that the generated code can be built successfully on the ASML build
environment. This acceptance test must be satisfied before a feature can be considered for further tests.

8.1.4. Test Cases
Test cases were designed covering the major features of the repository generation tool that stakeholders use on
their daily work. These test cases are identified together with supervisors and stakeholders. These test cases are
summarized in Table 13.

Table 13: Test Cases for the generated repositories

Test Case Motivation
SettingAndGettingPrimitiveTypeAttributes This test case is intended to check the getters and setters of

the primitive Type attributes, such as double and string, in the
generated code.

SettingAndGettingValueObjectAttributes This test case is intended to check the getters and setters of
the ValueObject Type attributes in the generated code.

ValueObjectCopyConstructor Since ValueObjects can be copied, this test case is intended to
check the copy constructor of ValueObjects in the generated
code.

ValueObjectAssignmentOperator Since ValueObjects are assignable, this test case is intended
to check the assignment operator of ValueObjects in the
generated code.

AddingNewEntity This test case is intended to ensure that Entity instances can
be added successfully to a generated repository.

AddingExistingEntityThrows This test case is intended to ensure that users are not trying to
add existing Entity instances to generated repositories.

RemovingExistingEntity This test case is intended to ensure that existing Entity
instances can be removed successfully from a generated
repository.

66

RemovingNonExistingEntityThrows This test case is intended to ensure that users are not trying to
remove non-existing Entity instances from generated
repositories.

GettingExistingEntity This test case is intended to ensure that existing Entity
instances can be cloned successfully from a generated clone
oriented repository.

GettingNonExistingEntityThrows This test case is intended to ensure that users are not trying to
clone non-existing Entity instances from generated clone
oriented repositories.

UpdatingLocalEntityDoesNotAffectRepo This test case is intended to ensure that updating a local clone
of Entity instances does not affect the Entity instances in
generated repositories.

UpdatingRepo This test case is intended to ensure that updating Entity
instances in the generated repositories is possible.

The test cases described in Table 13, are implemented in googletest [17]. Due to the familiarity of the
stakeholders with this framework, googletest was selected as a testing framework in this project.

8.1.5. Release Tests
This test activity refers to uncovering bugs that are not detected or not covered by the previous test activities.
These tests are performed by stakeholders after every new release of the repository generation tool during their
daily work. Identified bugs are communicated to the author immediately. These bugs are considered in the
planning session of the upcoming iteration and fixed according to their priority.

8.2 Regression Testing
The test cases identified for acceptance testing are finally added to regression tests which are provided to
support evolution of the repository generation tool in the future. These regression tests ensure that previously
provided features are not broken or new bugs are not discovered after introducing new changes to the repository
generation tool.

8.3 Requirements Revisited
The requirements presented in Chapter 4 are revisited in order to determine whether they are satisfied or not.
The acceptance tests specified by the test plan in each of the requirements are executed. If the test passes, the
requirement is considered to be satisfied. The must have requirements for this project are all satisfied, as shown
in Table 14.

Table 14: Must Have Requirements (MReq) – revisited

Requirement ID Tests (pass/fail) Satisfaction Level

MReq 1 Pass Satisfied
MReq 2 Pass Satisfied
MReq 3 Pass Satisfied
MReq 4 Pass Satisfied
MReq 5 Pass Satisfied
MReq 6 Pass Satisfied
MReq 7 Pass Satisfied
MReq 8 Pass Satisfied
MReq 9 Pass Satisfied
MReq 10 Pass Satisfied
MReq 11 Pass Satisfied
MReq 12 Pass Satisfied
MReq 13 Pass Satisfied
MReq 14 Pass Satisfied

The nice to have requirements for this project are shown in Table 15. NReq 1 is partially satisfied. NReq 3 is
fully satisfied. NReq 3 is satisfied by deploying the repository generation tool in a Luna version of the Eclipse

67

Modeling Framework in a standalone ASML computer, as described by the test plan in Chapter 4. Because of
time limitations, NReq 2 and NReq 4 are not satisfied.

Table 15: Nice to Have Requirements (NReq) – revisited

Requirement ID Tests (pass/fail) Satisfaction Level

NReq 1 Fail Partially Satisfied
NReq 2 Fail Not Satisfied
NReq 3 Pass Satisfied
NReq 4 Fail Not Satisfied

The identified won’t have requirements are not satisfied within the scope of this project. However, to ensure that
the architecture will not hamper realization of these requirements in the future, they are considered during the
design of the repository generation tool. These considerations are presented in Table 16.

Table 16: Won’t have Requirements (WReq) – revisited

Requirement ID Remark

WReq 1 During the design of the Implementation Model Language, database repositories are
represented as one of the storage kinds. In the ingredients metamodel shown in Figure 29,
database is modeled as an abstract subtype of the storage ingredient. To allow the
generation of database repositories in the future, the generation templates provide
extension points that can be extended easily.

WReq 2 The remarks for WReq 1 apply to this requirement as well.

WReq 3 The remarks for WReq 1 apply to this requirement as well.

68

9.Conclusions

The purpose of this chapter is to conclude this report with a brief summary of the results obtained and the future
work.

9.1 Results
The repository generation tool is built based on a flexible architecture in which domain models are decoupled
from technology and implementation choices. The tool consists of an Implementation Model Language that
helps users specify choices of implementation patterns without polluting their domain models with
implementation details. To maximize flexibility, this language is based on the recipe-ingredient approach in a
cookbook. To maximize productivity and facilitate learning the Implementation Model Language and its syntax,
the tool contains an Implementation Model Wizard capable of creating initial implementation models from
domain models. To early discover errors in the implementation model before code generation, the tool is
equipped with an Implementation Model Validation. This protects the tool from producing a code that does not
compile or a wrong code that compiles. The tool consists of a repository generator component to allow
generation of repositories from domain models based on the recipes in implementation models. This is realized
by providing several code generation modules.

The repository generation tool is equipped with models and unit tests for regression testing. These models and
tests will be useful while adding new features to the tool in the future.

The results obtained in this project are directly being used by a metrology project within the ASML Metrology
group. According to the feedback we have received from the metrology group, their productivity is significantly
improved. They have already generated 600+ files of C++ code using the tool. Manipulation of domain models
is very easy with the repository generation tool. The effort and time required to see changes in a domain model
reflected in the code is reduced to a one button click.

In addition to the repository generation tool, an extensive requirements gathering and analysis was conducted
for the Domain Model Language and its accompanying editor. The result of this analysis is shown in Appendix
5. These requirements were found to be useful while maturing the ASML data modeling environment which is
used for defining domain models.

9.2 Future Work
The most obvious interesting additions to this tool are the requirements in the nice to have category which are
not satisfied within the scope of this project. Due to time limitations, only a partial implementation of the boost
intraprocess reference-oriented repositories is realized within the scope of this project. To provide a better
performance alternative to the clone-oriented repositories, this partial implementation should be completed. In
addition to this, no implementation is given for the boost interprocess reference-oriented repositories. This
should also be completed. Furthermore, generating code comments would improve maintenance and diagnostics
of the repository generation tool.

Some features of the domain models are not supported by the repository generation tool because of time
limitations. Although these features are not critical to the stakeholders at the moment, we believe that these
features should be implemented to provide a full-fledged code generation tool. The features that should be
supported by the repository generation tool in the near future are summarized in Table 17.

Table 17: Summary of features supported by the code generator.

Category Features Should be supported
Implementation Model
/Ingredients

Orientation Reference

Domain Model Entity Non-Volatile
Immutable
Elements from other models, separate namespace.

EntityMultiplicity Constant values
ValueObject Elements from other models, separate namespace.
Multiplicities Different from [Zero or more]

69

Ordering collections

Additionally, because of time limitations, regression tests are provided for only the heap based implementation
of repositories. In order to provide a full-fledged regression testing framework, tests should also be provided for
the boost interprocess repositories.

Furthermore, the requirements in the won’t have category shown in Table 16 should also be realized. These
requirements are prioritized lower than the other requirements because of time limitations. However, these
requirements are relevant and will be needed in the future.

70

10. Project Management

This chapter presents the project management strategies applied in this project.

10.1 Approach
Early during the requirements identification and analysis process, it became apparent that requirements were
changing over time. The priorities of requirements were also changing quite often. The conclusion was that
sequential approaches, such as the waterfall, are not fitting for this project. Therefore, it was necessary to select
an iterative development approach that can handle those changing requirements. The agile methodology, namely
the SCRUM was found to be suitable in this project. However, since following the full SCRUM by the book
was a heavyweight process for a one person team, a personalized lightweight version of the SCRUM was
applied in this project. For example, the author was the project manager, the SCRUM master, and the SCRUM
team all by himself. Daily standups were also not practical.

In our lightweight SCRUM, there were two sprints: a long sprint of three weeks and a short sprint of one week.
The development was based on iterations. Iteration begins at the start of each long sprint and ends at the end of
each long sprint. Intermediate results are demonstrated to and discussed with supervisors and stakeholders at the
end of each short sprint. Project steering group (PSG) meetings were held at the end of each long sprint.

Iterations begin with a planning meeting together with the stakeholders and supervisors. In this meeting, features
are identified based on the requirements and a backlog is filled out and prioritized, as shown in Figure 54.
Results are discussed with stakeholders and supervisors at the end of every short sprint. At the end of the
iteration, features are integrated, tested, and a new version of tool is released. Results are demonstrated to the
PSG and the stakeholders. This way of working allowed stakeholders to use the tool on their daily work starting
from the first iteration. To allow stakeholders request new features and report problems easily, an additional
online backlog was also maintained. The feedback from stakeholders based on their daily work was found to be
useful during this development process. Based on our experience during the first couple of iterations and the
feedback from stakeholders, we concluded that this iterative pattern was suitable for this project. Therefore, this
pattern was applied in all iterations during the entire development process.

Iterations focused on different activities based on a project plan. For example, the ninth iteration, tasks shown in
Figure 54, focused on realizing the Repository Generator component in our reference architecture.

Story ID Priority Design and Development work Exp. man hours Act. man hours

30 -5 fixing bugs 8/week 8/week
1 -1.1 Update Templates for Repository Interface generation to support new features 2 2
9 2 Update Templates for Heap Repository Implementation generation to support new features 5 5
8 3 Create Templates for Boost Interprocess Repository Implementation generation 15 15

15 4 Update Templates for Entity Interface generation to support new features 3 2
8 4.5 Update Templates for Heap Entity Implementation generation to support new features 5 5

10 4.5 Create Templates for Boost Interprocess Entity Implemenation generation 15 15
14 11 Update Templates for Entity Factory Interface generation to support new features 5 5
17 12 Update Templates for Heap Entity Factory Implementation generation to support new features 5 4
18 13 Create Templates for Boost Interprocess Entity Factory Implementation generation 10 10
19 14 Update Templates for ValueObject Interface generation to support new features 2 1
20 15 Update Templates for Heap ValueObject Implementation generation to support new features 3 3

102 16 Create Templates for Boost Interprocess ValueObject Implementation generation 8 6
103 17 Update Templates for ValueObject Factory Interface generation to support new features 5 6

203 20
Update Templates for Heap ValueObject Factory Implementation generation to support new
features 5 4

303 25 Create Templates for Boost Interprocess Factory Implementation generation 10 8
403 35 Update unit tests for heap implementation to support new features 14 14
503 45 Build and publish repository generation tool 5 5

Figure 54: Backlog snippet for repository generation, from the ninth iteration

71

10.2 Project Planning
To deliver the expected results, twelve main coarse-grained project activities were identified and executed
according to the project plan shown in Figure 55. This project plan is the result of continuous evolution
throughout the course of the project. The coarse-grained activities shown in the project plan are broken down
into features during the planning session of the iterations in which they are executed. Features are identified and
prioritized together with supervisors and stakeholders, as shown in Figure 54.

Jan 6 - Jan 23 Jan 26 - Feb 13 Feb 16 - Mar 6 Mar 9 - Mar 27 Mar 30 - Apr 17 Apr 20 - May 8 May 11 - May 28 May 29 - Jun 19 Jun 22 - Jul 9 Jul 13 - Jul 31 Aug 3 - Aug 28 Sep 31 - Sep 25

3

7
8

12
ID
1
2
3
4
5
6
7
8
9
10
11
12

Testing

9
10

4
5

Implementation Model Language Editor
Repository Generator

Prototyping and Implementation
 Final Report
Wrap up & Holidays

11

Implementation Model Wizard
Implementation Model Validation

Activities
Requirements Gathering and Analysis
Problem and Domain Analysis
High Level System Architecture
Implementation Model Language

1
2

6

Figure 55: Project plan

To help project management decisions and to keep track of the amount of work that needs to be completed with
respect to the remaining available time, the expected and actual efforts are recorded, as shown in Figure 54. In
addition to this, the expected and actual development velocities are also tracked, as shown in Figure 56. It can
be seen that during the first three sprints, the expected velocity exceeded the actual velocity. This was justified
by the fact that the author had to study the problem domain extensively. From sprint 4 to sprint 6, it was possible
to precisely predict the development velocity. This effort estimation and planning information is used as an
input for project management decisions and for planning the upcoming iterations. Based on the input from this
effort estimation, discussions with supervisors, and the feedback form stakeholders, an important project
management decision was taken at the end of sprint seven. This decision was collocation of the project with the
main stakeholders starting from the eighth sprint. This decision had a positive impact on the quality and speed of
the project as also reflected in the chart shown in Figure 56. We can see that during sprints eight and nine, the
actual development velocity exceeded the expected velocity. This was justified by the effective communication
with the main users of the tool.

Figure 56: Expected Vs Actual Velocity in man hours, for the total of 11 long-sprints in this project

72

10.3 Risk Management
Over the course of this project, several potential risks that could have a negative impact on the project were
identified and properly handled. These risks were identified through discussions with supervisors,
brainstorming, and careful observation on daily bases. The most important ones are: Lack of resource, Lack of
domain knowledge, priority of requirements, and communication with stakeholders.

i. Lack of resources
Time was the most expensive resource in this project. This project had a fixed time budget of nine months.
Unless planned property, shortage of time could have a severe negative impact on the results obtained in
this project. To help reduce the impact of this risk, proper effort estimation and planning was in place at
different levels of granularity. Time was also considered when taking design decisions. For example, the
time required to gain the necessary expertise was considered while selecting certain technologies.

ii. Lack of domain knowledge
Since there was no centralized domain knowledge base, the necessary domain knowledge is collected by
talking to people, reading slides, and prototyping. Following introduction courses of one week was also
found to be useful.

iii. Priority of requirements
The project started with a wider scope than what is delivered in the end. Considering the limited time
budget, it was necessary to prioritize requirements according their importance. Therefore, together with the
supervisors and stakeholders, the requirements that have the highest value to ASML were identified and
prioritized higher than others. In spite of this extensive analysis and periodization, stakeholders continued
prioritizing several requirements differently. Misunderstanding in the early communication with the
stakeholders and the need to adjust the scope of the project were two main reasons for these changing
requirements and their prioritization. To reduce the severity of this risk, an iterative development approach
was selected. This approach allowed the priorities of requirements to change every sprint whenever
necessary. To improve misunderstanding in the communication with stakeholders various project
management decision were taken. These decisions are discussed in the next Section.

iv. Communication with stakeholders
Communication with stakeholders is another important risk that could have a negative impact on the results
of this project. Since the project was originally located at the supervisors’ workplace, there was a close
communication and cooperation with the supervisors on daily bases. The communication with the
stakeholders was mostly arranged on request and through emails. However, this communication was not
enough. To minimize this communication problem, the main stakeholders were invited to participate in the
weekly meetings. This arrangement improved the communication between the author, the supervisors, and
the stakeholders. Unfortunately, even this communication was not enough. The ultimate solution to this
communication problem was collocation of the project with the stakeholders. This decision had a positive
impact on the results obtained and as a consequence on the satisfaction of the stakeholders.

73

11. Project Retrospective

This chapter reflects on the technical and organizational aspects of this project. The design criteria that guided
the design process are also revisited.

11.1 Reflection
This project realizes a repository generation tool for generating repository implementation and access interfaces
from domain models. In the course of this project, several technical and organizational lessons are learned.

In theory, software design should be implementation language independent. In practice, we learned that
implementation technology influences greatly the design. Without considering the implementation technology,
the Visitor/Decorator based design of the Repository Generator component suits better than the selected
straightforward approach. However, the Visitor/Decorator based approach did not fit the selected template
language, Acceleo. Therefore, the technical rule of thumb is that before creating your architecture and design, it
is necessary to select the implementation languages that will be used to realize the system.

Communication with the stakeholders is one of the most important organizational lessons learned in this project.
As explained as part of the project management, close communication with the stakeholders was determinant to
the success of this project. Therefore, the organizational rule of thumb is that in any project it is necessary to
maintain a close communication with the main stakeholders of the project. Emails and casual meetings are never
enough.

11.2 Design opportunities revisited
In this project, several tradeoff architectural and design decisions are made to tackle the identified design
opportunities and challenges. These design opportunities and challenges are: flexibility, reusability, and
scalability.

 Flexibility
Flexibility is realized by providing the adapted MDA-based architecture in which domain models are decoupled
from implementation and technology specific details. This architecture allows engineers develop domain models
without polluting their domain models with repository implementation and technology choices for code
generation. Implementation Modeling Language is provided to allow engineers select repository generation
details and the domain model elements for which those choices are applicable. To maximize flexibility, the
Implementation Model Language is designed based on the recipe-ingredient approach. Repository generators are
provided for the C++ language.

 Reusability
Realizing code generation with a minimum effort is achieved by providing mechanisms to reuse implementation
model artifacts. We realize this by providing language features for importing external models, extending
existing recipes, and reusing ingredients. Section 6.1 explains the feature for importing other implementation
models. The feature for extending an existing recipe is discussed in Section 5.7.3. Ingredients are explained in
Section 5.7.2. These ingredients can be reused while defining multiple implementation models.

 Scalability
At the modeling level, scalability is realized by mapping one domain model to one or more implementation
models. In this way, the architecture can handle arbitrarily large domain models. This is discussed in Chapter 5,
Section 5.8 in detail. At the generation level, the templates and queries are implemented in such a way that
execution time increases linearly with the number of elements in a model.

74

Glossary

PDEng stands for the Professional Doctorate in
Engineering degree at the Eindhoven University of
Technology (TU/e).
SW is an abbreviation for Software.
HW is an abbreviation for Hardware.

 EPS stands for Element Performance Specification
(EPS), which is a document used within ASML to
describe the functional, performance and non-
functional (e.g. reliability) requirements of a (sub)
system.

MReq represents the Must Have Requirements of the
MoSCoW requirements specification technique.
NReq represents the Nice to Have Requirements of
the MosCow requirements prioritization technique.
WReq represents the Won’t Have Requirements of
the MosCow requirements prioritization technique.
MReq represents the Must Have Requirements of the
MoSCoW requirements specification technique.
MDA is an abbreviation for Model Driven
Architecture.
OMG stands for Object Management Group.
PSG stands for project steering group

 OCL stands for Object Constraint Language.
Implementation Model an Implementation Model
or imp-model for short, or a Generator Model is a
model containing recipes and ingredients.
Domain Model represents the domain model of the
TWINSCAN with respect to data.
Intraprocess is the local memory or Heap based
implementation of repositories.
Interprocess is the shared memory implementation
of repositories.

75

Bibliography
[1] “About ASML.” .

[2] K. Van Hee and K. Van Overveld, “New criteria for assessing a technological design,”
no. April, 2012.

[3] E. Evans, “Domain-Driven Design,” vol. 7873, no. 415, 2003.

[4] DSDM, “MoSCoW Prioritisation.”

[5] A. Cockburn, “Writing effective use cases,” Work, 2001.

[6] P. Kruntchen, “Architectural blueprints–the” 4+ 1” view model of software
architecture,” IEEE Softw., vol. 12, no. November, pp. 42–50, 1995.

[7] A. B. Ormsc, C. Burt, D. Dsouza, K. Duddy, W. El Kaim, W. Frank, S. Iyengar, J.
Miller, J. Mischkinsky, J. Mukerji, J. Siegel, R. Soley, S. Tyndal-, A. Uhl, A. Watson,
and B. Wood, “Model Driven Architecture (MDA) Document number ormsc / 2001-
07-01,” Architecture, pp. 1–31, 2001.

[8] “Eclipse Modeling Framework, documents.”

[9] “Boost.”

[10] E. Gamma, R.Helm, R. Johnson, and J. Vlissides, “Design Patterns,” 2007.

[11] “EMFText User Guide,” 2012.

[12] “Xtext.”

[13] Obeo, “Acceleo documentation.”

[14] “Xtend documentation.”

[15] “OCLinEcore.”

[16] “Acceleo Documentation.”

[17] " googletest"

76

Appendix 1 – Implementation Model Concrete
Syntax

The concrete syntax of the Implementation Model Language is specified in EMFText.
Keywords are represented as quoted strings. The rest of the elements are metaclasses in the
abstract syntax of the language. This is shown in Figure 57.

Figure 57: Implementation Model Concrete Syntax

77

Appendix 2 – Implementation Model defining only
ingredients

Figure 58: Ingredients

78

Appendix 3 – Implementation Model defining only
super recipes

Figure 59: super recipes that can be reused in other recipes

79

Appendix 4 – Implementation Model defining
recipes for code generation

Figure 60: An implementation model that can be used as a direct input for code generation

80

Appendix 5 – The Identified Requirements for the
domain model language

Table 18: Identified Requirements for the domain model language

ID Description, Rationale, and Testing Ref.
MReq 1

Description: The domain model language must support the concepts:
 MReq 1.1 Entities.
 MReq 1.2 Value objects.
 MReq 1.3 Inheritance.
 MReq 1.4 Mutability.
 MReq 1.5 Volatility.
 MReq 1.6 Compositions and attributes.
 MReq 1.7 Enumeration types.
 MReq 1.8 Primitive types.
 MReq 1.9 Constants.
 MReq 1.10 Associations.
 MReq 1.11 Multiplicities.
These concepts are described in detail in Section Chapter 3.

Rationale: Without the ability to create instances of these concepts, it will
not be possible to create domain models.

Testing: The ability to create instances of each of these concepts is tested by
using a suitable testing framework. These concepts are tested manually. This
is also used to test the editor in requirement MReq2.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 2 Description: A graphical and textual editors must be provided for defining
domain models by using the concepts presented in MReq 1. The graphical
editor must also provide a proper distinction mechanism between the
different concepts when they appear in a model as well as when they are
printed in black and white.

Rationale: Without an editor, the defining domain models will not be
possible.

Testing: The test plan in MReq1 is used to also test the editor.

ASML
Architecture

Group

&

ASML
Metrology Group

MReq 3 Description: The tool must support dependencies between multi-owner
domain models. It should be possible to refer one model from another. In
this situation the referenced model must stay unchanged. Proper interfaces
need to be defined for granting access to these models based on the ASML’s
scopefiles.

Rationale: without this feature, it would not be possible to compose models
from different parts located at different functional clusters, building blocks,
and components.

Testing: This is tested by deploying models in two components from two
different functional clusters in ASML’s dumbo view. It should be possible
to reference from one of the models to the other. The referenced model must
stay unchanged.

ASML
Architecture

Group

&

ASML
Metrology Group

81

NReq 4 Description: The domain model editor must support dragging and dropping
domain model elements from other models into the editor canvas. This
allows graphical visualization of dependencies between models. Any
relationships with the model already in the editor should be displayed.

Rationale: Without this feature, it would not be possible to easily visualize
dependencies between models in the same or different functional clusters,
building blocks, and software components.

Testing: This is tested by creating models in two functional clusters,
building blocks, and software components in the ASML’s dumbo view. It
should be possible to visualize interdependencies between models by
dragging and dropping elements from one model to the other. The relevant
associations must also be displayed in the editor.

ASML
Architecture

Group

MReq 5 Description: the tool must support diff and merge on the textual
representation of the domain models.

Rationale: Without this feature, it would not be easy to compare different
versions of a model, view the differences, and merge models.

Testing: This is tested by deploying a model in two release parts in the
ASML’s dumbo view. One or the two of these models is changed, and it
should be possible to view the differences and merge the two models into a
latest version.

ASML
Architecture

Group

MReq 6 Description: The tool must be deployable in the ASML’s Eclipse-based
WindRiver Workbench for Linux environment. Since ASML is moving
towards the Eclipse Luna, the tool must be based on the Luna version of
Eclipse. It should also be possible to use the tool outside the ASML
WindRiver Workbench, possibly standalone on an ASML computer.

Rationale: On one hand, the ASML software architects and software
engineers use the Eclipse-based WindRiver Workbench as a development
environment. If the tool cannot be deployed in the WindRiver Workbench, it
will not be handy to be used by these architects and software engineers. On
the other hand, there are software architects and software engineers who
may use the tool for experimental purposes. If the tool cannot be used
standalone on an ASML computer, these people will not be able to use it.

Testing: The deployability of the tool in the ASML’s Eclipse-based
WindRiver workbench is tested by installing the tool in the workbench. This
will also be sent to the ASML Software Development Environment Group
for testing. The ASML Software Development Environment Group will
send the set of plugins to WindRiver for a final check. The ability of the tool
to be used standalone is tested by installing the tool in a separate eclipse on
an ASML computer.

ASML
Architecture

Group

&

ASML
Software

Development
Environment

Group

MReq 7 Description: The solution must be scalable against the number of elements
in a model. The tool must support at least 50 models each with 100 elements
and 10 model imports.

Rationale: Without this feature, it would not be possible to apply the
solution to bigger models.

Testing: This is tested by creating one domain model with 100 elements and
10 model imports and duplicate this model 50 times.

ASML
Architecture

Group

NReq 8 Description: the tool must be integrated with the ASML build system.

ASML
Architecture

82

Rationale: without the ability to integrate with the ASML build system, it
would not be possible for the tool to work and be released seamlessly with
the rest of the DCA tools.

Testing: This feature is tested manually.

Group

NReq 9 Description: The domain model languages and editors must support the
language concept comment for documentation purposes.

Rationale: Without this comment, it may not be easy to add comments to
models that are used during code generation.

Testing: This requirement is tested by instantiating the comment language
concept by using its editor.

ASML
Metrology Group

NReq 10 Description: the domain model language may support specification of
attributes in terms of their units, measurement types, and coordinate system.

Rationale: Without this feature, it would not be possible to specify the
attributes in terms of their units, types of measurements, and coordinate
systems.

Testing: This is tested manually by creating a model containing elements
that have attributes that require specification of units, measurements, and
coordinate systems. It must be possible to specify these attributes in terms of
the units, type of measurement, and their coordinate systems.

ASML
Metrology Group

NReq 11 Description: The domain and implementation model language may support
the concept package.

Rationale: Without this feature, it would not be possible to group model
elements in one or more smaller manageable packages.

Testing: This is tested manually by creating models containing multiple
model elements in multiple packages.

ASML
Metrology Group

NReq 12 Description: The domain model language and its editor may support the
concept aggregate root.

Rationale: Without the concept aggregate root, it would not be easy to
define and maintain boundaries between related and unrelated domain model
elements.

Testing: This requirement is tested by instantiating the aggregate root
language concept by using the provided editor.

ASML
Metrology Group

83

About the Author

Tesfahun Tesfay received his BSc. degree in Information
Technology from Mekelle Institute of Technology,
Ethiopia in 2010. After graduation he worked for Defence
Engineering College, Ethiopia, as a graduate assistant for
one year. In September 2011 he came to the Netherlands
and started his Master degree in Computer Science,
Software Engineering track at the faculty of EEMCS-
Electrical Engineering, Mathematics and Computer
Science of the University of Twente, Enschede, from
where he obtained his master degree in August 2013.
During his internship at Sytematic Software, The Hague,
The Netherlands, he developed a language for modeling
REST APIs. During his master thesis at BiZZdesign,
Enschede, The Netherlands, he developed an automated
system, annotation language and algorithms for
identifying business process distribution options and their
consequences for cloud-based BPM. In 2013, Tesfahun
joined the PDEng program in Software Technology at the
Eindhoven University of Technology. He worked on
several in-house projects from various companies. During
his PDEng final project at ASML, Veldhoven, The
Netherlands, he developed a repository generation tool
that is used for generating repositories from domain
models. His main interests include language engineering,
model-driven engineering, model-driven architecture,
software architectures, design patterns, and basketball and
soccer.

84

	_Toc428906748
	_Toc428906749
	_Toc428906750
	_Toc428906751
	_Toc428906752
	_Toc428906753
	_Toc428906754
	1. Introduction
	1.1 Context

	_Hlt937105
	_Ref138758
	_Ref418750925
	_Ref419928777
	_Ref419928793
	_Toc428906755
	_Toc428906756
	_Toc428906880
	_Toc937177
	_Toc937375
	_Toc937789
	1.2 The TWINSCAN SW Architecture
	1.2.1. Components (CC)

	1.3 Problem Area

	_Ref417825666
	_Ref418889340
	_Toc428906757
	_Toc428906758
	_Toc428906759
	_Toc428906881
	1.4 Outline

	_Ref417825667
	_Toc428906760
	_Toc937179
	_Toc937377
	_Toc937791
	2. Problem Analysis
	2.1 Data Handling in the TWINSCAN SW Architecture

	_Ref419043839
	_Ref419043862
	_Ref419656988
	_Ref419970792
	_Toc428906761
	_Toc428906762
	_Toc428906882
	_Toc937180
	_Toc937378
	_Toc937792
	2.2 Separation of Data, Control, and Algorithms

	_Ref419043938
	_Ref419065052
	_Toc428906763
	_Toc428906883
	_Ref419656677
	_Ref425265593
	_Toc428906884
	2.3 Project Objective

	_Ref419044052
	_Ref427143563
	_Toc428906764
	_Toc428906885
	2.4 Stakeholders
	2.4.1. ASML Software Architecture Group
	2.4.2. TU/e
	2.4.3. ASML Metrology Group

	_Ref419044077
	_Toc428906765
	_Toc428906766
	_Toc428906767
	_Toc428906768
	_Toc428906886
	
	2.4.4. ASML SW Development Environment Group

	2.5 Design Opportunities

	_Ref419044132
	_Toc428906769
	_Toc428906770
	3. Domain Analysis
	3.1 Domain Model
	3.2 Domain Model Language

	_Ref419292405
	_Ref419877465
	_Ref419900641
	_Ref419900643
	_Ref419971652
	_Toc428906771
	_Toc428906772
	_Toc428906773
	_Toc428906887
	_Toc937182
	_Toc937380
	_Toc937794
	3.3 Domain Model Concepts

	_Ref419292608
	_Ref419972108
	_Ref419972120
	_Ref421362681
	_Toc428906774
	_Toc428906888
	_Toc428906889
	
	3.3.1. DomainModel
	3.3.2. Entities
	3.3.3. Mutability
	3.3.4. Volatility
	3.3.5. ValueObjects

	_Ref426316236
	_Toc428906775
	_Toc428906776
	_Toc428906777
	_Toc428906778
	_Toc428906779
	
	3.3.6. Enumerations
	3.3.7. PrimitiveTypes
	3.3.8. Compositions and Attributes
	3.3.9. Associations
	3.3.10. Multiplicities
	3.3.11. MultiplicityConstants
	3.3.12. Relationships between Entities and ValueObjects

	_Toc428906780
	_Toc428906781
	_Toc428906782
	_Toc428906783
	_Toc428906784
	_Toc428906785
	_Toc428906786
	3.4 Core Domain Model
	3.5 From domain models to generated repositories

	_Ref419899603
	_Ref419899846
	_Ref423794824
	_Ref427402847
	_Toc428906787
	_Toc428906788
	_Toc428906890
	_Toc428906891
	_Toc428906940
	3.6 Implementation choices
	3.6.1. Storage
	3.6.2. Orientation
	3.6.3. Communication
	3.6.4. ID Strategy

	_Ref419293058
	_Toc428906789
	_Toc428906790
	_Toc428906791
	_Toc428906792
	_Toc428906793
	
	3.6.5. Target Identifier
	3.6.6. ASML SW Component
	3.6.7. Visibility
	3.6.8. Target Path
	3.6.9. Target Language

	3.7 Repository Interface Semantics

	_Toc426935463
	_Toc428906794
	_Toc428906795
	_Toc428906796
	_Toc428906797
	_Toc428906798
	_Toc428906799
	_Ref427524205
	_Ref427525475
	_Toc428906892
	_Toc428906893
	3.8 Repository Implementation

	_Ref426919185
	_Toc428906800
	_Toc428906894
	_Ref426919315
	_Toc428906895
	4. System Requirements
	4.1 MoSCoW
	4.2 Requirements for the repository generation tool
	4.2.1. Must Have Requirements (MReq)

	_Ref420180315
	_Ref420180329
	_Ref420185897
	_Ref426367603
	_Toc428906801
	_Toc428906802
	_Toc428906803
	_Toc428906804
	_Toc428906941
	
	4.2.2. Nice to Have Requirements (NReq)

	_Ref420180331
	_Toc428906805
	_Toc428906942
	
	4.2.3. Won’t have requirements (WReq)

	_Ref420180332
	_Toc428906806
	_Toc428906943
	4.3 Use cases

	_Ref420180610
	_Toc428906807
	_Ref420219957
	_Ref422051412
	_Toc428906896
	_Toc428906897
	4.4 Use case description
	4.4.1. Create imp-model use case
	4.4.2. Generate from Wizard use case

	_Toc428906808
	_Toc428906809
	_Toc428906810
	
	4.4.3. Generate Code use case
	4.4.4. Validate Model use case

	_Toc428906811
	_Toc428906812
	
	4.4.5. Test Code use case

	_Toc428906813
	5. System Architecture
	5.1 High Level Architecture

	_Ref419929991
	_Ref420416534
	_Toc428906814
	_Toc428906815
	_Toc428906898
	_Toc937191
	_Toc937389
	_Toc937803
	5.2 Architectural Notations

	_Ref420777267
	_Ref421379105
	_Ref426317663
	_Toc428906816
	_Toc428906944
	5.3 The Adapted MDA-based Approach

	_Ref425266342
	_Toc428906817
	_Toc428906899
	5.4 The 4+1 Architectural Model
	5.5 Logical View

	_Ref419913339
	_Ref421031859
	_Ref421046572
	_Ref425251236
	_Toc428906818
	_Toc428906819
	_Toc428906900
	_Ref421999620
	_Ref426936802
	_Toc428906901
	_Toc428906902
	5.6 Deployment View

	_Ref419913365
	_Ref423881023
	_Ref425520675
	_Ref426936715
	_Toc428906820
	_Toc428906903
	_Toc428906904
	5.7 Architectural Principle
	5.7.1. Domain Model Elements
	5.7.2. Ingredients
	5.7.3. Recipes

	5.8 Implementation Model Architecture

	_Ref420777466
	_Ref426925414
	_Ref427613791
	_Ref427613817
	_Ref427613957
	_Toc428906821
	_Toc428906822
	_Toc428906823
	_Toc428906824
	_Toc428906825
	_Ref426574860
	_Toc428906905
	_Ref426582550
	_Toc428906906
	6. System Design
	6.1 Implementation Model Language Design

	_Ref422083430
	_Ref422084523
	_Toc428906826
	_Toc428906827
	_Toc428906907
	_Toc937192
	_Toc937390
	_Toc937804
	6.2 Modeling Ingredients
	6.2.1. Modeling Ingredients as separate concepts

	_Ref422083517
	_Ref425009576
	_Toc428906828
	_Toc428906829
	_Toc428906945
	_Ref422086752
	_Toc428906908
	
	6.2.2. Modeling ingredients as attributes of recipes

	_Ref425106283
	_Toc428906830
	_Toc428906909
	6.3 Modeling Recipes

	_Ref422083549
	_Ref422415284
	_Toc428906831
	_Toc428906910
	_Ref422418789
	_Ref426378933
	_Toc428906911
	_Toc428906912
	_Ref426380697
	_Ref426382986
	_Toc428906913
	_Toc428906914
	_Ref422577581
	_Toc428906946
	
	6.3.1. EntityRecipe

	_Ref422582729
	_Toc428906832
	_Toc428906915
	
	6.3.2. ValueObjectRecipe

	_Ref422658911
	_Toc428906833
	_Toc428906916
	
	6.3.3. EnumerationRecipe

	_Ref422660066
	_Ref426390336
	_Toc428906834
	_Toc428906917
	_Toc428906918
	_Toc428906919
	
	6.3.4. TypeRecipe

	_Ref422662210
	_Ref425353799
	_Toc428906835
	_Toc428906920
	_Toc428906921
	_Toc428906922
	
	6.3.5. DomainModelRecipe

	_Ref422662573
	_Ref422662712
	_Toc428906836
	_Toc428906923
	_Toc428906924
	6.4 Implementation Model Editor

	_Ref422083560
	_Ref422661730
	_Toc428906837
	_Toc428906925
	_Toc428906926
	_Toc428906947
	6.5 Template Language Selection
	6.6 Repository Generator Design

	_Ref422083567
	_Ref425686894
	_Toc428906838
	_Toc428906839
	_Toc428906948
	
	6.6.1. GenerationController

	_Ref425516022
	_Toc428906840
	_Toc428906927
	_Ref427435578
	_Ref427435995
	_Toc428906928
	_Toc428906929
	
	6.6.2. Generators

	_Ref422083588
	_Ref422854269
	_Toc428906841
	_Toc428906949
	
	6.6.3. GenerationHelper
	6.6.4. Supported features

	6.7 Implementation Model Wizard

	_Ref426655742
	_Toc428906842
	_Toc428906843
	_Toc428906844
	_Toc428906950
	
	6.7.1. Default Conventions

	_Ref422083580
	_Ref423792574
	_Toc428906845
	_Toc428906951
	6.8 Implementation Model Validation

	_Ref428887975
	_Toc428906846
	_Ref427617786
	_Ref427617818
	_Toc428906930
	_Toc428906931
	7. Implementation
	7.1 Implementation Model Language
	7.2 Implementation Model Editor
	7.3 Repository Generator
	7.4 Implementation Model Wizard

	_Ref422655183
	_Ref424677102
	_Ref424677122
	_Ref424677130
	_Ref424677138
	_Toc428906847
	_Toc428906848
	_Toc428906849
	_Toc428906850
	_Toc428906851
	_Toc428906932
	_Toc937194
	_Toc937392
	_Toc937806
	7.5 Implementation Model Validation

	_Ref424677146
	_Toc428906852
	8. Testing
	8.1 Acceptance testing
	8.1.1. Review
	8.1.2. Implementation Model Validation
	8.1.3. Build Tests
	8.1.4. Test Cases

	_Ref424678736
	_Ref428873268
	_Toc428906853
	_Toc428906854
	_Toc428906855
	_Toc428906856
	_Toc428906857
	_Toc428906858
	_Toc428906952
	
	8.1.5. Release Tests

	8.2 Regression Testing
	8.3 Requirements Revisited

	_Ref424678784
	_Ref428878517
	_Toc428906859
	_Toc428906860
	_Toc428906861
	_Toc428906953
	_Ref426924742
	_Ref428878609
	_Toc428906954
	_Toc428906955
	9. Conclusions
	9.1 Results
	9.2 Future Work

	_Ref426930085
	_Toc428906862
	_Toc428906863
	_Toc428906864
	_Toc428906956
	_Toc937200
	_Toc937398
	_Toc937812
	10. Project Management
	10.1 Approach

	_Ref426469523
	_Toc428906865
	_Toc428906866
	_Toc428906933
	10.2 Project Planning

	_Ref426480082
	_Ref426555178
	_Ref426841069
	_Toc428906867
	_Toc428906934
	_Toc428906935
	10.3 Risk Management

	_Toc428906868
	11. Project Retrospective
	11.1 Reflection
	11.2 Design opportunities revisited

	_Toc428906869
	_Toc428906870
	_Toc428906871
	_Toc428906872
	_Toc937823
	_Toc428906873
	_Toc937824
	_Ref427341075
	_Toc428906874
	_Toc428906936
	_Toc428906875
	_Toc428906937
	_Toc428906876
	_Toc428906938
	_Toc428906877
	_Toc428906939
	_Toc428906878
	_Toc428906957
	_Toc428906879

