

Using custom controllers on the H-drive

Citation for published version (APA):
Koot, M. W. T. (2000). Using custom controllers on the H-drive. (DCT rapporten; Vol. 2000.029). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8134e6c2-120d-4c1a-be61-3a9df836a340

Using custom controllers
on the H-Drive

M.W.T. Koot
September 2000
D&C Report 2000.29

This report is the result of a trainee assignment.
Student: Michiel Koot 421 747
Coach: Rene van de Moiengraft
Professor: Maarten Steinbuch

Abstract

The H-Drive is an industrial positioning system with a built-in controller that communicates
with a program running on a PC. To increase the performance, one wants to use other
controllers that are designed in Matlab/Simulink and that can be easily implemented on a
Digital Signal Processor. Therefore the H-Drive must be connected to this Rapid Control
Prototyping system (RCP). It is desired to establish an interface where the default controller
of the H-Drive is disabled, but where other features, such as initialization can still be used.

It is chosen to use a program on the PC, the LAP1 Server. This program communicates
with both the H-Drive and the RCP system. It can initialize and shut down the H-Drive
properly and can disable the built-in controller to give control access to the DSP. A Simulink
model has been made that captures the position measurement, outputs the controller signal
and has a protection system against collision of the carriage against it's boundaries. The
implementation has been done only for the x-axis.

The performance of the interface has been tested by rebuilding the default controller in
Simulink. The performance of the controller on the RCP system is worse than that of the
built-in controller. This is probably caused by bad synchronization and delay times between
the RCP system and the H-Drive.

Contents

1 Introduction 3

2 Description sf the hardware 4
. 2.1 The H.Drive 4

. 2.2 The Digital Signal Processor 5

3 Design of the interface 6
. 3.1 Task specification 6

. 3.2 Approach 6
. 3.3 Communication 7

4 Implementation 8
. 4.1 Procedure 8

. 4.2 Serial port communication 8

5 The LAP1 Server 10
. 5.1 Task specification 10

. 5.2 Design 10
. 5.3 Implementation 10

6 The Sirnulink model 12
. 6.1 Task specification 12

. 6.2 The protection system 12
. 6.3 Implementation 13

. 6.3.1 Layout 13
. 6.3.2 The communication block 14

. 6.3.3 The protection function 15
n . 6.3.4 The timer cloek l o

. 6.3.5 Other S-functions 17

7 Test experiments 19
. 7.1 Testing the performance 19

. 7.2 Testing the protection system 20

8 Conclusions and recommendations 22

A Block scheme of the controller 23

B LAPI Server function descriptions 24

C LAPP Server source code 29

Chapter 1

Introduction

The H-Drive is an industrial positioning system with a built-in controller, consisting of a PID-
type feedback and a model-based feedforward. The built-in electronics can communicate with
a program running on a PC. With this program, the H-Drive can be initialized, set-points
can be given and controller parameters can be changed.

The performance of the H-Drive may be improved, by using custom controllers based on
other theories. This can be done by connecting the H-Drive to a Rapid Control Prototyping
environment (RCP), which in this case will be a dSPACE system with a dedicated Digital
Signal Processor (DSP) in combination with the software package Matlab/Simulink. This
way, custom controller designs can be easily implemented on the H-Drive.

To establish this connection, several problems have to be dealt with. One of them is the
communication between the RCP system and the H-Drive. Another problem is whether it
is possible to disable the control algorithm of the H-Drive, but still make use of some other
features, such as initialization and protection against collision. When an interface is made,
it's performance will be tested and compared with the default controller.

This report is build up as follows. In Chapter 2, the features of the H-Drive and the RCP
system are studied. In Chapter 3, the required tasks of the connection are described and the
best approach to fulfil those requirements is analyzed. In Chapter 4, 5 and 6, an implemen-
tation of the interface is made. In Chapter 7, the interface is tested in practice. In Chapter
8, conclusions are made and suggestions for further research are given.

Chapter 2

n c AI uescription ol me hardware

2.1 The H-Drive

The H-Drive is an industrial robot made by Philips CFT, used for fast and accurate posi-
tioning. It consists of three LiMMS axes (Linear Motor Motion System), one for movements
in X-direction and two for movements in Y-direction. Movements are made with a maximum
acceleration of 20 m/s2 and maximum velocity of 2 m/s. This report will be restricted to the
x-axis, which has a working range of 0.65. m.

Each of the three axes is driven by a Single Axis Controller (SAC) which contains a 3Td order
trajectory generator and a controller which consists of a PID-type feedback controller and a
model-based feedforward. The power is provided by an external power amplifier. A setup
containing one LiMMS axis is displayed in figure 2.1.

Figure 2.1: Single LiMMS axis setup

The three axes can communicate with each other, the power amplifier and a PC using the
CAN protocol (Controller Area Network). On this PC, a program is running that makes use
of a function set called LAP1 (LiMMS Application Programming Interface), which is written
in the C programming language. Using this LAP1 program, commands can be given to the
SAC, e.g. to initialize the H-Drive and move the carriage to it's home position. After that,
set-points can be submitted and the controller parameters can be changed. It is also possible
to monitor two signals and inject one signal at several positions in the closed loop system.
This feature is intended to be used for measuring transfer functions, but maybe it is also
suitable for injection of a signal generated by a different controller. The block scheme of the

controller with it's monitor and injection points can be seen in Appendix A.

The position can be measured by monitoring it, but this is a noisy analog signal which is not
accurate enough to use it for a feedback controller. Besides, it has a delay of one sample time.
Therefore, the measurement from the incremental encoder will be used. This encoder has an
accuracy of 1 pm. To safely use the signal of the incremental encoder for both the SAC and
the DSP, an electronic circuit is used which duplicates the signal.

More information on the H-Drive can be found in [I, 2, 31.

2.2 The Digital Signal Processor

The RCP real-time controller board used here, is the dSPACE DS1103. This board is based
on the Motorola PowerPC 604e processor. It contains also a DSP subsystem based on the
Texas Instruments TMS320F240 DSP and a CAN subsystem based on the Siemens 80C164
microcontroller, which is used for connection to a CAN bus. The board is an ISA-card, which
can be mounted in a PC.

The board has (among others) the following connections:

0 4 parallel AID converters multiplexed to 4 channels each with 16-bit resolution and 4 ps
sampling time.

0 4 parallel AID converters with 1 channel each, 12-bit resolution and 800 ns sampling
time.

2 D/A converters with 4 channels each and 14-bit resolution.

o an incremental encoder interface comprising 1 analog channel with 22138-bit counter
range, 1 digital channel with 16124132-bit counter range and 5 digital channels with
24-bit counter range, switchable between differential RS-422 and single-ended TTL.

0 CAN support fulfilling CAN specifications 2.OA and 2.OB

a serial port that can be configured as an RS-232 or RS-422 interface.

The board is placed in a Pentium I1 400 PC with 64 MB RAM. The software used is Win-
dows 95 and Matiab 5.3 (Release Il) with Simuiink 3 and ReaLTime -Workshop (RTW-). The
PC is also equipped with a CAN card to communicate with the three SAC'S on the H-Drive.

The dSPACE board comes with a Simulink block-set and the software packages Real-Time
Interface (RTI) and Control Desk. The Simulink blocks give access to the various in- and
output ports of the dSPACE board. With RTW in combination with RTI, it is possible to
convert a Simulink model to a program which can run on the PowerPC. With Control Desk,
it is possible to capture measurements and to change the parameters of the real-time imple-
mentation of the Simulink model.

Chapter

Design of the interface

To use a controller build in Simulink, it must be implemented on the RCP system. The
RCP system must be connected to the H-Drive. Therefor an interface is required, which may
consist of both hardware and software.

3.1 Task specification

The interface that is going to be created, has to perform the following tasks to use a custom
controller on the H-Drive.

Firstly, the H-Drive must be initialized. The initialization routine is normally done by the
SAC and can be started by calling a LAP1 function. This routine checks if all the hardware
connected to the CAN-bus, is functioning properly. If this is the case, the three carriages are
moved to find the markers of the incremental encoders. When the initialization is successfully
completed, the carriage of the x-axis has to be moved to a predefined home position.

When one wants to use the custom controller running on the RCP system, the built-in con-
troller must be disabled and the signal generated by the RCP system must be used instead.

When the H-Drive is driven by the custom controller, a protection system must be used, which
prevents the carriage from collision with it's boundaries. The SAC has a built-in protection
system, but when the controller is disabled, the protection system is probably disabled too.
Therefore, a new protection system must be made and implemented on the RCP system.

When one wants to stop using the custom controller on the RCP system, the built-in controller
must be re-enabled. Finally, the H-Drive must be shut down safely. This is normally done by
calling a LAP1 function.

3.2 Approach

There are several possible solutions for connecting the RCP system to the H-Drive. The most
rigorous option is to remove the SAC and connect the RCP system directly to the power
amplifier of the H-Drive. In this case, no LAP1 functions can be used, so an initialization and
a shut down routine must be created in Simulink. This can be very difficult, since not much
documentation on the LiMMS system is available. Therefor it is desired to still make use of

some features of the SAC. This can be achieved in several ways.

One possibility is to implement the LAP1 functions on the RCP system, since the dSPACE
board is equipped with a CAN bus. This has the advantage that there is no need for a
LAP1 program on the PC anymore, since everything is controlled from within the DSP. It is
probably very complicated or even impossible to cross compile the LAP1 source code (which
is written in C) for the PowerPC. Therefor it is decided not to choose for this option.

Another possibility is to still use a program on the PC, a so called LAP1 Server. This program
initializes the H-Drive, moves it to it's home position and then disables the built-in controller
and gives control access to the DSP. Afterwards, the built-in controller can be re-enabled
to shut d ~ w r , the E-Drive properly. Because the LAPI Server is probably easy to create by
modifying an existing LAP1 program, it is decided to choose for this option.

3.3 Communication

Now there are four items that have to cooperate:

1. The Single Axis Controller on the H-Drive

2. The LAP1 Server running on the P C

3. Control Desk running on the PC

4. The Simulink model running on the RCP system

The SAC and the LAP1 Server communicate with each other using the CAN bus. The LAP1
Server and the Simulink model can communicate with each other using a null-modem cable
between the serial ports of the PC and the dSPACE board. The Simulink model reads
the position of the carriage from the incremental encoder and can inject the control output
directly in the SAC at the controller output point by using the DAC on the dSPACE board.
Control Desk communicates with the dSPACE board using the ISA-bus of the PC. The
communication is schematically displayed in figure 3.1.

Figure 3.1: Communication scheme

Chapter 4

Implementation

The interface that is going to be created, consists of a LAPI Server program and a Simulink
model. Before they can be designed, the procedure of using the H-Drive and the communi-
cation protocol must be defined.

4.1 Procedure

To use a custom controller on the H-Drive, the following procedure will be used:

0 When the LAPI Server is started, the H-Drive will be initialized and the carriage is
moved to it's home position.

0 When the LAPI Server receives a START command from the RCP, the built-in controller
will be disabled and the signal from the DSP is injected in the controller output point
of the SAC.

0 When the LAP1 Server receives a STOP command from the RCP, the signal from the
DSP is no longer injected and the built-in controller is re-enabled.

0 When the LAPI Server receives a HOME command from the RCP, the STOP routine is
used and then the carriage is moved back to it's home position by the SAC. Afterwards,
the controller on the RCP can be re-enabled by the START routine. The HOME routine
can be used after the protection system has had to stop the carriage.

e The LAPI Server has a button to shut down the H-Drive. If necessary, the STOP
routine will be executed first.

The LAP1 Server is described in chapter 5 , the Simulink model in chapter 6.

4.2 Serial port communication

The real-time implementation of the Simulink model can send the following codes to the LAPI
Server by pressing buttons in Control Desk: START to start using the custom controller,
STOP to stop using the custom controller and HOME to go back to the home position.

The LAP1 Server can send the foIlowing codes to the Simulink model: READY, which means
that the controller in Simulink has access to the H-Drive, ERROR which means that the
controller in Simulink doesn't have access to the H-Drive and HOME READY which means
that the carriage has returned to it's home position.

Both the LAP1 Server and the real-time implementation of the Simulink model can send and
receive 8 bit ASCII values using the null-modem cable. For the codes described above, the
following characters and corresponding ASCII values will be used:

code character value
START G 71
STOP S 83
HOME H 72
READY R 82
ERROR E 69
HOMEREADY P 80

The serial ports will be configured as RS-232 with a baudrate of 9600 bps and no parity
check.

Chapter 5

-.a

'I'he LAPI Server

5.1 Task specification

The LAP1 Server is a program running under Windows 95, that makes use of several LAP1
functions. It must communicate with the with the SAC and with the Simulink model.

The LAP1 Server communicates with the Simulink model running on the RCP system using
the serial port. I t can receive requests for using the H-Drive, i.e. to start and stop injecting
a signal in the controller and for homing. Besides it must send codes defining the status of
the H-Drive, i.e. whether the Simulink controller has access to the H-Drive.

The LAP1 Server communicates with the SAC using the CAN bus. This can be done by
calling LAP1 functions. These will be used for initialization, homing, shutting down and start
and stop injecting a signal in the controller.

5.2 Design

The LAPI Server will have two buttons, one to start the initialization procedure and one to
shut down the H-Drive and close the program. The following procedure will be used:

When the LAP1 Server is started, the serial port will be initialized. When the INIT button in
the LAP1 Server window is used, it will call a LAPI function to initialize the H-Drive. 'Wnen
the H-Drive is initialized, two parallel threads are used. The first thread checks for commands
coming from the Simulink model on the RCP system. These commands are START, STOP
and HOME. The second thread checks whether the EXIT button in the LAPI Server window
is used and calls the corresponding function to shut down the H-Drive and to exit the program.

This procedure is visualized in a flow chart, which is displayed in figure 5.1.

5.3 Implement at ion

The Windows layout of the LAP1 Server is displayed in figure 5.2. The window has two
buttons, one to start the initialization procedure and one to shut down the H-Drive and close
the program. In the status window, messages from functions are displayed.

The program is written in ANSI C. The C-code of the functions used in the LAP1 Server is
described in Appendix B, the complete source code of the LAP1 program can be found in
Appendix C.

Figure 5.2: LAPI Server

Chapter 6

The Sirnulink model

6.1 Task specification

To run a real-time application on the RCP system, a Simulink model has to be built, which
has to perform the following tasks:

Communicate with the LAP1 Server running on the PC using the serial port. This can
be done by using a Simulink block that came with the dSPACE software.

a Capture the position measurement of the carriage from the incremental encoder. This
can also be done by using a Simulink block that came with the dSPACE software.

e Compute the control signal. This is done by the controllers that will be designed.

0 Send the control signal to the DAC of the DSP. This can be done by using another
Simulink block that came with the dSPACE software.

e Prevent the carriage from hitting the boundaries. This requires designing a new pro-
tection system, which will be done in the following section.

6.2 The protection system

When the controller of the SAC is disabled, it's protection system is disabled too. To prevent
the carriage from hitting the boundaries, a new protection system has to be made in Simulink.
This system has to take it over from the controller built in Simulink when the carriage gets
outside a certain area and slow down the carriage as fast as possible. When the protection
system is enabled, the carriage has to be homed again, before control is given back to the
controller built in Simulink.

The carriage has a range from 0.03 m to 0.67 m. The working range will be limited from
0.15 m to 0.55 m, which leaves 0.12 m on both sides for the emergency stop.

Because the working range is larger than the safety margin, the maximum force used by the
controller has to be less than the force used for the emergency stop. If the carriage behaves
like a pure mass system and it is accelerated over 0.4 m with 100 N, it has to be decelerated
with 400 N to make it stop within 0.1 m. If viscous and dry friction are taken into account,
maybe a smaller force will satisfy, but this has to be tested by experiments. The SAC has a

Figure 6.1: Working range

default value for the maximum force of 750 N. This will be used for the emergency stop. The
maximum force used by the controller will be limited to 200 N. Since the mass of the carriage
lies around 30 kg, movements with a maximum acceleration of 5 m/s%an be made, which
is sufficient for most education purposes. W h e ~ a co~trtroller has beet tested t:h_oroughiy, the
protection could be weakened, so more power is available to the controller.

When a boundary is passed, the protection function acts like a PD controller:

i f (Z < L B) u = -Urnax . (P . (X - L B) + D . X)
i f (x > U B) u = - U , , , . (P . (x - U B) + D . i)

with LB=0.15 m, UB=0.55 m, P=20 N/m, D=2 Ns/m and UrnaX=750 N. The values of P and
D are chosen in such way, that the controlled mass system becomes a critically damped second

m w2 order system, so P = and D = with relative damping 5 = 1 and bandwidth
w, z 22 rad/s . With these values for P and Dl the maximum force is reached when either
the position is 0.05 m behind the boundary or the velocity is greater than 0.5 m/s.

6.3 Implement at ion

The x-axis of the H-Drive is represented by a subsystem with the computed control signal as
input and the position, the time and the status as outputs. When a simulation model is made
and tested in Sirnulink, the model of the plant can be replaced by this block to implement
the designed controller on the real plant. This block can be seen in figure 6.2.

l nput X
Home Ready

Position X u
Figure 6.2: The controlled system

6.3.1 Layout

As can be seen in figure 6.3, this block contains three subsystems:

0 the serial port communication

the protection system

e the timer clock

Reset Timer Time

Enc postion

PositionX

1 Position

Time

Start knop

Enc delta position

DS1103ENC-POS-C1

ProcessTime Generator

Status
Input

Input X

M E T E R SETUP

Figure 6.3: H-Drive

status
Start h o p

6 3 . 2 The communication block

Enable

This subsystem is used to communicate with the EAPI Server using the serial port. I t can
be seen in figure 6.4.

Stop k nop

Home Ready
DAC

Stop h o p
Home Ready) Reset

Hom e knop lnjed 1 DS1103DAC-C1

Home h o p
Serial Port Communication Position

SET POSITION

DSl103ENC-SET-POS-C1

The Simulink model can send the codes START, STOP and HOME to the LAPI Server. These
commands are given by pressing buttons on the instrument panel of Control Desk. Outgoing
codes are sent to the Serial Out block. To prevent the Serial Out block from sending codes
every sample time, it is placed in an subsystem, which is enabled with a pulse function (see
section 6.3.5) whenever a button is pressed.

The Simulink model can receive the following codes from the LAP1 Server: READY, ERROR
and HOME READY. Incoming codes are coming from the Serial In block. HOME READY

D---
Start h o p

(3-
stop lolop

("f-
Home knop

Code Stop -@=+

c o d e Home -+++I

-@-I
Code Start Serial Out

S a i d out

pulse2 e pulse2

Off

On$Off Switch2

Serial Input , o n

out
DS1103sER-RX c o d e ~~~d~ Relational

Off Operator1 Logica l
Operator - OnlOff Switch1 I-&-'

Code E~~~ Relational

Figure 6.4: The communication block

sets the incremental encoder to a value corresponding with 0.2 m. READY and ERROR are
connected to a switch (see section 6.3.5). The signals from the START and STOP buttons are
connected to another switch. Both switches are connected to an AND port, which changes
the status between enabled and disabled. The second switch is an extra protection in the
case that the LAPI Server should fail to stop inject the signal from the DSP when the STOP
command is given.

6.3.3 The protection function

The protection function, which is designed in section 6.2, is written as an Simulink S-function
in C.

if (k== 0)

C yC01 = U(0) ; 3
else if (k==-1)

([O] = -WAX* (PS* (U (1) -LB) + V S * U (2)) ; 3
else i f (k== 1

(y [O] = -UMAX*(PS* (U(1) -UB) + V S * U (2)) ; 1

The in- and outputs are:

0 U(0) : original controller output

o U(1) : carriage position

e U(2) : carriage velocity

U(3) : reset

0 y[O] : protected controller output

k is a static integer variable, i.e. it keeps it's value between every time the function is called.
It's initial value is 0.

The protection function is placed in a subsystem, which can be seen in figure 6.5.

G~--+EI+~ Sat in 1
b

Position 1 M ux

Derivative " I
Reset

I
Enable

Figure 6.5: The protection system

. .
The origrnd cor;tro!!er output is 5rst limited between 6200 N before it goes into the protection
function. The protected controller output is limited between f 750 N. The protection function
can be reset by the HOME READY signal. The protected controller output is only sent to
the DAC if the status is READY. This is done as an extra protection in the case that the
LAP1 Server should fail to stop inject the signal from the DSP when the STOP command is
given.

6.3.4 The timer clock

To use a look-up table for e.g. a reference trajectory or feed forward signal, it is necessary to
have a timer clock which can be reset every time the START command is given. Therefore
an S-function with the following routine is used:

if (k==l)

(yC0l = U(0)-to; 3
else

(y[OI = 0 ; 3

The in- and outputs are:

U(0) : absolute time

a U(1) : timer start

U(2) : timer reset

CI JT[O] : simulation time

k is a static integer variable, it's initial value is 0. to is a static float variable, it's initial value
is 0.

The time delay function is placed in a subsystem, which can be seen in figure 6.6.

n

Tim
SFundionl

Figure 6.6: The timer clock

In the Simulink model two other S-functions are used. These functions are both written in @
and are described here.

The switch function

The switch function is a function whose output is switchable between 0 and 1 by 2 input
signals ON and OFF. It's output value is initially 0, becomes 1 whenever the ON signal
equals 1 and becomes 0 whenever the OFF signal equals 1. After switching it keeps it's value
till one of the input signals becomes 1 again. When both inputs are 1, the output becomes 0
so the OFF signal has priority.

The function is used to start and stop the controller built in Simulink. The following routine
is used:

if (U(1)==1
C y[Ol=O.O; k=O; 3

else if (U(O)==l && U(l>==O >
(y[Ol=l.O; k=l; 3

else if (U(O)==O && U(1)==0 && k==O)

C yCOl=O.O; 3
else if (U(O)==O && U(1)==0 && k==l)

(yCOl=l.O; 3

The in- a d outputs are:

U(0) : ON signal

U(1) : OFF signal

y[O] : output signal

k is a static integer variable, it's initial value is 0.

The pulse function

The pulse function is a function whose output is initially 0 and becomes 1 for exactly one
sample time whenever the input changes from 0 to 1. The function is used to reset the timer
clock and to send exactly one code over the serial port. Therefore the following routine is
used:

if (U(O)==O 1
(k=O; y[O]=O.O; 3

else if (U(O)==O && k==O
(k=1; y[Ol=l.O; 3

else C yCOl=O.O; 3

The in- and outputs are:

0 U(0) : continuous signal

e y[O] : pulse signal

k is a static integer variable, it's initial value is 0.

Chapter 7

Test experiments

Now the interface is built, it has to be tested in practice. One point of interest is the
performance of the interface. Another important issue is, whether the protection system
works properly.

7.1 Testing the performance

To test the performance of the interface, the built-in controller of the SAC is rebuild in
Simulink, with the same values for the parameters. Now the error signals of a point-to-
point movement can be compared. A third order trajectory is used with a maximum jerk
of 100 m/s3? a maximum acceleration of 2 m/s2 and a maximum velocity of 0.5 m/s. The
set-point position can be seen in the upper left plot of figure 7.1.

Position Setpoint
I I

0A Single Axis Controller 1.7 kHz
10 -

E

Simulink Controller 2 kHz

-2 1 I
0 0.2 0.4 0.6 0.8 1

j0-5 Simulink Controller 5 kHz

l o 0 2 0:1 0s 0:8 1
, , "-5 Simulink Controller 10 kHz

-101 I
0 0.2 0.4 0.6 0.8 1

time [s]

Figure 7.1: Comparison of controliers

19

The controller on the SAC has a sampling rate of 600 ps, which corresponds with a sampling
rate of approx. 1.7 kHz. The position error achieved with this controller can be seen in the
lower left plot of figure 7.1.

When the controller on the RCP system is used, the controller on the SAC is disabled, but
the signal from the RCP system is injected in the SAC, which is also done at 1.7 kHz. The
controller on the RCP system is firstly used with a sampling rate of 2 kHz. As can be seen
in the upper right plot of figure 7.1, the tracking error of the Simulink controller is much
larger than that of the built-in controller. This decrease in performance cold be caused by
bad synchronization betwee9 the DSP and the SAC. To decrease this effect? the Simulink
cont,ro!!er is also used with a sampling rate of 5 kHz and 10 kHz. These are shown in
the middle and lower right plots of figure 7.1. As can be seen, the error becomes smaller
for a higher sampling rate, but the error at 10 kHz is still larger than that of the default
controller on the SAC at 1.7 kHz. The decrease in performance is probably caused by both
bad synchronization and additional delay times between the DSP and the SAC.

7.2 Testing the protection system

Another important issue is, whether the protection system works properly. This is tested
firstly by using a constant force of 200 N as input force for the robot. The carriage starts at
0.2 m, so it can move for 0.35 m before the protection system interferes. The results of this
experiment can b seen in the left plots in figure 7.2. When the carriage excites the 0.55 m
boundary, the protection system takes over and the input forces changes immediately to -
750 N and then goes to zero. The carriage stops at 0.65 m, which is still before the boundary
at 0.67 m, without overshoot.

Profection System

0.6

. . .

time [s]

Protection System

time [s]

Figure 7.2: Testing the protection system

Another test has been done with an input signal which is varied by hand between +200 and
-200 N. This test was less succesful, as can be seen in the right plots of figure 7.2. When the
carriage excites the 0.15 m boundary, the protection system takes over. AIthough the carriage

is slowed down, it still hits the boundary at 0.03 m, which is a very stiff spring. This causes
the power amplifier to be turned off. This is done by a switch mounted on the carriage that
gets in contact with the spring.

In this experiments a sampling rate of only 1 kHz was used. The fact that the carriage does
not stop in time is probably caused by the bad synchronization and additional delay times
between the DSP and the SAC as discussed in the previous section. Besides using a higher
sampling rate, collision could be avoided by decreasing the maximum force allowed to the
Simulink controller, or increasing the control parameters P and D of the protection system.
This h a not yet, been tested.

Chapter 8

Conclusions and recommendations

With the interface created, it is possible to implement controllers built in Simulink on the
H-Drive and still make use of some features of the SAC. The implementation has been done
only for the x-axis. The two y-axes are more difficult, because they are not allowed to differ
in position too much. This requires extra security measures.

The performance of the interface has been tested by rebuilding the built-in controller in
Simulink. It turned out that the performance of the controller on the RCP system is worse
than that of the built-in controller. This is probably caused by delay times in the interface
and/or synchronization problems. A remedy has not yet been found. This decrease of perfor-
mance makes the interface less suitable for it's attended purpose, which is trying to increasing
the performance of the H-Drive by using other controllers. However the performance of other
controllers can still be compared with the Simulink version of the default controller running
on the RCP system.

When the controller of the SAC is disabled, it's protection system is disabled too, so care must
be taken. An alternative protection system has been made, although it does not work sufficient
for all cases yet. Besides, it is not resistant to failure of the dSPACE board. Therefore it is
preferable to add an extra hardware protection against collision.

To prevent that other people working with the H-Drive can modify the interface, it's better
to rewrite the Simulink model to one compiled S-function. This is possible but more diEcult,
because standard Simulink blocks have to be replaced by C-code.

Using the CAN bus on the dSPACE board to communicate with the SAC is much more
difficult and probably doesn't have much advantages, but it can be an interesting subject of
investigation because CAN is a widely used protocol in modern industrial applications.

Appendix A

Block scheme of the controller

Figure A.1: Block scheme of the controller

Appendix B

LAPI Server function descriptions

The program written in ANSI C using the Salford C++ Compiler [4]. It makes use of the
following header files:

limms . h : This file is written by Philips and contains the LAP1 function
set.

limmslib. c : This file is written by Ren6 van de Molengraft and contains
LAPI-based functions.

serial. h : This file is written by R e d van de Molengraft and contains
functions for serial port communication under Win32.

The main function

The main function contains the windows layout, the configuration of the serial port and a
routine to start functions desired by the DSP. The Windows layout is created using the
ClearWin library shipped with the Salford C++ Compiler [4]. All messages from functions
made with printf are displayed in the status window.

main ()
<
code c,*pc;
pc=&c;

winio ("%sp&", 0,O) ;
winio ("%ww Ctopmostl&") ;
winio ("%sy C3d-thin] &I1) ;
winio("%ca[LAPI Server ~1.01 &I1) ;
winio (I1 Status%f f &I1) ;
winio ("%50.10cw%f f&" ,NULL) ;
winio (I1 %^tt [~nitializel &If, cbf -init) ;
winio (I1 %^tt [~xitl&" , cbf -exit) ;
winio("%lw",&WinCtrl);

printf ("Welcome to LAP1 Server vl. O\nN) ;

-C
get-code (PC) ;

if (c==CG)
(go-start0 ; c=O; 1

else if (c==CS)
(go-stopo; c=O; 3

else if (c==CB)
{ go-home 0 ; c=O;)

CloseComPort 0 ;

return 0;

3

Call-back functions

Call-back functions are function that are called when a button in the windows layout is
pressed.

int cbf -exit (1

code c,*pc;
pc=&c ;
int close=-1;

if (init-ok==-1)

printf("LiMMS was not initialized.\nU);
exit=l;
return 1;

3

c=CE; send-code (pc) ;

set-inject (0,O. 0) ; unfree-x0 ;

while (close==-1)
{
Sleep (100) ;

>
if (close==l)

{
printf ("Closing
exit=l;

>
else

{
printf ("Closing

3

LiMMS succeeded.\nn);

LiMMS failed. \nu) ;

return 2;

Functions called by the DSP

int go-start ()

C
code c,*pc; pc=&c;

if (init-ok==l)

{
free-x0 ;
set-inj ect (2, -mult) ;
f ree=l;
c=CR;
send-code (pc) ;

>
else

{
printf ("Initialize LiMMS first . \n") ;
1

return 1;

>

The built-in controller is disabled and the signal from the DSP will be injected in the controller
output point of the SAC. The code READY will be send back to the Simulink model.

When the LAP1 Server receives a STOP command from the Simulink model, the function
go-stop is called:

int go-stop0

C
code c,*pc;
pc=&c ;

i f ~ init-ok==l)

{
c=CE ;
send-code (pc) ;
s e t - i n j e c t (0 ,O. 0) ;
unf ree-x (1 ;
f ree=0 ;
>

e l s e
t
p r i n t f (" I n i t i a l i z e LiMMS f i r s t . \n") ;

r e t u r n 1 ;
1

i n t go-home 0
<
code c,*pc;
pc=&c ;

i f (ini t -ok==l)
{
p r i n t f ("Moving
c=CE ;
send-code (pc) ;

s e t - i n j e c t (0,O.O) ;
unf ree-x 0 ;
f ree=O ;
1

move-limrns-to-sync(0.2);
c=cp ;

send-code (pc) ;
3

e l s e
-I
p r i n t f (" I n i t i a l i z e LiMMS f i r s t . \nN) ;
J

r e t u r n 1; 1

Other functions

In the functions described above several new functions are used which are added to limmslib. c.

int set-inject(int id,float scale)

{
set-test-limms (id, scale) ;
return 1;
3

f ree-x deactivates the built-in controller of the x-axis, so the custom controller can be used:

int free-x(void)
-c
if (SacDeactivate(iogAxisID0) !=LDD-M-SUCCESS)

{
printf("FREE-X: Free x-axis failed.\nU);
return 0;
3

printf ("x-axis freed. \nu) ; return 1 ; 3

unf ree-x reactivates the built-in controller of the x-axis:

int unfree-x(void)

if (~ac~ctivate (logAxis1~0) ! =LDD-M-SUCCESS)
{
printf("UNFREE-X: UnFree x-axis failed.\nU);
return 0;
3

printf ("x-axis unfreed. \nI1) ; return 1; 3

For serial port communication, two functions are written that make use of functions from
seria1.h.

send-code sends a code to the DSP:

void send-code (char *PC)
{
WriteStringToPort (pc , 1) ;
3

get-code receives a code from the DSP:

void get-code (char *PC)
{
~ead~harFromPort(pc);

3

The complete source code of the LAP1 program can be found in Appendix C.

Appendix C

LAPI Server source code

/* Lapi Server v1.0 */

#include "serial. h"

typedef char code;
const code CE='Ey, CG='G', CH='H', CP='P', CR='R', CS='Sy;
int home-ok=-1, exit=O, free=O;
int WinCtrl;
int mult=200;

int move-limms-to (f loat) ;
int move-limms-to-sync (f loat) ;
int free-x(v0id);
int unf ree-x (void) ;

void send-code(char *PC)

WriteStringToPort (pc, 1) ;
3-

void get-code (char *PC)

ReadCharFromPort(pc);
>

int set-inject(int id,float scale)
C
set-test-limms (id,scale) ;
return 1;
1

int set-satlev(f1oat satlev)

pxpars [271 =satlev;

set-controller-x (pxpars) ;

printf ("SATLEV = %d. \n" , Cint) satlev) ;

return 1;

1

int go-start 0
{
code c,*pc;

if (init-ok==I)

{
f ree-x 0 ;
set-inj ect (2, -mult) ;
f ree=l ;
c=CR;
send-code (pc) ;
1

else

~rintf ("Initialize LiMMS first .\nu) ;
3

return 1;
3

int go-stop0
{
code c,*pc;
pc=&c ;

if (init-ok==l)

{
c=CE ;
send-code (pc) ;
set-inj ect (0,O. 0) ;
unf ree-x (1 ;
f ree=O ;
3

else

t
printf("1nitialize LiMMS first.\nn);

>

return 1;

3

int go-home ()

{
code c,*pc;
pc=&c ;

if (init-ok==l)

{
printf ("Moving
c=CE ;
send-code (pc) ;

set-inject (0,O. 0) ;
unfree-x0 ;
f ree=O ;

t
printf ("Initialize LiMMS first .\nu) ;

return 1;

3

int cbf -init 0
{
code c,*pc;
pc=&c ;
double ttt;
int init=-1;

if (init-ok==l)

<
printf("LiMMS is already initialized.\nM);

return 1;
1

printf ("Initializing. . . \nl') ;

while (init==-I)
C
Sieep(100) ;

printf ("Homing axes. . . \n") ;

hThread05=CreateThread(NULL9

0,
(LPTHREAD-START-ROUTINE) Thread05Pro c ,
lpThread05Par,

0 ,
&Thread05Id) ;

hThreadOG=CreateThread (NULL,

0,
(LPTHREAD-START-ROUTINE) ThreadOGProc,
lpThread06Par,

0,
&ThreadOGId) ;

hThread07=CreateThread(NULL,

0,
(LPTHREAD-START-ROUTINE) Thread07Proc,
lpThread07Par,

0 9

&Thread07Id) ;

Sleep (1000) ;
SetEvent (h~tart~oming) ;

printf("Waiting for homing to finish . . . \nu);

while (home-x-ok==-1 I I home-yl-ok==-1 I I home-y2_ok==-l)
€
Sleep (100) ;
3

if (home-x-ok==1 && home-yl-ok==l && home-y2_ok==l)

€
move~limms~to~sync(0.2);
init-ok=l;
c=cp ;

send-code (pc) ;
printf ("Initializing LiMMS succeeded. \nu) ;
>

else
1
init-ok=0;
c=CE ;
printf("1nitializing LiMMS failed.\nn);
>

3
else

c=CE; init-ok=O;
printf ("Initialization failed. \n") ;
3

return 2;
>

int cbf -exit 0
1
code c,*pc;
pc=&c ;
int close=-I;

if (init-ok==-1)
€
printf ("LiMMS was not initialized. \n") ;
exit=l;
return 1;
3

printf ("Closing LiMMS. . .\nu') ;

c=CE ;
send-code (pc) ;

unf ree-x 0 ;

while (close==-1)

<
Sleep (100) ;
3

if (ciose==l)

<
printf ("Closing LiMMS succeeded. \n") ;

>
else

printf("C1osing LiMMS failed.\nn);

3

return 2;
3

main (1

code c,*pc;
pc=&c ;

winio("%sp&" ,0,0) ;
winio("%ww [topmostl&") ;
winio ("%sy L3d-thinI &");
winio ("%ca [LAPI Server v0.71 &It) ;
winio (I' Status%f f &'I) ;
winio("%50.10cw%f f&" ,NULL) ;
winio(" %-tt[~nitializel&",cbf-init);
winio (I1 %-tt [Exit] &" , cbf -exit) ;
winio("%lw",&WinCtrl);

printf("We1come to LAP1 Server v0.7\n");

OpenComPort 0 ;

i
go-start 0 ; c=O;

go-stop () ; c=O;

3
else if (c==CH)

go-home (1 ; c=O ;

Sleep (100) ;
yield-program-control(Y-TEMPORARILY);

3
(exit==G) ;

CloseComPort 0 ;

WinCtrl=O;
window-update (&WinCtrl) ;

return 0;
3

Bibliography

LiMMS: System Description. Report 8122-968-93523, Philips CFT, Eindhoven,
The Netherlands, May 1997.

LiMMS: LAPI User Guide. Report 8122-968-93553, Philips CFT, Eindhoven, The
Netherlands, May 1997.

OMC: Single Axis Controller version 3.0 - Reference Manual. Report CTR-595-
97-0031, Philips CFT, Eindhoven, The Netherlands, July 1997.

Salford C++ Compiler version 3.0 - User Guide. Salford Software, United King-
dom, 1999.

	Voorblad
	Abstract
	Contents
	1. Introduction
	2. Description of the hardware
	3. Design of the interface
	4. Implementation
	5. The LAPI server
	6. The Simulink model
	7. Test experiments
	8. Conclusions and recommendations
	Appendix A. Block scheme of the controller
	Appendix B. LAPI server function description
	Appendix C. LAPI server source code
	Bibliography

