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Summary 

Introduction 
In this report the investigation of a non-linear mass-spring system will be given. Both 
static and dynamic analysis is done and reasons for differences between theory and 
reality are given. 

Chapter 1 Determination of the buckling force 
General derivation of the buckling force of a beam, which is loaded by a compressive 
rorce, will lead to the buckling force of the system with help of the specific boundary 
conditions. The buckling force of one leaf spring is equal to 5.45N. The buckling 
force of the whole system will be 3·5.45 = 16.35N, because the three leaf springs are 
coupled parallel. 

Chapter 2 Static experiment 
With help of a displacement sensor the deflection curve of the system can be 
determined. First the sensor is calibrated with help of least square fit. After that the 
upper mass is enlarged and the corresponding voltage is read. The buckling force of 
the experiment will be smaller than the one obtained in the theoretical calculations. 
The leaf springs will loose some of their stiffness after using them several times. 
Theoretical analyses however, assume a perfect geometry. 

Chapter 3 Static simulation 
A static simulation using the finite element method program Marc/ Mentat will check 
results of theoretical calculations and static experiment. Three models are made and 
results and differences are discussed. The results of the best model will equal the 
theoretical analysis. 

Chapter 4 Dynamic numerical analysis 
The deflection curve obtained in the static experiment is used to make a model of the 
system using the program Matlab. First this is done without friction and after that with 
friction included. The algorithms, which are used to make the model, are discussed 
and results can be seen in this chapter. 

Chapter 5 Dynamic experiment 
The results of the numerical analysis can be checked by a dynamic experiment. In this 
experiment a acceleration sensor is placed at the top of the upper mass and after the 
system is brought into an oscillation the acceleration is measured in time. The results 
of dynamic experiment and numerical analysis are nearly the same. Differences are 
caused by sensitivity of the springs and approximations in the numerical analysis. 

Chapter 6 Recommendations 
To avoid some of the differences between theoretical analysis and reality the 
following recommendations are given: 

Suitable construction 
Determination of friction with help of a filter 
3-D model using Marc/ Mentat 
3-D model using Matlab 
Comparison reality-Marc-Matlab 



Conclusions 
Both static and dynamic analyses are done and satisfying results are found. 
Differences between theoretical analysis and reality are caused by sensitivity of the 
leaf springs and approximations in the models. 
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Introduction 

In this report a non-linear mass-spring system will be investigated. First of all the 
static behaviour of the spring will be analysed theoretically and discussed. After that, 
a statical experiment will be done in order to obtain the non-linear behaviour of the 
spring. Then a simulation of the non-linear behaviour of the spring will be made using 
the computer program MARC. The results will be compared with those obtained in 
the statical experiment and in the theoretical calculations. Next this static behaviour is 
used to make a dynamic model of the system in order to analyse the dynamic 
properties of the system. The dynamical results of this mathematical model, which is 
made using the computer program MATLAB, are compared with the results of a 
dynamical experiment. Finally some recommendations are made and conclusions are 
drawn. 
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1. Determination of the buckling force 

The system, that is investigated, can be seen in figure 1.1. Two cylindrical masses are 
connected by three leaf-springs. The angle between every two springs is 120 degrees, 
which means that the system is axial symmetric. The lower mass is placed at a flat 
ground, so it can be seen as 'fixed to the world'. The weight of the upper mass is too 
large to be held by the leaf springs, so they will buckle. After buckling the resultant 
vertical force of the leaf springs increases. So the force of the leaf springs together 
will compensate first and then get larger than the gravity force of the upper mass 
during their buckling. The upper mass will be slowed down and eventually be pushed 
upwards by the leaf springs. So when the upper mass is moved upwards by a person, 
until the springs are fully stretched, and then released, it will make an oscillation, 
which is not sinusoidal. The upper mass will be guided by a pin, which is connected 
to the lower mass and enters a centered hole in the upper mass. The cause of this non­
sinusoidal oscillation is the fact that the deflection curve is non-linear. In this report 
this relation is investigated. 

figure 1.1 System 

First the buckling force of one leaf spring is investigated, in other words: The force at 
which a leaf spring will just buckle. A general derivation of the buckling force of a 
beam, which is buckled by a compressive force, is given. Then, with the specific 
boundary conditions, the buckling force of the under investigation leaf springs is 
determined. 
The potential energy of a beam, which is buckled by a compressive force (see figure 
1.2), is: 

w(x) 

1'---- P t 
L X 

figure 1.2 Buckling by compressive force 
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Ll 2 Ll 2 
U = f-Elw ,xxdx- f-PW ,xdx 

0 2 0 2 
in which: 
E E-modulus of beam 
Is 
w 
L 
P 

Second moment of area ofthe cross section of the beam 
Position of the beam at point x 
Length of the beam 
Compressive force 

(1.1) 

At the buckling point the system will be in equilibrium, the potential energy will have 
its optimum and the change of the potential energy will thus be equal to zero: 

L L 

aU = fElw,xxaw,xxdx- J~w,xaw,xdx = 0 (1.2) 
o 0 

In which Pb = Buckling force 
This results in the following differential equation (the derivation is shown in 
Appendix j): 

(1.3) 

with solution (for derivation see Appendix 2): 

w(x) = c + dx + esin(ax) + f cos(ax) (1.4) 

2 It a =-
EI 

(1.5) 

The constant values of a and c, d, e and fhave to be determined with help of the 
boundary conditions of the leaf springs in the system. The configuration for one leaf 
spring of the system is shown in figure 1.2: Both ends are fixed and the following 
boundary conditions are valid: 

w( x = 0) = w( x = L) = 0 
(1.6) 

w (x = 0) = w (x = L) = 0 ,x ,x 

When these values are substituted in the found solution, four equations arise which 
can be written in the following form: 
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Azu =0 (1.7) 

1 0 0 1 c 

1 L sin(aL) cos(aL) d 
Az = U= 

0 1 a 0 e 

0 1 acos(aL) - asin(aL) f 

A non-trivial solution for this "eigenvalue"-problem will only exist if det(AzJ=O. This 

leads to the solution: a = 2n (The values of c, d, e and fare not of any importance 
L 

here for determining the buckling force). 

~ 2 D _ 2E1 _ 4n 2 EIs 
From: - = a follows: Ib - a s - L2 

EIs 

1 
In this system (with leaf springs) Is = -bh3 

12 

(1.8) 

(1.9) 

In the system leaf springs are made of steel and while both ends are fixed in a groove 
of 20mm the width b of the leaf springs also is 20mm. Thus only the length L and the 
thickness h of the leaf springs can be varied. In the figures j.3 a and b the buckling 
force of one leaf spring can be seen dependent on length and thickness, respectively. 
The E-modulus and width are held constant at 200 GN/m2 and 20 mm respectively. 

Buckling force at thickness 0.2 mm 
30 

Buckling force at length139mm 
90 

\ 
\ 
\ 
\ 

\ 
25 

\ 
\ 
~ 

-----~ 5 -------------_._-

o 
0.1 0.15 0.2 

a. Length leave spring,[m] 10-4 

80 

70 
z 
'(;60 
C,) .... 
S50 
OJ 
c 
~40 
C,) 
:::l 

Cll 30 
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10 

o 

// v/ 
--'----~ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/' 
/ 

/ , 

1 234 5 
b. Thickness leave spring, [m] 10-4 

figure 1.3 Bucklingforce dependent on Length (a) and Thickness (b) 
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In the system the leaf springs have the following dimensions: Length L=139 mm, 
width b=20mm and thickness h=O.2 nun. Infigure 1.4 one leaf spring with its 
dimensions is shown. 

wIlL---___ ------'I ~ 
< 139 ) -i )f-

0.2 

figure 1.4 Leaf spring dimensions (in mm) 

Now the buckling force for this specific leaf spring can be calculated: 

I =~bh3 =~.20.10-3 ·CO.2·1O-3 )3 m4 
s 12 12 

P
b 

= 4n 22E1 = 5.45N 
L 

The three leaf springs are coupled parallel (see figure 1.1), so the total force of them 
can be calculated by summing the separate forces. While the leaf springs are all the 
same it's evident that the weight of the upper mass has to exceed: 3·5,45 = 16.35N , 
resulting in an upper mass of 1.76 kg to get the system buckled. 
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2. Static Experiment 

In chapter 1 the buckling force of the system has been determined. When this is 
translated to a force-displacement-diagram it is the point on the y-axis of this diagram, 
see jigure 2.1. The displacement of the upper point of the leaf springs is 
approximately equal to zero when the leaf springs are fully stretched. Actually there is 
a small displacement u of the upper point at the buckling point: 

u = Pb = PbL = PbL = 16.35 ·13.9 .10-
2 

= 9 .10-3 mm 
3k 3EA 3Ebh 3.200.109 .2.10-2 .2.10-4 

Fore 
(N) 

Path ??? 16,35 
~ Unlrnown until now 

o ) 
Displacement (m) 

jigure 2.1 Buckling force in diagram 

When a mass with weight lower than this buckling force is connected at the upper end 
of the leaf springs they will not buckle. Also when the system is then manually 
buckled and released the leaf springs will automatically stretch and stay in stretched 
position. When an upper mass is used with a weight greater than the buckling force 
the system will buckle. The interesting part now is the force, which the leaf springs 
produce together, when the system is buckled further. To determine the force of the 
leaf springs dependent on the displacement of the upper point of the leaf springs, in 
other words the force-displacement diagram, a statical experiment is done. By putting 
extra weight on it the system will buckle further to compensate the weight. Vlhen 
equilibrium is found the force of the leaf springs together is equal to the weight of the 
mass. It can be concluded that the force of the leaf springs will increase when they 
buckle further! The accompanying displacement is measured with a displacement 
sensor (seejigure 2.2). 
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figure 2.2 Adapted system with displacement sensor 

To carry out this experiment the system is adapted (see figure 2.2): The upper mass is 
replaced by a mass of smaller weight and under it a screw thread is fixed. At the end 
of this thread a platform is fixed on which the extra weights can be placed. The 
displacement sensor can be connected to the upper face of the upper weight and 
needn't to be replaced every time, which should have ifthe weights were placed upon 
the mass! 
The sensor supplies a voltage, which is a measure for the displacement of the object 
it's connected to. It is known that the relation between the voltage and displacement is 
linear, but the specific formula is not known. So first the sensor has to be calibrated. 
In order to do that the system without extra masses (leaf springs fully stretched) is 
placed underneath the sensor. The voltage at this situation is related to the 
displacement zero. After that, blocks of known heights are placed underneath the 
sensor and the difference in height between system and block is the displacement 
going with the supplied voltage (see figure 2.3). 
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o 

a 
System 

...--------, ~ -(a-b) 

b Block 

figure 2.3 Calibrating displacement sensor 

The following values are found (table 2.1): 

Voltage (V) Displacement (m)10-3 

-5.53 -40 
-5.07 -36.7 
-4.63 -33.3 
-4.29 -30.1 
-3.73 -26.6 
-3.28 -22.9 

-2.79 -19.8 
-2.38 -16.2 
-1.90 -13.2 
-1.44 -9.6 
-0.86 -4.5 
-0.42 -0.9 
-0.21 0 
0.04 2.1 
0.51 4.8 
1.44 12.3 

table 2.1 
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Because it is known that the relationship between voltage and displacement is linear 
the following can be formulated: 

Y · = Ax. +B I I 

in which: 

Yi 
Xi 

displacement(m) at measurement i 
voltage(V) at measurement i 

(2.1) 

To get a nice fit a least-square method is used: ~ :t (Yi - (AXi + B))2 (2.2) 
2 i;1 

This equation depends on two parameters, namely A and B, when the measurements 
are known. Values for A and B have to be chosen in such a way that above sum is as 
small as possible. So a minimum has to be found: The derivatives to A and B have to 
be zero. The calculations can be found in Appendix 3. 

The solution of this equation is z = [A] = [0.0075] 
B 0.0015 

The values of the measurements and the fit are plotted in the same figure as can be 
seen below (see figure 2.4). The M-file for this can be found in Appendix 4, A.4.1. 

.s 
c 

0.01 

o 

E -0.01 
Q) 

~ 
c.. 
en 
(5 -0.02 

-0.03 

-0.04 

Calibration displacemet reader 

~----~----~--~----~----~----~----~----~ 

-6 -5 -4 -3 -2 -1 o 2 
Voltage (V) 

figure 2.4 Calibration displacement sensor 
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Now the displacement sensor has been calibrated, the real experiment can be done: 
Again and again, the weight on the leaf springs is enlarged and when force 
equilibrium is found the voltage is read each time. When this is done for 57 different 
weights the voltages are translated into displacements and a force-displacement 
diagram can be drawn. This can be seen in figure 2.5 below. 

Force-displacement diagram 
15~------------~--------------~---------------c 

10 

5 

OL-------------~--------------~--------------~ 

-0.015 -0.01 -0.005 o 
Vertical displacement (m) 

figure 2.5 Force-displacement diagram, system 

Because the three leaf springs are connected parallel, the force diagram of one leaf 
spring will be the following (all forces divided by three, see figure 2.6). 
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Force displacement diagram 
5,---------------~--------------~--------------~ 

4.5 

4 

3.5 

3 

Q) 2.5 
~ 
u.. 

2 

1.5 

0.5 

o~--------------~--------------~--------------~ 

-0.015 -0.01 -0.005 o 
Vertical displacement (m) 

figure 2.6 Force-displacement diagram, one leaf spring 

From figure 2.5 the buckling force of the system can be determined: it will be 
somewhere near 13 Newton. The theoretical value, computed in chapter one (16.35 
N), exceeds this value. A reason for this is the fact that the leaf springs are very 
sensitive and after some buckling they wi11loose some stiffness. Theoretical analysis, 
however, assume a perfect geometry. The experimental diagram wi11lie closer to the 
x-axis and so will the buckling force! 
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3. Static simulation 

In chapter two a force-displacement diagram for the system is determined 
experimentally. At the end of chapter two, the discrepancy between theoretical value 
and experimental force-displacement curve is explained. In this chapter a numerical 
analysis of the force-displacement curve is carried out using the finite element 
package Marc/ Mentat. A simulation of a loaded 3-D construction can be built and the 
deformations can be visualized together with the reaction forces. 
The program consists of several menu's, of which the relevant ones will be mentioned 
here. Different models are made to simulate the leaf spring. The one with the best 
result is considered below, two alternatives together with their differences are 
discussed later. 

3.1 Finite element model 

Mesh generation 
In this menu the finite element mesh of the structure has to be built. In the case of the 
leaf spring four nodes have to be drawn: The coordinates of the four comer points of 
the front view (see figure 3.1) of the leaf spring have to be given here. After that the 
four nodes have to be connected by adding a quad-element. So the leaf spring then is 
considered as one element. Next this element can be subdivided in smaller elements. 
In this case a one-by-fourteen subdivision is chosen (see figure 3.1). The element size 
is 20mm x lOmm. 

figure 3.1 Mesh generation 
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Kinematic and dynamic boundary conditions 
Bottom 
The bottom of the leaf spring is fixed and cannot move in any direction. Therefore the 
two nodes at the bottom of the simulation model are fixed in all degrees of freedom (3 
translations and 3 rotations). 
Top 
The top of the leaf spring will, in the perfect case, move only in vertical (y) direction. 
Therefore the upper two nodes of the simulation model are fixed in all degrees of 
freedom but one: The translation in vertical direction. 
Movement 
In the experiment a force (mass) will cause a vertical displacement of the top of the 
leaf spring. In this numerical simulation the vertical displacement ofthe top of the 
leaf spring will be prescribed. The displacement in vertical direction of the upper two 
nodes is incrementally increased (see figure 3.2). In this the x-axis agrees with 100 
increments and the y-axis with a displacement from zero to 10 mm in negative y­
direction. To achieve this displacement a vertical force will be needed, which is as 
large as the vertical (reaction) force generated by the spring. So at the top or the 
bottom of the spring the reaction forces can be used to get the force displacement 
diagram. 

figure 3.2 Prescribed displacement(y-axisJ-increment(x-axisJ diagram 

Side pressure 
When only the upper three boundary conditions would be used the spring would be 
compressed until the buckling point. At the buckling point numerical problems may 
be expected because the stiffuess matrix becomes singular. To circumvent this 
problem a small initial imperfection is needed to force the system into a buckling 
form. To accomplish this a small side pressure is introduced at the front view of the 
spring. This pressure will decrease quickly (see figure 3.3) so it will not be of any 
influence later on. The y-axis represents pressures from zero to 100 N/m2 and the x­
axis represents 100 increments. It is made sure the buckling force has been exceeded 
before the sidepressure has gone to zero. 

13 



figure 3.3 Side pressure (y-axis)-increment (x-axis) diagram 

Material properties 
The leaf springs are made of steel and therefore the material properties are as follows: 

E = 200 .109 N I m2 
, v 0.3, P = 7850kg 1m3

• 

Element type 
As mentioned before the leaf spring will be treated as a thin shell. Therefore element 
type 75 is chosen as type for this simulation. 

Geometric properties 
The thickness ofthe shell elements is O.2mm. 

Number of increments 
100 equidistant increments are used. 

Results 
A force-displacement-diagram is wanted so as a result the reaction forces of the upper 
two nodes have to be selected and plotted against the displacement. After that, the two 
diagrams, which are equal, have to be summed to get the diagram of the leaf spring. 
This leads to the following result (see figure 3.4). 
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Force-displacement diagram 

9 

8 

7 

6 f----------:--- -----

~ 
Q) 5 f----------:----------

~ 
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2 
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-0.01 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 
Vertical displacement (m) 

figure 3.4 Force-displacement diagram 

The form of this diagram is the same as the one obtained at the experiment. However 
there are two differences: 
1. The values of the forces at any displacement are greater than those in the 

experiment at the same displacement. A reason for this is already given: The 
geometry of the leaf springs in practice will not be perfect and moreover the 
springs are used several times, which could have caused some local plastic 
deformation. As can be seen in the figure the buckling force will be about 5.5 
Newton. This value agrees with the analytical buckling value: 5.45 Newton. 

2. The diagram shows a strange peak at the beginning. Local buckling could 
cause this. 
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3.2 ALTERNATIVES 

With use of symmetry 
In this file, only the left half of the leaf spring will be modeled: The width is 10 mm 
instead of 20 mm. The points at the right side of this model (in the whole spring these 
are the points in the middle of it (see figure 3.5)) can be supplied with symmetry 
conditions: The can only translate in Y and Z direction and rotate around the X-axis. 

figure 3.5 Symmetry 

The program won't finish its run, but will get stuck at some time. The results until 
then can be shown. 
To obtain the total force the sum of the force on the right node and twice the one on 
the left is taken (see figure 3.6). 
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Force-displacement diagram 
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Vertical displacement (m) 

figure 3.6 Force-displacement diagram 

From this figure it can be concluded this buckling force is roughly the same as the one 
obtained in the simulation before. However the path is steeper and will not fit the 
experiment data as good as the path obtained in the simulation before. 

With pressure holding on 
In the first simulation some sidepressure at the front view of the leaf spring is 
introduced. This sidepressure disappears after 10 iterations. When the pressure holds 
on longer (see figure 3. 7) the result will be as can be seen in figure 3.8. 
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figure 3.7 Pressure(y-axis)-increment(x-axis) diagram 

Force-dis placement diagram 

8 

7 

6 

3 

2 
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-0.01 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 

Displacement (m) 

figure 3.8 Force displacement diagram 

As can be seen in figure 3.8 the force ofthe leaf spring will decrease when it buckles 
further. The leaf spring will collapse after a displacement of about 3.5 mm due to 
negative stiffness. 
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4. Dynamic numerical analysis 

Until now, static analyse is done: only the forces of the leaf springs at several 
displacements are determined. The dimension time has not been mentioned yet. The 
only thing that is said about the movement of the system in time is the fact that it will 
oscillate when the upper mass is lifted up, until the leaf springs stretch fully, and then 
released. In this chapter this oscillation will be analysed. The acceleration of a mass is 
determined by the resultant of forces on it: 

F=m·a 

in which 

F = force(N) 

m = mass(kg) 

a = acceleration(ml S2) 

4.1 Friction excluded 

(4.1) 

When friction is neglected for the time being, the only forces on the upper mass are 
the gravity force Fz and the total force of the three leaf-springs together Fv (see figure 
4.1). 
The acceleration is the second derivative of the displacement to time and the force of 
the leaf spring is dependent on the displacement of the upper mass. The mass itself 
will be constant during the movement and so the gravity force of it will be. 
Equation (4.1) then can be written as follows: 

my(t) = -Fz + FvCy(t)) 

in which 
m 
y(t) 
t 

Fz 
Fv 

upper mass(kg) 
displacement upper mass(m) 
timers) 
gravity force(N) 
total force of leaf springs(N) 

19 
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Fz Fv '-v 

figure 4.1 Direction agreement 

It is intended to analyse the movement of the system as good as possible. That is why 
the force-displacement diagram obtained by the static experiment is used in this 
analysis. The relation betweenFv andy is not written in a formula (the force 
displacement diagram has been determined from a finite number of experiment values 
and therefore is not continuous, but discrete). A mathematical relation could be 
obtained by a fit, but in this situation the reality will be reconstructed in analysis and 
so the discrete values must be used. The next problem arises here: When a formula for 
Fv should exist, differential equation (4.2) could be solved in the program MATLAB 
with the command ode45 (Numerical integration). Now the discrete force 
displacement diagram is used and after every time step the force of the leaf springs 
should be determined. This is done as follows. The second order differential equation 
(4.2) can be written in two first order differential equations: 

yet) = vet) (4.3) 

v(t)=a(t)=~(-mg+Fv(Y(t))) (4.4) 
m 

The left parts of these equations are derivatives to time of displacement and velocity 
respectively. We can translate these continuous equations into discrete equations by 
using forward differentiation: 

(4.5) 

(4.6) 

in which dt is a very small time step. Then the equations become: 

Yk+! = Yk + vkdt (4.7) 

1 
Vk+! =vk +akdt=vk + (-(-mg+ FV(Yk)))dt (4.8) 

m 
These algorithms are used in MATLAB to determine the displacement, velocity and 
acceleration in time: By knowing the displacement and velocity at one time, the 
displacement and velocity one time step further can be calculated by these iterations. 
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When the new displacement is calculated the force of the leaf springs can be 
determined from the experiment-data. When a displacement is found between two 
data points of the experiment a linear interpolation is used to calculate the 
corresponding spring force. The M -file is given in Appendix 4, A. 4. 2. The upper mass 
will make an oscillation. This will happen around some equilibrium point, the point at 
which gravity force and spring force will be equal. At all points above this point, the 
gravity force exceeds the spring force and acceleration will be negative. The mass will 
go down, beyond the equilibrium point eventually. At all points below this 
equilibrium point, the spring force will exceed the gravity force and so the 
acceleration will be positive. The mass will slow down, will get velocity equal to zero 
and will than go upwards beyond the equilibrium point and so on. The weight of the 
mass which has to be given in the MATLAB program therefore has to be chosen 
somewhere between the upper point and the buckling force of the Force-displacement 
diagram to get an oscillation. 

Hypotheses 
Before looking at the results of the MATLAB program hypotheses can be done: 
Therefore we needfigure 2.5 from chapter two. From this figure can be concluded 

that the absolute value ofthe stiffness of the leaf springs II: II decreases when the 

leaf springs buckle further. Vvhen a linear spring-mass system, with mass m and 

spring stiffuess k, is taken into consideration its eigen frequency will lie at (j)" = l. 
So when the stiffness decreases at equal mass, the eigen frequency also decreases. 
The frequency at points below the equilibrium point will therefore be smaller than the 
frequency at points above it. In one oscillation the upper mass then will be below the 
equilibrium point during a greater period than being above it. 

Results program 
Infigures 4.2, 4.3 and 4.4 respectively the results of the MATLAB-program are 
shown for the following settings: 

yO=O/vO=O/dt=O.00005/ts=2/m=1.32 

These are the results for the vertical movement of the upper mass. 
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X 10-3 Displacement-time diagram 
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Acceleration-time diagram 
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As predicted in the hypotheses, the upper mass will be underneath the equilibrium 
point during a greater time than it will be above it. The acceleration-time diagram 
shows sharp negative peaks with great amplitude and blunt positive peaks with 
relative small amplitude. 

4.2 Friction included 

The situation sketched above will never occur in reality: Friction is always present. In 
this case Coulomb and viscous friction are introduced and equations (4.3) and (4.4) 
will change into: 

yCt) = vet) (4.9) 

vet) = aCt) = ~(-mg + 1\, (yCt)) - c1 ~arctan(50v(t)) - c2 vct)) 
m 1t 

(4.10) 

and equations (4.7) and (4.8) into: 

Yk+l = Yk + vkdt 
(4.11) 

1 2 
vk +-( -mg + Fv(Yk) - c1 -arctan(50vk ) - C2vk)dt 

(4.12) 

m 1t 

In these equations the constants c 1 and C2 represent the maximum value of the 
coulomb friction and the proportionality of the viscous friction respectively (see 
figures 4.5 a and b). 
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figure 4.5 (a) Coulomb and (b) viscous friction 

The MATLAB-program is included in Appendix 4, AA.2. The values of these 
constants can be determined by some methods of parameter estimation. However, 
because of lack of time the parameters are determined in the following chapter by the 
method of trial and error. 
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5. Dynamic experiment 

5.1 Results 

In this chapter the results of a dynamic experiment are compared with the results of a 
numerical model. With an accelerometer the acceleration is measured in time. The 
accelerometer is placed upon the upper mass, which has value m= 1.32 kg) and the 
upper mass is lifted up until the leaf springs are fully stretched and from this position 
the upper mass is released (with velocity equal to zero). With help of the data­
acquisition-tool SIGLAB the acceleration plot can be drawn. The following result is 
found (see figure 5.1). 
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In this figure too, the sharp negative peaks and the blunt positive peaks can be 
recognised. The oscillation will damp due to friction. Now the parameters C1 and C2 

can be determined by changing them in the MATLAB-program and comparing the 
result with the one found in the experiment until satisfying correspondence can be 
seen. For the values cj = 0.01 and c2 = 0.4 the best result is obtained. Infigure 5.2 
the experiment-result and the program result with foregoing values are plotted 
together. The values of time are left out here, because the figures have been put 
together for different times to avoid the problem of errors due to difference in initial 
conditions. 
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Acceleration-time diagram 
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figure 5.2 Comparison of program and experiment 

In the program the following settings are used: 
yo=o/vo=o. 

5.2 Causes of differences 

3 

As can be seen in the figure above differences in magnitude and frequency arise. 
Following reasons might explain these: First of all the leaf springs are very sensitive, 
they are easily damaged (plastic deformation): The static experiment has been done 
several days before the dynamic experiment. During the days between these two 
experiments, the leaf springs were damaged due to unknown causes. In favour of the 
dynamic experiment other springs were used. Therefore the stiffuess of the leaf 
springs in the dynamic experiment will not be exactly the same as in the static 
experiment. Besides this, the dynamic program in MATLAB uses the numerical 
values of the data obtained in the statical experiment to interpolate linearly. The 
values used in the program therefore will be an approximation ofthe real values. 
Furthermore, the MATLAB program is one-dimensional, whereas the system is three­
dimensional. The leaf springs are not fixed perfectly to the masses, which causes the 
upper mass to hang in a crooked position. Due to this the guiding pen will touch the 
upper mass and damp the oscillation very quickly. By omitting the leader pen the 
oscillation will not damp that fast, however, the mass will not make a pure translation 
anymore and side movements appear. They influence the oscillation and the 
acceleration measure for pure translation. These side-effects are not taken in 
consideration in the program. 
Also the friction model can be seen as an approximation, which will not exactly show 
the reality. To overcome these problems some recommendations are made in the next 
chapter. 
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6. Recommendations 

In the foregoing chapter, differences between experiment and program could be seen. 
These differences might be solved in a subsequent study, where the system is 
improved. Furthermore some other problems could be solved. 
With respect to this the following recommendations are made for subsequent study: 
1. A system can be developed in which the leaf springs are fixed better and 

because of that the upper mass will be guided better. The upper mass than 
makes a pure translation and experiment and theory can be compared better (if 
the leaf springs keep their stiffness). 

2. With some parameter estimation, for example a Kalmann-filter, the Coulomb 
and viscous friction can be determined. 

3. A model of the whole system instead of one leaf spring can be made in the 
program MarclMentat. 

4. A model of the whole system (with side movements) can be made in 
MATLAB and results can be compared with those ofthe real one and those of 
the one in MARC. 
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Conclusions 

A non-linear mass-spring system is analysed in this report: With help of static 
analyse, eventually a dynamical model is made of it. The results of both static and 
dynamic investigations are found in several ways: Theoretically, experimentally, by 
way of a simulation in Marc and by way of a mathematical program in MATLAB. 
Many similarities between experiment and numerical results have been found, 
however some differences appeared. In this report reasons have been given to explain 
the sources of these differences. The most important one seems to be the difference 
between perfect modelling and imperfect reality. Eventually satisfying results have 
been found and recommendations for a follow on study are given. 
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Afterword 

After four years of courses, experiments and projects I could start my first stage at the 
Technical University in Eindhoven. At first I didn't know what to expect about it and 
how to use my experiences but later on, when the subject was explained to me, I saw 
a lot of problems had to be solved, which I should be capable of. There were some 
times I didn't know how to go further, but in then I could always fall back upon the 
experience and knowledge ofMr Kodde, Mr Fey and Mr Schreurs. They helped me to 
overcome al my problems and have contributed towards a good end of this 
assignment. 
The fun about this assignment is the fact that several aspects of the mechanical 
engineering had to be used: Theoretical calculations, adjustment of the system, 
experiments, simulations in Marc and programming in Matlab. Because of this 
versatility it never got boring and I always enjoyed the work I was doing! 

Thanks to Rens Kodde, Rob Fey and Piet Schreurs! 
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List of symbols 

Symbol Meaning Dimension 
a Frequency lis 
p Density kg/m3 

we Eigenfrequency lis 

V Poisson's ratio -
a Acceleration mls2 

A Constant -
Al Matrix -
Am Matrix -
b Width beam m 

b Vector -

B Constant -
c Constant -
Cl Coulomb friction constant Nlmls 

C2 Viscous friction constant Nlmls 
d Constant -
dt Time step s 
e Constant -
E Elastic Modulus N/m2 

f Constant -
F Resultant force N 
Fz Gravity force N 
Fv Leaf spring force N 
g Gravity force acceleration mls2 

h Depth beam m 
I Unity vector -
Is Second moment of area m4 

k Spring stiffuess N/m 
L Length beam m 
m Mass kg 
P Compressive force N 
Pb Buckling force N 
t Time s 
ts Program time 
u Vector -
U Potential energy J 
v Velocity m/s 
w Position beampoint m 
x Position m 
Xi Value voltage at measurement i V 
x Vector -
y Displacement m 
y Velocity mls 

y Acceleration mls2 

30 



Yi Value displacement at measurement i m 
y Vector -

z Vector -
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Appendix 1 Partial integration 

I I 

au = fEI~xx~xxdx- fp~x~xdx (A.LI) 
o 0 

Using partial integration for the left part of the right side of equation A.I.I 
I I 

f Elw,x:/3w,xxdx=6 [Elw,xxow,x] - f Elw,xx,xOw,xdx (A.I.2) 
o 0 

Using partial integration again for the right part of the right side of 
equation A.I.2: 

I I 

f Elw,xx,xOw,xdx = ~ [Elw,xx,xOw] - f Elw,xx,xxowdx (A.I.3) 
o 0 

Using partial integration for the right part of the right side of equation A.I.I : 
I I 

fPw,xOw,xdx=6[pw,xow]- fPw,x,xowdx (A.L4) 
o 0 

Now equation A.LI turns into 
I 

ou = f[EI~xx,xx + P~x,x }7wdx+ ~ [EI~xx,xOw,x]-~ [EI~xx,xOw]-~ [p~xOW] (A.I.S) 
o 

From oU = 0 follows: 

Elw,xx,xx + PW,x,x = 0 (A.L6) 
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Appendix 2 Solving differential equation 

Elw,xxxx + Pb W,xx = 0 
Homogene solution to this equation: 

w(x) = ceM 

This leads to: 
(),4El +),2 Pb)ceM = 0 

),2 (A? El + Pb ) = 0 
With solutions: 

"'),2 =0 

~ '~b +' /'3 4 = ±z - = _zu 
, El 

So the solution gets: 
w( x) = c + dx + e cos( ax) + f sine ax) 
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Appendix 3 Least-square fit 

! ~:CYi -(Axi +B))2 = !(y-(AX+BJ))T(y-(AX+BJ)) 
2 i=1 2 

~(!(y - (AX + BJ))T (y - (AX + BJ))) = 
dA 2 

-(y-(AX +BJ))TX = -yTx+AXTx +BJTx = 0 

~(!(y - (AX + BJ)f (y - (Ax + BJ))) = 
dB 2 

-(y-(AX+BJ)fJ =_yTJ +AXTJ +BJTJ =0 

This can be written in the fonn Amz = b 

in which: 

- Y x r-T-l 
b = ",_ 

Ly"IJ 
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Appendix 4 Matlab programs 

A.4.1 Force displacement diagram 

%beweging3.m 
%JVlfile to determine first··order fit for calibration of the 
displacement reader 
%After that a force-displacement d:i.agTam :1.s made w::i..th help of this 
calibration 

close all 

Volt=[ 
-5.07 
-4.63 
-4.29 
-3.73 
-3.28 
-2.79 
-2.38 
-1. 9 

-1. 44 
-0.86 
-0.42 
-0.21 
0.04 
0.51 
1. 44]; 

Verp= [ 
36.7 
33.3 
30.1 
26.6 
22.9 
19.8 
16.2 
13.2 
9.6 
4.5 
0.9 
0 
-2.1 
-4.8 

-5.53 

40 

-12.3] i 

plot (Volt,Verp) 
hold on 

I=ones(length(Volt) ,1) i 

Voltkw=Volt'*Volti 
1Volt=1'*Volt; 
Volt1=Volt'*1; 
Ikw=1'*Ii 

VerpVolt=Verp'*Volti 
Verp1=Verp' *1; 
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A=[Voltkw IVolt 
VoltI Ikw] i 

b=[VerpVolt VerpI] I 

x=A\b %Vector x contains values of the first order fit 

t=Volt(l/l) :O.Ol:Volt(length(Volt) /1) i 

h=x(1/1)*t+x(2/1) i 

%plot(c,h, 'r') 
%Determining force-displacement diagram 

close all 
Volt=[ 
-0.21 
-0.21 
-0.21 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.23 
-0.24 
-0.25 
-0.26 
-0.26 
-0.27 
-0.27 
-0.28 
-0.31 
-0.32 
-0.33 
-0.34 
-0.35 
-0.36 
-0.37 
-0.38 
-0.4 
-0.51 
-0.54 
-0.58 
-0.59 
-0.62 
-0.68 
-0.7 
-0.74 
-0.79 
-0.8 
-0.86 
-1.14 
-1. 22 
-1.3 
-1.33 
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-1.34 
-1. 35 
-1. 43 
-1. 5 
-1. 53 
-1.61 
-1.69 
-1.95 
-2.05 
-2.13 
-2.17 
] i 

Kracht=[ 
5.26 
5.76 
6.26 
6.76 
7.26 
7.76 
8.26 
8.76 
9.26 
9.76 
10.26 
10.76 
11.26 
11.76 
12.2 
12.26 
12.31 
12.37 
12.42 
12.48 
12.58 
12.7 
12.75 
12.8 
12.81 
12.86 
12.91 
12.92 
12.97 
13.02 
13.2 
13.25 
13.3 
13.31 
13.36 
13.41 
13.42 
13.47 
13.52 
13.53 
13.58 
13.7 
13.75 
13.8 
13.81 
13.86 
13.87 
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13.92 
13.97 
13.98 
14.03 
14.08 
14.2 
14.25 
14.3 
14.31 
] i 

Verpl=x(1,1}*Volt+X(2,1} ; 
of calibration 

Verpl=Verpl(2:length(Verpl)t 1)i 

Verpl= [0 ;Verpl] 
Kracht 

plot (Verpl,Kracht) 
axis([-0.OI5 0 0 15]) 

length (Kracht) 

is determined with 
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A.4.2 Dynamical program 

%beweging2.m 
%M-file of the movement of a non-linear system 
%Force-displacement diagram is determined in lvj-file beweging3. m 
%Differential equations are integrated numerically here 
%Points from forcedisplacemnt diagram are interpolated 

function beweging2(yO,vO,A,B,dt,ts,c,d,m) 
%xO=initial position 
%vO=initial velocity 
%A=vector containing values of mass position 
%B=vector containing springforce going with the values from vector ji. 

%dt:=t.:i.mest:ep 
%ts""simulation time 
%c=maximal vale of Coulomb frict.ion 
%d=proportionality of viscous friction 
st=ts/dt; %number of steps 
y=zeros(ts,l) ; 
v=zeros(ts,l) ; 
a=zeros(ts,l) ; 

y(l,l)=yO; 
v(l,l)=vO; 
for k=l:l:st 

if y(k,l) >= A(l,l) 
F(k,l) B(l,l); 

elseif y(k,l) <= A(length(A) ,1) 
F(k,l) = B(length(A) ,1); 

else p=l; 
while y(k,l) < A(p,l), 

p=p+l; 
end; 
F(k,l)=B(p-l,l)+((B(p,l)-B(p-l,l))/(A(p,l)-A(p-l,l)))*(y(k,l)-

A(p-l,l)) ; 
end 
a(k,1)=(-9.8l+(1/m)*(F(k,1)-c*(2/pi)*atan(50*v(k,1))-d*v(k,l))); 
v(k+l,l)=v(k,l)+a(k,l)*dt; 
y(k+l,l)=y(k,l)+v(k,l)*dt; 

end 

T= [] ; 
for t=O:dt:ts 

T=[T;t]; 
end 

length(T) 
length (a) 
length (v) 
length(y) 

figure (1) 
plot(T,y) 

figure (2) 
plot(T,v) 

T=T(l: (length(T)-l) ,1); 

figure (3) 
plot(T,a) 
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A.4.3 Programs from figures 

%figures 1.3 a and b 
%knikbelasting.m 
%IvI-file to determine the buckling force 

b=20e-3; 
h=0.2e-3; 
E=200e9; 
I=(b*hA 3)/12; 
L=13.ge-2; 
H= [] i 

P= [] ; 
T= [] ; 
M= [] ; 

I=(b*hA 3)/12; 
Pe=(4*pi A 2*E*I)/L A 2 
t=3*Pe; 

springs 
m=t/9.81; 

for h=0.le-3:0.01e-3:0.5e-3 
I=(b*h A 3)/12; 
Pe=(4*pi A 2*E*I)/LA 2; 
t=3*Pe; 

sprinqs 
m=t/9.81; 
H= [H;h] ; 
P= [P;Pe]; 
T=[T;t]i 
M= [M;m] ; 

end 
H; 
M; 

figure (1) 
plot (HI p) 

%buckling force 
%buckling force for three leaf 

%buckling force 
%bucklinq force for three leaf 

title ('Buckling force at L=13.9cm') 
xlabel ( 'Thickness leaf spring I [m]') 
ylabel('Buckling force [N] ,) 
grid on 

b=20e-3; 
h=0.2e-3; 
E=200e9; 
I=(b*hA 3)/12; 
L= [] ; 
P= [] ; 
T= [] ; 
M= [] ; 
for 1=7.5e-2:0.5e-2:20e-2 

I=(b*h A 3)/12; 
Pe=(4*pi A2*E*I)/lA 2 ; 
t=3*Pei 

sprlngs 
m=t/9.81; 
L= [Li 1] i 
P=[P;Pe]; 
T= [T; t] ; 
M= [M;m] ; 

%buckling force 
%buckling force for three leaf 
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end 

figure (2) 
plot(L,P) 
title('Buckling force at h=O.2mm') 
xlabel(ILength leaf spring, [m] I) 
ylabel('Buckling force [N] ') 
grid on 

//////////////////////////////////////////////////////////////// 

%figures 4.5 a and b 
%vJrijving" m 
%Coul.ornb and viscous friction 

t=-2:0.01:2i 
y=-atan(50*t) i 

Z=-ti 

figure (1) 
plot(t,y) 
grid on 

figure (2) 
plot(t,z) 
grid on 
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