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Introduction 

In the past compact disks have mainly been used for audio appliances. Nowadays, the number of 
applications for optical storage devices is growing rapidly. Through time, the CD can contain more and 
more data while the size of the disk remains unchanged or gets even smaller. This has as result that the 
tracking error of an optical storage device must decrease in order to have a proper fbnctioning optical 
storage device. 
In the future, the specifications for tracking errors for opticai storage devices wiii get more demanding. 
Some of the applications where the tracking error must be reduced are the CD-rom and the DVE. The 
normal feedback controller may not be sufficient enough to keep the radial arm of the reading mechanism 
inside the specified boundaries. 

The influence of the periodic errors from the eccentricity of the tracks and the disk and wobbling of the 
spindle motor on the total error is relatively large. So, if one can find a controller that can deal with those 
periodic disturbances, the total error can be greatly reduced. 
A controller that can filter out periodic disturbances from the error signal is the repetitive controller. 
Besides that control algorithm, two robust versions of repetitive control will be introduced. With the robust 
repetitive controller uncertainties in the period time should have less influence on the tracking error than 
the normal repetitive controller. 

The goal of this report is: 'The research and implementation of repetitive and robust repetitive control for 
radial tracking of a CD-player'. 
This will be done by first investigating the experimental CD-set-up and finding a feedback controller that 
meets the specifications (chapter 2). After that the theory behind repetitive and robust repetitive control will 
be discussed (chapter 3). With that knowledge the repetitive controllers will be designed and the problems 
that occur are dealt with (chapter 4). 
First the repetitive and robust repetitive controllers will be tested via simulation in Simulink (chapter 5) 
after which experiments with the CD-set-up shall be done (chapter 6). This report ends with the conclusions 
and recommendations for further research. 



2. Modelling and feedback control 

The repetitive control idea is based on the internal model principle. Ths  means that one can see the 
repetitive controller as an add-on part to a normal feedback model and that it includes a model of the 
external disturbances. 
Before the repetitive controller can be implemented, there has to be a model of the CD-player and a simple 
feedback controller. This will be done in two phases. In the fxst phase a feedback controller will be 
designed for the nominal plant. In the second phase, the plant will be extended with the dynamics of the 
digital implementation device, after which the final feedback controller will be designed. 

2.1 Phase one 

In this study the radial transfer function of the CD-player (plant, P) is obtained by measuring the sensitivity 
(S) of the experimental set-up. Before the plant can be subtracted from the sensitivity, the internal (print 
board) PID controller (C) is measured. For more details on the measurements on de CD-set-up, see the 
reports [I-31 

With the use of formula 2.1 the transfer function of the plant has been found. In figure 2.1 the plant is 
shown. 
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Figure 2.1, Bode plot of the measured plant and its fit 

The smooth line in figure 2.1 is an eight-order M of the plant. With this fit a controller is build, so that the 
open loop system has a bandwidth of approximately 700 Hz, the maximum absolute sensitivity is under the 
6 dB and the phase margin is at least 35 degrees. 
Besides those specifications the sensitivity value at the rotation frequency (around 12 Hz) must be less than 
-60 dB to reach the demands of the manufacturer. The reason for this is because the CD's are made with a 
track accuracy of 100 pm while the maximum allowed radial traclung error is 0.1 pm. 



The final controller is shown in figure 2.2 and has two lead lags and a notch at the first resonance of the 
plant. 
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Figure 2.2, comparison between the measured controller and the phase one controller 

2.2 Phase two 

Further on in the study, experiments with the designed controllers will be done. This is possible with the 
use of a Dspace instrument that can implement the controllers in real time. Dspace has some dynamics and 
it needs time to convert signals from analogue to digital and back. The last issue will result in a time delay 
in the system. 
One can account for the dynamics of Dspace, by putting it in the model of the plant and consider the 
combination as the new model for the plant. For the new plant model a new controller can be designed. 
This way, the dynamics of Dspace are accounted for and it won't have any effect on the total model of the 
CD-set-up anymore. 
In figure 2.3 and 2.4 respectively the new plant model and controllers are shown. 

Figure 2.3, comparison between the Bode plots of the phase one and phase two plants 
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Figure 2.4, comparison phase one and phase two controller 

One can see that the new plant has a delay: the phase falls off at higher frequencies. At 10 kHz, the phase 
shift is around 1 radls. With a sample frequency of 36 kHz, the delay is 0.55 samples. 0.5 samples is the 
result of the ZOH of the discrete time implementation of the model; 0.05 samples is the result of 
conversions. 
With respect to stability, a notch is not needed in the plant of phase two. Looking back to the controller of 
phase one the notch isn't necessary either. However, the presence of the notch in phase one does not give 
any problems for the continuation of this study and thus the phase one controller isn't adapted. 
With the found controllers simulations have been done. The reference signal is a combination of the 
rotation frequency and the first two harmonics. The maximum amplitude of the reference signal is 
approximately 100 pm. In figure 2.5 the error signals are plotted. 
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Figure 2.5, comparison error signals generated by the different controllers 



As can be seen, the internal controller does not meet the requirements. The phase one and phase two 
controllers have the same error signal (the two lines lay over each other) and do meet the requirements. The 
reason why the error signals are asymmetric is because the phase of the reference signal has effect on the 
steady state errors. 
Finally experiments with the controllers have been done on the CD-set-up by implementing the different 
controllers in Dspace. In figure 2.6 the results are presented. 
The results are given by the cumulative power spectra. This is done to show the influence of the different 
frequencies in the error signal on the total error signal. The maximum values can be compared with each 
other and give an idea about the amplitude ratios between the different error signals. The absolute final 
value of a single cumulative power spectrum is of little use, because its value depends on the parameters 
that are used to calculate the spectrum. 

power spectra for different feedbackcontrollers 
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Figure 2.6, cumulative power spectrum of the three feedback controllers 

The internal controller gives the largest maximum cumulative power value. One can see the influence of 
the first resonance of the CD-player (4000 Hz) on the traclung error. The phase one controller gives the 
best results. The expectation is that the phase one and two controllers give approximately the same power 
spectra, since the dynamics of Dspace has been accounted for by the phase two controller. The reason why 
the difference in the magnitude of the errors is so large is not known. Perhaps there have occurred some 
measurement-errors during the experiments that have not been noticed. 
Nonetheless, the rest of t h s  study makes use of the phase two controller. 



3. Theory behind (robust) repetitive control 

Repetitive control makes use of memory loops. If one wants to understand repetitive control, the dynamics 
of memory loops must be understood first. In this chapter the dynamics of a memory loop will be 
investigated and the influence of memory loops on the dynamics of the whole CD-model will be looked at. 
Of course stability of the system is very important. The stability of a closed loop system with repetitive 
cer,tro! wi!! be ir?vestigztited by using the srnalI gain theorem. Consequences of this theorem wiii be 
discussed. Finally two robust versions of i-epetitive conti01 wiii be explained and stability of the two will be 
investigated. 

3.1 Memory loops 

A memory loop is a loop that exists of a delay and a positive feedback loop. In figure 3.1 scheme of the 
loop is shown. 

Figure 3.1, memory loop configuration 

As can be seen, if one single period of a sine is given as an input, the output will generate a continuous sine 
with one period delay. The delay time should be the time of one period. In case of the CD-player set-up, the 
period time equals the time of one cycle of the disk or the inverse of the rotation frequency. 
In terms of frequency responses, a delay in continuous time representation is given by formula 3.1 

with o the frequency [rads] and Td the delay time or period time [s]. The amplitude of the delay always 
equals one, the phase shift equals -wTd. If the delay would be plotted in complex plane, it would be the 
unity circle. 
The frequency response of the memory loop has the following form: 

If the delay equals 1+0j, Mgoes to infinity. This is the case for o = k2dTd, k = 0, 1,2,3, . . . The magnitude 
plot for the memory loop is given in figure 3.2. 



Magnitude of a memory loop 

Figure 3.2, magnitude plot of a basic memory loop 

As can be seen, at the rotation frequency and its harmonics the amplitude goes to infinity. 

3.2 Repetitive control 

Figure 3.3, basic repetitive control configuration 

The sensitivity function of this scheme is given by formula 3.3. The sensitivity function is of great 
importance in this study because this function gives the relation between the disturbances d and the 
tracking error e. 

Repetitive control uses the fact that a memory loop gives infinite gain at the rotation frequency and its 
harmonics. When the memory loop is added to a normal feedback model in a way as shown in figure 3.3, 
the basic repetitive control configuration is formed [4]. 

r +  e + 
C P b 

If there is no memory loop, M is zero and the standard sensitivity function appears again. 
Looking at the sensitivity, when M goes to infinity (at w = k2dTd), S goes to zero. In this way, the 
disturbances at those frequencies will be suppressed (almost) completely. The frequencies of the main 
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disturbances (the eccentricity of the disk and tracks and the wobbling of the spindle motor) are at w = 

k2dTd and thus reduced dramatically. 
In figure 3.4 the sensitivity described by formula 3.3 is plotted. 
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Figure 3.4, magnitude of the sensitivity function 

As expected, at the periodic frequencies S becomes very small (due to numerical causes, the peeks do not 
go to zero). But what's also important is that between the period frequencies the sensitivity is doubled (+6 
dB). This means that the errors at frequencies between the period frequencies will be two times as large 
with the repetitive controller than without the repetitive controller. 

3.3 Stability 

Before repetitive control can be used the stability of the repetitive control configuration must be 
investigated. To be able to look at the stability of the sensitivity function, S has to be written as given in 
formula 3 . 4 ~  [4]. This is done by following the next steps: 

Between the brackets in the expression for S, there appears a fraction. This fraction is equal to the transfer 
function of a positive feedback loop. In a scheme, the sensitivity will look as in figure 3.5. 



u 
Figure 3.5, sma!! gain theorem 

To guarantee asymptotic stability a sufficient but not necessary condition is that the feedback loop should 
have a gain that's smaller than 1. The former is better known as the small gain theorem. 
Looking at the feedback loop the stability criterion is equal to 11-T I < 1. Generally this statement is not 
guaranteed, because 

A possible solution to stabilize the stability condition is to add a learning filter L. The memory loop now 
gets the configuration shown in figure 3.6. 

I 

Figure 3.6, memory loop configuration with learning filter L 

The stability condition becomes: 

For L = kT -', where k is the learning gain (0 < k < 2), stability is guaranteed. (Often the inverse 
complementary sensitivity is unstable. In the next chapter the precise filters will be derived. For now it's 
sufficient to know that the learning filter should look like T-I.) 
For high frequencies the modeiling usualiy is uncertain. Noise will have a great influence on the kequency 
response at those frequencies. With the possibility that the modelling is uncertain, one cannot guarantee 
that the stability condition is still met, since T is uncertain. To avoid this problem, a low pass filter Q is 
introduced. In this way, the memory loop will give only a small signai for high frequencies. The criterion 
now becomes: 

The final repetitive scheme becomes: 

Figure 3.7, Final memory loop configuration 



The frequency response of the final memory loop is given by formula 3.6. 

In chapter 4 the filters will be designed and stability plots will be generated. 

3.6 Rsbnst repetitive contrd 

Robust repetitive control makes use of multiple delays. The goal of robust repetitive control is to  make the 
controller less sensitive for uncertainties in the period time. This is done by widening the peeks in the 
transfer function of the memory loop. In this way the sensitivity around the period frequencies is 
suppressed more and an error reduction still occurs, although the period frequency is not exactly as 
estimated. 
There are different configurations possible. In figure 3.8 a general set-up of the memory loop M is given, 
containing three delays [4]. 

Figure 3.8, generalized repetitive controller 

In the generalized multiple repetitive configuration, the low pass filter and the learning filter have been left 
out. For further implementation both filters should be placed back in the scheme. In this case however the 
idea behind the configuration can be explained with only the delays and the weighting factors. 
The frequency response belonging to the generalized repetitive control with N delay loops is given by 
formula 3.7. 

N 

M( jw)  = H ( j 4  H( jw)  = c y e - ~ ~ ~ d  
1 - H ( j w )  I=I  

As with repetitive control MQw) should still become infinite for w = k2nfTd k=i, 2, 3, .... Tnis means that 
HGw) should equal 1. 
Given the fact that the pure delay equals one at w = k2nfTd, an equation appears for the weighting filters: 

Steinbuch [5] proposed an algorithm to make the repetitive controller more robust with respect to uncertain 
period times. This is done by looking at the derivatives of HQw) with respect to the period time Td. If the 
derivative of Hew) for w = k2dTd is set to zero, the peeks of MGw) have zero slope at the period 
frequencies. This results in a wider top and base of the peeks. If the second derivative is set to zero too, the 
peeks get even wider. The more memory loops are used, the wider the base of the peeks. 
The weighting factors that that belong to this robust algorithm can be calculated by formula 3.9 and 3.10. 



The same goes for higher order derivatives up to the N-1 th derivative. 

In figure 3.9 the magnitude frequency response of this robust repetitive controller is shown. 
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Figure 3.9, magnitude plot of memory loops with N the number of delays 

A robust repetitive controller with N memory loops can be written by: 

When formula 3.1 1 is written in expanded form, the parameters of the exponential terms are equal to the 
weighting factors. 
As expected, the peeks get wider as the number of memory loops increase. Between the period frequencies, 
the amplitude of the magnitude frequency response increases with the number of loops. 

Singh 161 proposed another configuration for robust repetitive control, which gives a smaller gain between 
the period frequencies. The scheme is given by figure 3.10. 

Figure 3.10, robust repetitive controller concept by Singh 



The frequency response for the Singh robust repetitive controller is as follows: 

The difference between this controller and that of Steinbuch is that the numerator of M is different. In 
figure 3.1 1 the controlier of Steinbuch is compared to the controller Singh proposed. 
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Figure 3.11, comparison between the Steinbuch and Singh configuration for N=3 

One can see that the controller of Singh has a smaller gain between the period frequencies. If this will have 
any effect on the stability ofthe model shall be investigated in the next chapter. 



4. Filter shaping 

To guarantee stability of the (robust) repetitive controller, a learning filter and low pass filter are needed. In 
this chapter different filters are proposed to stabilize the system and optimise its performance. 

4.1 Learning filter 

The first filter that will be investigated is the learning filter L. As seen in paragraph 3.3 L should look like 
the inverse comp!emeiitary sensitivity T-'. Ir, chpter 2 ?we kverse compler?ler,tary sensitivities hme been 
derived (phase one and two). For the learning filter, T-' ofphase one should be used. The reason for this is, 
that the phase two feedback controller already dealt with the dynamics of Dspace, so only the original T of 
phase one remains. 
In many applications the inverse complementary sensitivity is unstable and non-proper and thus cannot be 
used as a filter. To solve this problem Tomizuka et al. [7] proposed a discrete approximation for T' by 
using the Zero Phase Elror Tracking Controller (zpetc) algorithm. The algorithm uses a discrete 
complementary sensitivity as input and rehuns a stable dmrete inverse complementary sensitivity together 
with a pure delay. 
In this study the L filter becomes kT -'(z) instead of kT -'(jw). The learning gain k is a parameter that has a 
default value of one. The optimal value for k has to be derived from experiments. The problems with pure 
delays will be solved in paragraph 4.3. 
In figure 4.1 the Bode plots of the original complementary sensitivity and the approximation are given. The 
pure delay turns out to be three sample times when sampled with 25 kHz. In the phase plot, the phase 
caused by the delay has been taken into account. 

Comparison T inwrse with zpetc T inwrse 
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Figure 4.1, inverse complementary sensitivity, original versus zpetc 

4.2 Low pass filter 

The second filter that will be investigated is the low pass filter. There are several different low pass filters 
available that can be used as the low pass filter for the model. In this study three types are discussed: 
continuous time first order low pass filter, continuous time elliptic filter and the discrete time FIR filter. 



The main difference between the filters is the phase shift. This phase shift could give stability problems, as 
will be shown later on in this chapter. 

The first order continuous time low pass filter has the following transfer function: 

In formula 4.1 w, is the cross-over frequency [radh]. The Bode plot for a first order low pass filter with a 
cross-over frequency of 10 rads is given by figure 4.2. 
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Figure 4.2, Bode plot of a continuous time first order low pass filter 

The second filter is an elliptic filter. There are different parameters that must be specified before the filter 
can be generated. These parameters are the order of the filter, the ripple in the pass band (R, [dB]), the cut- 
off frequency (on [rads]) and the attenuation in the stop-band (R, [dB]). These parameters, together with a 
sixth order continuous time elliptic filter, are shown in figure 4.3. 

Bode Diagrams 
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Figure 4.3, continuous time elliptic low pass filter 



The transfer function of an n" order continuous time elliptic filter is given by formula 4.2. 

One of the differences between the elliptic filter and the low pass filter is that the phase of the elliptic filter 
has 'steps', while the first order low pass filter stays at -90 degrees. 

The third fi!ter is the discrete time FLR (finite impulse response) filter. The parameters that are needed for 
this filter are the order of the filter (n) and the cut-off frequency (2wn/ f ,  , withf, the sample frequency). 
The transfer function of an nth order FIR filter is: 

The Bode plot for a 2 0 0 ~  order FIR filter with a cut-off frequency of 400 Hz and a 25 kHz sample rate is 
given in figure 4.4. The dashed line in the phase plot is the official delay found in literature [S]. 
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Figure 4.4, discrete time low pass FIR filter 

The beauty of this last filter is that the phase shift is linear with the frequency. The consequence of this is 
that the FIR filter can be seen as a low pass fiiter without a phase shifi but with a pure delay. For an even- 
order filter the delay is equal to half the order [S]. The saw tooth phase in figure 4.4 has probably been 
caused by uncertainties in the numerical calculations. 
A possible drawback of this filter is that a relatively high order filter is needed to reach the desired cut-off 
frequency when the cut-off frequency is relatively small with respect to the sample frequency. 
Nonetheless the fact that the FIR filter has linear phase shift is the reason why further implementation shall 
be done with this filter. 

4.3 Dealing with the delays 

Originally the memory loop contains one pure delay that is equal to the period time or, in discrete time, 
equal to N samples (= sample frequency divided by the period time). Because of the introduction of the 
stabilizing filters, some delay should be subtracted from the pure delay since they are already present in the 
stabilizing filters. The total delay time of the compiete memory loop should be equal io Td [s]. The pure 



delay must thus be reduced by the delays kom L and Q. The feedback loop inside the memory loop must 
have Td delay too. To meet this demand, there has to be a delay in the feedback loop with a delay equal to 
the delay of the L filter. 
When all this is implemented, the scheme of thememory loop looks like figure 4.5 and figure 4.6. 

u 
1 delay [s] 

Figure 4.5, robust repetitive configuration with three memory loops, delays in the stabilizing 
filtas are accounted for. 

Figure 4.6, robust repetitive controller concept by Sin& delays in the stabilizing filters are 
accounted for 

4.4 Sensitivity 

In chapter 3 the sensitivity of a basic repetitive controller has been shown (figure 3.4). That sensitivity had 
not accounted for the dynamics of the stabilizing filters. In figure 4.7 the sensitivity of (robust) repetitive 
controllers with the configuration of Steinbuch has been plotted. 

ttequency [Hz] 

Figure 4.7, sensitivity of the Steinbuch configuration 



Around the period frequencies a strange phenomenon occurs. The minima around the period frequency and 
its harmonics are not at those frequencies, but just before and after the period frequencies. The cause for 
this phenomenon is not known. As the number of memory loops increase, the phenomenon moves to higher 
frequencies, but occurs nonetheless. Besides the number of memory loops, also the order of the FIR filter 
influences the frequency band where the phenomenon occurs. 
Looking atj-equencies between theperiodj-equencies, the gain increases with the increase of the number 
of pure delays 
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Figure 4.8, sensitivity of the Singh configuration 

The sensitivity at the period frequencies is smaller than in the configuration of Steinbuch. The gain between 
the period frequencies is smaller too. This means that the errors with frequencies between the period 
frequencies are suppressed more with the Sin& configuration than with the Steinbuch configuration. 

In the figures above, the sensitivity is plotted for the case that the learning gain k is 1. What happens to the 
sensitivity when k is varied is shown in figure 4.9 and 4.10. The first plot shows the S for a repetitive 
controller, the second plot shows S including a threedelay memory loop, both controllers use the Steinbuch 
configuration. 
When, in figure 4.9, the learning gain is increased, the plot gets sharp peeks betwea the period 
frequencies. If the system contains no noise of those frequencies perhaps this k value is better than k = 1. 
The suppression at the period frequencies is greater than with the default value of k. 
When the learning gain is decreased, the gain between the period frequencies becomes smaller. The gain at 
the period frequencies is larger, so less suppression occurs. 
For the case of three-delay robust repetitive controller the learning gain has another impact on the 
sensitivity plot. When k is increased more suppression at low period frequencies is seen and more gain at 
high period fi-equencies. For smaller learning gains the opposite occurs. 
In test experiments some boundaries for k are found. For a repetitive controller the learning gain can have 
any value between 0 and 2. In case of a three-delay robust repetitive controller k can only be varied 
between 0.9 and 1.1. When other values are used, the system becomes unstable. 
Due to the limited time available for the study, optimising the (robust) repetitive controller with respect to 
the learning gain is not further investigated. 



sensitivity als functie van K (1 delay) 

Figure 4.9, influence of learning gain k on the sensitivity of a 1 delay repetitive controller 
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Figure 4.10, influence of learning gain k on the sensitivity of a 3 delay robust repetitive controller 

4.5 Small gain theorem 

To conclude this chapter the stability of (robust) repetitive controllers is investigated. This is done 
according to the small gain theorem. 
Before the configurations of Steinbuch and Singh are investigated, the stability is tested with formula 3 . 5 ~  
with a repetitive controller (I delay) without the additional extra delays. This is done for four cases: 1) no 
low pass filter, 2) a continuous time first order low pass filter, 3) an continuous time first order elliptic low 
pass filter and 4) a discreet 2 0 0 ~  order low pass FIR filter. The complementary sensitivity that has been 
used is obtained from the measurement of the phase two plant and controller. 
In figure 4.1 1 the stability plots are presented. The figure is plotted in the complex plane. If the criterion 
goes outside the unity circle the amplitude of the criterion is larger than one and instability can occur. 
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Figure 4.1 1, the stability criterion for the four cases 
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The only filter that stays inside the unity circle is the FIR filter. According to this analysis, when the other 
filters will be used, the system is not guaranteed to be stable. 

Now the robust repetitive controller will be investigated. First the concept of Steinbuch is looked at, then 
the concept of Singh. 
According to the model of Steinbuch, the memory loop with N delays has the following frequency 
response. 

I I 

with A = Q ( q  + w2e-'OTd + ... + ~ ~ + ~ e - ' ~ ~ ~  ) 4.4b 

1 I I 

When M of formula 4.4 is filled in, in formula 3.3 and the sensitivity is transformed to small gain 
representation, the next expression appears. 

and the stability criterion becomes 



In figure 4.12 the small gain criterion is plotted. 

small gain according to the concept of Steinbuch 

real part small gain 

Figure 4.12, small gain with respect to the concept of Steinbuch 

Although the plot isn't very clear, one can see that the model is stable up till the four delays plotted. The 
more delays are being used in the memory loop the closer the criterion approaches the unity circle. So there 
will be an upper bound to the number of delays that can be used in the memory loop. 

The same procedure is done with the concept of Singh. The next formulas give the frequency responses of 
respectively: the memory loop, the sensitivity in small gain representation and the small gain criterion. 

In figure 4.13 the small gain criterion according to formula 4.9 is plotted. 
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Figure 4.13, Small gain with respect to the concept of Singh et al. 

As can be seen, the concept of Singh is always unstable, except for a one-delay memory loop, which has 
the same configuration as Steinbuch. Test simulations give the same result. 
Simulations and experiments shall thus only be done with the (robust) repetitive controller configuration 
proposed by Steinbuch. 



5. Simulations 

The model of the (robust) repetitive controller is finished. The next step is to do simulations with the found 
configuration. Unfortunately there are still some problems with the design. These will be explained and 
solved first, after which the simulations are presented. 

- lhe first probiem with the configurarion is fnar the transient response of the reference signal is repezted bj; 
the memory ioop. The peek in the error signal caused by the irailsieai response gets sinaller after each 
period and disappears after a while. Nonetheless in the beginning the peeks are larger than the specification 
(error smaller than +/- 0.1 pm) and thus not wanted. 
To solve this problem, a switch is introduced. The memory loop is switched on after the transient response 
has disappeared. In this way, the memory loop does not have to deal with the transient response and the 
peeks do not appear. 

When simulations are done with the period time of the reference signal equal to the period time in the 
delays (the ideal situation), a strange noise appears. The errors are larger when the period is exactly known, 
than when the period is not exactly known. 
This problem is caused by the sample frequency. The sample time has to be precisely known. For example, 
a f ,  of 25 kHz or 40 kHz is allowed, while sample frequencies between these values are not; 1/25e3 (4e-5) 
and 1/40e3 (2.5e-5) give precise numbers, while the other values are rounded at the seventeenth digit. 
Apparently the simulations are very sensitive for this. 

After these problems are solved, the next Simulink scheme is found, given by figure 5.1. 

Figure 5.1, the Simulink scheme for a (robust) repetitive controller 

The simulations that are done with Simulink are related uncertainties in the period time. The reference 
signal is kept the same, while the period time in the delays varies between 99% and 101% of the reference 
period time. 
Figure 5.2 gives the results of the simulations, where the reference period time and the deIay-period time 
both are 1/12 s. Subplot 1 gives the comparison between a simple feedback controller and the (robust) 
repetitive controllers (three lines at the x-axis). The second subplot zooms in at the (robust) repetitive 
controllers. All three lines look the same. This can be expected since the gains of the sensitivity at the 
period frequencies are equal for all three controllers. 
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Figure 5.2, simulations where reference period time equals the delay time (1112 s) 

Figure 5.3 gives the results of simulations with the (robust) repetitive controllers when the delay time is 
varied. The results of the simulations with 12.0 Hz are at the x-axis; there too small to show. 
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Figure 5.3, a) rep. cont. (1 delay), b) robust rep. cont.(2 delays), c) robust rep. cont. (3 delays) 

Looking at the scaling of the y-axis, the robust repetitive controller with three delays is the least sensitive to 
uncertainties in the period time and returns the smallest error signals. The repetitive controller is the most 
sensitive, as expected. 
Simulations give the same results as found in the calculations of the sensitivities and the theory. All seem 
to work as planned, so now experiments on the CD-player set-up can be done. The results of those 
experiments are presented in chapter 6. 



6. Experiments 

If measurements with the repetitive controller want to be done, the Simulink model has to be converted for 
real time implementation. This conversion is done by using Dspace. 
The experiments that are presented in this chapter have been done with a sample frequency of 25 H z ,  a 
200th order low pass FIR filter and a learning gain of 1. While the values of these parameters are kept 
constant, the period time, the number of delays and the cut-off frequency of the FIR filter are varied. 

Before the repetitive controller can be used, the period time of de CD-player has to be estimated fist. This 
is done by using rhe errors measured with the cl-;ffei-ent feedback conii-oilers. After iii~kiiig c'imdaii\;e 
power spectra of these errors, an estimation of the period time has been fomd. The 'steps' in the plot 
appear after every 12.7-12.8 Hz, so the period time is assumed to be around 12.75 Hz. 
In an attempt to filter out the influence of local errors, the record length of the measurement is set to three 
seconds. In the hope to have the same track during each experiment, the starting position is located in the 
same area of the CD. If the track is the same each time, the error on the disk should also be the same and an 
accurate comparison between the different controllers can be done. Unfortunately the positioning isn't very 
accurate, since the radial arm is put in position by hand. 
In figure 6.1 three experiments with a three-delay memory loop are shown. The settings of the controller 
are kept the same; only the starting points can differ, because of the uncertainty of the positioning. 
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Figwe 6.1, the i r i ~ e n c e  of the starting position G:: the rzdia! error 

The most important conclusion hom these experiments is, that the repetitive controller seems to work. The 
period frequencies up till 60 Hz have been filtered out almost completely. 
From this experiment one can also conclude that one control setting can give different results. There is a 
difference of 0.01 in the different cumulative power spectra. If different experiments give results that are 
relatively close to one another, no accurate conclusions can be made. 

The second experiment that has been done is with a period time of 12.75 Hz and a varying number of 
delays. In figure 6.2 the results are plotted. 
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Figure 6.2, comparison between the error signals of the different controllers 

The error signals decrease when the repetitive controllers are used. The difference between the errors with 
and without the repetitive controllers can especially be seen at the low frequencies (where the repetitive 
controller is the most active). 
When the number of delays increases the power spectra get even smaller. A conclusion that can be drawn 
from that is that the estimated period frequency is not accurate, otherwise the three repetitive controllers 
should approximately have the same error signal. 
In chapter 2, figure 2.6 a remark has been made about the errors of the phase one and two controllers. In 
figure 6.2 a 0-delay-error is presented that lays between the errors in figure 2.6. It could be possible that a 
feedback controller is more sensitive to the starting position than a repetitive controller and thereby 
produces more fluctuating errors. This is however not further investigated. 

The next experiments that have been done are with various period times. In the figures 6.3-6.6, the results 
are presented. In the experiments the period time is varied between 99% and 101% in steps of a half 
percent. The cut-off frequency of the FIR filter is 120 Hz. 
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Figure 6.3, the total delay time is equal to 99% respectively 99.5% of the estimated period time 
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Figure 6.4, zoomed in on figure 6.3 from 0 Hz to 200 Hz 

In figure 6.3 one can see that the final values of the cumulative power spectra are all approximately the 
same. This could mean that the real period time is between 99% and 99.5% of the estimated one, because, 
when loolung at the sensitivity, the gain at the period frequencies is the same for all (robust) repetitive 
controllers. 
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Figure 6.5, the total delay time is equal to 100.5% respectively 101% of the estimated period time 
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Figure 6.6, zoomed in on figure 6.5 from 0 Hz to 200 Hz 

As the period frequency increases, the effect of the robust repetitive controller becomes visible. Whle the 
error of the repetitive controller with one delay increases, the robust repetitive controllers generate the same 
error signal. 
Looking at low frequencies, it seems that the two-delay repetitive controller gives better results than the 
three-delay repetitive controller. Ths  could be the case, but it can also be the result of the uncertainty of the 
begin position on the radial error. When the begin position can be determined more precisely, more precise 
conclusions can be drawn. 
Up to around 60 Hz, the repetitive controllers filter out all the low frequency errors. The memory loop 
functions very well up to these frequencies. The expectation however is that the controllers suppresses the 
errors up to around 120 Hz. 

To see the influence of variations in the cut-off frequency of the low pass FIR filter on the error signal, new 
experiments have been done. In figure 6.7 the results from experiments with different cut-off frequencies 
are shown. 
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Figure 6.7, error signals from a robust repetitive controller with varying cut-off frequency 



It appears that the cut-off fi-equency does not have much effect on the error signals, although slight more 
suppression occurs when the cut-off frequency is increased. The reason why the filter doesn't work as 
expected isn't known. 
The reason why the 600 Hz error is larger than the others is possibly because the 600 Hz filter is close to 
instability. Experiments with higher cut-off frequencies were unstable. 



Conclusions and recommendations 

The subject of this report is repetitive control. Several steps have been taken, in order to understand and 
implement the controller. First of all, a simple feedback controller has been designed. With the controlled 
model the basic system is formed so the repetitive controller can be added. 
Next, the theory behind memory loops, repetitive control and robust repetitive control has been studied. 
Two fiiters are introduced into the repetitive scheme, in order to guarantee stability. T'nese fiiters have been 
designed and the repetitive scheme is adapted so that the whole controller satisfies the specifications again. 
With the adapted repetitive controller different simulations have been done, followed by experiments. 

From the experiments, it can be concluded that the repetitive and robust repetitive controllers give 
promising results. According to simulations the error signal should be much smaller than is actually is, but 
then there has been no noise present in the simulations. 
Low frequent noise, due to eccentricity of the disk and tracks and the wobbling of the spindle motor, is 
filtered out very well by the repetitive controllers. When perturbations in the period time are introduced, the 
robust repetitive controller shows its effectiveness. 
The influence of the cut-off frequency of the low pass filter on the resulting error is not yet understood. 
There appears to be an optimal cut-off frequency, possibly a compromise between stability and the number 
of period frequencies that one wants to suppress. Perhaps it is just be the result of noise in the error signal. 
It is left for future studies to investigate this phenomenon. 
A problem that occurs during experiments is that the radial arm cannot be positioned accurately. This way 
each experiment could give another error signal and comparison between experiments is more difficult. If 
more precise measurements are needed, this problem should be solved. 

Besides the above conclusions and recommendations, there are some more remarks, summarized by the 
following points. 

In the experiments a sample frequency of 25 kHz has been used and the period time is around the 
12.75 Hz. This means that when a single delay memory loop is used the memory loop needs a 
capacity of 1961 places to store the information of the last period. When a robust version of the 
repetitive controller is used, the storage capacity should be even bigger. 
To reduce the necessary capacity, down sampling in the memory loop is advised. In this way, the 
controller becomes more interesting for commercial applications. 
Repetitive control uses the fact that the period time has a constant value. If an adaptive repetitive 
control algorithm can be derived to estimate the period time / rotational frequency real time, the 
need for a precise estimation of the period time will become absolute. Besides that, the repetitive 
controller will be able to deal with (slow) changes in period time and the diversity in applications 
will increase. 
When the error of the repetitive controller becomes too large, the radial arm flips out and cannot 
be placed back on a track. The reason for this is that the memory loop fills itself with extreme 
errors. It then injects the signal back into the system one period later, so a wrong error is given to 
the feedback controller and tracking becomes very difficult. 
This problem can be overcome by resetting the memory loop when such an error signal occurs. 
The resetting should take place when the period that an error signal has large values, has crossed 
some predefined time span. Future studies should investigate the different parameters that are 
involved. 
The repetitive control concept of Singh turns out to be unstable. Further studies could investigate 
the concept and make adjustments so that stability is guaranteed. 
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