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Efficient and Constructive Algorithms for the Pathwidth and 
Treewidth of Graphs* 

Hans L. Bodlaendert Ton Kloksf 

Abstract 

In this paper we give, for all constants k, l, explicit algorithms, that given a graph 
G = (V, E) with a tree-decomposition of G with treewidth at most l, decide whether 
the treewidth (or pathwidth) of G is at most k, and if so, find a tree-decomposition or 
(path-decomposition) of G of width at most k, and that use O(IVD time. In contrast 
with previous solutions, our algorithms do not rely on non-constructive reasoning, 
and are single exponential in k and l. This result can be combined with a result of 
Reed [37], yielding explicit O(nlogn) algorithms for the problem, given a graph G, to 
determine whether the treewidth (or pathwidth) of G is at most k, and if so, to find a 
tree- (or path-)decomposition of width at most k (k constant). Also, Bodlaender [13] 
has used the result of this paper to obtain linear time algorithms for these problems. 

We also show that for all constants k, there exists a polynomial time algorithm, 
that, when given a graph G = (V, E) with treewidth ~ k, computes the pathwidth of 
G and a path-decomposition of G of minimum width. 

1 Introduction 

The notions of pathwidth and treewidth play an important role in many different fields of 
computer science, often with different terminologies, e.g. 

• Choleski factorization and Gauss elimination. (See e.g. [20].) 

• VLSI-layout theory. (See e.g. [34].) 

• theory of expert systems. (See e.g. [32].) 

• algorithmic graph theory. 

• theory of graph grammars. (See e.g. [23].) 

* A preliminary version of this paper appeared as Better algorithms for the pathwidth and tree width of 
graphs, in the proceedings of ICALP'91. 

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the Nether­
lands. This author is partially supported by the ESPRIT II Basic Research Actions Program of the EC 
under contract no. 3075 (project ALCOM) 

tDepartment of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 
513, 5600 MB Eindhoven, The Netherlands. The work of this author was supported by the Foundation for 
Computer Science (S.LO.N.) of the Netherlands Organization for Scientific Research (N.W.O.). 
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In many cases, notations and notions are different from those used in this paper (and 
from each other). For instance, a graph has treewidth at most k, iff it is a partial k-treej 
iff it is the subgraph of a chordal (= triangulated) graph with no clique larger than k + 1 
verticesj iff it has dimension at most k. A graph has pathwidth at most k, iff its vertex 
separation number is at most kj iff its interval thickness is at most k + 1j iff its node search 
number is at most k + Ij iff it models an instance of the Gate Matrix Layout problem with 
a solution with at most k + 1 tracks. There are also equivalent characterizations with help 
of graph grammars, or k-terminal recursive families of graphs. (See e.g., [2, 8, 22, 46J.) 

Formally, the treewidth (pathwidth) of a graph is the minimum treewidth (pathwidth) 
over all tree-decompositions (path-decompositions) of the graph. (See Section 2 for defini­
tions.) When a tree- or path-decomposition is found of a graph G with optimal treewidth, 
then usually one can easily construct representations of the graph corresponding to the 
equivalent notions (e.g., chordal graphs with minimum clique size that contain G, optimal 
node search strategies, optimal solutions to the Gate Matrix Layout problem, etc.) Thus, 
given a graph G, finding a tree- or path-decomposition of G with minimum treewidth is 
an important problem. 

The notion of treewidth is also interesting because of its vital role in the theory of Graph 
Minors of Robertson and Seymour [39J. Also, a very large number of intractable graph 
problems become solvable in polynomial, and even linear time (and belong to the class NC), 
when restricted to graphs with bounded treewidth, given together with a suitable tree­
decomposition. This set of problems includes many well-known NP-complete problems like 
Hamiltonian Circuit, Independent Set, etc., and even some PSPACE-complete problems 
(see e.g. [5,6,9, 12, 19,46]). Typically, these algorithms use time polynomial in the number 
of vertices, but at least exponential in the treewidth of the input graph. Also, researchers 
in expert system theory have found out that several otherwise time consuming statistical 
computations can be done quickly when a tree-decomposition (known as: junction tree, 
or clique tree) with small treewidth is known (see e.g., [32, 45].) 

Much research has been done on the problem of determining the treewidth and path­
width of a graph, and finding tree- or path-decompositions with optimal treewidth or 
pathwidth. These problems are NP-complete [3]. Research has been done on determining 
the treewidth and pathwidth of special classes of graphs (see e.g. [18, 17, 24, 27, 29, 28, 
26, 36, 44], on approximation algorithms for treewidth and pathwidth (e.g. [15]), and on 
the case that the parameter k is a fixed constant. (See e.g. [l1J for an overview.) 

This paper addresses the case that k is a fixed constant. The first known algorithms, 
solving the treewidth and pathwidth problems for fixed k are based on dynamic program­
ming and use respectively O(nk+2) and O(n2k2+4k+8) time [3, 21]. 

Then, Robertson and Seymour [41] gave a non-constructive proof of the existence of 
O(n2

) decision algorithms for the problems. Their algorithms consist of two steps. The 
first step either decides that the treewidth of the input graph G is too large, or finds 
a tree-decomposition of G of constant bounded but possible non-optimal width1

. This 
step takes O(n2) time. Their second step checks in O(n) time a finite characterization 
of the graphs with treewidth ~ k or pathwidth ~ k. By Robertson and Seymours deep 
results on graph minors, these characterizations are known to existj however they are not 
explicitly known. The linear time is achieved by using the tree-decomposition, found in 

1 To be precise, Robertson and Seymour use the notion of branch decomposition instead of tree­
decomposition, but this forms an unimportant technical difference. 
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step one. Thus, these results are non-constructive in two ways: first, only existence of the 
algorithm is proven, but the algorithm itself is not known, and secondly the algorithm only 
outputs yes or no, but no tree- or path-decomposition. Also, the constant factors of these 
algorithms make them infeasible. With help of a self-reduction technique, introduced by 
Fellows and Langston [22], it is possible to obtain constructive O(n2

) algorithms, but at 
the cost of a further increase of the constant factors [10]. 

Matousek and Thomas [33J, Lagergren [30], and Reed [37J improved on the first step. 
Lagergren [30J gives a parallel algorithm that uses O(10g3 n) time and O( n) processors on 
a CRCW PRAM. Reed [37J gives a sequential O(nlogn) algorithm. Arnborg et al. [4J use 
a slightly different technique, based on graph rewriting, and obtain decision algorithms, 
that use linear time, but polynomial memory. 

This paper addresses the second step. It shows that we do not have to rely on non­
constructive arguments, that instead, we give explicitly the algorithms, and our algorithms 
can also construct tree-decompositions or path-decompositions of width at most k, if 
existing. Our algorithms use linear time, and need as input, besides G a tree-decomposition 
of G of constant bounded width. Also, in contrast with the graph minors approach, the 
constant factor hidden in the O-notation of our algorithms is only singly exponential in k. 

Recently, Bodlaender [13J used the result of this paper as an important intermediate 
step to obtain explicit and constructive algorithms that solve the 'treewidth ~ k' and 
'pathwidth ~ k' problems in linear time (k fixed). 

Results of a similar nature as ours were independently obtained by Lagergren and 
Arnborg [31] and by Abrahamson and Fellows [IJ. 

It should be noted, that for k = 1,2,3,4, linear time and space algorithms based on 
graph rewriting exist for the 'treewidth ~ k' problem [6, 33, 42J. 

We also solve a different, related problem, with basically the same algorithms: for each 
constant k, we have a polynomial time algorithm, that when given a graph G = (V, E), 
computes the pathwidth of G and a path-decomposition of G of minimum width. This 
solves an open problem from [16J. SO far, the only classes of graphs of bounded treewidth 
for which the complexity of the pathwidth problem was determined (besides classes of 
graphs with bounded pathwidth) were the trees and the forests: for these the pathwidth 
can be computed in linear time [21, 34, 43J. 

2 Definitions and Preliminary Results 

The notions of treewidth and pathwidth were introduced by Robertson and Seymour 
[38,40J. 

Definition 2.1 
A tree-decomposition of a graph G = (V,E) is a pair ({Xi liE I},T = (/,F» with 
{Xi liE I} a collection of subsets of V, and T = (/, F) a tree, such that 

• UiEI Xi = V 

• for all edges (v, w) E E there is an i E I with v, w E Xi 

• for all i,j, k E I: if j is on the path from ito k in T, then Xi n X k ~ Xj' 
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The width of a tree-decomposition ({Xi liE I}, T = (/, F» is maXiE! IXi I - 1. The 
treewidth of a graph G = (V, E) is the minimum width over all tree-decompositions of G. 

Definition 2.2 
A path-decomposition of a graph G = (V, E) is a sequence (Xl' X 2 ,· •• ,Xr ) of subsets of 
V, such that 

• for all edges (v,w) E E there is an i, 1 ~ i ~ r with v,W E Xi 

• for all i,j, k with 1 ~ i < j < k ~ r: Xi n X k ~ Xj. 

The width of a path-decomposition (Xl'···' X r ) is maxl<i<r IXil - 1. The pathwidth of 
a graph G = (V, E) is the minimum width over all path-decompositions of G. 

We will use (X, T) as a shorthand notation for ({Xi liE I}, T = (I, F)). Some­
times we write a path-decomposition as a tree-decomposition, where the tree T has only 
nodes with degree at most 2. We now introduce some extra terminology, related to tree­
decompositions. 

Definition 2.3 
A rooted tree-decomposition is a tree-decomposition D = (X, T) in which T is a rooted 
tree. 

Definition 2.4 
Let D = (X, T) be a rooted tree-decomposition for a graph G. For each node i of T, let 
Ii be the subtree of T, rooted at node i. Define: Vi = U'ETi X, and let Gi = G[ViJ (so if 
r is the root of T, G r = G). We call G i the subgraph of G rooted at i. 

We can obtain a rooted tree-decomposition Di = (Xi, Ii) for Gi from D: 

Definition 2.5 
Let D = (8, T) be a rooted tree-decomposition for a graph G. Let i be a node of T. Let 
Di = (Xi,Ti), where Ti is the subtree ofT rooted at i, and Xi = {X, I f E Ti}. We call 
Di the rooted tree-decomposition of G i rooted at node i. 

Lemma 2.1 For each node i, Di is a tree-decomposition of G i . 

Proof: For the simple proof, see e.g. [25J. 0 

In order to describe our algorithms more easily, we introduce a special type of rooted 
tree-decompositions. 
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Definition 2.6 
A rooted tree-decomposition D = (5, T) with 5 = {Xi liE I} and T = (I, F)) is called a 
nice tree-decomposition, if the following conditions are satisfied: 

1. every node of T has at most two children, 

2. if a node i has two children j and k, then Xi = Xj = X k 

3. if a node i has one child j, then either IXi I = IXj 1+ 1 and Xj C Xi or IXi I = IXj 1- 1 
and Xi C Xj' 

Lemma 2.2 Every graph G with tree width k has a nice tree-decomposition of width k. 
Furthermore, if n is the number of vertices of G then there exists a nice tree-decomposition 
with at most 4n nodes. 

We omit the proof. See e.g. [25]. Also, the following result can be obtained: 

Lemma 2.3 For constant k, given a tree-decomposition of a graph G of width k and O(n) 
nodes, where n is the number of vertices of G, one can find a nice tree-decomposition of 
G of width k and with at most 4n nodes in O( n) time. 

Definition 2.7 
In a nice tree-decomposition ({Xi Ii E I}, T = (I, F)) every node is of one of four possible 
types. We name the types as follows. 

"Start" If a node is a leaf, it is called a start node. 

" Join" If a node has two children, it is called a join node. 

"Forget" If·a node i has one child j and if IXil < IXjl, node i is called a forget node. 

"Introduce" If a node i has one child j and if IXil > lXii, node i is called an introduce 
node. 

Notice that every node in the nice tree-decomposition must have one of the four mentioned 
labels. 

We may also assume, that if i is a start node, then IXil = 1: the effect of start nodes 
with IXil > 1 can be obtained with using a start node with a one-vertex set, and then 
IXil - 1 introduce nodes, that add all other vertices. 

Our algorithms roughly work as follows. Given a tree-decomposition of G, we first make 
a nice tree-decomposition with the same width of G, as indicated by lemma 2.2 and lemma 
2.3. We define an equivalence relation on path- or tree-decompositions of subgraphs G i 

(determined by the characteristic of such 'partial' path- or tree-decompositions). For each 
node i E I, we compute a table of the 'most relevant' equivalence classes which contain 
a tree- or path-decomposition of G i with treewidth or pathwidth ::; k. These tables are 
computed in a bottom-up order, starting with the leaves of tree T, and using the tables 
of the children of a node to compute the table of the node. The table of the root node is 
non-empty, if and only if the treewidth or pathwidth of G is at most k. 
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3 Partial path-decompositions, the interval model and typ­
ical sequences 

In this section we give many notions and small results that deal with partial path­
decompositions and sequences of integers. 

Definition 3.1 
A partial path-decomposition rooted at node i E I is a path-decomposition for G i , the 
subgraph of G rooted at i. 

The equivalence class to which a partial path-decomposition rooted at a node i E I 
belongs, is described by its characteristic, which is a pair of which the first element is the 
interval model of the path-decomposition, as defined hereafter. 

Definition 3.2 
Let Y = (Yi, ... , Y;.) be a partial path-decomposition rooted at node i. The restric­
tion of Y is the sub-decomposition y* of Y for the subgraph induced by Xi, i.e. 
y* = (Yl n Xi, ... ,y;' n Xi). 

In the restriction y* there can be many consecutive elements which are the same. If we 
remove these duplicates, we obtain the interval model for Y which is, of course, still a 
path-decomposition for the subgraph induced by Xi. 

Definition 3.3 
Let y* = (Zl, ... , Zr) be the restriction of a path-decomposition Y rooted at z. Let 
1 = tl < ... < tq+1 = r + 1 be defined by: 

The interval model for Y at node i is the sequence (Zdl~i~q. 

Notice that not every path-decomposition for a sub graph induced by Xp without re­
peating subsets is an interval model, since an interval model is defined by means of a 
partial path-decomposition rooted at p. We call a path-decomposition for the subgraph 
Xp without adjacent subsets that are the same, minimal: 

Definition 3.4 
A path-decomposition Z for a graph G is called minimal if no two consecutive subsets in 
Z are the same. 

The next lemma shows that there are only 8(1) different interval models at each node i. 

Lemma 3.1 For each node i the number of different interval models at i is bounded by 
(2k+3)2k+3. The number of subsets in any interval model is at most 2k+3. These bounds 
hold for the minimal path-decompositions for the subgraph induced by Xi as well. 
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Proof: An interval model at node i is a path-decomposition Z = (Zl,"" Zr) for 
G[XiJ which is minimal. We show the bounds hold for the minimal path-decompositions. 
Let L(s) be the maximal number of subsets in a minimal path-decomposition of a graph 
with s vertices. We claim that L(s) ::; 2s + 1. Clearly, L(I) = 3. Now let s > 1, and let 
Z = (Zl,'" ,Zr) be a minimal path-decomposition for a graph H = (V, E) with s vertices. 
Take any vertex x and let Za and Zb be the first and the last subset of Z containing x. Now 
remove x from the graph and let H' = H[V \ {x}]. We can obtain a path-decomposition 
Z' for H' by removing vertex x from all subsets of Z. Notice that Z' can have at most 
two pairs of duplicate subsets, namely Z~ can be the same as Z~_l and Z~ can be the 
same as Z~+1' It follows that the number of subsets of Z is at most two more than the 
maximal number of subsets in a path-decomposition of a graph with s - 1 vertices. Hence 
L(s) ::; L(s - 1) + 2. This proves our claim. Since IXil ::; k + 1, the number of subsets in 
a minimal path-decomposition of G[XiJ is at most 2k + 3. 

We can find an upper bound for the number of interval models as follows. Notice that 
an interval model can be characterized by indicating for each vertex the first and last 
subset where it is contained in. Thus we find an upper bound of Z2k+2 for the number of 
interval models with i subsets. Hence we find: 

2k+3 

number of interval models ::; L Z2k+2 ::; (2k + 3)2k+3 

i=l 

This proves the lemma. 0 

Next, we define typical sequences of integer sequences. We use the term integer sequence 
to denote a sequence of at least one nonnegative integer. (These sequences are used to 
denote sizes of successive sets in a path-decomposition.) We use the following notations: 

• For any integer sequence a( 1 ... n), let I (a) = n be the length and max( a) be the 
maximum value: max(a) = maxl:Si:Sn ai. 

• For two sequences a and b of the same length we define the sum c = a + b as the 
sequence c with 

• For two sequences a and b of the same length we write a ;:; b if Vi ai ;:; bi. 

• For a constant A we write a + A for the sequence with Vi (a + A)i = ai + A. 

Definition 3.5 
For an integer sequence a(I ... n) we define the typical sequence r(a) as the sequence 
obtained after iterating the following operations, until none is possible anymore. 

• Remove consecutive repetitions of the same element, i.e. if ai = ai+1 then the se­
quence a = (al,'" ,an) is replaced by (al,"" ai, ai+2,"" an). 

• If the sequence contains two elements ai and aj such that j - i 2': 2 and Vi<k<j ai ::; 
ak ;:; aj or Vi<k<j ai 2': ak 2': aj, then remove the subsequence a( i + 1 ... j - 1), i.e. 
replace a = (al,'" ,an) by (al,"" ai, aj,"" an). 

We refer to the second operation as the typical operation. 
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We say integer sequence a is a typical sequence, if a is the typical sequence of at least 
one integer sequence, or, equivalently, if a = rea), i.e., if a is the typical sequence of at 
least one other sequence. 

Lemma 3.2 For every a, the typical sequence rea) is uniquely defined. 

Proof: We must show that the order in which the typical operations and removal of 
repetitions are applied does not influence the resulting typical sequence. This can be shown 
by observing that if ak can be removed by a typical operation or removal of repetitions, 
then this remains true under any typical operation or removal of repetition (unless, of 
course, such an operation removes ak.) 0 

Lemma 3.3 Let a(I ... n) be a sequence of nonnegative integers with max(a) = L. Then 
(i) max(r(a)) = L 
(ii) l(r(a)) :::; 2L + 1. 

Proof: (i) Trivial. 
(ii) Define T(R) (T'(R)) as the maximum length of a typical sequence that contains 

exactly R different integers, and starts with the smallest (largest) integer, and that does 
not contain a second occurrence of this smallest (largest) integer. Note that in a typical 
sequence, starting with the smallest integer, the largest integer cannot occur at any other 
position than the second one in the sequence (otherwise a typical operation can be applied, 
removing everything between the smallest and largest integer). Hence T(R) = T'(R-I)+I, 
Similarly, T'(R) = T(R - 1) + 1. As T(I) = T'(I) = 1, we have that T(R) = T'(R) = R. 

Consider the typical sequence rea). Between an occurrence of 0 and of L, there cannot 
be other integers, otherwise, a typical operation can be applied, removing everything 
between 0 and L. So, rea) contains at most one 0, or at most one L. In the former case, 
r( a) is of the form bOc, with band c strings that do not contain a O. So bO and Oc have 
length at most T(L + 1) = L + 1. In the latter case, rea) is of the form bLc, with the 
length of bL and Lc at most T'(L + 1) = L + 1. In both cases, the length of rea) is at 
most 2L + 1. 0 

Remark 3.4 The bound of lemma 3.3(ii} is sharp: consider the sequences 

... (L - 2) 2 (L - 1) 1 L 0 L 1 (L - 1) 2 (L - 2) ... 

Lemma 3.5 The number of different typical sequences of integers in {O, 1, ... , L} is at 
most i22L. 

Proof: For a set of integers S, define N(S) (N'(S)) to be the set of typical sequences, 
that 

• contain each integer in S 

• start with the smallest (largest) integer in S 

• contain the smallest (largest) integer in S exactly once. 
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Write 8 = {n1,n2,'" ,n.}, n1 < n2 < ... < n •. Using induction, one can prove, similar 
as in the proof of lemma 3.3 that N(8) contains one unique element: 

and N'(8) also contains a unique element: 

We will now first count the number of typical sequences in {a, 1, ... , L}* that contain 
their smallest integer m once. There is a unique correspondence between such typical 
sequences and pairs of subsets 81 , 8 2 ~ {m + 1, ... ,L}: 8 1 denotes the set of integers 
appearing before m, and 8 2 denotes the set of integers after m. The typical sequence 
corresponding to pair 8 1 , 82 is the string of the form a m b, with a m the unique element 
of N(81 ) in reversed order, and m b the unique element of N(82 ). SO, the number of 
typical sequences that contain their smallest element once is 

As each typical sequence contains its smallest integer once, or its largest integer once, 
and those of the latter type can be counted similarly, the result follows. 0 

For sequences a(l ... n), and b(l ... n), we write a ::; b, if for all i, 1 ::; i ::; n, ai ::; bi. 

Definition 3.6 
Let a(1..n) be a sequence. We define E(a) as the set of extensions of a: 

Hence each element of E(a) is of the form (aI' a1, ... , a2, a2, ... , an,"', an), where each ai 
of the original sequence a appears at least once in the extension. For any interval [ct, f3] 
with ti ::; ct ::; f3 < ti+1 we say that a(i) is repeated in this interval (in a*). 

Lemma 3.6 If a* E E(a) then r(a*) = rea). 

Proof: In computing r(a*) we may start by removing all repetitions. 0 

Definition 3.7 
For two integer sequences a and b we write a -< b if there are a* E E(a) and b* E E(b) of 
the same length such that a* ::; b*. If both a -< band b -< a hold we write a == b. 

Lemma 3.7 The relation -< is transitive. 
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Proof: Let a -< band b -< c. First notice that: 

b -< c 1\ b* E E( b) ::} b* -< c 

We show there exist extensions a* E E( a) and b* E E( b) such that a* ~ b*. By the remark 
above, b* -< c and hence there are extensions b** E E(b*) and c* E E(c) such that b** :::; c*. 
We make an extension a** E E(a*) as follows. If an element of b* is repeated in b** then 
we let the corresponding element of a* repeat in a**. Clearly, 

a** ~ b** ~ c* 

and hence a -< c. 0 

Corollary 3.8 The relation == is an equivalence relation. 

Lemma 3.9 If a sequence a' is obtained from a sequence a by a typical operation then 
a' == a. Moreover, there exist extensions a'* and a'** both of a' such that a'* ~ a ~ a'**. 

Proof: Suppose a = (aI, ... ,an), and a' = (aI, ... ,ai,aj, ... ,an). Without loss of 
generality, suppose that ai ~ aj. Take 

and 

a'* = (aI"'" ai-I, ai,"" ai, aj, aj+I,"" an) -----j-i+I times 

a'** = (aI,'" , ai-I, ai, aj, ... ,aj, aj+I,"" an) 
'-.-" 
j-i+I times 

Clearly, a'* and a'** are extensions of a' with a'* ~ a ~ a'**. Hence a' == a. 0 

Lemma 3.10 For any integer sequence a: r(a) == a. Moreover, there exist extensions a' 
and a" of r(a) and both of the same length as a such that a~ ~ ai and a~' ~ ai for all i. 

Proof: Using lemma 3.7, one easily proves with induction to r: if b is obtained from a 
by r typical operations or removals of repetitions, then a == b and there exists extensions 
a', a" of b of the same length as a, such that a' ::; a and a ::; a". 0 

From Lemma 3.10 and Lemma 3.7 it follows that: 

Corollary 3.11 If a and b are two sequences then a -< b if and only if r(a) -< r(b). 

Definition 3.8 
Let a(1..n) and b(1..m) be two integer sequences. The ringsum a EB b is defined as: 

a EB b = {a* + b* I a* E E(a) and b* E E(b) and l(a*) = l(b*)} 

Lemma 3.12 Let c E aEBb, and let a* E E(a) and b* E E(b). Then there exists a sequence 
c* E E( c) such that c* E a* EB b*. 
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Proof: Let c = a' + b' for some a' E E(a) and b' E E(b). Let ai be repeated P~ times 
in a' and P: times in a*. Let bi be repeated q~ times in b' and q; times in b*. Let A ~ 1 
be an integer. Make new extensions aO E E(a) and bO E E(b), by repeating ai AP~ times 
in aO and bj Aqj times in bO. Then aO and bO have the same length. If c* = aO + bO, then 
c* E E(c). If we take A such that AP~ ~ p: for all i and Aqj ~ q; for all j then also 
aO E E(a*) and bO E E(b*). 0 

Next we show that if two sequences can be 'improved', then also the sum can be 
improved. 

Lemma 3.13 Let a and b be two integer sequences of the same length and let y = a + b. 
Let ao -< a and bo -< b. Then there is a sequence Yo E ao EEl bo such that Yo -< y. 

Proof: There are extensions a~ of ao and a* of a such that a~ :S a* and extensions b~ 
of bo and b* of b such that b~ :S b*. Assume an element ai is repeated Pi times in a* and 
bi is repeated qi times in b*. Now change the extensions a* and a~ into a** and a~* by 
repeating ai Piqi times in a** and repeating each corresponding element in a~ qi times. 
We then have a~* :S a**. In a similar way we obtain new extensions b~* and b**. Make an 
extension y** of y by repeating each element Yi Piqi times. Define Yo = a~* + b~*. We now 
have Yo = a~* + b~* :S a** + b** = y** and Yo E ao EEl boo 0 

Lemma 3.14 Let a and b be two integer sequences and let c E a EEl b. Then there exists 
an element c' E r( a) EEl r( b) such that c' -< C. 

Proof: This is an immediate consequence of Lemma 3.13. By Definition 3.8 c = a* + b* 
for some extensions a* of a and b* of b. By Lemma 3.6 r(a*) = rea) and r(b*) = reb). By 
Lemma 3.10 r(a*) -< a* and r(b*) -< b*. Hence, by Lemma 3.13, there is a c* E r(a) EElr(b) 
such that c* -< C. 0 

Lemma 3.15 Let a and b be two integer sequences, and c E a EEl b. Then there exists an 
integer sequence c' E a EEl b with r(c) = r(c') and l(c') :S l(a) + l(b) - 1. 

Proof: Let a*, b* be extensions of a and b, such that l(a*) = l(b*) = m, and c = a* + b*. 
We write a = (al, ... ,an), b = (bl, ... ,bn,), a* = (ai, ... a;,.), b* = (bi, ... ,b;"). Let 
I = {i I 1 :S i :S m A (a: =1= a:+! V bi =1= bi+!)}. Write I = {iI, ... , iT}, i l < i2 < ... < iT' As 
positions in I mark either the last occurrence of a repetion of a value aj or of a value bj , 

we have iIi :S n + n' - 2. Let c' = (ail + bil , ai
2 

+ bi
2

, ••• , air + bir, a;,.. + b;"'). Note that cis 
an extension of c', so r(c) = r(c'). The length of c' is l(c') = iIi + 1 = lea) + l(b) - 1. 0 

Lemma 3.16 Let a be an integer sequence with lea) :S k. The number of different exten­
sions a* of a with l(a*) = k is at most 2k-l. 

Proof: We have ai = al' For every i, 2 :S i :S k, there are at most two choices for 
ai: either we repeat the last element (a; = ai_I)' or we take the next element from a: 
(a*i-I = aj, ai = aj+! for some j). 0 

Definition 3.9 
Let a(l ... n) and b(l ... m) be two integer sequences. The concatenation of a and b, is 
defined as the sequence: 

oab = (al,' .. , an, bl , ... , bm ) 
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Lemma 3.17 For two sequences a and b: r( oab) = r( or( a )r(b)). 

Proof: By Lemma 3.2 we can apply typical operations and removal of duplicates in 
any order to obtain r(oab). Start by applying the typical operations of a to the sequence 
oab and remove adjacent duplicates from this sublist. The result is the sequence or(a)b. 
Next apply all typical operations and removal of duplicates to the sublist b. The result is 
or(a)r(b). This proves the lemma. 0 

Lemma 3.18 If a* E E(a) and b* E E(b) then oa*b* E E(oab). 

Lemma 3.19 If a' -< a and b' -< b, then oa'b' -< oab. 

Proof: There are extensions a'* E E(a'), a* E E(a), b'* E E(b') and b* E E(b) such 
that a'* :::; a* and b'* :::; b*. Then clearly also: (oa'*b'*) :::; (oa*b*). By Lemma 3.18: 
oa*b* E E(oab) and oa'*b'* E E(oa'b'). This proves the lemma. 0 

Definition 3.10 
Let a( 1 ... n) be an integer sequence (n > 0). A split of a is a pair (61 ,62 ) of integer 
sequences of one of two types. 

1. The first type split is such that there exists an index 1 :::; J :::; n with: 61 = (a1' ... , a I) 
and 62 = (aI"" ,an); 

2. The second type split is such that there is an index 1 :::; f :::; n with: 61 = (a1,'" ,aI) 
and 62 = (aJ+1,"" an). 

Notice that al occurs in both elements of the split of the first type. For an integer sequence 
of length one there can only be a split of the first type, since we assumed that integer 
sequences always have length at least one. 

Lemma 3.20 Let a be a nonempty sequence such that a E E(r(a)). Let (61 ,62 ) be a split 
of r(a) of any type. Let (a1' a2) be a split of a of the same type such that a1 E E(61) and 
a2 E E(82) (this split exists). Then read = 81 and r(a2) = 82 , 

Proof: Write r( a) = (a1,"" as) and let (61 ,82 ) be a split of the first type with 
61 = (a1," . ,aI) and 82 = (aI"" ,as). Make a split of a of the first type such that 

a1 = (a1' ... , a1, ... , a I, ... , a I) /I. a2 = (a I, ... , a I, ... , as, ... ,as) 

(with a I appearing at least once in each ai)' This split clearly is possible since a E E( r( a)). 
Since a E E(r(a)), r(a) is obtained from a by removing repetitions of elements in a. 
Clearly, 6i contains no repetitions, and no typical operation is applicable to it. If the split 
(61 ,62 ) is of the second type, the proof is similar. Hence the lemma follows. 0 

We extend the results on integer sequences to lists of integer sequences. We use the 
notation [aJ to represent a list (aU), a(2), ... , a(n» where each a(i) represents an integer 
sequence. For short, we call a list of integer sequences also a list. We start with some 
notations. 
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1. The length of a list is the number of integer sequences in the list. 

2. For a list [a] = (a(l), . .. ,a(n)) we define max([a]) = maxl<i<n max(a(i)). 

3. For two lists [a] = (a(1), ... , a(n)) and [b] = (b(l), ... , ben)) of the same length and 
such that l(a(i)) = l(b(i)) for all i, we say that [a] and [b] have the same length in the 
strong sense. 

4. For two lists [a] and [b] with the same length in the strong sense we write [a] :::; [b] 
if ali) :::; b(i) for each i. 

5. For two such lists with the same length in the strong sense we use the notation 
raj + [b] for the list (a(1) + b(1), .. . ,a(n) + ben)). 

6. Let [a] = (a(1), ... ,a(n)) be a list. The typical list r[a] of [a] is the list 

r[a] = (r(a(1)), ... , r(a(n))) 

7. Let [a] = (a(1), ... ,a(n)) be a list. The set of extensions of [a] is defined as: 

E[a] = {[b] = (b(l), ... , ben)) I Vi b(i) E E(a(i))} 

8. The ringsum of two lists raj = (a(1), ... , a(n)) and [b] = (b(l), ... , ben)) of the same 
length is defined as 

9. For two lists raj and [b] of the same length we write [a] -< [b] if there exist extensions 
[a*] E E[a] and [b*] E E[b] such that [a*] :::; [b*]. If both [a] -< [b] and [b] -< [a] we 
write [a] == [b]. 

Most results on integer sequences trivially extend to lists of integer sequences. We 
summarize them in the following lemma. 

Lemma 3.21 

1. The relation -< is transitive for lists and == zs an equivalence relation for lists 
{Lemma 3.7 and Corollary 3.8}. 

2. If [b] E E[a] then r[b] = r[a] {Lemma 3.6}. 

3. For two lists [a] and [b] of the same length: [a] -< [b] ¢:} r[a] -< r[b] {Corollary 3.11}. 

4· For any list [a]: r[a] == [a]. Moreover there are extensions [b/] E E(r[aJ) and [b"] E 
E(r[aJ) such that [b/] :::; [a] :::; [b"] {Lemma 3.10}. 

5. Let [a] and [b] be two lists of the same length and let [cJ E raj EEl [b]. Let [a*] E E[a] 
and [b*] E E[b]. Then there exists a list [c*] E E[c] such that [c*] E [a*] EEl [b*J 
{Lemma 3. 12}. 

6. Let [a] and [b] be two list with the same length in the strong sense and let [y] = [a]+[b]. 
Let lao] -< [a] and [bo] -< [b]. Then there exists a list [Yo] E lao] EEl [bo] such that 
[Yo] -< [y] {Lemma 3.13}. 

7. Let [a] and b be two lists of the same length and let [c] E [a] EEl [b]. There exists a list 
[C/] E r[a] EEl r[b] such that [e'l -< [e] {Lemma 3.14}. 
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4 A decision algorithm for pathwid th 

In this section we give a decision algorithm for the pathwidth ~ k problem for fixed k. We 
assume we have a nice tree-decomposition (X, T) of the graph G = (V, E) of width at most 
f. We consider partial path-decompositions, rooted at nodes i E I. We first define the 
'characteristic of a partial path-decomposition': this is - in essence - the information 
of this partial path-decomposition that is sufficient to see whether it can be extended to 
a path-decomposition of G. 

4.1 Characteristic path-decompositions 

Definition 4.1 
Let Y be a partial path-decomposition rooted at a node i. Let Z = (Ztj )l~j~q be 
the interval model for Y. The list representation for Y is the pair (Z, [YD, where 
Z is the interval model and [Y] = (y(1), y(2), . .. ,y(q)) is the sequence with y(m) = 

(Ytm , Ytm+l,"" Ytm+l-l) for each 1 ~ m ~ q. 

Definition 4.2 
Let Y = (Y1 , Y2 , • •• , Ym ) be a partial path-decomposition. The set of extensions of Y, 
E(Y), is the set of path-decompositions 

Z = (Yi, Yi, ... , Yi, 1'2, y;, ... , Y;, ... , Ym , •. ·, Ym ) 

where each subset Yi is repeated at least once. 

Definition 4.3 
Let Y be a partial path-decomposition with list representation (Z, [YD, with interval 
model Z = (Ztj h~j~q. Let [y] = (y(l), y(2), . .. ,y(q)) be the list of integer sequences with 
y(m) = (IYtml,IYtm+1I, ... ,IYtm+1 -1i) for each interval 1 ::; m ~ q. We call [y] the list ofY 
and T[Y] the typical list of Y. 

Definition 4.4 
Let Y be a partial path-decomposition with list representation (Z, [YJ) and let [yJ be the 
list of Y. The characteristic of Y is the pair 

C(Y) = (Z, T[Y]) 

Lemma 4.1 The number of different characteristics of possible 
partial path-decompositions with pathwidth at most k, rooted at i, with IXil ~ .e + 1, is 
at most 

Proof: This follows directly from lemma 3.1 and lemma 3.5. 0 
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Definition 4.5 
For two partial path-decompositions Y and Z rooted at the same node i, which have the 
same interval model, we write Y -< Z if the corresponding lists satisfy [y] -< [z]. If Y -< Z 
and Z -< Y, we write Y == Z. 

Definition 4.6 
A set of characteristics F S( i) of partial path-decompositions rooted at some node i of 
width at most k is called a full set of characteristics if for each partial path-decomposition 
Y rooted at i of width at most k there is a path-decomposition Y' -< Y such that the 
characteristic of Y' is in FS(i). 

Lemma 4.2 If some full set of characteristics at a node i is nonempty, then every full 
set of characteristics at this node is nonempty. A full set of characteristics is nonempty 
if and only if the pathwidth of Gi is at most k. 

Proof: This follows directly from Definition 4.6. 0 

An important consequence of lemma 4.2 is that the pathwidth of G is at most k, if and 
only if any full set of characteristics at the root of the tree-decomposition is non-empty. 
In the next four subsections we show how to compute a full set of characteristics at a node 
pin 0(1) time, when a full set of characteristics of all the children of p is given. 

4.2 A full set for a start node 

We may assume that Xp contains one vertex, i.e., Xp = {v} for some v E V. By lemma 
3.1, a minimal path-decomposition of Gp has at most three nodes. There are four different 
minimal path-decompositions of Gp : (0, {v}, 0), (0, {v}), ({v}, 0), and ({v}). For each of 
these, we put its characteristic in the full set. 

4.3 A full set for a join node 

Let p be a join node with children q E I and rEI. By definition Xp = Xq = Xn since 
we are using a nice tree-decomposition. 

Suppose we have a full set of characteristics at node q, FS(q), and a full set of char­
acteristics at node r, FS(r). Recall definition 2.3. Note that Vp n v:. = X p, and Gp is 
obtained from Gq and Gr by identifying the vertices of Xp in Xq and in X r. 

For a characteristic (Z, r[a]) , Z = (Zdl$i$w, r[a] = (r(a{l»), ... ,r(a(w»)), define the 
list [a*] = (r(a{l») - IZtll, ... ,r(a(w») - IZtw I). 

Theorem 4.3 Let FS(q) (FS(r)) be a full set of characteristics at node q (r), q and r 
the children of join node p. Then 

FS(p) = {(Z,r[c]) I (Z,r[a]) E FS(q) /\ (Z,r[bJ) E FS(r) /\ 

[c] E [a*] EB r[b]/\ max([cJ) ~ k + I} 

is a full set of characteristics for p. 
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Proof: We prove this theorem with help of some intermediate results. We first 
show that an element of F S(p) is indeed a characteristic of a partial path-decomposition 
at node p. The following lemmas will be useful. 

Lemma 4.4 Let Y be a partial path-decomposition. Let [yJ be the list of Y. If [y*] E E[y], 
then there exists a partial path-decomposition y* E E(Y) with list [y*]. 

Proof: If an element of yiu
) is repeated, we repeat the corresponding subset ~(u) the 

same number of times. 0 

Lemma 4.5 Let Y be a partial path-decomposition rooted at p with characteristic (Z, r[y]). 
Then there exists a partial path-decomposition Y' rooted at p with the same characteristic 
such that the list [y'] of Y' satisfies [y'] E E( r[y]). 

Proof: Assume that no integer sequence y(u) of [yJ has two consecutive elements that 
are the same. Recall the proof of Lemma 3.9. Consider a typical operation applied to an 
integer sequence y(u) of the list [yJ ofY. Suppose subsequence y(u)(i+1 ... j -1) is removed. 
W.l.o.g., suppose y~u) ~ y;u). We write yk(u) for the set of the partial path-decomposition 

Y, corresponding to yku). We obtain a path-decomposition y* as follows: initialize Yk* = Yk 
for all sets Yk of the path-decomposition Y. Iteratively for k = i + 1, ... ,j -1, add elements 
of Yk*i~) - yk*(u) to the set yk*(u) until yk*(u) contains /y/(u) / elements. It is easy to see that 
Y* is a partial path-decomposition with the same characteristic, and that the list [y*] of 
Y* satisfies [y*] E E(Y). The lemma now follows with induction on the number of typical 
operations. 0 

Definition 4.7 
Let p be a join node with children q and r. Let A be a path-decomposition rooted at q 
and let B be a path-decomposition rooted at r, such that the restrictions of A and Bare 
the same. Then we write C = A U B for the path-decomposition rooted at p obtained by 
Ci = Ai UBi for all i. 

Lemma 4.6 Let p be a join node with children q and r. Let A (B) be a partial path­
decomposition rooted at q (r), such that the restrictions of A and b are the same. Then 
C = A U B is a partial path-decomposition rooted at p. 

Proof: This follows directly from the d~finitions. 0 

In the next three results we assume F S(p) is computed from full sets of characteristics 
FS(q) and FS(r) as described in this theorem. 

Lemma 4.7 Let p be a join node with children q and r. For each (Z, Tic]) E F S(p) there 
is a partial path-decomposition rooted at p with this characteristic. 

Proof: Let A be a partial path-decomposition at q with characteristic (Z, r[a]) E F S( q) 
and let B be a partial path-decomposition at r with characteristic (Z, rib]) E F S( r) with 
the same interval model Z. By Lemma 4.5 we may assume that the lists [a] of A and [b] 
of B satisfy [a] E E(r[a]) and [b] E E(r[b]). Define 

[a'] = (a(1) - /Ztl/" .. ,a(w) - IZtw!) 1\ [a*] = (r(a(l)) - IZtll, ... ,r(a(w)) - IZtw /) 
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Clearly [a'] E E[a*] since [a] E E( T[a]). Let [c] E [a*] EEl T[b] with max([c]) ~ k + 1. By 
Lemma 3.21.5 we may conclude that there is a list [CO] E E[c] such that [CO] E [a'] EEl [b]. 
Hence there are extensions laO] E E[a'] and W] E E[b] such that [CO] = laO] + W]. Notice 
that since [CO] E E[c] also max([c°J) ~ k + 1. 

Now take extensions A ° E E(A), corresponding with the extension lao]' and BO E E(B) 
corresponding with W]. Define Co = AOUBo (since laO] and W] have the same length in the 
strong sense Co is well defined). By Lemma 4.6 Co is a partial path-decomposition rooted 
at p. The list of Co is [CO] and hence Co has width at most k. Finally, since [CO] E E[c]: 
T[CO] = T[C] (Lemma 3.21.2). Hence the characteristic of Co is (Z, T[C]) E FS(p). 0 

Lemma 4.8 Let p be a join node with children q and r. If Y is a partial path­
decomposition rooted at p of width at most k then there is a partial path-decomposition 
Y' --< Y such that C(Y') E FS(p). 

Proof: Let A be the sub-decomposition of Y for G q and let B be the sub-decomposition 
ofY for Gr , so Y = AUB. Since FS(q) and FS(r) are full set of characteristics, we know 
there exist path-decompositions Ao --< A for G q of which the characteristic is in F S( q) and 
Bo --< B for G r of which the characteristic is in F S (r ). By Lemma 4.5 there exists also a 
partial path-decomposition A' with the same characteristic as Ao, such that [a'] E E( T[a']). 
Notice that 

[a'] == T[a'] = T[ao] == lao] --< [a] 

hence A' --< A. In the same manner we find a partial path-decomposition B' --< B such 
that [b'] E E(T[b'J). Notice that the interval model of all these path-decompositions is the 
same, say (Ztih~i~w. Define the list 

(where [y] is the list of Y). Then we have [y*] = [a] + [b]. By Lemma 3.21.6 there exists 
a list [yO] E [a'] EEl [b'] such that [yO] --< [y*]. Hence there are extensions laO] E E[a'] and 
W] E E[b'] such that [yO] = laO] + W]. By Lemma 4.4 there are path-decompositions 
AO E E(A') with list laO] and BO E E(B') with list W]. Define yt = AO uBo. Notice that 
yt is a partial path-decomposition rooted at p with list 

[yt] = (yO(l) _ IZtll, ... ,yo(w) - IZtw I) 

Notice that [yt] --< [y] (since [yO] --< [y*]) , hence yt --< Y. Since [a'] E E(T[a']) and 
laO] E E[a']: laO] E E(T[a']). Also W] E E(T[b']). Hence [yO] E T[a'] EEl T[b']. If we define 

[a'*] = (T(a,(l)) -IZttl, ... ,T(a'(w)) -IZtwI) 

we find [yt] E [a'*] EEl T[b'], hence C(yt) E FS(p). 0 

This proves theorem 4.3. 0 

Note that theorem 4.3 implies that a full set of characteristics for a join node p can be 
computed in 0(1) time, given the full sets of children p and q. 
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4.4 A full set for a forget node 

Let p be a forget node with child q. Then Gp = Gq and by Definitions 2.6 and 2.7 
Xp C Xq and Xq contains exactly one vertex, say x, which is not in Xp. We call x the 
forgotten element of p. We first show how to compute the full set of characteristics F S (p) 
from the full set of characteristics F S (q). 

Let (Z, r [y J) be a characteristic in F S (q), with interval model Z = (Zt J 1 $.j $. W' Since 
Z is a path-decomposition for the subgraph induced by Xq there is a consecutive number 
of subsets in Z which contain the forgotten element x. We remove x from these sets, 
and remove consecutive subsets which are now the same. Obviously, the following lemma 
holds. 

Lemma 4.9 Z' is an interval model for p. 

Let i :S j be such that Zt; is the first subset Z which contains x and Ztj is the last 
subset containing x. Notice that the number of subsets in Z is at most two more than the 
number of subsets of Z', namely Zt; can become the same as Zt;_l after the removal of x 
and Ztj can become the same as Ztj+l' Consider the following four cases. 

1. If the number of subsets of Z' is the same as the number of subsets in Z, then we 
put (Z',r[yJ) in FS(p). 

2. If only the subset Zt; \ {x} is the same as Zt;_l then let 

and change the typical list Try] into the list: 

i.e. we concatenate the typical sequences r(y{i-1») and r(y{i») and compute the 
typical sequence of the result. We put (Z', [y'J) in F S(p). 

3. If only Ztj \ {x} = Ztj+l then compute 

r( or(y(j) )r(y{j+1»)) 

and change the typical list r[y] into [y"] as in the former case. Put (Z', [y"J) into 
FS(p). 

4. Finally, if both Zt;_l = Zt; \ {x} and Ztj \ {x} = Ztj+l then let 

rl = r( or(y{i-1) )r(y{i»)) 1\ r2 = r( or(y(j) )r(y(j+l})) 

and change the typical list r[y] into the list: 

[y*] = (r(y{1}), ... , r(y{ i-2»), r1, r(y{i+1»), ... 

... , r(y(j-1»), r2, r(y(j+2»), ... ,r(y{w»)) 

We put (Z', [y*J) in FS(p). 
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Notice that if i = j we compute in this last case the typical sequence of: 
OT(y(i-l) )OT(y(i) )T(y(i+l)). 

FS(p) is obtained by carrying out the above for each element of FS(q). Below we 
assume FS(p) is computed in this way from FS(q). To prove the correctness we first 
show that an element of F S(p) is a characteristic of a partial path-decomposition rooted 
at p. 

Theorem 4.10 For each (Z', [c]) E FS(p) there is a partial path-decomposition rooted at 
p with this characteristic. 

Proof: Let (Z, T[Y]) be the corresponding characteristic in F S(q) (i.e. (Z', [cD is 
computed from (Z, T[Y]) by the algorithm described above). There exists a partial 
path-decomposition Y rooted at q, with this characteristic. Y is also a partial path­
decomposition rooted at p. By Lemma 4.9 the interval model of Y at node p is Z'. We 
prove that the typical list is computed correctly. This is clearly the case when Z' = Z. 
Consider the second case: the number of subsets in Z' is one less and Zti_l = Zti \ {x}. 
Let [yJ be the list of Y. In this case the list of Y changes into 

(y (l) y(i-2) oy(i-l)y(i) y(i+1) y(w)) '''., , ""., 

By Lemma 3.17: T(oy(i-l)y(i)) = T(OT(y(i-l))T(y(i))), hence the typical list is computed 
correctly. The other cases are similar. 0 

The next theorem shows that F S(p) is indeed a full set of characteristics. 

Theorem 4.11 If Y is a partial path-decomposition rooted at p of width at most k, then 
there is a partial path-decomposition Y' -< Y such that C(Y') E FS(p). 

Proof: Y is also a partial path-decomposition rooted at q, since Gq = Gp • Hence 
there is a partial path-decomposition rooted at q, Y' -< Y, of which the characteristic 
is in FS(q). In the proof of Theorem 4.10 it is shown that the characteristic of Y' is 
computed correctly for node p. We only have to show that Y' -< Y still holds for node p 
(recall Definition 4.5: the interval model may have changed!). This however is proved in 
Lemma 3.19. 0 

Corollary 4.12 FS(p) is a full set of characteristics for the forget node p. 

So, the full set of a forget node can be computed in 0(1) node, given the full set of its 
child. 

4.5 A full set for an introduce node 

In this subsection, we consider the case in which p is an introduce node with child q. 
Now Vp = Vq U {x} for some vertex x fj. Vq. We call the vertex x introduced at p. Note 
that all neighbors of x in Gp belong to Xp' 

Suppose we have a full set of characteristics FS(q) for q. We give a procedure to 
compute a set FS(p), and then we prove that this set FS(p) is a full set of characteristics 
for p. 

The computation of F S(p) is certainly not the most efficient one possible, but is given 
here for a somewhat simpler presentation. 
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We first make a list of all feasible interval models for the for the node p (a minimal 
path-decomposition for the subgraph induced by Xp is a feasible interval model for p). We 
then check, for each feasible interval model, if there is a characteristic in F S (q) which can 
be 'extended' to a characteristic for Xp with this interval model. Clearly, this algorithm 
might not be the most efficient one to compute FS(p), since there could be many feasible 
interval models which are in fact not interval models. 

Algorithm 

Step 1 Make a list Q of all minimal path-decompositions for the subgraph induced by 
Xp (Definition 3.4). 

Step 2 Make a new list Q* as follows. For each minimal path-decomposition Z E Q 
compute Z': Remove the introduced vertex x from all subsets of Z and after that 
remove repetitions of subsets. Notice that Z' is a minimal path-decomposition for 
the subgraph induced by X q • Put the pair (Z, Z') in Q*. 

Step 3 If for some pair (Z, Z') E Q* there is no characteristic in the full set of character­
istics for q, FS(q), which has Z' as an interval model, then remove the pair (Z,Z') 
from the list Q*. 

Step 4 Initialize FS(p) = 0. For each pair (Z,Z') in Q* and for each characteristic 
(Z', T[e]) E FS(q) with Z' as an interval model do the following. Let Z = (Zt.h:s;s:s;w. 
Let i :::; j be such that Zti is the first subset of Z containing the introduced vertex 
x and Ztj the last subset of Z containing x. Notice that the number of subsets of Z 
is at most two more than the number of subsets of Z'. Namely, after the removal of 
x Zti can become the same as Zti_l and Ztj can become the same as Ztj+l. Hence 
one of the following four different cases is applicable: 

1. If the number of subsets of Z' is the same as the number of subsets in Z, we 
change the typical list T[e] into: 

[CO] = (T( e(1)), ... , T( e(i-l)), 1 + T( e(i)), ... 

... ,1 + T(e(j)), T(eU+1)), ... ,T(e(w))) 

i.e. we add one to all typical sequences T(e(u)) with i :::; u :::; j. If max([eO]) :::; 
k + 1, then we put (Z, [CO]) in FS(p). 

2. If the number of subsets in Z' is one less than the number of subsets in Z, and 
Zti \ {x} = Zti_l: For convenience we write: 

Consider all splits of both types (61,62 ) of T(e(i)) (Definition 3.10). For each 
such split change the typical list T[e] into: 

[ '] - ( ( (1)) ( (i-2)) s: 1 + s: 1 + ((HI)) e - T C , ... ,T e , ul , U2, T e , ... 

... ,1 + T(e(j)), T(e(j+1)) , ... ,T(e(w))) 

If max([e']) :::; k + 1 then we put (Z, [e']) in FS(p). 
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3. If the number of subsets in Z' is one less than the number of subsets in Z, and 
Ztj \ {x} = Ztj+l: This case is similar to the second case. In this case we make 
all splits of r(e(j). 

4. If the number of subsets in Z' is two less than the number of subsets in Z: Let 

r[c] = (r(e(1), ... , r(e(i-2), r(c(i), ... , r(cU), r(c()+2), ... , r(c(w)) 

In this case consider all splits (aI, a2) of r( e( i) and all splits (f31, (32) of r( c(j) ). 
For each pair of such splits (aI, a2) and (f31, (32) change the typical list r[e] into 

[et ] = (r(e(1), ... , r(c(i-2), aI, 1 + a2, 1 + r(e(i+1), ... 

... ,1 + f31,f32,r(e()+2), ... ,r(e(w)) 

If max([ct ]) :::; k + 1 then put (Z, [ct]) in FS(p). 

Notice that in the last case, if i = j then we split r(e(i) into three parts; i.e first 
split it into two parts and then split the second part again. 

Step 5 Stop. The computation of FS(p) is completed. 

We prove that F S(p) is a full set of characteristics for p in two stages. First we 
demonstrate that every element in F S(p) is a characteristic of a partial path-decomposition 
rooted at p. 

Theorem 4.13 For each (Z, [dJ) E FS(p) there is a partial path-decomposition rooted at 
p with this characteristic. 

Proof: Let (Z',r[yJ) be the corresponding characteristic in FS(q), i.e. (Z, [dJ) is com­
puted from this characteristic by the algorithm described above. There is a partial path­
decomposition Y rooted at q, with C(Y) = (Z',r[yJ). Let [y] be the list for Y. By 
Lemma 4.5 we may assume that [y] E E(r[yJ). Let (Z', [YJ) be the list representation of 
Y. 

First consider the case with IZ'I = IZI (the same number of subsets). If i :::; j are 
the first and last subset of Z containing x, we change the path-decomposition Y into 
yo, by adding x to all subsets of y(u), for all i :::; u :::; j. Clearly, yo is a partial path­
decomposition for Gp • Since r(yo(u) = r(l + y(u) = 1 + r(y(u) for all i :::; u :::; j, the 
typical list r[yO] for yo equals the list [d] as computed by the algorithm. Hence yo is a 
partial path-decomposition with characteristic (Z, [dJ). 

Now consider the case where the number of subsets in Z is one more than the number 
of subsets in Z' and Zti \ {x} = Zti_l (the second case). In this case the typical sequence 
r(y(i) is split by the algorithm into, say, (61 ,62 ) in order to obtain [d]. The integer 
sequence y(i) is an extension of r(y(i). We make a split of y(i), say (y~i),y~i) such that 
yii) E E(61 ) and y~i) E E(82). By Lemma 3.20 this split is always possible and r(y~i) = 81 

and r(y~t) = 62 , Take a similar 'split' of y(i) into (y1(t) , y2(t). Add the vertex x to all 
subsets of Y2(i) , and to all subsets of y(u) with i + 1 :::; u :::; j. Call the obtained path­
decomposition yo (notice that yo is indeed a partial path-decomposition rooted at p of 
width at most k). Since the typical sequence for yii) is 61 and the typical sequence for 
y~i) is 62 , the characteristic of yo is indeed (Z, [dJ), where [dJ is the typical list of yo as 
computed by the algorithm. 

The other two cases are similar. 0 
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Theorem 4.14 For every partial path-decomposition Y rooted at p of width at most k 
there exists a partial path-decomposition Y' -< Y, such that C(Y') E FS(p). 

Proof: Let yo be the sub-decomposition of Y for Gq • Since FS(q) is a full set of char­
acteristics, there exists a partial path-decomposition Yo -< yo of which the characteristic 
is in FS(q). By Lemma 4.5 we know there exists a partial path-decomposition Y' with 
the same characteristic as Yo, such that [y'] E E(T[y'J) (where [y'] is the list of Y' and 
T[Y'] is the typical list for Y'). Notice that [y'] == T[Y'] = T[Yo] == [Yo] -< [yO] (Lemma 3.21 
and Definition 4.5) hence Y' -< yo. So there are extensions Y'* E E(Y') and yo* E E(YO) 
such that the respective lists satisfy [y'*] ~ [yo*] (Lemma 4.4). Since Y and yo have the 
same length we can take an extension y* E E(Y) corresponding with yo* (i.e. if some 
subset Y; is repeated r times in yo* then we repeat Yf also r times in Y*). Notice that 
now we have three partial path-decompositions of the same length Y*, yo* and Y'* and 
that yo* and Y'* have the same interval model. 

Make a partial path-decomposition yt rooted at p by changing Y'* as follows. Add x 
to Y}* whenever x E Yj. Notice that the interval model of yt is the same as the interval 
model of Y and [yt] ~ [y*], hence yt -< Y. 

We now show that the characteristic of yt is in FS(p). Clearly, the characteristic of 
Y'* is in FS(q). Let (Z', [Y'*J) be the list representation for Y'* and let (Z, [yt] be the 
list representation for yt. Write Z = (Zts h::;s::;w. Let i ~ j be the first and last interval 
of Z containing the vertex x. 

Consider the case where the number of intervals of Z is the same as the number of 
intervals of Z'. Then x is added to all subsets of y,*(u) for all i ~ u ~ j (otherwise at 
least one interval of Z' would have been split). It follows that the characteristic of yt is 
computed in the first case of step 4 of the algorithm: yt(u) = 1 + y,*(u) for all i ~ u ~ j 
hence T(yt(u») = 1 + T(y'*(u»). 

N ext consider the case where the number of intervals of Z' is one less than the number 
of intervals of Z and Zti \ {x} = Zti_l' For convenience we write: 

[y'*] = (y'*(1) y'*(i-2) y,*(i) y'*(j) y'*(j+1) y,*(w») , ... , , , ... , , , ... , 

So y,*(i) = oyt(i-1)(ytCi) - 1). Now [y'*] E E(T[y'J). Write T(y'(i» = (0:1"'" O:s). Then it 
follows that either 

ytC i
-

1
) = (O:l,· .. ,O:l,···,O:f,···,O:f) /\ 

yt(i-1) = (O:l, ... ,O:l,,,.,O:f,,,.,O:f) /\ 

It follows that the characteristic of yt is computed by the algorithm in the second case of 
step 4. 

The other cases are similar. 0 

Corollary 4.15 The set FS(p) computed by the algorithm is a full set of characteristics 
for the introduce node p. 

Again, we have a procedure that computes a full set from a full set for the child node 
in 0(1) time. 
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4.6 The decision algorithm 

From the previous sections, it now easily follows that we can decide whether 
'pathwidth( G) S k', given the nice tree-decomposition of G of width S f, in time, propor­
tionally to the number of nodes of this tree-decomposition, which is linear in the number 
of vertices of G. We compute for all nodes of T a full set of characteristics, starting at the 
leaves, and going up in the tree. The pathwidth of G is at most k, if and only if the full 
set for the root node is non-empty. 

As we spend 0(1) time per node of T, the total time is linear in the number of nodes 
of T, i.e., linear in the number of vertices of G. 

5 A decision algorithm for treewidth 

In this section, we give an explicit algorithm, that given a graph G = (V, E) with a nice 
tree-decomposition of G of width S f, decides whether the treewidth of G is at most k. 
The algorithm uses time, linear in the number of nodes of the nice tree-decomposition, 
which is O(IVJ). 

The method we use is an extension of the method we used in the previous section for 
the pathwidth problem. We use one main new concept here: the trunk of the tree in the 
tree-decomposition (of width S k). 

5.1 The characteristic of a tree-decomposition and full sets 

Note that we work with two types of tree-decompositions: the nice tree-decomposition 
NT = ({Xi liE I}, T = (I, F)) of G of width S f, and the tree-decompositions of G 
or subgraphs of G of width S k. In this section, we define the characteristic of a tree­
decomposition. First we note that we may restrict ourselves to tree-decompositions which 
are minimal in some sense. 

Definition 5.1 
Let D = (8, T) be a tree-decomposition for a graph G. D is called non-trivial if for every 
pair of adjacent nodes x and y in T the corresponding subsets 8 x and 8 y are different. 

Clearly, if D is a tree-decomposition, it can be transformed to a tree-decomposition which 
is non-trivial. 

Definition 5.2 
Let D = (8, T) be a tree-decomposition. Let x be a leaf of T and let 8x be the corre­
sponding subset. The leaf x is called maximal if 8x contains a vertex v which is not an 
element of any other subset of S. 

Notice that if x is a leaf and if y is the father of x, then x is exactly maximal if Sx is not 
a subset of Sy. 

Definition 5.3 
Let D = (8, T) be a tree-decomposition for a graph G. D is called minimal if the following 
two conditions are satisfied: 

23 



1. D is non-trivial, and 

2. all leafs of T are maximal. 

Lemma 5.1 Let G be a graph with tree width k. There exists a minimal tree-decomposition 
of G of width k. 

Proof: Take any tree-decomposition D = (B, T) of G of width k. We transform D into 
a minimal tree-decomposition D' as follows. First, recursively remove leafs of T which are 
not maximal and remove the corresponding subsets from B. If e = (x, y) is an edge of T 
such that Bx = By, then contract the edge in T and replace the subsets Bx and By by one 
new subset. It is easy to see that D' obtained in this way is a minimal tree-decomposition. 
o 

We want to show an upper bound on the number of nodes in a minimal tree­
decomposition. 

Lemma 5.2 Let G be a graph with n vertices. Then the number of nodes in a minimal 
tree-decomposition is at most (2n - 1)2. 

Proof: Let D = (B, T) be a minimal tree-decomposition for a graph G with n vertices. 
For each leaf node i E I, Xi must contain a vertex Vi that is not contained in the set Xj, 
j the neighbor of i in T, and hence is not contained in any set Xj, j E I. So T has at 
most n leaves. Using standard arguments, it follows that the number of nodes of degree at 
least 3 in T is at most n - 1. Since adjacent subsets are different, we can use Lemma 3.1 
to see that each path in T with all vertices of degree two can have length at most 2n - 1. 
It follows that T has at most (2n - 2)(2n - 1) vertices of degree two. Hence, the total 
number of nodes in T is at most (2n - 1)2. 0 

The node i E I in the definition below denotes a node in the nice tree-decomposition 
NT of G of width:::;.e. Recall definition 2.3 of a rooted subgraph. 

Definition 5.4 
A partial tree-decomposition rooted at a node i E I is a tree-decomposition for G i , i.e., 
the subgraph rooted at i. 

Definition 5.5 
Let Y = (BY, TY) be a partial tree-decomposition rooted at a node i. The restriction of 
Y is the sub-decomposition Y* = (8Y*, TY) for the subgraph induced by Xi, i.e. if we 
define for each 8 E BY, 8' = B n Xi, then BY* = {8' I BE 8Y}. 

The characteristic of a partial tree-decomposition consists of three parts. We call the first 
part the trunk of the tree-decomposition. 
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Definition 5.6 
Let Y = (BY, TY) be a partial tree-decomposition rooted at a node i. The trunk of Y is 
a tree 7 defined as follows. First take the restriction of Y, say y* = (BY*, TY). Next, 
recursively remove leafs of TY for which the corresponding subsets of BY* are not max­
imal in BY*. Finally, remove those vertices of the tree which have degree two and make 
the two neighbors adjacent. The filled trunk is the set of all trunk nodes and all nodes on 
a path between trunk nodes in TY. 

Lemma 5.3 Let Y be a partial tree-decomposition rooted at a node i. The number of 
vertices of the trunk of Y is at most 2k. 

Proof: Every leaf node of the trunk of Y contains at least one unique vertex, not in 
any other trunk node. So the trunk has at most k + 1 leaf nodes, and hence it cannot have 
more than k - 1 nodes of degree ~ 3. 0 

We now define the tree model of a partial tree-decomposition in analogue of the interval 
model defined in Definition 3.3. Let Y = (BY, TY) be a partial tree-decomposition 3 at a 
node i and let 7 be the trunk. For each edge e in the trunk, consider the corresponding 
path in TY with all internal vertices of degree 2. Let BY;, be the corresponding subsets of 
BY. We use the notation Y;, for the pair (BY;" TY;,). Notice that Y;, is a path-decomposition 
for the subgraph induced by the vertices in USESYeB. 

Definition 5.7 
Let Y = (BY, TY) be a partial tree-decomposition rooted at a node i. The tree model of 
Y is a pair 

where 7 is the trunk of Y and Ze is the interval model of Y;, for each edge e of T. 

Recall Definition 4.1 of the list representation of of a path-decomposition. 

Definition 5.8 
Let Y be a partial tree-decomposition rooted at a node i. The trunk-representation is: 

where (Ze, [Y;,]) is the list representation for Y;, (for each edge e in the trunk). 

Recall Definition 4.3 of a typical list of a path-decomposition. 

Definition 5.9 
Let Y be a partial tree-decomposition rooted at a node i with tree model (7, (Ze)eET)' 
The characteristic of Y is the triple: 

where T[Ye] is the typical list of Yeo 
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Notice that the characteristic is of constant size by Lemma 5.3 and Lemma 4.l. 

Definition 5.10 
Let Y and Z be two partial tree-decompositions rooted at the same node i, which have 
the same tree model (i.e., the same trunk and for each edge of the trunk the same inter­
val model). Then Y -< Z if for each edge e in the trunk the corresponding lists satisfy 
[YeJ -< [zeJ. If Y -< Z and Z -< Y then we write Y == Z. 

Recall Definition 4.6 for the full set of characteristics. We define the full set of character­
istics for partial tree-decompositions. 

Definition 5.11 
A set of characteristics F S( i) of partial tree-decompositions rooted at some node i of 
width at most k is called a full set of characteristics if for each partial tree-decomposition 
Y rooted at i and of width at most k either its characteristic is in F S( i) or there is a 
partial tree-decomposition Y' with Y' -< Y and the characteristic of Y' is in FS(i). 

In the following sections we show how to compute a full set of characteristics for each 
node from the full sets of characteristics of the children of the node. 

5.2 A full set for a start node 

Again, we may assume that X p contains one vertex, i.e., X p = {v} for some v E V. 
Note from lemma 5.2 that a minimal tree-decomposition of Gp has one node. So, there 
is a unique, one node minimal tree-decomposition of G p: ({ X io }, T = ({ i o}, 0)), with 
Xio = {v}. So, it is straightforward to compute the full set of characteristics rooted at p 
in 0(1) time: this set contains only the characteristic of this minimal tree-decomposition. 

5.3 A full set for a join node 

Let p be a join node with children q and r. By definition, Xp = Xq = X r • Suppose 
we have full sets of characteristics F S( q) and F S( r) for the nodes q and r. We give a 
procedure to compute a set F S(p), and then prove that F S(p) is a full set fro p. 

For every pair (r, (Ze)eET, (r[aeDeET) E FS(q) and (r, (Ze)eET, (r[beDeET) E FS(r), 
(i.e., with the same tree model), compute for every edge e of the trunk the list 

(1) 

and the set 
B(e) = {r[cell iCe E [a;l EEl r[belA max([ceD::; k + I} 

Put all triples (r, (Ze)eET, (de)eET) with for all e E r, de E B(e), in the set FS(p). 
Clearly, these computations can be done in time, only depending on the sizes of F S( q) 

and F S (r), hence in constant time. We now prove that this construction indeed computes 
a full set of characteristics for p. The following notion of the join of two partial tree­
decompositions will be useful. 

Let p be a join node with children q and r. Let A = (SA, T A) be a partial tree­
decomposition rooted at q and let B = (SB,TB) be a partial tree-decomposition rooted 
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at r. Let A' = (SA', T A) be the restriction of A and let B' = (S B', T B) be the restriction 
of B. From the trees T A and T B recursively remove leafs which are not maximal in the 
restriction. Call these new trees T A * and T B*, and let SA * and S B* be those subsets of 
SA' and SB' corresponding with nodes in TA* and TB* respectively. Assume that: 

(SA*,TA*) = (SB*,TB*) (2) 

We define a tree-decomposition C rooted at p as follows. Define a tree TC by taking the 
union of T A and T B and by identifying the nodes of T A * and T B*. For each node x of 
TC, define a subset SCx as: 

so. ~ { 
SAx uSBx ifx E TA* 
S Ax if x ETA \ T A * 
SBx if x E TB \ TB* 

Note that T A * consists of the full trunk of T A. The same relation holds for T B* and 
T B. The resulting tree-decomposition C is written as C = Au B. Note that Au B is not 
always defined, (namely only when (2) holds). It follows, that when C = A u B, then the 
trunk of A, Band C are the same. 

Lemma 5.4 C = Au B is a partial tree-decomposition rooted at p. 

Proof: The conditions are easily verified. 0 

Lemma 5.5 Let p be a join node with children q and r. Let 

There exists a partial tree-decomposition of width at most k and rooted at p with this 
characteristic. 

Proof: Let 

C(A) = (7, (Ze)eET, (r[ae])eET) E F S(q) 

C(B) = (7, (Ze)eET, (r[be])eET) E FS(r) 

Let C be obtained from C(A) and C(B) by the algorithm: 

'VeET [rYe] E [a:] EB r[be] A max([Ye]) ::; f + 1] 

where [a:] as defined in (1). It is easy to verify that the proof of Lemma 4.7 generalizes 
to obtain the following result. There exist partial tree-decompositions AO rooted at q and 
BO rooted at r with characteristics C(A) and C(B) respectively, such that Co = AO u BO 
is well defined and has characteristic C. 0 

Lemma 5.6 Let p be a join node with children q and r. If Y is a partial tree­
decomposition rooted at p of width at mist f then there exists a partial tree-decomposition 
Y' such that Y' -< Y and such that C(Y') E FS(p). 
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Proof: Let A be the sub-decomposition of Y for G q and let B be the sub-decomposition 
for Gr. Notice that Y = A U B is well defined and satisfies C(Y) = C(Y). The result 
of Lemma 4.8 can easily be generalized and we obtain the following result. There exist 
partial tree-decompositions AO rooted at q and BO rooted at r, such that C(AO) E FS(q), 
C(BO) E FS(r) and yt = AO U BO is well defined and satisfies yt -< Y. Moreover we 
may assume that for each edge of the trunk [a~] E E(r[a~]) and [b~] E E(r[b~]). Hence 
[y!J E [a~*] EEl r[b~], with [a~*] computed from r[a~] as in (1). This proves the theorem. 0 

It follows that FS(p) is a full set of characteristics for the join node p, which can be 
computed in 0(1) time, given FS(p) and FS(q). 

5.4 A full set for a forget node 

Let p be a forget node with child q, and let x be the 'forgotten' element i.e. 
Xp = Xq - {x}. Again, we first give a procedure to compute a set FS(p), given a full 
set of characteristics FS(q) for q, and then we prove that FS(p) is a full set of character­
istics for p. 

For every (T, (Ze)eET, (r[Ye])eET) in FS(q), do the following: Remove from all sets 
Z~i) the vertex x. Compute the new trunk T*. (See below.) Remove repetitions from the 
interval models Ze and for each edge e E T* let Z; be the new interval model. Finally, for 
each edge e E T* change the typical list r[Ye] into Try;] as described in section 4.4. Put 
(T*, (Z;)eEP' (r[Y;)eEP) in FS(p). 

Clearly, this computation takes constant time. Consider an (T, (Ze)eET, (r[Ye])eET) 
from FS(q) and its corresponding (T*, (Z;)eET,(r[Ye])eEr). Let Y = (ST,TY) be the 
tree-decomposition, rooted at q, corresponding with (T, (Ze)eET, (r[Ye])eET). 

Lemma 5.7 If the trunk T* differs from the trunk T, then there is exactly one subset 
Z~i) that contains the vertex x, and at least one end node of e must be a leaf of T. 

Proof: Consider how trunks T and T* are made. Let Y* = (ST*, TY) be the restriction 
of Y at node q, and let y* - {x} = (ST* - {x}, TY) be the restriction of Y at node p, 
i.e., remove x from every subset in SY*. Remove leaves from TY for 0 the corresponding 
subsets of SY* are not maximal in Y*. Let TY* be the resulting tree. If T* differs from T, 
then there must be a leaf node w in TY* whose set SY';; - {x} is not maximal in y* - {x}. 
As SY';; is maximal, SY';; contains a vertex z, not in the set SY';;" with w'the neighbor 
of w in TY*. Necessarily, z = x. So, the edge e in T with w as one end node is the only 
edge with 3i : x E Z~i), and moreover, only one such i exists. 0 

Lemma 5.B The tree model for Y at p is (T*, (Ze)eEP). 

Theorem 5.9 For each (T*,(Z;)eEp,(r[Y;)eEP) E FS(p) there is a partial tree­
decomposition Y rooted at p with this characteristic. 

Proof: Let (T, (Ze)eET, (r[Ye])eET) be the corresponding characteristic in FS(q). Then 
there is a partial tree-decomposition Y rooted at q with this characteristic. Then Y is also 
a partial tree-decomposition rooted at p since Gp = Gq • By Lemma 5.8, (T*, (Ze)eEP) is 
the tree model for Y at p. By Theorem 4.10 for each edge e in T* the typical list r[y;] is 
computed correctly. 0 
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Theorem 5.10 If Y is a partial tree-decomposition rooted at p of width at most k then 
there exists a partial tree-decomposition Y' -< Y such that C(Y') E FS(p). 

Proof: Y is also a partial tree-decomposition rooted at q. Since FS(q) is a full set of 
characteristics, there is a partial tree-decomposition Y' with Y' -< Y such that C(Y') E 
F S(q). It is shown that the characteristic of Y' is computed correctly for node p. We have 
to show that Y' -< Y holds for node p. Since Y and Y' have the same tree model at q, 
they also have the same tree model at p (see Lemma 5.8; the tree model at p is computed 
from the tree model at q). Using Lemma 3.19 it follows that for each edge e E T* we have 
[Y~] -< [Ye]. Hence Y' -< Y for node p. 0 

Corollary 5.11 FS(p) is a full set of characteristics for the forget node p. 

Again, we can compute the full set for a forget node in 0(1) time, given the full set 
for its child. 

5.5 A full set for an introduce node 

Let p be an introduce node with child q. Let x be the vertex introduced at p, i.e. 
Xp = Xq U {x}. We first give a procedure that computes a set FS(p), given a full set 
FS(q) for q, and then prove that FS(p) is a full set of characteristics for p. For reasons 
of simplicity we apply the same method as in section 4.5: First we compute all minimal 
tree-decompositions for Xp. Notice that by Lemma 5.2 this can be done in constant 
time. Remove the vertex x from all subsets, obtaining a tree-decomposition for X q • Next 
compute the tree model of this tree-decomposition. Check if there is a characteristic in 
F S (q) with this tree model, and change this into a new characteristic for F S (p ). 

Algorithm 

Step 1 Make a list Q of all tree models of minimal tree-decompositions for the graph 
induced by Xp of width at most k. 

Step 2 Make a new list Q' as follows. For each element T* of Q remove x from all subsets. 
Compute the tree model T = (T, (Ze)eEr) of the result. If there is a characteristic 
in F S( q) with this tree model, then put the pair (T*, T) in the list Q'. 

Step 3 Let (T*,T) E Q', and let C = (T,(Ze)eEr,([r[Ye])eEr) E FS(q) such that T = 
(T, (Ze)eEr). Let T* be the trunk of T*. We show how to compute characteristics 
C* = (T*,(Z:)eEp,(r[Y:])eEP) for FS(p). We consider two cases. 

1. The trunks T and T* are the same. In this case we can proceed as described in 
section 4.5. For each edge of the trunk we change the typical list as described 
in step 4 of the algorithm given in section 4.5. 

2. The trunks are different. In that case, the trunk T* contains a leaf a, which is 
not a leaf of the trunk T. Let b be the neighbor of a in T*. In general, when 
b is of degree three in T*, b is not a node in T. In that case let c and d be the 
other neighbors of b in T*. Notice that c and d are adjacent in T. Let Zb be 
the interval corresponding with node b in T*. Let 
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be the interval model for e = (c, d) in T. In T* this interval model is split in 
two parts 

Consider the typical list for e in T: 

The typical sequence 

for e1 = (c, b) 

for e2 = (b, d) 

,(y~c)) = (a1,"" as) 

for the interval Z~b), is split into two parts in all possible ways (each split gives 
a characteristic for F S (p ) ): 

'I = (aI' ... , a! ) 1\ '2 = (a!, ... , as) 

Notice that, by Lemma 3.20, 'I and '2 are typical sequences. The typical lists 
for the edges (c, b) and (b, d) in C* are 

[ * 1 - ( ( ( c) ) ( (b-1) ) ) , Yel - , Ye , ... " Ye , '1 
[ * 1 - ( (( b+ 1) ) ( (d) ) ) , Ye2 - '2,' Ye , ... " Ye 

for the edge (c, b) 

for the edge (b, d) 

When the node b is a node in T, the interval model and typical list are not 
split. 

Finally, we have to describe the typical sequence for the edge (a, b) in f = (a, b). 
Consider the interval model Z! = (Z?), . .. , Z;r)) for this edge in T. The typical 

sequence ,(y;(i)) = (IZY)I) (i.e. consists of one element). 

Step 5 Stop. The computation of F S(p) is completed. 

In Step 3 of the algorithm, we claim that the trunks T and T* differ only in some specified 
way. We start by proving this. 

Lemma 5.12 If the trunks T and T* are different, then there is exactly one leaf a of T* 
which is not a leaf of T. Let b be the neighbor of a in T*. If b is of degree three in T* 
then b is not a node in T. In this case the two other neighbors of b are adjacent in T. 

Proof: Let y* be a minimal tree-decomposition for the subgraph induced by Xp with 
tree-model (T*, (Ze)eE'T)' The trunk T is obtained by removing x from all subsets and 
then computing the trunk of the result. Assume the trunks are not the same. Then clearly, 
there must be a leaf in T* which is not a node of T. Hence the subset corresponding with 
a is not maximal in T. It follows that x is contained only in this subset. 0 

Theorem 5.13 Each element C* = (T*,(Z:)eEp,(T[Y;])eEP) E FS(p) is the character­
istic of a partial tree-decomposition rooted at node p. 
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Proof: Let C = (T, (Ze)eET, (T[YeJ)eET) be the characteristic in FS(q) from which C* 
is computed by the algorithm. Since FS(q) is a full set of characteristics for q, there 
exists a partial tree-decomposition Y = (SY, TY) rooted at q with characteristic C. By 
Lemma 4.5 we may assume that [Ye] E E( T[Ye]) for every edge e E T. We show how to 
compute a partial tree-decomposition rooted at p with characteristic C*. If T = T* the 
result follows from Theorem 4.13. Hence assume the trunks are different. Let a be the 
leaf of T* which is not in T and let b be the neighbor of a. Assume b is not an element of 
T. Then b has two other neighbors c and d which are adjacent in T. Let e be the edge 
(c, d) in T. The algorithm splits the characteristic sequence T(Yib») into two parts: 

T1 = (a1' ... ,a f) 1\ T2 = (a f' ... , as) 

Since [YeJ E E(T[YeJ) we know that yic) E E(T(Yic»)). Hence we can split the sequence r:,(c) 
in two parts Ye: and r:,: such that T1 is the characteristic sequence of Y:

1 
and T2 is the 

characteristic sequence of Y:
2

' Let bo be the node in TY, corresponding with the split of 
ye(c). We make a new tree TY* by making a new path P adjacent to boo Let f be the edge 
(a, b) in T*. Each node i in P corresponds to a subset Z?). The corresponding subset in 

y* is equal to Z;(i). It is easily checked that y* is a partial tree-decomposition rooted at 
p with characteristic C*. 0 

Theorem 5.14 Let Y be a partial tree-decomposition rooted at p of width at most k. There 
exists a partial tree-decomposition Y' such that Y' -< Y and such that C (Y') E F S (p). 

Proof: We may assume Y is minimal. Let yo be the sub-decomposition of Y rooted 
at q. Since FS(q) is a full set of characteristics there exists a partial tree-decomposition 
Yo -< yo such that C(Yo) E FS(q). Clearly we may assume that Yo is minimal. Let 
C(Yo) = (T, (Ze)eET, (T[YeJ)eET)' We may assume that lYe] E E(T[Ye]) for all edges e E T. 
Since Yo -< yo, there exist partial tree-decompositions Yo* and y o* such that Yo: E E(Yoe), 
Y,,0* E E(Y,,°) and [Y~e] ~ [y~*] for every edge e E T. Since yo is the restriction of Y, 
there exists a partial tree-decomposition y* with the same characteristic as Y such that 
[y:J E E([YeJ) and such that [y:J and [y~*J have the same length in the strong sense for 
every edge e E T. Assume the trunk of Y and yo are different. Since Y and Yo are 
minimal there is a simple path P in the tree TY of Y which is not present in the tree 
TYo of Yo. Let i be the node in TYo* which is adjacent to a node of P in TY*. Make P 
adjacent to i in TYo. 0 

We now have shown that FS(p), which can be computed in 0(1) time from FS(q) is 
a full set of characteristics for p. 

5.6 The decision algorithm 

Again, it now directly follows that we can decide in O(n) time whether the treewidth of 
input graph G is at most k, given a nice tree-decomposition of G of width ~ f. This is 
done similarly as for the pathwidth problem, d. section 4.6. 

6 Turning decision algorithms into construction algorithms 

In the previous sections, we showed how to obtain decision algorithms for the 'pathwidth 
~ k' and 'treewidth ~ k' problems. We now show that also, if existing, corresponding 

31 



path- and tree-decompositions of width ~ k can be constructed, in linear time. 
The first step of the construction algorithms is to run the decision algorithms. Clearly, 

if these output that the treewidth or pathwidth of the input graph is larger than k, then 
we are done. Otherwise, the full set of characteristics of the root node of the nice tree­
decomposition is non-empty. Take an arbitrary characteristic from the full set of the root 
node. 

We will describe a recursive procedure, that for a characteristic cP from a full set 
of characteristics at node p computes a certain representation of a tree-decomposition 
or path-decomposition ({Yi liE I}, T = (I, F)) of Gp with treewidth ~ k and with 
characteristic cP , and some pointers between cP and this implicit representation. 

To be more specific, we have the following representation and pointers for path­
decompositions (Yl, ... , Yr ): 

• for each i E I, we have two sets Li , R i , with 

- Li = {v E Yi I i is the first node with v E Yi}. 
- Ri = {v E Yi I i is the last node with v E Yi}. 

• If cP = ((Ztj h::;j::;q, T(y(j)h::;j::;q) , we have 

- for each j, 1 ~ j ~ q, a pointer from the appearance from Zt; in cP to the first 
and last nodes i E I with Xp n Yi = Zt;. 
for each j, 1 ~ j ~ q, each each j', 1 ~ j' ~ I(T(y(j))), a pointer from the 
integer variable T(y(j)))i to the corresponding set Yo: (with lYo: I = T(y(j)))i' cf. 
section 4.1. 

• the pairs (Li' R i ) are put in a doubly linked list, in the order in which the nodes i 
appear in the path-decomposition (Y1 , ..• , Yr). 

Note that the collection of L/s, R/s and their order exactly determine the path­
decomposition (Y1 , ••• , Yr). 

For tree-decompositions ({Yi liE I}, T = (1, F)), we have the following representation: 

• For each edge (a, b) in the trunk T, we have for the set of nodes on the path between a 
and bin T a representation, similar as for path-decompositions, and we have similar 
pointers between these nodes and (Z(a,b) , T[Y(a,b)D (cf. definition 5.9). 

• we have pointers from trunk nodes where appearing in cP , to the corresponding nodes 
i in the representation of the tree-decomposition. 

• for all nodes i E I, not on the filled trunk, we have a set Yi. 

• each node, either on a path between trunk nodes, or not on the filled trunk, also 
carries a linked list of pointers to neighboring nodes, such that for every pair of 
adjacent nodes, at least one of them has a pointer to the other in this linked list. 

• we have a bag, containing a pointer to each node i E I. 

Note that again, the information above is sufficient to construct the tree-decomposition, 
in O(l:iEI IXil) = O(n) time. 

We now give a recursive procedure to compute this representation for a characteristic 
cP , rooted at p. Again, we consider four cases, depending on the type of node of p. 
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p is a start node. This case is obvious. 

p is a forget node. Note that during the computation of the full set of characteristics 
for p, the characteristic cP is made from one unique characteristic cq from the child node 
q of p. Moreover, a path- or tree-decomposition with characteristic cq is also a path­
or tree-decomposition with characteristic cp

• Recursively, compute the representation of 
such a path- or tree-decomposition for cq

• Then, we update the representation. When the 
trunk is changed, the forgotten vertex x must be placed in a number of subsets Yi with i 
no longer a part of the trunk. The total time over all forget nodes of this work is bounded 
by O(2:iEI IYiI) = O(n). It is easy to see that all other modifications can be made in 0(1) 
time per forget node. 

p is an introduce node. Again, the characteristic cP is made from a unique character­
istic cq from the child node q of p. Recursively, compute the representation of the path­
or tree-decomposition corresponding to cq

• From sections 4.5 and 5.5 it follows that the 
path- or tree-decomposition can be modified in a rather straightforward way to a path- or 
tree-decomposition with characteristic cp

• (Checking all the details is easy, but tedious, 
and is omitted here.) The modifications to the representations can be done in 0(1) time. 
(E.g., note that the representations with sets L i , Ri make that (for every edge of the 
trunk) we must add x to one set Li and one set R i. In the case that the trunk changes, 
the interval model for the new trunk edge (a, b) (d. section 5.5) (zj1), ... , ZY») equals 
the sequence of the new sets Yi in the tree-decomposition, corresponding to this edge, and 
necessarily, r ~ k + 1.) 

p is a join node Suppose q and r are the children of p. Observe that cP is made from 
one characteristic cq at q and one characteristic cT at r. 

First, we look at the pathwidth problem. We can write: cP = (Z, T[C]) , (Z, T[a]) E 
FS(q), (Z, T[b]) E FS(r), [c] E [T[a]- Z] EB T[b]. 

Recursively, compute the representations of the path-decompositions with characteris­
tic (Z, T[a]) , (Z, T[b]). As in the proof oflemma 4.7, we can now compute the representation 
for a path-decomposition with characteristic cp

• Again, because of the representation by 
sets L i , Ri , 0(1) pointer modifications are sufficient to do this. 

In case of the treewidth problem, we do the same as described above for each trunk 
edge. In some cases, we must link two linked lists of pointers to one linked list, which also 
costs 0(1) pointer operations. 

The total work to compute a representation for a tree-decomposition with characteristic 
in the full set of the root node is linear in the sum of IVI and the number of nodes in the 
given nice tree-decomposition of G of width ~ £. Note that this tree-decomposition is a 
tree-decomposition of G of width ~ k. 

Theorem 6.1 (i) For all k, £ ;::: 1, there exists an algorithm, that when given a graph 
G = (V,E) and a tree-decomposition ({Xi liE I}, T = (I,F)) of G of width ~ £, 
computes whether the treewidth of G is at most k, and if so, finds a tree-decomposition of 
G of width ~ k, and that uses O(IVI + III) time. 
(ii) For all k, f ;::: 1, there exists an algorithm, that when given a graph G = (V, E) and 
a tree-decomposition ({Xi liE I}, T = (1, F)) of G of width ~ f, computes whether the 
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path width of G is at most k, and if so, finds a path-decomposition of G of width::; k, and 
that uses O(IVI + III) time. 

Reed [37J has found an O(nlogn) algorithm, that when given a graph G = (V,E), 
either decides that the treewidth of G is at most k, or finds a tree-decomposition of G of 
width O(k) (for fixed k). Combining this result with theorem 6.1 directly gives O(nlogn) 
algorithms for the 'treewidth ::; k' and 'pathwidth ::; k' problems. 

7 Computing the pathwidth of graphs with bounded 
treewidth 

In this section, we show that the algorithms, given in this paper can also be used to 
compute the pathwidth of graphs with bounded treewidth in polynomial time. So, we 
assume a fixed upper bound on the treewidth of the input graphs, but the pathwidth of 
the input graphs, which must be computed, is not a-priory bounded by some constant. 
Most important for our discussions here are lemma 3.5, and the following fact. 

Theorem 7.1 [15] Let G = (V, E) be a graph with treewidth ::; f. Then the pathwidth of 
G is at most (f + 1) log IVI. 

In the remainder of this section, we suppose that f is a fixed constant, and we want to 
decide whether a given graph G = (V, E) with treewidth at most f has pathwidth at most 
a given integer k. By theorem 7.1, we may assume that k ::; (l + 1) log IV I, otherwise the 
problem is trivially solvable. We write n = IVI. 

The first step of our algorithm is to find a nice tree-decomposition ({Xi liE I}, T = 
(/, F)) of G with treewidth ::; k. Clearly, this can be done in polynomial time, and even 
in linear time, using the algorithm from [13J and lemma 2.3. 

Proposition 7.2 For each pEl, a full set of characteristics rooted at p contains a 
polynomial number of characteristics. Each characteristic contains 0(1) integer sequences 
of length at most 2k + 3 = O(log n). 

Proof: See lemmas 4.1. Note that 1 = 0(1), and k = O(logn). By lemma 3.1, a 
characteristic contains at most U + 3 = 0(1) typical sequences. Each of these contains 
numbers between 0 and k + 1, so by lemma 3.3, they have length O(k) = O(logn). 0 

We now show that full sets of characteristics can be computed in polynomial time for 
a node pEl, when the full sets of characteristics of the children of p are known. In each 
case, we use the same algorithm as was used in earlier sections for the case that k is a 
fixed constant. We need to show that the computations can be done in polynomial time. 

p is a start node. This case is obvious. 

p is a join node. Let q, r be the children of p, and let FS(p), FS(q) be full sets of 
characteristics at p and r. We use the same notations as in section 4.3. 

From proposition 7.2 and lemma 3.15, it follows that we may restrict the lists [cJ in 
theorem 4.3 to lists with each integer sequence in the list with length at most 4k + 5 = 
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O(logn). For each i, 1 ~ i ~ W, we have to consider the extensions of r(a<i») -IZti I with 
length at most 4k + 5, and the extensions of r(b(i») with length at most 4k + 5. By lemma 
3.16, the number of such extensions is polynomially bounded in n. As the W = 0(1) 
(proposition 7.2), it follows that we can compute the full set F S(p) in polynomial time. 

p is a forget node. One can directly observe that the computation of FS(p), as done 
in section 4.4 is linear in the product of the number of elements in a full set and the size 
of a characteristic (total number of integers and vertices appearing). By proposition 7.2, 
the former number is polynomial in n, and the latter is O(log n). 

p is an introduce node. Consider the procedure, given in section 4.5. Note that steps 1 
and 2 can be done in constant time, as IXpl ~ f+ 1. Step 3 can be done in time, polynomial 
in the size of F S (q), hence in polynomial time. Step 4 also can be done in polynomial time: 
for each of the constant bounded many pairs (Z, Z'), and the polynomially bounded many 
(Z, r[c]) , we must consider 0(log2 n) cases: the number of different splits of a sequence 
r(c(i») is at most 2 ·l(r(c(i»)) = O(logn). Each of the O(logn) cases can be done in time, 
linear in l:~=1 I ( r( c(i»)) = O(log n). It follows that the computation of a full set at p takes 
polynomial time. 

So, for each pEl, we can compute a full set of characteristics F S (p) in polynomial 
time, given full sets for the children of p. So, in polynomial time, we have a full set for 
the root node of T. As before, the pathwidth of G is at most k, if and only if the full set 
of the root node is non-empty. 

It is not hard to see that one can turn the decision algorithm into a polynomial time 
algorithm that also constructs the path-decompositions of minimum width, using the 
approach, described in section 6. 

Theorem 7.3 For every k, there exists a polynomial time algorithm, that, when given 
a graph G = (V, E) with tree width at most k, computes the pathwidth of G and a path­
decomposition of G of minimum width. 

Corollary 7.4 The pathwidth, vertex separation number and node search number can be 
computed in polynomial time for each of the following classes of graphs: cacti, outerplanar 
graphs, k-outerplanar graphs (k-fixed), Halin graphs, series-parallel graphs, almost graphs 
with parameter k (k constant). 

Proof: Pathwidth, vertex separation number, and node search number are equivalent 
notions (see e.g. [34]). Each of the classes mentioned has a constant upper bound on the 
treewidth of the graphs in the class. 0 

The pathwidth of trees and forests can be computed in linear time (see [21, 34, 43]). 
Note that the running time of our algorithm is quite large: already the bound on the 

size of the full sets in lemma 3.5 is O(n4l+3). 

8 Final Remarks 

8.1 On the constant factors 

The algorithms, discussed in section 7 can be considered to be of only theoretical interest. 
The algorithms discussed in this paper for the case that k is a constant (sections 4, 5 
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and 6), are more practical. The constant factors of these algorithms are still quite large, 
although much better than those of previous solutions, and 'only' singly exponential in a 
the treewidth of the graphs involved. Note that, due to the NP-completeness of the decision 
problems TREEWIDTH and PATHWIDTH [3], we should not expect to do better than worst 
case running time exponential in k. We believe that our algorithms are probably 0 for 
small values of k, e.g., k = 3, 4, or 5. For instance, it might well be that the following 
approach would yield the most practical algorithm for the 'pathwidth ~ 3' problem: 

• Find a tree-decomposition of width ~ 3 of the input graph with the algorithm from 
Arnborg and Proskurowski [6], or decide that the treewidth and hence the pathwidth 
is larger than 3. 

• Apply theorem 6.1(ii), with some further optimizations. 

Several optimizations to our algorithms seem possible. Most obvious this is for the com­
putations of full sets for introduce nodes. Other possible approaches for optimizations 
are: 

• Use modified characterizations and/or modified graph building rules. 

• Use the partial ordering -< on characterizations in full sets, or stronger forms of 
such partial orderings, and try to remove many characteristics from full sets that are 
'dominated' by other 'better' characteristics in that full set. 

• Use (Myhill-Nerode) state reduction techniques. See e.g., [7, 1]. 

• Use 'memoization'j i.e., do not compute full sets at once, but always try to find 
characteristics that can be included in a (not yet full) set of a node i that is as 
close to the root as possible. As soon as we find a characteristic in the set of the 
root of T we are done. This approach may help to significantly decrease the average 
case time for inputs with a positive answer to the decision problem, but it does not 
significantly increase the worst case time. However, it also will not improve the time 
for 'negative' inputs. 

• Try to start with inputs with £ as small as possible. When combining the result of 
this paper with results in [30] or [37], or with the approach taken in [13], we still can 
have £ ~ 2k + 1, and this is probably not practical for most values of k. It might be 
that the variant of the algorithm mentioned in [13], that uses O( n log n) time, and 
only involves tree-decompositions of width at most k + 1 has most practical value. 

• Combine the results of this paper with graph rewriting techniques, as in [6, 4]. 

8.2 Related results and open problems 

Recently, the algorithms given in this paper have been used in [13] to obtain a linear time 
algorithm, that given a graph G, decides whether G has treewidth at most k, and if so, find 
a tree-decomposition of width ~ k (k fixed). Clearly, a similar results holds for pathwidth 
(cf. theorem 6.1). 

Very recent results show that similar techniques can be employed to solve the fixed 
parameter variant of several other related problems in linear time: minimum cut linear 
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arrangement, modified minimum cut linear arrangement, directed minimum cut linear 
arrangement, search number, register sufficiency, and others [14]. It seems likely that for 
some of these (e.g., search number), also polynomial time algorithms for computing the 
number of graphs with bounded treewidth exist. For others of these problems, this is 
unlikely: e.g. minimum cut linear arrangement is NP-complete for graphs with treewidth 
2 [35]. 

The results in this paper resolved some interesting open problems concerning the com­
plexity of computing the treewidth or pathwidth for special classes of graphs. We mention 
some other interesting, remaining open problems in this area: what are the complexities 
of computing the treewidth of planar graphs, the pathwidth of circular arc graphs, and 
the treewidth or pathwidth of line graphs. Also, it seems an interesting research subject 
to try to get more efficient algorithms for computing the pathwidth of special classes of 
graphs with bounded treewidth, like the outerplanar graphs, Halin graphs, or graphs with 
treewidth 2 or 3. 
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