Het gebruik van "Singular Value Decomposition" voor de analyse van de dynamica van mechanische systemen

Citation for published version (APA):

Starmans, E. M. (1987). Het gebruik van "Singular Value Decomposition" voor de analyse van de dynamica van mechanische systemen. (DCT rapporten; Vol. 1987.010). Technische Universiteit Eindhoven.

Document status and date:

Gepubliceerd: 01/01/1987

Document Version:

Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Het gebruik van
"Singular Value Decomposition"
voor de analyse
van de dynamica van mechanische systemen
verslag van een stage-opdracht
door E.M.STARMANS id.nr. 175605

$$
15-01-1987
$$

begeleider: Wil Koppens

Samenvatting

Het vastleggen van de positie van een multibody-systeem in termen van een set onafhankelyke parameters is raak problematisch. In zo'n geval wordt vaak een set athankelige parameters gebruikt, terwijl de onderlinge celaties worden vastgelegd via een set algebraische vergelykingen.
In dit kerslag wordt de "Singular Value Decompesition"methode bekeken, waarmie men uit deze set afhanhelyhe parameters een set on a fhankelyke parameters kan samenstellen. Deze methode is gebruikt voor het bepalen van het dynamisch gedrag van een slinger. Dit is zowel numeriek als analytisch gedaan om een beter in zicht te kriggen in deze methode
Geconcludeerd kan worden dat de SVD-methode zeer bruikbaar kan zijn voor het analysesen van de dynamica van mechanische systemen.

Inhoudsopgake

Titelblad
Samenvatting
Hoofdstuk 1: Inleiding
Hoofdstuk 2: Het gebruik van "Singular Value
Decomposition" roor de analyse van de dynamica van mechanische systemen
2.1 Inleiding
2.2. Basiseigenschappen ran SVD
2.3 Het partitioneren van gegeneraliseerde coördinaten met SVD.
Hoofdstuk 3: De slinger - theoretisch
Hoofastuk 4: Een algorithme voor het oplossen van de bewegings vergelykingen
Hoofdstak 5: De slinger - Fesultaten 24
Hoofdstuk 6: Toelichting bjy het programma
6.1 Het programma SVD. FTN
6.2 Een voorbeld-run
6.3 Toepassing van het programma op andere fysische problemen.
Hoofastuk 7 : Conclusies
Billage I: Resultaten by" het slinger-voorbeeld
Bylage II: Listing van het programma SVD. FTN
Bylage III: Een voorbeeld-run
Bülage IV: Beschrgiving NAG-subroutines

Hoofdstuk 1: Inleiding

In de multibody-dynamica stuit men vaak op problemen bÿ het beschriken van de configuratie van een systeem in termen van een set onafhankelike parameters Het is dan wel mogelgk een set afhankelike parameters te nemen, waarby men dan de onderlinge relake's verwerkt in een aantal algebraische vergelikingen (de zgn. Constraints). Vervolgens kan er met verschillende methoden een set onafhankelyke paramesers worden bepaald vit deze a/hankelyke parameters. Ee'n zo'n methode is het onderwerp van deze stageopdracht, ne. de "Singular Value Decomposition"-methede. Het doel van deze opdracht was vooral het begrypelyk maken van deze methode. Het artikel "Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics" in het "Journal of Mechanisins, Transmissions, and Automation in Design", mrt.1985, Vol.107, van de hand van N.K.Mani, E.J. Haug en K. E. Atkinson diende hierby als leidraad.
De algemene theorie achter de SVO-methode worat in hoofdstuk 2 gepresenteerd, en vervolgens in hoofdstuk 3 verduidelyht a an de hand van de slinger.
Het volgende hoofdstuk berat He beschrgiving van een algorithme, dat op deze methode is gebaseerd.
Dit algorithme werd in een Fortran-programma verwerkt, zodat de werking van de methode ook numeriek gecontroleerd kon worden (rie hoofdstuk 5)
Enige toelichting bÿ dit programma wordt in het zesde hoofdstuk gegeven.

Hoofdstuk 2: Het gebruik van "Singular Value De composition" voor de analyse van de dynamica van mechanische systemen.

Dit hoofdstuk bevat een sumenvatting van het artikel "Application of Singular Value Decomposition for Analysis of mechanical System Dynamics", dat door Mani, Haug en Athinson is gepubliceerd in het "Journal of Mechanisins, Transinissions, and Automation in Design", mrt.ige5, Vol. 107
2.1 Inleiding

De kinematica ran grootschalige systemen kan het eenvoudigst worden gedefinieerd met behulp van een maximale set Cartesische gegeneraliseerde coordinaten, die moeten voldoen aan kinematische randvorwaarden. Zo'n coordinatensysteem kan echter minder geschikt zign voor het oplossen van de bewegingsuergelykingen. In dit artikel wordt een "Singular Value Decomposition"algorithme gepsesenteerd, dat de Cartesische gegeneraliseerde coordinaten transformeert in een coördinatensysteem, dat beter geschilet is voor het oplossen van de bewegingsvergelykingen.

De theorie wordt toegelicht aan de hand van vlakhe dynamische systemen, maar is evenzeer toepasbaar op ruimtelghe dynaimica.
Eentypisch lichaam i is te zien in fig. 2.1 ; het Cartesische $X-Y$-coordinatensy steem ligt vast in de ruimte, het $\xi_{i}-\eta_{i}$. systeem is bevestigd aan lichaum i in het massamiddet punt. De positie en orïntatie ran het lichaam in het $x y$ rlak worden gegeven door de coördinaten x_{i} en y_{i} ran het
massamiddelpunt en de hoek $\phi_{i} Y$ die de ξ_{i}-as maakt met de X-as Voor lichaam i kan nu een gegeneraliseerde coördinaatvector qi gedefinieerd worden als:

$$
q_{i}=\left[\begin{array}{lll}
x_{i} & y_{i} & \varphi_{i} \tag{2.1}
\end{array}\right]^{\top}
$$

en de corcespondecende gegeneraliseerde krachtvector als:

$$
\begin{equation*}
\underline{Q}_{i}=\left[Q_{i y} Q_{i y} Q_{i p}\right]^{T} \tag{2.2}
\end{equation*}
$$

warin $Q_{i x}$ en $Q_{i y}$ de X-en Y-componenten zign van de kracht die aangrypt in de oors prong van het $\xi_{i}-1 ;-$ systeem, en Qip het moment dat op het lichaam wordt uitgecefend. Wanneer het systeem wit NB lichamen bestaat, kan de complete vector van gegeneraliseerde coördinaten gegeven worden door:

$$
\begin{equation*}
q=\left[q_{1}, q_{2}^{T} \cdots q_{N B}^{T}\right]^{T} \quad, q \in R^{N} \tag{2.3}
\end{equation*}
$$

en de complete vector van gegeneraliseerde krachten door:

$$
\begin{equation*}
\underline{Q}=\left[\underline{Q}_{1}^{T} \underline{Q}_{2}^{T} \cdots \underline{Q}_{n 3}^{T}\right]^{T}, \underline{Q} \in R^{n} \tag{2.4}
\end{equation*}
$$

met $n=3 \cdot N B$

De kinemat ische randvoorwaarden tussen lichamen in het systeem kunnen worden gescheek als:

$$
\begin{equation*}
\Phi(t, q)=\left[\Phi_{\sim} \quad \Phi_{2} \cdots \cdots \Phi_{m}\right]^{T}=0, \Phi \in R^{m} \tag{2.6}
\end{equation*}
$$

waarin m het aantal randvoerwaarden is. Om er zeker vantezün dat deze voorwaurden anafhankelyk
z̈̈n, ishet noodzakelyk dat de $m \times n$ Jacobiaanmatrix Φ_{q} rang m bezit. Φ_{9} is als rolgt gedefinieerd:

$$
\begin{equation*}
\left(\Phi_{q}\right)_{i j}=\partial \Phi_{j} / \partial q_{j} \tag{2.7}
\end{equation*}
$$

De kinetische energie ran het systeem kan worden geschsesen als:

$$
\begin{equation*}
T=\frac{1}{2} \dot{q}^{T} M \underline{q} \tag{2.8}
\end{equation*}
$$

waarin M de massamatrix vanhet systeem is. De massamatrix vanlichaam i wordt gedefinieerd als:

$$
\begin{equation*}
M_{i}=\operatorname{Diag}_{i}\left[m_{i}, m_{i}, J_{i}\right] \tag{2.9}
\end{equation*}
$$

waarin m_{i} en J_{i} de massa en het traagheidsmoment van lichaam izÿn. Hieruit volgt de systeem-massamatrix:

$$
\begin{equation*}
M=\operatorname{Diag}\left[M_{1,} M_{2}, \cdots, M_{N B}\right] \tag{2.10}
\end{equation*}
$$

De Lagrange - bewegingsvergelykingen voor systemen waarin geen arbeid wordt kerricht in de verbindingen, /uiden:

$$
\begin{equation*}
M \ddot{q}+\underline{\Phi}_{9}^{\top} \lambda=Q \tag{2.11}
\end{equation*}
$$

waarin λ een vector van Lagrange-multiplicatocen is. De beginvoorwaarden op het fidstip $t=t_{0} \quad z$ gn:

$$
\left.\begin{array}{l}
q\left(t_{0}\right)=q^{0} \tag{2.12}\\
\underset{\sim}{q}\left(t_{0}\right)=\dot{q}^{0}
\end{array}\right\}
$$

waarbiy de beginpositie 9° en de beginsnelheid \ddot{q}° aan de randvoorwarden van het systeem onseten volidoen.

Diffexentièsen naar de tyd van de constraintuergelyking.
(2,6) geeft de snelheidsvergelyking

$$
\begin{equation*}
\Phi_{q} \underset{\sim}{q}+{\underset{\sim}{\Phi}}_{t}=0 \tag{2.13}
\end{equation*}
$$

Nogmaals diffesentiëcen geeft de vershellingsvergelyhing

$$
\begin{equation*}
\Phi_{q} \ddot{q}=-2 \underline{\Phi_{t q}} \dot{\sim}-\underline{\left(\Phi_{q} \dot{q}\right)_{q}} \dot{\sim}-\Phi_{t t} \tag{2.14}
\end{equation*}
$$

Combinesen van vergelgkingen (2.11) en (2.14) geeft een systeem van matrixkergelykingen voor versnellingen en Lagrange-multiplicatoken:

$$
\left[\begin{array}{ll}
M_{\Phi_{q}}^{\top} & \frac{\Phi_{q}}{0}
\end{array}\right]\left[\begin{array}{c}
\ddot{q} \tag{2.15}\\
\underline{\tilde{\lambda}}
\end{array}\right]=\left[\begin{array}{c}
\underline{Q} \\
-2 \underline{\Phi_{t q}} \underline{\underline{q}}-\left(\Phi_{q}\right)_{q} \\
\sim
\end{array}\right]
$$

Dit systeem legt samen met de conistraint vergelyking (2.6) en de beginvoorwaarden (2.12) de sespons van het systeem rolledig vast.
De kergelykingen (2.15) en (2.6) vertegenwoordigen een systeem van gemengde "diffecential algebraic equations" (DAE).
De conventionele numerike methoden voorhet oplossen van gewone differentiaalvergelighingen zigh over het algemeen niet toepasbaar op DAE-systemen
Singular Value Decomposition (SVD) is hervoor wel geschile. Bÿ let gebruikvan SVD worden niet alle n gegeneraliseerde coördinaten geintegseerd, maar slechts de n-m onafhankeligke, waarna de of hankelighe cö̈rdinaten uit de iconstraint vergelyking volgen. Als onaftankelyike gegeneraliseerde coordinaten worden lineaire combinaties van de fysische gegeneraliseerde coördinatien a geselecteerd volgens:

$$
\begin{equation*}
\underset{\sim}{\sim I}=V I \underset{\sim}{q} \tag{2.16}
\end{equation*}
$$

waarin VI een $(n-m) \times n$ transformatiomatrix is. Doordat de rÿen ran VI onderling orthegonaal worten gekozen, zyn de resulterende lineaire combinaties onderling onafhankeligh.
2.2-Basiseigenschappen van SVD

De $m \times n$ Jacobiaan Φ_{q}, met $m<n$, kan worden gedecomponeerd in te vorm:

$$
\begin{equation*}
\Phi_{9}=U^{\top} D V \tag{2.17}
\end{equation*}
$$

warin U en V orthonormale matrices van dimensie $m \times m$ asp. $n x n z y n$. De $m \times n$ matrix D heeft de vorm:

$$
D=\left[\begin{array}{cc:c}
\varepsilon_{1} & & \tag{2.18}\\
& \varepsilon_{2} & 0 \\
0 & \ddots & 0 \\
& & \varepsilon_{m}
\end{array}\right]
$$

De laatste n-m kolommen van D zg̈n nullen, en de ε 's heten de singuliece waarden van matrix Φ_{9}, zo gerangschilkt dat $\varepsilon_{1} \geqslant \varepsilon_{2} \geqslant \ldots \varepsilon_{m} \geqslant 0$ uit (2.17) rolgt

$$
\begin{equation*}
\Phi_{0} \Phi_{i}^{\top}=\underline{U}^{\top} \underline{D} \underline{V} \underline{V}^{\top} D^{\top} \underline{U}=\underline{U}^{\top} \underline{D} \underline{D}^{\top} \underline{U} \equiv \underline{u}^{\top} \underline{\Delta} \underline{U} \tag{2.19}
\end{equation*}
$$

waarin Λ de diagonaalmatrix $D D^{\top}=\operatorname{Diag}\left[\varepsilon_{1}^{2}, \varepsilon_{2}^{2}, \ldots, \varepsilon_{m}^{2}\right]$ is.
Dus:

$$
\begin{equation*}
\Phi_{4} \Phi_{4}^{\top} \underline{U}^{\top}=\underline{U}^{\top} \underline{\Lambda} \underline{U} \underline{U}^{\top}=\underline{U}^{\top} \underline{\Lambda} \tag{2.20}
\end{equation*}
$$

Dit betekent dat kolommen van U^{T} (ryen van U) orthonormale eigenvectocen van de symmetrische matrix $\Phi_{9} \Phi_{9}^{\top}$ zign, e_{n} de $\varepsilon_{i}{ }^{2}$ de corresponderende eigenwaarden.

Analog:

$$
\begin{equation*}
\underline{\Phi}_{9}^{\top} \underline{\Phi}_{a}=\underline{V}^{\top} \underline{D}^{\top} \underline{U} \underline{U}^{\top} \underline{D} \underline{V}=\underline{V}^{\top} \underline{D}^{\top} \underline{D} \underline{V} \equiv \underline{V}^{\top} \underline{\Omega} \underline{V} \tag{2.21}
\end{equation*}
$$

waarin Ω de diagonadinatrix $\underline{D}^{\top} \underline{D}=\operatorname{Diag}\left[\varepsilon_{1}^{2}, \varepsilon_{2}^{2}, \ldots \varepsilon_{m}^{2}, 0, \ldots, 0\right]$ is de laatste $n-m$ elementen op de diagoneal zyn nullen

$$
\begin{equation*}
\underline{\Phi}_{c}^{\top} \underline{\Phi}_{g} \underline{V}^{\top}=\underline{V}^{\top} \Omega \underline{V} \underline{V}^{\top}=\underline{V}^{\top} \underline{\Omega} \tag{2.22}
\end{equation*}
$$

Dit betekent dat kolommen van $V^{\top}($ rjen van V) orthonormale eigensectocen van de symmetrische matrix $\Phi_{9}^{\top} \Phi_{9}$ zijn, en de ε_{i}^{2}, gevolgd door n-m nullen, de corkespoñderende eigenwaarden
2.3 Het partitionesen van gegeneraliseerde coordinaten met SVD

Een nienwe variabele z wordt gedefinieerd als

$$
\begin{equation*}
z=\underline{V} q \tag{2.23}
\end{equation*}
$$

Deze orthogonale transformatie levert een nienive vector? met gegeneraliseerde coördinaten voor hat systeeim. De eerste fydsafgeleide van (2.23) geeft: (\underline{V} =constant)

$$
\begin{equation*}
\dot{\Sigma}=\underline{V} \tag{2.24}
\end{equation*}
$$

De afgeleide hiervan geeft:

$$
\begin{equation*}
\ddot{z}=\underline{V} \ddot{q} \tag{2.25}
\end{equation*}
$$

Beschouw nu een kerstoring δz van z die volidoet: can de randvoorwaarden $\underset{\sim}{\Phi}(z)=0$

$$
\begin{equation*}
\Phi_{9} \delta_{q}=\Phi_{9} \underline{V}^{\top} \delta_{z}=\underset{\sim}{0} \tag{2.26}
\end{equation*}
$$

waarin $\delta q=V^{\top} \delta z$ uit (2.23). Met (2.17) en het feit dat \underline{V} orthonörmaal is, volgt

$$
\begin{equation*}
\underline{U}^{\top} \underline{d} \underline{\sim}=0 \tag{2.27}
\end{equation*}
$$

Aangerien U orthonormaal is, mag men (2.27) voorkermenigvuldigen met U en gebruik maken van de vorm van D om te kriggen:

$$
\left[\begin{array}{lllll}
\varepsilon_{1} \delta z_{1} & \varepsilon_{2} \delta z_{2} & \ldots & \varepsilon_{m} \delta z_{m} \tag{2.28}
\end{array}\right]^{\top}=0
$$

Dit toont aan dat $\delta z_{m+1} \cdots \delta z_{n}$ niet bexekind kunnen worden uit (2.27), en dus alleen uit de differentiaalvergelykingen van beweging. Daarom worden $z_{n+1} \cdots z_{n}$ geselecteerd als onafhankelyke gegeneraliserde coördinaten roor het oplossen ran de bewegingsvergelykingen en $z_{1} \cdots z_{\text {in }}$ a/s afhankelyke gegeneraliseerde coördinaten die besekend moeten worden uit de randvoorwaarden.

We beschouwen nu alken randvoorwaarden waarroor geldt $\Phi_{t}=0$, zodat uit (2.13) volgt:

$$
\begin{equation*}
\underset{\sim}{\Phi} \equiv \Phi_{q} \dot{q}=0 \tag{2.29}
\end{equation*}
$$

Voorvermenigruldigen met \underline{U} en gebruiken van de definitie van \dot{z} in (2.24) levert

$$
\begin{equation*}
D \dot{z}=0 \tag{2.30}
\end{equation*}
$$

Vanuege de speciale vorm van D is dit

$$
\left[\begin{array}{llll}
\varepsilon_{1} \dot{z}_{1} & \varepsilon_{2} \dot{z}_{2} & \cdots & \varepsilon_{m} \dot{z}_{m} \tag{2.31}
\end{array}\right]^{\top}=0
$$

Aangerien de ε 's niet nul ziyn voor een facobiaan met rang
m, betekent dit

$$
\left[\begin{array}{llll}
\dot{z}_{1} & \dot{z}_{2} & \cdots & \dot{z}_{m} \tag{2.32}
\end{array}\right]^{T}=0
$$

Omdat orthonomale transformaties norm behouden,

$$
\begin{equation*}
\|\dot{z}\|=\|\dot{q}\| \tag{2.33}
\end{equation*}
$$

en $z_{1} \cdots i_{m}$ nul $2 \ddot{y n}$, volgt nu

$$
\begin{equation*}
\sum_{i=m+1}^{n} \dot{z}_{i}^{2}=\sum_{i=1}^{n} \dot{q}_{i}^{2} \tag{2.34}
\end{equation*}
$$

Voor een systeem met eenheidsmassa's en-traagheidsmomenten ($M=I$) geefe (2.34) aan dat de kinetische energie van de on a fhankelyke samengestedu coördinaten de totale kinefische energie onvat. Dit levert dus een criterium om vast te stellen wanneer een nienwe set onathankeligke samengestelde coördinaten moet worden gedefinieerd.

Uit (2.23) en (2.24) kunnen de vector van virtièle verplaatsingen 89 en de sne ${ }^{9}$ eidsvector 9 vitgedruht worden in termen vain ryen van V

$$
\begin{align*}
& \delta_{q}=\sum_{j=m+1}^{n} \delta z_{j} V_{j}^{\top} \tag{2.35}\\
& \dot{q}=\sum_{j=m+1}^{n} z_{j} V_{j}^{\top} \tag{2.36}
\end{align*}
$$

Dit betehent dat verplaatsingen beperit worten tot ean deelruimbe ran R^{*} dì wordt opgespannen door $V_{i m+1}^{\top} \cdots V_{n}^{T}$, en snetheden langs de V, V... V_{m}^{T}-assen nul rign Dit betekent dat de onafhankelyhe samengestelde coorrdinaten alle systeem. in formatie bevatten.
Matrix V kan nu gepartitioneerd worden in twee submatrices VI en VD, die de mafhankelighe en af hankelijke
gedealten ran matrix V voorstellen:

$$
\begin{equation*}
V=\left[\frac{V D}{V I}\right]_{n-m}^{m} \tag{2.37}
\end{equation*}
$$

Nadat de onafhankelÿne samengestelde posities en sne lhiden zyn berekend, kunnen de fysische coordinaten en snethedeu becekend worden met matrixvergeligkingen van de vorm:

$$
\begin{equation*}
\left[\frac{\Phi_{b}}{\underline{V I}}\right] \underset{\sim}{x} \tag{2.38}
\end{equation*}
$$

Hoofdstuk 3: De slinger - theoretisch

Om de theorie uit hoofdstuk 2 duidelgk te maken, wordt in dit hoofdskek een eenvoudig voorbeeld uitgeverkt:
de slinger uit figuer 3.1 Deze slinger bestanat wit lichaam 1 met massa m, en massatracegheidsmoment II, dat d.m.v. een starce massaloze staof (met lengte l) verbonden is met de oorsprong. De staof kan wrinvingsloos roteren om O
N.B. In dit voorbeeld is de Yas anders gekezen dan in hootdstak

fig. 3.1 2.

We gaan nu analoog aan hoofdstuk 2 de diverse vectoven en matrices bepalen en de vergelykingen opstellen die het systeem vastleggen. Het aantal lichamen is 1, dus

$$
\begin{equation*}
N B=1 \quad \Rightarrow n=3 \tag{3.1}
\end{equation*}
$$

Dus $\underset{\sim}{q} \underline{q}^{\prime}=\left[x_{1}, y, \varphi_{1}\right]^{\top}$
en $\underset{\sim}{Q}={\underset{\sim}{Q}}^{\prime}=\left[Q_{x}^{\prime} Q_{y}^{\prime} Q_{\varphi}^{\prime}\right]^{\top}=\left[\begin{array}{lll}0 & m, g & 0\end{array}\right]^{\top}$
Aangezien lichaam / zich niet riỳ door de ruimte kan bewegen, hebben we te maken met kinematische constraints

- de afstand van het massamiddelpunt van lichaam 1 tot 0 blÿft steeds gelyk aan $l \Rightarrow x_{i}{ }^{2}+y_{i}{ }^{2}=l^{2}$
- de oriëntatie φ_{i} van lichaain, biyjft steeds gelijk aan de hoek die de sta of maalet met de Y-as $\Rightarrow \varphi_{i}=\arctan \left(\frac{X_{i}}{Y_{i}}\right)$ ofwel $\tan \phi_{1}=\frac{x_{i}}{y_{i}}$
We hebben dus te maken met twee kinematische randvoorwaarden

$$
\begin{equation*}
\Rightarrow \quad m=2 . \tag{3.4}
\end{equation*}
$$

We kunnen deze voorwaarden vervangen door twee simpelere voorwaerden: $x_{1}=l \sin \varphi$. en $y_{1}=l \cos \varphi_{1}$, die we als volgt opergen in de vector Φ :

$$
\begin{align*}
& \Phi \Phi\left[\begin{array}{l}
x_{1}-l \sin \varphi_{1} \\
y_{i}-l \cos \varphi_{i}
\end{array}\right] \equiv 0 \tag{3.5}\\
\Rightarrow & \underline{\Phi}_{q}=\left[\partial \Phi_{i} / \partial q_{j}\right]=\left[\begin{array}{ccc}
1 & 0 & -l \cos \varphi_{1} \\
0 & 1 & l \sin \varphi_{1}
\end{array}\right] \tag{3.6}
\end{align*}
$$

De systeeinmassamatrix is:

$$
M=\left[\begin{array}{ccc}
m_{1} & 0 & 0 \tag{3.7}\\
0 & m_{1} & 0 \\
0 & 0 & j_{1}
\end{array}\right]
$$

met (2.ii) volgen de Lagrange-bewegingsvergeljkingen:

$$
\left\{\begin{array}{l}
m_{1} \ddot{x}_{1}+\lambda_{1}=0 \tag{3.8}\\
m_{1} \ddot{y}_{1}+\lambda_{2}=m_{1} g \\
J_{1} \ddot{\varphi}_{1}-\lambda_{1} l \cos \varphi_{1}+\lambda_{2} l \sin \varphi_{1}=0
\end{array}\right.
$$

Als we de slinger op tydstipt $=t$. loslaten vanuit de positie $\varphi_{i}\left(t_{0}\right)=\varphi_{1}^{0}$ met beginsnetheid $\dot{\varphi}_{i}^{0}$ dan vinden we

$$
\begin{equation*}
\underset{\sim}{q}\left(t_{0}\right)={\underset{\sim}{q}}^{\circ}=\left[l \operatorname{lin} \varphi_{1}^{\circ} \quad l \cos \varphi_{i}^{\circ} \varphi_{1}^{\circ}\right]^{t} \tag{3.9}
\end{equation*}
$$

en $\dot{q}\left(t_{0}\right)=\dot{q}^{\circ}=\left[l \dot{\varphi}_{1} \cos \varphi_{1}^{\circ}-l \dot{\varphi}_{1}^{\circ} \sin \varphi_{1}^{\circ} \dot{\varphi}_{1}^{0}\right]^{\top}$
Aangerien de tyd niet expliciet voorkoint in Φ, geldt $\Phi_{t}=0$ en dus $\Phi_{t_{a}}=0$ en $\Phi_{t t}=0$ met (2.14) volgt nu de versnellingsvergelyhing:

$$
\left\{\begin{array}{l}
\ddot{x}_{1}-\ddot{\varphi}_{1} l \cos \varphi_{1}=-\dot{\varphi}_{1}^{2} l \sin \varphi_{1} \tag{3.11}\\
\ddot{y}_{1}+\ddot{\varphi}_{1} l \sin \varphi_{1}=-\dot{\varphi}_{1}^{2} l \cos \varphi_{1}
\end{array}\right.
$$

waarby gebraik is gemaalt van

$$
\begin{align*}
& \underline{q}=\left[\begin{array}{lll}
\dot{x}_{1} & \dot{y}_{1} & \dot{q}_{1}
\end{array}\right]^{\top} \tag{3.12}\\
& \ddot{q}=\left[\begin{array}{ll}
\ddot{x}_{1} & \ddot{y}_{1} \\
\ddot{q}_{1}
\end{array}\right]^{\top} \tag{3.13}\\
& \underline{\Phi}_{q} \dot{q}=\left[\begin{array}{ll}
\dot{x}_{1} & -\dot{\varphi}_{1} l \cos \varphi_{1} \\
\dot{y}_{1}+\dot{\varphi}_{1} l \sin \varphi_{1}
\end{array}\right] \tag{3.14}\\
& \operatorname{en}\left(\Phi_{9} \dot{q}_{q}=\left[\begin{array}{lll}
0 & 0 & \dot{\varphi}_{1} l \sin \varphi_{1} \\
0 & 0 & \dot{\varphi}_{1} l \cos \varphi_{1}
\end{array}\right]\right. \tag{3.15}
\end{align*}
$$

Volgens (2.15) kunnen we (3.8) en (3.11) combinesen tot:

$$
\left[\begin{array}{ccccc}
m_{1} & 0 & 0 & 1 & 0 \tag{3.16}\\
0 & m_{1} & 0 & 0 & 1 \\
0 & 0 & j_{1} & -l \cos \varphi_{1} & l \sin \varphi_{1} \\
1 & 0 & -l \cos \varphi_{1} & 0 & 0 \\
0 & 1 & l \sin \varphi_{1} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{y}_{1} \\
\ddot{\varphi}_{1} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
m_{1} g \\
0 \\
-\dot{\varphi}_{1}^{2} l \sin \varphi_{1} \\
-\dot{\varphi}_{1}{ }^{2} \cos \varphi_{1}
\end{array}\right]
$$

Hieruit volgt ein vergeligking in φ.

$$
\begin{equation*}
\left(y_{1}+m_{1} l^{2}\right) \ddot{\varphi}_{1}+m_{1} g l \sin Q_{1}=0 \tag{3.17}
\end{equation*}
$$

N.B:

Dit cosultaat kan ook gevonden worlen door een een voulige evenwichtsbeschouwing. in 0: $I \ddot{q}=\Sigma$ Momentéa: warbig het traagheidsmesment om $O: I=I_{1}+m_{1} l^{2}$

Vervolgens gaan we Φ_{9} decomponexen volgens $\Phi_{9}=U^{\top} D V$ Hiertoe bepalen we eerst de eigenwariten van matrix $\Phi_{9} \Phi_{9}^{\top}$

$$
\underline{\Phi}_{9} \underline{\Phi}^{\top}=\left[\begin{array}{cc}
1+l^{2} \cos ^{2} \varphi_{1} & -l^{2} \sin \varphi_{1} \cos \varphi_{1} \tag{3.18}\\
-l^{2} \sin \varphi_{1} \cos \varphi_{1} & 1+l^{2} \sin ^{2} \varphi_{1}
\end{array}\right]
$$

Eigenwarden: $\operatorname{det}\left(\underline{\Phi}_{4} \Phi_{a}^{\top}-\lambda I\right)=0 \Rightarrow$

$$
\begin{aligned}
& \lambda^{2}-\left(2+l^{2}\right) \lambda+1+l^{2}=0 \Rightarrow \\
& \left\{\begin{array}{l}
\lambda_{1}=1+l^{2}=\varepsilon_{1}^{2} \Rightarrow \varepsilon_{1}=\sqrt{1+l^{2}} \\
\lambda_{2}=1=\varepsilon_{2}^{2} \Rightarrow \varepsilon_{2}=1
\end{array}\right.
\end{aligned}
$$

We kunnen nu de matrix D opschriven:

$$
D=\left[\begin{array}{ccc}
\sqrt{1+l^{2}} & 0 & 0 \tag{3.19}\\
0 & 1 & 0
\end{array}\right]
$$

Eigenkectoren: $\left(\Phi_{q} \Phi_{q}^{\top}-\lambda I\right) \underline{a}=0 ;\|a\|=1$

$$
\left.\begin{array}{ll}
\lambda_{1}=1+l^{2} & \Rightarrow{\underset{a}{1}}=\left[\cos \varphi_{1}-\sin \varphi_{1}\right.
\end{array}\right]^{\top}
$$

We kunnen nu de matrix \underline{U} opschriguen:

$$
\underline{u}=\left[\begin{array}{cc}
\cos \phi_{1} & -\sin \phi_{1} \tag{3.20}\\
\sin \phi_{1} & \cos \phi_{1}
\end{array}\right]
$$

Nu gaan we de eigenwaarden van matrix $\Phi_{9}{ }^{\top} \Phi_{q}$ bepalen. Deze zün echter dezelfue als die van $\Phi_{9} \Phi_{9}^{\top}$, aangevuld met $n-m$ nullen:

$$
\left\{\begin{array}{l}
\lambda_{1}=1+l^{2} \\
\lambda_{2}=1 \\
\lambda_{3}=0
\end{array}\right.
$$

Eigenkectosen: $\left(\underline{\Phi}_{9}^{\top} \Phi_{a}-\lambda \underline{I}\right) \underset{\sim}{a}=0 ;\|a\|=1$

$$
\left.\begin{array}{l}
\Phi_{9}^{\top} \Phi_{9}=\left[\begin{array}{ccc}
1 & 0 & -l \cos \varphi_{1} \\
0 & 1 & l \sin \varphi_{1} \\
-l \cos \varphi_{1} & l \sin \varphi_{1} & l^{2}
\end{array}\right] \\
\lambda_{1}=1+l^{2} \Rightarrow a_{1}=\left[\frac{\cos \varphi_{1}}{\sqrt{1+l^{2}}}-\frac{\sin \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{l}{\sqrt{1+l^{2}}}\right]^{\top} \\
\lambda_{2}=1 \quad \Rightarrow a_{2}=\left[\sin \varphi_{1}\right. \\
\cos \varphi_{1} \\
0
\end{array}\right]^{\top} \quad \begin{aligned}
& \sim_{3}=0 \quad \Rightarrow a_{3}=\left[\frac{l \cos \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{l \sin \varphi_{1}}{\sqrt{1+l^{2}}} \frac{1}{\sqrt{1+\ell^{2}}}\right]^{\top}
\end{aligned}
$$

We kunnen nu de matrix V opschrigven :

$$
\underline{V}=\left[\begin{array}{ccc}
\frac{\cos \varphi_{1}}{\sqrt{1+\ell^{2}}} & -\frac{\sin \varphi_{1}}{\sqrt{1+\ell^{2}}} & -\frac{\ell}{\sqrt{1+\ell^{2}}} \tag{3.22}\\
\sin \varphi_{1} & \cos \varphi_{1} & 0 \\
\frac{\operatorname{los} \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{l \sin \varphi_{1}}{\sqrt{1+\ell^{2}}} \frac{1}{\sqrt{1+\ell^{2}}}
\end{array}\right]
$$

We kunnen V als volgt partitioneren:

$$
\begin{align*}
& V D=\left[\begin{array}{cc}
\frac{\cos \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{\sin \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{l}{\sqrt{1+l^{2}}} \\
\sin \varphi_{1} & \cos \varphi_{1}
\end{array}\right] \tag{3.23}\\
& V I=\left[\begin{array}{ll}
\frac{l \cos \varphi_{1}}{\sqrt{1+l^{2}}}-\frac{k \sin \varphi_{1}}{\sqrt{1+\ell^{2}}} \frac{1}{\sqrt{1+l^{2}}}
\end{array}\right] \tag{3.24}
\end{align*}
$$

De nienue onafhankelyke samengestelde coördinaat ($n-m=1$, dus i vrigheidsgraad) volgt uit

Deze nüuse coördinaat is dus een lineaia combinate van de drie fysische coördinaten x_{1}, y_{1}, en φ_{1}

De fysische betekenis van $2 I$ is eenvoudig in te zien wanneer we kyken naar zign afgeleide, de onafhankalyke samengestelde snetheid zI:

$$
\begin{equation*}
\dot{Z} I=\left[\frac{l \cos \varphi_{1}}{\sqrt{1+l^{2}}} \cdot \dot{x}_{1}-\frac{l \sin \varphi_{1}}{\sqrt{1+l^{2}}} \dot{y}_{1}+\frac{1}{\sqrt{1+l^{2}}} \dot{\varphi}_{1}\right] \tag{3.26}
\end{equation*}
$$

fig. 3.2

In de nevenstaande figuur is formule 3.26 grafisch vitgewerkt.
Hurait blykt dat de samengestelde sinetheid iI gelÿk is aan de som van de ontbondinen van de fysische snetheden langs de constraints, want

$$
\underset{\sim}{2 I}=\left(\frac{l}{\sqrt{1+\ell^{2}}} \cdot \dot{x}_{1}\right) \cdot \cos \varphi_{1}+\left(-\frac{l}{\sqrt{1+\ell^{2}}} \cdot \dot{y}_{1}\right) \cdot \sin \varphi_{1}+\frac{1}{\sqrt{1+\ell^{2}}} \cdot \dot{\varphi}_{1}
$$

Ma.w, by het integreren van onafhankelyhe samengestelde coordinaten beweegt het systeem zich langs een raaklyn aan de constraint-lyn.

Uit (3.17) bleek dat het systeem beschreven kon worden met alleen de variabele $\Phi_{\text {. }}$.
Dit volgt ook wanneer we in vergelyhing 3.25 de constraints $x_{1}=l \sin \varphi_{1}$ en $y_{1}=l \cos \varphi_{1}$, hetrekken:

$$
\begin{align*}
& z I=\frac{l^{2} \cos \varphi_{1} \sin \varphi_{1}}{\sqrt{1+\ell^{2}}}-\frac{l^{2} \sin \varphi_{1} \cos \varphi_{1}}{\sqrt{1+\ell^{2}}}+\frac{1}{\sqrt{1+\ell^{2}}} \varphi_{1} \Rightarrow \\
& z I=\frac{1}{\sqrt{1+\ell^{2}}} \varphi_{1} \tag{3.27}
\end{align*}
$$

Analog volgt nog voor de onafhankelgke samengestelde shelheid en versnelling:

$$
\begin{align*}
& \underset{\sim}{\underset{\sim}{I}}=\sqrt{1+l^{2}} \cdot \dot{\varphi} \tag{3.28}\\
& \underset{\sim}{Z I}=\sqrt{1+l^{2}} \cdot \ddot{\varphi} \tag{3.29}
\end{align*}
$$

Hoofdstuk 4: Een algorithme voor het oplossen van de bewegingskergelykingen

Het algorithme dat in dit hoofdstuk wordt gepesenteerd, is grotendeels gebaseerd op het algorithme uit par. 7 van het artikel van Mani, Hang en Atkinson

Gegeneraliseerde coördinaten worden sanzogesteld tot onafhankelyke en a fhankeljke gedeelten m.b.v. Singular Value Decomposition. Een subroutine, gebaseerd op een Adams-Bashforth pedictor-coractor methode, wordt aangevend om de onafhankelge samengestelde coördinaten te integrecen. De fysische coordinaten worden hieruit berekend dinv. Newton-Raphson iteratie. Vervolgens worden de fysische snelheden bepaald uit de onafhankeligke samengestelde snelheden en tenslotte kan de vector van de fysische versnellingen opgelost worden

Het algorithme ziet er als volgt uit:
Het tydsinterval dat wordt beschouwd is (to, tend). De index ; geeft het huidigetydstip aan, diw.z. $i=0$ betekent $t=t_{0}$

1. Lees de begimpositio, -sinelheid en andere systeemdata. De gebruiker moet hierbÿ angeven welke n-m posities $\underset{\sim}{v}$ en snelheden $\underset{\sim}{v}$ volgens hem accuraatzign. De Boolean matrices B_{v} en B_{v} leggen de door de gebruiker angegeven posities resp. snelheden vast op vorgeschicesen waarden.
2. De positiekector q° wordt nu gecorrigeerd m.b.v. Newton-Raphson iteratio:

$$
\begin{align*}
& {\left[\begin{array}{l}
\Phi_{q}\left(q^{\circ}(k)\right) \\
\underline{B}_{v}
\end{array}\right] \cdot \Delta q^{\circ}(\dot{q})=\left[\begin{array}{l}
-\underset{\Phi}{\underline{q}}\left(q^{\circ}(k)\right) \\
\underset{\sim}{-\underline{B}_{v}} q_{(k)}^{\circ}
\end{array}\right]} \tag{4.1}\\
& q^{\circ}(k+1)=q^{\circ}(k)+\Delta q^{\circ}(k) \quad k=1, \ldots \tag{4.2}
\end{align*}
$$

Herin is k een iteratieteller. Bÿ iedere becekening van L9 worten Φ_{9} en Φ opnieuw besekend. Vergelyking (4.1) berekent achbereenvolgende correcties voor $q_{(k)}^{\circ}$ to toat aan alle kinematische constraints voldoan is met de gemenste nauwkeurigheid
3. $\mathrm{Nu} q^{\circ}$ bekend is, $\mathrm{kan} \Phi_{9}^{\circ}$ berekend worten
4. Splits Φ_{9}° ap mb.v. Singular Value Decomposition:

$$
\begin{equation*}
\underline{\Phi}_{q}^{0}=\underline{U}^{\circ} \underline{D}^{0} \underline{V}^{0} \tag{4.3}
\end{equation*}
$$

Partitioneer V^{0} in onathankelige en afhankelyke delen:

$$
\underline{V}^{0}=\left[\begin{array}{c}
\underline{V D^{\circ}} \tag{4.4}\\
\underline{V I}
\end{array}\right]
$$

5. De snetheidsvector \underline{q}° wordt nu berekend:

$$
\left[\begin{array}{l}
\Phi_{i}^{0} \tag{4.5}\\
\underline{B}_{v}
\end{array}\right] \dot{q}^{0}=\left[\begin{array}{c}
0 \\
\dot{V}
\end{array}\right]
$$

6. Bereken \ddot{q}° en λ° uit de versnellingskergelyking:

$$
\left[\begin{array}{cc}
M & \bar{\Phi}_{q}{ }^{\top} \tag{4.6}\\
-\underline{\Phi}_{q}^{0} & \underline{0}
\end{array}\right]\left[\begin{array}{c}
\ddot{q} \\
\hdashline \dot{v}^{0}
\end{array}\right]=\left[\begin{array}{c}
\underline{Q} \\
-\left(\Phi_{q}^{\circ} \dot{q}^{0}\right)_{q} \cdot \dot{q}^{0}
\end{array}\right]
$$

7. Bereken de rnathankelyke samengestelde positie $2 I^{\circ}$, snetheid $2 I^{\circ}$ en versnelling $\sum I$ velgens:

$$
\begin{equation*}
\left[z I_{\sim}^{0} z I^{\circ} \mathrm{z} I^{0}\right]=[\underline{V I}]\left[\underline{q}^{\circ} \underline{q}_{\sim}^{\circ} \dot{q}^{0}\right] \tag{4.7}
\end{equation*}
$$

8. Integreer $[\dot{z} I, \underset{\sim}{ } I]$ met $\left[\sum I^{0}, \dot{z} I^{0}\right]$ als begincondities om [zI $\left.{ }^{i+1}, z I\right]$ op $t=t_{\text {end }}$ te kraggen, met behialp van Adams-Bashforth predictor-corcector integratie Hiertoe wordt een subroutine gestart die het interval (t_{0}, tend) verdeelt in deelintervallen Δt_{i} zodat $t_{i+1}=t_{i}+\Delta t_{i}$.
Bÿ elke integratiestap worden de volgende anderdelen afgewerkt:
84) Bereken dimiv. integrati $\left[z I^{i+1}, z^{i} I^{i+1}\right]$ met als begincondities $\left[z I^{i}, ~ i I^{\prime}\right]$
De index i worat nu met 1 opgehoogd zodat $t=t_{i+1}=t_{i}+\Delta t_{i}$

8b) Voorspel \underline{q}^{i+1} en corrigeer dit iterakéf m.b.v. Newton-Raphsen totdat binnen de gewenste hauwkeurigheid wordt voldaan aan de constraints:

$$
\begin{align*}
& \underline{q}_{(k+1)}^{i+1}=q_{(k)}^{i+1}+\Delta q_{(k)}^{i+1} \quad k=1, \ldots \tag{4.9}
\end{align*}
$$

De positievector q^{i+1} kan voorspeld worden door $\underline{q}_{(i)}^{i+1}=q^{i}$ te nemen. Bÿ iedece becelening van Δg^{i+3} worten Φ en Φ opnienw becelend. De matrix VI blyft by deze iteraties constant en dus gelÿk aan VI'! Ook $2 I^{i+1}$ blyft constant.

8c) $N u q^{i+1}$ bekend is, kan Φ_{i}^{i+1} berekend worden
8d) Splits Φ_{q}^{i+1} op m.b v. Singular Value Decomposition.

$$
\begin{equation*}
\underline{\Phi}_{a}^{i+1}=\underline{U}^{i+1} \underline{D}^{i+1} \underline{V}^{i+1} \tag{4.10}
\end{equation*}
$$

Partitioneer \underline{V}^{i+1} in a fhankelyke en onafhankilyke delen:

$$
\begin{equation*}
\underline{V}^{i+1}=\left[\frac{V D^{i+1}}{\underline{V I^{i+1}}}\right] \tag{4.11}
\end{equation*}
$$

8e) Bexeken $\dot{q}^{i t}$ wit de snelheidskergelyking:

$$
\left[\frac{\Phi_{9}^{i+1}}{\underline{V I}^{i+1}}\right] \cdot \underline{q}^{j+1}=\left[\begin{array}{c}
0 \tag{4.12}\\
{\underset{\sim}{i}}^{i+1}
\end{array}\right]
$$

8f) Bereken de versnelling \underline{q}^{i+1} en de Lagrange-multiplicatoren λ^{i+1} uit:

$$
\left[\begin{array}{ll}
\frac{M}{\Phi_{q}^{i+1}} & \frac{\Phi_{q}^{i+}}{o}
\end{array}\right]\left[\begin{array}{l}
\underline{q}^{i+1} \tag{4.13}\\
\frac{\dot{q}^{i+1}}{}
\end{array}\right]=\left[\begin{array}{c}
\left.\underline{\Phi_{q}} \underline{q}^{i+1}\right)_{q} \dot{q}^{i+1}
\end{array}\right]
$$

©g) Bereken de onathankelyhe samengestelde positie, snetheid en versnulling volgens

$$
\begin{equation*}
\left[z I^{i+1} \dot{z} I^{i+1} \ddot{z} I^{i+1}\right]=\left[\underline{V}^{i+1}\right]\left[\underline{q}^{i+1} \dot{q}^{i+1} \ddot{q}^{i+1}\right] \tag{4.14}
\end{equation*}
$$

By deze stap worten $2 I^{i+1}$ en $2 I$ dus opnieuw berekend. Indien $t_{i+1}=t_{\text {end }}$ wordt de subroutine beindigd, zo niet, dan worden de stappen (a) t/m 8g) herhaald.

Hoofdstak 5: De slinger - resultaten

Het algorithme wit hoofdstuk 4 wordt in dit hoofdstuk getoetst aan de hand van een eenvoudig voorbeild. Hiervoor is de slinger wit hoofastak 3 genomen.

Vergelyking (3.17) levert de bewegingsvergelyking:

$$
\begin{equation*}
\left(J_{1}+m_{1} l^{2}\right) \ddot{\varphi}_{1}+m_{1} g l \sin \varphi_{1}=0 \tag{5.1}
\end{equation*}
$$

Bÿ een kleine beginuitwöking φ_{i}°, geldt de benadering $\sin \varphi_{1} \approx \varphi_{1}$, wat leidt tot:

$$
\begin{equation*}
\left(J_{1}+m_{1} l^{2}\right) \ddot{\varphi}_{1}+m_{1} g l \varphi_{1}=0 \tag{5.2}
\end{equation*}
$$

Algemene oplossing:

$$
\begin{equation*}
\varphi_{1}=A \cos \omega t+B \sin \omega t \tag{5,3}
\end{equation*}
$$

Ingevuld in (5.2) volgen de hoeksnetheid ω en de trillingstyd T :

$$
\begin{align*}
& \omega=\sqrt{\frac{m_{i} g l}{J_{1}+m_{i} l^{2}}} \tag{5.4}\\
& T=2 \pi \sqrt{\frac{f_{i}+m_{1} l^{2}}{m_{i} g l}} \tag{5.5}
\end{align*}
$$

Begin voorwaarden:

$$
\begin{align*}
& \varphi_{1}(t=0)=\varphi_{1}^{0} \tag{5.6}\\
& \dot{\varphi}_{1}(t=0)=\dot{\varphi}_{1}^{0} \tag{5.7}
\end{align*}
$$

Ingevuld in (5.3) volgt voor de constanten A en B :

$$
\begin{equation*}
A=\varphi_{1}^{0}, B=\dot{\varphi}_{1}^{0} / \omega \tag{5.8}
\end{equation*}
$$

Dus luidt de oplossing:

$$
\begin{equation*}
\varphi_{1}=\varphi_{1}^{\circ} \sin \omega t+\dot{\varphi}_{1}^{c} \cos \omega t \tag{5.9}
\end{equation*}
$$

met de hoeksnetheid w als in (5.4)
De volgende waarden worten mu aangenomen:

$$
\begin{align*}
& m_{1}=3.0 \mathrm{~kg} \tag{5.10}\\
& J_{1}=2.0 \mathrm{~kg} \mathrm{~m}^{2} \\
& l=0.75 \mathrm{~m} \\
& g=9.8 \mathrm{~ms}^{-2} \\
& \dot{Q}_{1}^{0}=\pi / 6 \approx 0.5236 \mathrm{rad} \\
& \ddot{\varphi}_{1}^{0}=0.0 \mathrm{~ms}^{-1}
\end{align*}
$$

De beweging wordt nu beschreven door:

$$
\begin{align*}
& \varphi_{1}=\pi / 6 \sin \omega t \tag{5.11}\\
& \omega=\sqrt{\frac{3 * 1.8 * \cdot 75}{2+3 * .75^{2}}} \approx 2.445 \mathrm{rad} / \mathrm{s} \tag{5.12}
\end{align*}
$$

De slinger - of trillingstyjd is:

$$
\begin{equation*}
T \approx 2.569 \mathrm{~s} \tag{5.13}
\end{equation*}
$$

Het algorithme kan nu getest worden door de cuitwigking na én trilling te vergelyken met de beginuitwigking. Beginpositie:

$$
\underline{q}(t=0)=\underline{q}^{0}=\left[\begin{array}{l}
x_{1}^{0} \tag{5.14}\\
y_{1}^{0} \\
q_{1}^{0}
\end{array}\right]=\left[\begin{array}{l}
0.3750 \\
0.6495 \\
0.5236
\end{array}\right]
$$

Eindpositie:

$$
\underline{\sim}(t=2.57)=\left[\begin{array}{l}
x_{1} \tag{5.15}\\
y_{1} \\
\varphi_{1}
\end{array}\right]=\left[\begin{array}{l}
0.3737 \\
0.6502 \\
0.5217
\end{array}\right]
$$

Deze uitwigking is dus kkiner dan de beginuitwyking. Wekunnen aan de snetheidsvector zien of er meer of minder dan eien trilling is litgevserd.

$$
\dot{\sim}(t=2.57)=\left[\begin{array}{l}
\dot{x}_{1} \tag{5.16}\\
\dot{y}_{1} \\
\dot{\varphi}_{1}
\end{array}\right]=\left[\begin{array}{c}
0.08939 \\
-0.05138 \\
0.1375
\end{array}\right]
$$

De hoeksnelheid $\dot{\varphi}$, is positief, diw.z dat er minder dan eén trilling is uitgevoerd, ma.w de berekende trillingstigd zal groter zijn dan de theoretische trillingstigd.
Dit verschil is grotendeds te wiyten aan de benadering $\sin \varphi_{2} \approx \varphi_{1}$. Overigens gaat het hier om een afwiyking die hleiner is dan 1%.

Bülage I bevat de resultaten van deze berekening. Controle van de tussentÿdse bexekening van $9, \dot{q}$ en \ddot{q} toont aan dat er inderdaad én slingerbeweging wortt uitgevoerd.

Dit algorithme werd getest m.b.v het programma SVD. FTN. Toelichting bÿ dit programma wordt gegeven in hoofdstuke. 6.

Hoofdstuk 6: Toelichting bÿ het programma

Het algorithme nit hoofdstuk 4 is verwerkt in het Fortranprogramma SVD.FTN. De listing van dit programma is te vinden in bylage II. In dit hoofdstuk wordt de werking ervan in het kort nitgelegd. Tevens wordt een voorbeeldrun (ziebglage III) besproken en tenslotte wordt aangegeven welke wjzigingen moeten worden aangebracht als men een ander fysisch problem wil aanpakken.
6.1 Het programma SVD FTN

Allereerst worden de dimensies van het probleem vastgesteld: het aantal lichamen NB en het aantal constraints M wordt aangegeven. Vervolgens worden begin- en eindtydstip ingelezen. Daarna wordt stap 1. uit hoofdstak 4 vitgevoerd. Vectoren worden in het programma voorgesteld door éndimensionale arrays, matrices door tweedimensionale arrays. Z_{0} wordt q aangeduid met $Q(I), x$ met $V(I), B_{v}$ met $B V(I, J)$, $\tilde{\dot{q}} \operatorname{met} Q P(I)$, $\dot{\sim}$ met $V P(I)$ en B_{V} met $B V P(I, J)$. Om verwarring te voorkomen wordt de vector Q aangeduid met QU (I) en de matrix M met $M A(I, I)$
Stap 2. wit hoofdstak 4 wordt uitgevoerd m.b.v. de subroutine CALQ. Hierin zïn de vergelykingen 4.1 en 4.2 verwerkt. Bتj elhe iteratie worden FI (I) $(=\Phi)$ en $F Q(I, 7)\left(=\Phi_{q}\right)$ opnieuw bexekend door het aanroepen van de subroutine FIFQ. De berekening van Q(I) wordt stopgezet wanneer de "lengte" van $D Q(I)(=\Delta q)$ kleiner is $\operatorname{dan} 0.1 \cdot 10^{-3}$
Vervolgens wordt de definitieve $F Q$ berekend door nogmaals FIFQ dan teropen (stap 3.)
Stap 4 is het uitvoesen van de Singular Value Decemposition in de subroutine SVD. Hurby wordt VI (I, J) ($=$ VI $)$ bepaald.

Het berekenen van QP(I) (stap 5.) geschiedt door de subroutine CALQP
Stap 6. wordt uitgevoerd door de subroutine CALQPP. Hierby wordt naast $Q P P(I)$ ock $\angle A B(I)(=\lambda)$ vitgerakend. Deze subroutine roept een andere subroutine aan, genaand $R L$, warin $F Q Q P(I) \quad\left(=\right.$ de term"- $\left(\Phi_{q} \cdot \dot{q}\right)_{q} \cdot \dot{q}^{\prime \prime}$ wit het rechterlid van vergelyking 4.6) wordt bepaald Tenslotte wordt de subroutine CALZ1 aangercepen (stap 7.) Hierin worden 2I (I), ZPI (I) en ZPPI (I) (resp. 2I, ZI, ZI) bepaald m.b.v. (4.7)
Het uitvoeken ran stap i. omvat het vaststellen van de begincondities Y (I), gevolgd door het aanroepen van de integratiesubroutine Dष2CAF*.
Na elke integratiestap roept dize subroutine op zyin beurt de zelfgeschreven subroutine FCN aan.
Deze subroutine werut de volgende onderdelen of:
8a) De berekende waerden voor Y (I) worden aan ZI(I) en ZPI (I) taegekind
8b) Q(I) wordt besekend wit vgl (4.8) en (4.9). Aangezien dere vergelykingen nagenceg identiek zign aan (4.1) en (4.2) kan hiervoor eveneens de subroutine CALQ gebruikt worden, waarby enkel de argumenten BV en V zign vervangen door VI en $2 I$.
\&c) $F Q$ wordt opnisen berekend m.b.v. FIFQ
8d) VI wordt bepaald m.b.v. SVD
(e) QP(I) wordt berekend uit (4.12). Aangezien deze vergelyking nagenceg identick is aan (4.5) kan hervoor evennens de subroutine CALQP gebruikt, worden. waarby enkel de argumenten BVP en VP ig̈n verrangen door VI en ZPI

* De beschrijving van deze en enkele andese gebruikte subroutines wit de NAG-library is te vinden in bijlage IV

8f) QPP(I) wordt bepaald m.b.v CALQPP $8 \mathrm{~g})$ ZI(I), ZPI (I) en ZPPI (I) worten berekend m.br. (ALZi De stappen (h) t/m 8j), niet vermeld in hoofdstak 4, omvatten het opnieuw opstellen van de begincondities, alsmede het uitvoeken van de cesultaten noar het array "REs" en naar het scherm.
Wanneer TEND is bereilut, is de subroutine D\$2CAF voltooid en rolgt nog als ge stap het opbergen ran de resultaten in een uitveerfile.
6.2 Een voorbeeld-run

Indien de SEG-file SVD SEG aanwerig is, kan het programma gestart worden met het commando "SEG SVD". Op hat scherm kerschight: "GEEF Tø EN TEND". Deze twee waarden moeten nu worden ingegeven, gescheiden door een komma. Kervolgens worden de coördinaten van de beginpositie van alle lichamen opgerraagd (weer scheiden door Komma's), waarna de complete vector van gegeneraliseerde coördinaten Q (I) op het scherm kount. Nu moet worden aangegeven, welke $n-m$ elementen van deze vector accuraat $z g i n$. De vector QP (I) wordt op dezelfle manier opgerraagd. Hierna wordt van alle lichamen de gegeneraliseerde krachivector gerraagd, alsmede de massa en het tragheidsmoment.
Voordat de integratie begint, wordt de integratienaumkeurigheid TOL gerraagd. Het is aan te raden het programma meerbise keren te draaien, met toenemende naiewkeurigheid; $b_{y} \mathrm{TOL}=10.0 \cdot 10^{-3} \mathrm{kan}$ men een nauwkeurigheid van twee cyjers significant...verwachten, by $T O L=10.0 \cdot 10^{-4}$ is dat drie cijfers, etc.
De gerraagle waarde STEP heeft alleen invieed of de uitvorfile: twee opeenvolgende tyjdstippen in deze file verschillen tenminste "STEP".

Vervolgens worden op elk tijdstip $Q, Q P, Q P P, V I, Z I, Z P$ en ZPPI afgedrukt.
Wanneer TEND is beseilet, wordt nog de naam van de witvarfile gerraagd, waarna het programma stopt.
6.3 Toepassing ran het programma op andere fysische problemen

Wil men dit programma voor andere problemen gebruiken, dan maeten er enkele wÿzigingen in worden aangebracht. Nanneer de dimensies van zo'n probleem hetzelfde zün, d.w.2. $N B=1$ en $M=2$, dan hoeven slechts de subroutines $F I F Q$ en $R L$ herscheven te worden, warin Φ, Φ_{q} en $-\left(Q_{q}-\underline{q}\right) \cdot \dot{q}$ worden bexekend.
Zyn de dimensies anders, dan moeten tekens de dimensies van de diverse vectoven en matrices gewÿzigd worden, alsmede de cegels $N B=1$ en $M=2$.

- dimensies in de COMMON-statements:
$F i(M), Q(N), Q P(N), V I(N M i N M, N), Q(N), M A(N, N)$,
$\angle A B(M), F Q Q P(M), Q P P(N), F Q(M, N), 21$ (NMINM), ZPI (NMINM), ZPPI (NMINM), RES (i00, $(1+3 * N+$ NMINI*N))
- dimensies in main program:

NV (NMINM), NVP(NMINM), V(NMINM), BV (NMINM, N), VP (NMINM), BVP (NMINM, N) , Y(NDV), W(NDV, 18)

- dimensies in subroutine CALQ $A(N, N), \operatorname{BVVI}(N M M M, N), C(N), D Q(N), A A(N, N), W S 2(N), W S S(N)$, BVVIQ (NMINM), VZI (NMINM)
- dimensies in subroutine SVD

$$
\operatorname{MI}(N, N), \operatorname{VT}(N, N), S(N), U T(M, M), S V(M), V(N, N)
$$

- dimensies in subroutine CALQP
$B \cup P V I(N M I N M, N), \operatorname{VPZPI}(N M I N M), A(N, N), C(N), A A(N, N), W S 2(N)$, WS3 (N)
- dimensies in subiontine (ALQPP

$$
E(N P M, N P M), H(N P M), Q P P L A B(N P M), A A(N N), W S 4(N P M), W S S(N P M)
$$

- dimensies in subroutine CALZI

$$
M Q(N, N), M Z i(N M I N M, N)
$$

Hierby geldt:

$$
\begin{aligned}
& N=3 * N B \\
& N M I N M=N-M \\
& N P M=N+M \\
& N D V=2 * N M N M
\end{aligned}
$$

Het enige probleem dat kan ontstaan by het werken met grotere dimensies, is de formattering van de diverse WRITE-statements. Deze zal in de meeste gevallen moeten worden aangepast.

Hoofdstuk 7: Conclusies

De theorie, die aan de SVD-methode ten grondslag ligt, is rry ingewikkeld. Hierdoor is de werking van deze methode niet onmiddeltigk in te zien. Het voorbeeld van de slinger maakt echter in al zign eenvoud een hoop zaken hieromtrent duidelyk. Men kan zich dan ook enigszins voorstellen wat er bÿ grootschalige systemen zal gebeusen wanneer men SVD toepast.
In het kort koint de SVO-methode hierop neer:
De m onafhankely̆ke saimen gestelde coördinaten $\underset{\sim}{I}$ zïn lineaire combinaties ran de n fysische coordinatin q volgens $\underset{\sim}{z}=V I q$. Hierin is II een $m \times n$ matrix dié uit de n constraintvergelykingen wordt bepaald.
Enkel de ona thankelyke samengestelde coördinaten hoeken geintegkerd te worden. De fysische coördinaten kunnen weer hüruit worden berekend. Bü het integrexen van II blykt het systeem zich langs een raaklign aan de constraints te bewegen.
De nauwheurigheid die men kan bexiken met het algorithme uit hoofdstuk 4 is behoorlyk groot. Tevens is het aanpassen van het prograimma SVD. FTN Vrÿ" eenvoudig.
Al met al lykt de "Singular Value Decomposition"-methode zeer goed bruikbaar in de multibody-dynamica De vraag of deze methode ook toepasbaar is op ruimtelyke dynamica, zoals Mani, Haug en Atkinson claimen, viel buiten het kader van dese stage-opdracht; het lykt echter aannemelyk, gezien de zeer algemene opbour van de theorie.
θ°
QPP
©. 690 Q
-. 3750 O
0. 0cond 00 - 0.1542002
2. 64938 CO
c. $\operatorname{cog} \mathrm{O} \mathrm{O}$
a. 1221501
2. 5236 O
c. 0 0002 0 - -2780 a o

4
0. 51962

9\% - -8.80 O O
0. BCOOD OO
0. $72475-01$
6. 3705 00 - $2.320200-0.1541501$
. 6521000 . $7500 \mathrm{~m}-01$
a. 106EL 01

9.52175 $93-6.264860$
C. Becon OC

85
© 1360 OL
0.3500
Q. 2372000
C. 1735 C 04
1802
0. $13 \mathrm{~m}_{6} 0$
-. 9213000
$0.4776500-3.920506-0.254502$
0. $5273 \mathrm{O}-\mathrm{a} .2 \mathrm{E} 4 \mathrm{O} \mathrm{O}$
0. 860000

VT
Q. 2005 O

0. 2650 O

3. $4244500-7.058500-2.2462094$

c. 32 gn 00

VI

0. 8000200
0. 384180

Q. 7141200 Q. $232700-6169000$

\sin
9. $5715000-6.183 \mathrm{BE}$
C. BOOCD OO
C. 4855150
Q. $1794500-0.825700-0.4267002$

c. 564920

Yi
0. $6725 \operatorname{cc}$

$$
\begin{aligned}
& -9.2405-02-9.949 \square 00 \quad 0.1015 \mathrm{O} 00
\end{aligned}
$$

> 0. 59ç5 6
> a. $2072 \mathrm{~B}-0$.
> 6. 80002 0n

42
a. 7774 EO

8. 1242	O¢	-9. $\mathrm{c}_{\text {cemb }}$	00	0.	
0.7425	00	-6. 5 E25	00	--9.98795	OH^{3}
- P 205	0	-6. 2122	$0 \pm$	-. 87655	0 O
1.5932	ec	c. 8996		0.	

c. EEsbi op

$$
\begin{aligned}
& -9.292560-\mathrm{C} .77 \mathrm{Ea} \text { 00 } \\
& \text { c. } 5 \text { gव\% } 01
\end{aligned}
$$

$$
\begin{aligned}
& -2.2730 \mathrm{OQ}-1677 \mathrm{O} \text { OL } 0.1 \mathrm{OLD} \mathrm{O} \\
& \text { 0. } 5778 \mathrm{E} \text { 0 } \\
& \text { Q. } 61 \mathrm{BL} \mathrm{OQ} \\
& \text { 0. } \mathrm{BOOD} \mathrm{OQ}
\end{aligned}
$$

BI
0.787406

$$
\begin{aligned}
& -2764 \mathrm{E}-2 \mathrm{a}-60 \mathrm{~g} \mathrm{a} \text { 00 } \\
& 0.1747001 \\
& \text { c. } 77350-01 \\
& \text { 3. } 6772 \mathrm{y} \text { 00 - } 0.2414 \mathrm{~A} 00 \\
& \text {-. 22043 02 } \\
& \text { Q. } 5578 \mathrm{c} \\
& \text { 6. } 221 \operatorname{Ln} 00 \\
& \text { 0. } 8000 \mathrm{CO}
\end{aligned}
$$

UT
0. 10465 c

$$
\begin{aligned}
& -9.33100 \text { OQ }-4.4265 \mathrm{C} \\
& \text { 0.19015 01 } \\
& 0.5730000-0.2034500 \\
& \text { 9. } 4 \text { 29e5 00 }
\end{aligned}
$$

> 6. 2.39502
> 2. $\operatorname{sen} \mathrm{m} 0$
> 2. 2t4E! 0c
> 0. B000h oo

32
C. 202 OL

$$
\begin{aligned}
& 0.5557500-6.1260 \pi 00 \\
& \text { c. } 1840202 \\
& 0.7906800
\end{aligned}
$$

> ब. 2703以 0
> 9. 5243506
> 0. 2 B 3 a 9
> ๑. बดอว ल

4s
© 4307 Q

37543	00-0. $2440 \mathrm{ab}-02$	-. 5735
2. 64530	00-0. 4 4t15-02	c. 535101
-6.5242	Oc -0.375en ox	-. 28535
5154	00 ¢ 30000	. 8000

Q. 415 B
-0.364700
3. 20375 00
0. 2941001
6. 65548000.1235000
9. 7765000

- Br B8y 0%
G. 3215 OC
0.2707901

9. 5243 a 0
10. 2470 a
a. $\operatorname{sog} 00$
ψ^{6}
epp
11. 322 E 0

$$
\begin{aligned}
& -2.325 \mathrm{ge} \\
& \text { 3. } 672506 \\
& -2.457 b 63 \\
& \text { 6. 40855 } 00 \\
& \text { 0. } 1703501 \\
& \text { 6. 20:9世 00 } \\
& \text { 0. } 630 \% \mathrm{~L} 0 \\
& 0.6079500 \\
& \text { c. } 248 \mathrm{BL} \\
& \text { © } 5380 \mathrm{O} \\
& 0.2657000 \\
& \text { 3. } 800000
\end{aligned}
$$

?
9. 627508
-2761500
-676520
c. 6.45206
0. 1754202
©. 24 13500
0. $92052-01$

- 3799500
Q. B67B5 00
- 22175 0!
. 5572800
0.225400
๑. $\operatorname{scoc} 00$
br
C. 178 BE Q
-0.2045200

0. 7747 M 0 O
1. 142 LD 01
0.7216500
2. $2175 \mathrm{D} 00-4.4785 \mathrm{0} 0$
-2761090

๑. 1830 D Q
๑. 575 m
3. 2 EGL O
c. ghoon oo

42
0. asemt 02

-9. 2515 cc	๑. 8767 Q 00	c. 8485 ma
0.7411596	Q. 1.72500	-9.77945 9\%
-0. 340400	O. 210 L	9.9474 00
	c. $92050-01$	-. 800\% 00

9. 278625

-6.4373-02	6. 7473800	Q. 122
0.74905 09	9. 20505-02	-0. $1200 \square$
-0.21595-02	a. $2 \mathrm{Eb65} 01$	0. 129
2. 59790 Cb	0. $12755-51$	a. B00

0. 2cset os

v

1. EOOO 00
2. 22555 01
3. 2esti 0
4. 2675500 . $6294000-0.1722001$
$0.6999500-0.2423000$ 3. $13100-01$

5. 23em gi

$$
\begin{aligned}
& 0.6758 \mathrm{Q}-0.2124 \mathrm{~m} 0 \mathrm{O} 0.55470 \mathrm{O}
\end{aligned}
$$

app
v^{T}
$0.44052060 .6531500-0.2593 \mathrm{O}$

6. B000 0 O
0. 2492801
$0.30 \mathrm{O} 0 \mathrm{O} 0430 \mathrm{O}-0.1940 \mathrm{O} 01$
$0.5576000-0.322000$. 0470400
. $50 \leq 500$ e $369500-6.255002$
$8{ }^{8}$
$0.522500-0.2505800$
๑. 8000 OC
6. 2570595
0.2737500 0. $89374-01-0.1445002$

θ
0.5202500-6. 29700 00
0. B0005 00

```
    C SUL FTH
    C =-2=-==
    C
    c
    C
    C
    %IMEERT SYSGMWANGEve
    C
```



```
        COthtuN/BLQCRZ/TO, TEND
```



```
        commbu/bLuckb/ge(3)
```



```
    C
```



```
        % BTUT: Th**GECPO!
```



```
            ENTEWWAL FGN
    C
        40%=4
        C=2
        4=3*%4E
```



```
        mam={4+1%
        WM%=2*ntuTNH
    c
```



```
        4TGE(5:9c%F%)
        RERDCE%% TC,TENE
        Th%TG
    c
```



```
    20 cmutumb=
    WHTEES,9%7%7%
    L0 %0 1=2,4
```



```
    20 ccntmus
C
    30 cEMTMME
c
    #0 40 z=% Natm
        HRITE(D, P9%q4: I, I:I
```



```
40 metTMMS
```



```
            50 50 %=药
                4%!TL!2, %%%G% @P!%;
        S0 cmotmuge
    C
```



```
                YP{T}=QP{献{景}
                SvP(T,ME CI!)=1.OWQ
            B0 cm|TRUE
    C
            20 70 2=2,W6
```



```
        70 cGOTRNUE
    C
        DE B0 = =% N%
```



```
            Sa cmtrmut
        C
    C z) EERENEUTHE vAN C
    C
            CAE CAEMEPY, 4?
    c
    C B ERERENTMG &AM FG
    C
        CMBE ETEQ
        C
    C% $EmEkENTHM YAN UL
        G4BLEVM
        c
        C S EEAEAENWNG USN MP
        C&{R MALGP{SVP,YP%
C
C ES EEREREATVE VAN EPF
C
    GABLGAGMP
C
```



```
    C4bmc&tz
    c
C E' STAPTEN VAM EE MRTEQRATTE-SUBROUTTNE
    2% %0 F=% , NmTNEm
        Y(2%-1)=2E(T)
        Y(Y%Z)=ZPI(2)
    70 CENTTMUE
C
```



```
    BEMECE:* THL
    TFAR=Q
```


100 mentrum
CAL CLESGATMET2!
ETRP

978E!
c
End
c
C
SuMROUT TME FCN(T, Y F
c

cmith mecreftoren

chmburamencrort
cmunt mbemfritiot
curmon RLounthep(s)

chtur


```
    C SGB.FTh
    C
        Tr=T
        GNTTEUSGFGEOS TM
    c
    C ATEESAETUTGG UAN 2T,ZPI
    C
```



```
            zT(E)=Y(##2-1)
            ZP&(I!=Y(T*2)
```



```
        INO GG&TTHUE
            FF (TI.E@.O: OETD 22G
C
&) METEMETENG %AM O
c
C CAEL CABGCYB,EDB
C) SEREAEMTNG vANFG
C
        GALB FPGG
C
5) RENERENTNG YA&M US
    4ABESES
    C
C E EEREAEMMNG VAN OP
C
C
C F% SENERENTWG YAN OPP
6
GHM&GAGPP
C
```



```
    CHABAATS
C
    CTE 230
C
```



```
        NEABCH,* ETEP
c
BH FESULTATEM UTTUCEREM MAAR SGHEEM
    130 wamterm,F%g7ts
    #% L4G T=1,N
```



```
    40 ctatrmem
        WRTTE(2,797743
        LQ 1SG T=S,WHMNM
```



```
    150 C%MTMNE
        GRTTE\:Mg%7z!
```



```
    15% GM|TMES
C
```


6


```
        Y(! %2-1 {=2TGT:
```



```
        F!年2-1%=%(%%2)
```


176 cestembe
c

C
180 TF UTE EO. O $\cos 170$

OTTO 180
150 $\quad 1 \mathrm{I}=\mathrm{I}+\mathrm{t}$

zoo cuttmut

210 \% 1 TM. ED. TENB: GTT 17 C
2en FETURH
c

7797E FORMATCESE. $\frac{4}{3}$

97975 Fumper(3u!2. 4)

c
Eng
0

c

0

cothmorsmoctartiz

crimburphemsofraczo

c
$A C=0.15-2$

- Entran=Acc
c

$\mathrm{Ba} 23 \mathrm{y}=\mathrm{a}$

250
GWTrtate

C
6
$24060 \mathrm{mTn}=$

GAEL FTFG
C
$5070 \quad 2=1,4$ $\mathrm{BD} 2 \mathrm{O} \quad j=2, \mathrm{~A}$ $A\left(\mathrm{E}_{2} \mathrm{~J}\right)=\mathrm{F}=\mathrm{Ca}(\mathrm{T}, \mathrm{J})$
260 CDNTMNUE
270 COTTEथUE
c
Do $2 \mathrm{EC} \quad \mathrm{i}=\mathrm{i} \cdot \mathrm{f}$
$C(I)=-F I T I$

C
$D \mathrm{C}=2$
DTMWS $=1$
CTT=
THALLOO

C

$\mathrm{DO} 270 \mathrm{~T}=\mathrm{BNTRN}$

ב90 cgut ivet
C
IFAIL=0

LFHQDE=FOSABFIEQ:
c
$\mathrm{DO} 30 \mathrm{~B}=1.4$
$\mathrm{Q}(\mathrm{B})=\mathrm{DQCT}+\mathrm{BC} \mathrm{C}$
300 GETHTHET
c
9ata 2%
C
3LO RETURW
C
9777L FERTATC'ERROR IN FOLCKF:

C
EMO
c
C

- EURGOUTIAEFHFQ

C

Cumbur/ Bubcrafris

CETTON/ELDGS5G63
COMON/EECCHOFQCS,3
c

c
$1=0.75$

0

FIT2)=0tet-mcostcts?
C
FC(i, $\%=1.020$
FQ(2, 2)=0.0RO

Fge $1=0,0 \cos$
FQt2, 2$\}=2.020$

C
RETUR
ERE
C

C
EUKTUUTME EUD
c
6

c

c

TFAES=O

c
$2032 \mathrm{~B}=\mathrm{A}: \hat{8}$
METETB=1. OES
320 COUTEMUE
c
TFATLO 0

c

330 cEtat $24 E$
C
$N 2=8$
TFALE $=0$

CR=0. 8 ¢77马
IF GCG. GT. GF WRTTE © Bgpcg
c

$0 \mathrm{OH} \quad 3=2, \mathrm{H}$

340 TDTRTHE
350 GbणTMUE
C
RETURU
6

F7968 FEMMATGERROR IW FOLCLF'

g7TES FGRMATG*AFM kDL. IN FOEAAF's
C
Err
C
 6
c
C

 GTmenthbocwdopre

6

C

$\mathrm{DO} 2 \mathrm{SG}, \boldsymbol{3}=\mathrm{h}$

360 GDUTRME
370 centrobie
c

$00380 \quad\}=1 . N$

300 © ©ntrmue
390 G¢THME
C
 $\operatorname{ct}(\mathrm{T}=\mathrm{O} .0 \mathrm{CO}$
400 GEvTTMEE
C
EC $420 \quad 2=2$. Whraty

410 CEMTENGE
c
$T F A D=0$

c
RETRPN
c
FGFES FGRNATC'ERRGR IN FQAATE'
C
Eve
c
 C

SSGRDUTTAE CARGPP
c SDM- - - - - - - -
C

c

c

```
            FEALG OU,M, LAD,FOW,GPP,FO,
```



```
    c
        D0 430 0=1,0
        D0 420 v=1.M
            E(E,U)={RA(I,J)
        420 comTINE
        430 CDHTHMGE
        D0 450 I= %.%
            D0440,4=1,@
```



```
                E(3,N+2)=FOCTOU)
    440 contrmue
    450 comTMME
c
    460 COMTHNUE
c
c
            50 470 1=1.4
        HCN+T}=-FQOP(S:
    470 comTMuGE
        IFAEL=0
```



```
c
            D0 480 I=1,N
        apP(I:=apflagCI)
    4B0 cevTruuE
c
    D0 490 1=1.4
        LAECI=GPPLAECN+I:
    490 CEMTMME
c
        RETURH
c
```



```
c
    Eug
c
```



```
C
    GUGROUTINE RL
c
c
```



```
    COMHONGDLDCK4TM
    comtum/BLDCN5/arg:
    cgmgm/ELowNo/ap(S)
```



```
c
```



```
    NEALAB TM, D,GF,OU,MA,LAB,FOQP,L
c
    L=0.7550
```



```
    c
        RETURN
        Efla
    c
    C
    C
    C SUBROUTIUE GASIT
C
```



```
        CEMTMWGBLDEKS\TS
        Cutm\v/RLOCKS/G%(3)
```



```
        cgumbM/BLPG氏%/g"p(S)
```



```
    c
    C
```



```
            HC(T:I:=Q\I!
            PG(I, 2)=GP(F)
            MQ4,3)=QPE&{
        500 GOMTMNEE
    C
        IZ=2
        TPT=?
        TFAIL=0
```



```
    c
        TF GFATE. DT.O} WGTTE\{,g9G6%?
        By 5% = =%,4
```



```
            ZPPI(E)=N2T(S, 3)
    510 CDNTTMES
C
        RETURN
C
```



```
C
Ens
```

nu: SEO EUD
GEEF TGEMTEMS
0. $9,2.27$

0.4 .0 .6 .9 .5236

0
0. 4000 0 0
6. 600 O 0 O
c. 52355 g

WELKE \angle ELEFWTEN UAD C ZDUN ACGURAAT?

3

0.0 .0 .0 .0 .0
op
C. 0cob CO
0. 0cost 00
6. OOOP Mo

1

0. Q. 2 . 4.0 .0

3. 0.2 .0

GEE TE HAARDE YAN TU
10. $00-04$
$T=0.0000$ OD SEC
$25 \quad 2 P \Sigma$
6. 4585 Q
3. OQOX OO

GEEF RE WARDE VAS STEP
6. 63
a

```
    0.37502 00
    0.0000L 0% - 0.542% 01
    O. b4952 0%
    0.00005 Q0
    0.1E2I星 0%
    8.52sim
```



```
    vi
    0. 51960 90 -0.300% 9% 0. 0000% 0%
    ZE ZPI ZPEL
    0.41575 0% 0.000% g0 -0. 37375 0t
    T = 0 . 0 0 0 0 \% ~ Q Q ~ S E C ~
    ----------------------
        ZZ 2P%
        Q. 4LEPR 0% 0.00QOD 0%
        Q op cpp
    0.375%2 00
        3.000% 00 -0.1742p 01
    6. 64750 0%
        %.00002 00 0.15ELE OL
        0.52325 %%
```



```
        U
```



```
        Z星 Zpq 2PP星
        0.4मE%5 0% %. 900% 0% - . 3737m 01
T=0.6E6ED-10 SEC
        2% 2PI
        6. 42595 00 -0. 25475-5%
        O SP SPP
    0.37535 @ - . 3%4R-0q -0. 4842% 0L
```


UT
0. $5196800-3000000$ 0. 000 OQ
II 2PI 2PPI
0. $415700-250.250-07-0.27501$
$7=0.3740 \mathrm{BE} \mathrm{EE}$
I. Nu wordt een sprong gemaalet naar het einde van de voorbeeld-ran.


```
    0.6507% 60 -. 23065 00 0.4253% 00
    0.4325 00 % 7224% 人% - . 2305 01
    US
    0. 54,48 6% -2. 231%% 60
        0. Bucms %
25
        2FI
        ZPPL
```



```
    T=0.25%50 SEG
```



```
        2*
        2P咅
            0.43q4m 00 e.4u4, 50
        0
            8
        qp
```



```
    b. 6%55% 0%
```



```
    C.50755 ¢%
        0.35470 6% - 2906% 0
    Y%
```



```
\begin{tabular}{|c|c|c|}
\hline 21 & \%P\% & 2PPT \\
\hline & & \\
\hline
\end{tabular}
T=0.3533D 0% SEC
    2% 2PI
    5.40ES co 0.44776 00
Q
    em cep
    0.365% 0% % 2345% 0% - 2. 2565 01
```



```
    VI
    0. 5255 00-6.2725% 00 6. 500%4 00
    ZI 2FE 2PPE
    0.40742 50 6. 4.47% 0% - 3244% 01
T= %.25T% CN EEG
```


2T 2PI

Q $Q P$ 期

$0.6504300-533520.0 .1041502$

U5

21
2PI
TPPI
-. 4268 OH

5. 84

Ch SEC COM - EW

D02CAF - NAG FORTRAN Library Routine Document

NOTE: before using this routine, please read the appropriate implementat.on document to check the intelpretation of bold itallcised terms and other implementation-dependent details. The routine name may be precision-depenaient.

1. Purpose

D02CAF integrates a system of first-order ordinary differential equations over a range with suitable initial conditions, using a variable-order variable-step Adams method.

2. Specification

SUBROUTINE DO2CAF (\neq, XEND, N, Y, TOL, FCN, W, IFiIL)
C INTEGER N, IFAIL
C real X, XEND, $Y(N)$, TOL, $W(N, 18)$
C EXTERNAL FCN

3. Description

The routine integrates a system of ordinary differential equations

$$
Y_{i}^{\prime}=F_{i}\left(T, Y_{1}, Y_{2}, \ldots, Y_{N}\right) \quad i=1,2, \ldots, N
$$

from $T=X$ to $T=X E N D$ using a variable-order variable-step Adams method. The system is defined by a subroutine FCN supplied by the user, which evaluates F_{i} in terms of T and $Y_{1}, Y_{2}, \ldots, Y_{N}$ (see Section 5), and the values of $Y_{1}, Y_{2}, \ldots, Y_{N}$ must be given at $T=X$. The accuracy of the integration is controlled by the parameter TOL.
For a description of Adams methods and their practical implementation see [1]..

4. References

[1] HALL, G. and WATT, J.M. (eds.)
Modern Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, 1976.

5. Parameters

X-real.

Before entry, X must be set to the initial value of the independent variable T.
On exit, it contains XEND, unless an error has occurred, when it contains the value of T at the error.

XEND - real.

On entry, XEND must specify the final value of the independent variable. If XEND $<\mathbf{X}$ on entry, integration will proceed in the negative direction.
Unchanged on exit.

N-INTEGER.

On entry, N must specify the number of differential equations.
Unchanged on exit.
Y - real array of DIMENSION at least (N).
Before entry, $\mathrm{Y}(1), \mathrm{Y}(2), \ldots, \mathrm{Y}(\mathrm{N})$ must contain the initiai values of the solution $Y_{1}, Y_{2}, \ldots, Y_{N}$. On exit, $V(1), Y(2), \ldots, Y(N)$ contain the computed values of the solution at the final value of T .

TOL - real.

Before entry, TOL must be set to a positive tolerance for controlling the error in the integration.
The routine D02CAF has been designed so that for most problems a reduction in TOL leads to an approximately proportional reduction in the error in the solution at XEND. However, the actual relation between TOL and the accuracy achieved cannot be guaranteed. The user is strongly recommended to call D02CAF with more than one value for TOL and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge, the user might compare the results obtained by calling D02CAF with $\mathrm{TOL}=10.0^{-\mathrm{P}} \quad$ and $\mathrm{TOL}=10.0^{-\mathrm{P}-1}$ where P correct decimal digits are required in the solution.

TOL is normally unchanged on exit. However if the range X to XEND is so short that a small change in TOL is unlikely to make any change in the computed solution, then, on return, TOL has its sign changed. This should be treated as a warning that the computed solution is likely' to be mere accurate than would be produced by

－rqissod

 aq Krw TOL guikrea jo 7ninas aql pue

 pieuryoudde oqt inq TOL Buikien кq pəllличоs әq ues 11 рочұәи әч1 ио pue

 әч1 ио＇TOL uo spuədəp Kэemmor วч，L

G38insoy 01

28飞1015 6

suıat 8u！indumos

 pue Kixวjduos әप7 uo spurdop siyl

 u！sonts of poinq！as！p are s！！ela

dןpy nadxa yoos suoisuouip Kbine pue

$$
t=\text { TIVSI }
$$

 pue X（II uonoos aวs）uoperåวขu！

$\varepsilon=$ TIVAI
＇ $\mathrm{X}=\mathrm{L}$

 stuauoduios a4 L－（atxo 10112 suy－fo uoussnosṭp в $10 \boldsymbol{\jmath}$ II นо！

$$
\tau=\text { TIVAI }
$$

$$
\begin{aligned}
& \text {-sirpiduos әwos qu!м uморұеәлq }
\end{aligned}
$$

$\cdot 0 \leq \mathrm{N} \quad$ jo
005 TOL＇Knus uo
I＝TIVSI

1！xa uo 0 sulefuos TIVAI＇（uo！pos

－ 0 s！эпן，

'YGDEINI - TIVAI

poeds suryiom se pasn

$$
\cdot 81 ₹ \mathrm{~d}
$$

 วч1 U！TVN甘GIXE Se parepop aq isnu NOA

$$
\cdot u^{6 \times \prime \cdot} I=1 \text { soj }
$$

（u）NOISNSINIG jo Kense moos－ג
－＇posuryo aq дou isnum anjea sti

әчр јо әпןea әч souj！

＂ $\mathfrak{\text { ºs }}$－ \mathbf{I}
－IVOZOの

（u）f．（u）A＇ 1 joos
（t＇$A^{\prime} 1$ ）NJJ 3 NIIMOY日RS
：s！uoneoupods sy

әчі $\cdot \boldsymbol{\partial}$ ）！\ddagger suo！

error estimate are computed.

11. Further Comments

If the routine fails with IFAIL $=3$, then it could be called again with a larger value of TOL if this has not already been tried. If the accuracy requested is really needed and cannot be obtained with this routine, then the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.
If the routine fails with IFAIL $=2$, it is probable that it has been called with a value of TOL which is so small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved systems and very small values of TOL. The user should, however, consider whether there is a more fundamental difficulty: For example,
(i) in the region of a singularity (infinite value) of the solution, the routine will usually stop with IFAIL $=2$, unless overflow occurs first. If overflow occurs using D02CAF, routine D02QAF can be used instead to trap the increasing solution before overflow occurs. In any case, numerical integration cannot be continued through a singularity, and analytical treatment should be considered;
(ii) for 'stiff equations, where the solution contains rapidly decaying components,
the routine will use very small steps in T (internally to D02CAF) to preserve stability. This will exhibit itself by making the computing time excessively long, or occasionally by an exit with IFAL $=2$. Adams methods are not efficient in such cases and the user should try the Gear method D02EAF.
Users with problems for which D02CAF is not sufficiently general should consider the routines D02CBF , D02CHF and D02QAF . Routine D02CBF can be used when output is required as points inside the range X to XEND (for example, for graph-plotting purposes) or more general error control is required. Use of D02CBF should be computationally more efficient than repeated calls to D02CAF to achieve the same result. Routine DC2CHF can be used to calculate where a function of the components $Y_{1}, Y_{2}, \ldots, Y_{N}$ and their derivatives takes a specified value.
D02QAF is a more general Adams routine with many facilities including more general error control options and several criteria for interrupting the calculations.

12. Keywords

Adams, Method, Initial Value Problems, Ordinary Differential Equations.

13. Example

To integrate the following equations (for a projectile)

$$
\begin{aligned}
& \mathrm{y}^{\prime}=\tan (\phi) \\
& \mathrm{v}^{\prime}=-0.032 \frac{\tan (\phi)}{\mathrm{v}}-0.02 \times \mathrm{v} \times \sec (\phi) \\
& \phi^{\prime}=-0.032 / \mathrm{v}^{2}
\end{aligned}
$$

over an interval $X=0.0$ to XEND $=8.0$ starting with values $y=0.0, v=0.5$ and $\phi=\pi / 5$. We write $y=Y(1), v=Y(2)$ and $\phi=Y(3)$ and we set $\mathrm{TOL}=1.0 \mathrm{E}-4$ and $\mathrm{TOL}=1.0 \mathrm{E}-5$ in turn so that we may compare the solutions obtained. The value of π is obtained by using X01AAF .

13.1. Program Text

WARNING: This single precision example program may require amendment for certain implementations. The results produced may not be the same. If in doubt, please seek further advice (see Essential Intreduction io the Library Manual).

```
C DO2CAF EXAMPLE PROGRAM TEXT
C MARK 7 RELEASE. NAG COPYRIGHT 1978.
C .. LOCAL SCALARS ..
    REAL PI, TOL, X, XEND
    INTEGER I, IFAIL, J, N, NOUT
C .. LOCAL ARRAYS ..
    REAL W(3,18), Y(3)
```

```
    C .. FUNCTION REFERENCES ..
    C .. SUBROUTINE REFERENCES
C DO2CAF
C
    EXIERNAL FCN
    DATA NOUT /6/
    WRITE (NOUT,99995)
    N=3
    PI = X01AAF(PI)
    00 20 J=4,5
        TOL = 10.**(-J)
        X=O.EO
        XEND = 8.EO
        Y(1)=0.EO
        Y(2)=0.5E0
        Y(3)=0.2E0*PI
        IFAIL = 1
        WRITE (NOUT,99998) TOL
        WRITE (NOUT,99999)
        WRITE (NOUT, 99997) X, (Y(I),I=1,3)
        CALL DO2CAF(X, XEND, N, Y, TOL, FCN, W, IFAIL)
        WRITE (NOUT,99997) X, (Y(I),I=1,3)
        IF (TOL.LT.O.) WRITE (NOUT,99994)
        WRITE (NOUT,99996) IFAIL
        20 continue
    STOP
99999 FORMAT (43HO X Y(1) Y(2) Y(3))
99998 FORMAT (5HOTOL*, E8.1)
99997 FORMAT (1H , F6.3, 3E13.5)
99996 FORMAT (8H IFAIL`, I1)
99995 FORMAT (A(1X/), 31H DO2CAF EXAMPLE PROGRAM RESULTS/1X)
99994 FORMAT (24H RANGE TOO SHORT FOR TOL)
    END
    SUBROUTINE FCN(T, Y, F)
C .. SCALAR ARGUMENTS ..
    REAL T
C .. ARRAY ARGUMENTS ..
    REAL F(3), Y(3)
C
C .. FUNCTION REFERENCES ..
    REAL COS, SIN
C ..
    F(1)= SIN(Y(3))/\operatorname{Cos(Y(3))}
    F(2) = -0.032EC*F(1)iY(2) - 0.02E0*Y(2)/COS(Y(3))
    F(3)=-0.032E0/(Y(2)*Y(2))
    RETURN
    END
```


13.2. Program Data

None.

```
13.3. Program Results
DO2CAF EXAMPLE PROGRAM RESULTS
TOL= 0.1E-03
    X Y(1) Y(2) Y(3)
    0.000 0.00000E+00 0.50000E+00 0.62832E+00
    8.000-0.12455E+01 0.51293E+00 -0.85383E+00
    IFAIL=0
TOL= 0.1E-04
    X Y(1) Y(2) Y(3)
    0.000 0.00000E+00 0.50000E+00 0.62832E+00
    8.000-0.12460E+01 0.51300E+00 -0.85371E+00
    IFAIL=0
```

1. Purpose

F01CKF returns with the result of the multiplication of two matrices B and C in the matrix A, with the option to overwrite B or C.

IMPORTANT: before using this routine, read the appropriate machine implementation document to check the interpretation of italicised terms and other implementation-dependent details.
2. Specification (FORTRAN IV)

SUBROUTINE FOICKF ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{P}, \mathrm{M}, \mathrm{Z}, \mathrm{IZ}, \mathrm{OPT}_{\theta}$ IFAIL)
C INTEGER N, P, M,IZ,OPT,IFAIL
C real A, B, C, Z
C DIMENSION $A(N, P), B(N, M), C(M, P), Z(I Z)$
3. Description

The $n \times m$ matrix B is post-multiplied by the $m \times p$ matrix C. If opI=1 the result is formed in the $n \times$ p matrix A. If $O P T=2$, m must equal p, and the result is written back to B. If $O P T=3$, n must equal m, and the result is written back to C.
4. References None.
5. Parameters

A - real array of DIMENSION (N, P). On exit, if $O P T=1$, A contains the result of the matrix multiplication.

B - real array of DIMENSION (N, M).
Before entry, all elements of B must be assigned a value. On exit, if $O P T=2$; B contains the result of the multiplication. Otherwise B is unchanged on exit.

C - real array of DIMENSION (M, P).
Before entry, all elements of C must be assigned a value. On exit, if $O P T=3, C$ contains the result of the multiplication. Otherwise C is unchanged on exit.

N - INTEGER.
On entry, N specifies n, the first dimension of A and B as declared in the calling (sub)program. If $\mathrm{OPT}=3$, n must equal m. Unchanged on exit.

P - INTEGER.
On entry, P specifies p, the second dimension of A and C as declared in the calling (sub) program. If $\mathrm{OPT}=2$, p must equal m. Unchanged on exit.

F01CKF

5. Parameters (contd)

M - INTEGER.

On entry, M specifies m, the second dimension of B and first dimension of C as declared in the calling (sub) program. Unchanged on exit.

Z - real array of DIMENSION (IZ).
Used as working space.
II - INTEGER.
On entry, IZ specifies the dimension of Z. If OPT=1, IZ may be 1 otherwise IZ must be greater than or equal to m. Unchanged on exit.

OPT - INTEGER.
On entry, the value of OPT determines which array is to contain the final result.
a) OPT=1. A must be distinct from B and C and, on exit, contains the result. B and C need not be distinct in this case.
b) OPT=2. B must be distinct from C and on exit, contains the result. A is not used in this case and need not be distinct from B or C.
c) $O P T=3$. C must be distinct from B and on exit, contains the result. A is not used in this case and need not be distinct from B or C.
OPT is unchanged on exit.
FAIL - INTEGER.
Before entry, IFAIL must be assigned a value. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0 . Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators

Errors detected by the routine:-

```
FAIL \(=1\) on entry, \(M\) or \(P\) or \(N \leq 0\).
IFAIL \(=2 \quad \mathrm{OPT}=2\) and \(\mathrm{M} \neq \mathrm{P}\).
FAIL \(=3 \quad O P T=3\) and \(N \neq M\).
FAIL \(=4\) OPT F1 and \(I Z<M\).
```

7. Auxiliary Routines

This routine calls the NAG Library routine P01AAF.
8. Timing

The timing increases with m, p and n.

9. Storage

There are no internally declared arrays.
10. Accuracy

Inner-products are accumulated using additional precision.
11. Further Comments None.
12. Keywords

Matrix Multiplication.
13. Example

The example program multiplies the 2×3 matrix B and the 3×2 matrix C together and places the result in the 2×2 matrix A.

Program

This single precision example program may require amendment
i) for use in a DOUBLE PRECISION implementation
ii) for use in either precision in certain implementations. The results produced may differ slightly.

C TO1CKF EXAMPLE PROGRAM TEXT
C NAG COPYRIGHT 1975
C MARK 4.5 REVISED
REAL A(2,2), B(2,3), C(3,2), Z(1)
INTEGER I, IFAIL, NDUT
DaTa NOUT /6/
WBITE (NOUT:99999)
DC $20 \mathrm{I}=1,3$
$B(1, I)=F L O A T(I)-1$.
$C(I, I)=B(1, I)$
$B(2, I)=\operatorname{FLDAT}(I)$ $C(I, 2)=B(2, I)$
20 CONTIHUE
IFAIL $=0$
CALL F01CKF(A, B, C, 2, 2, 3, Z, 1: 1, IFAIL)
IF (IFAIL.GT.0) GD TD 40
VRITE (NOUT,99998)
WRITE (NOUT, 99997) $A(1,1), A(1,2), A(2,1), A(2,2)$ STOP

FOICKF

13. Example

Program (contd)
40 WRITE (NODT,99996)
STOP
99999 FORMAT ($4(1 X /)$) 31H FO1CKF EXAMPLE PRDGRAM RESULTS: 2(/1X))
99998 FORMAT (9HOMATRIX M/1X)
99997 FORMAT (11H , 2FT.1)
99996 FORMAT (16H0EREOF IN FO1CKF) END

Results

FOICKI EXAMPLE PRDGRAM RESULTS

MATRIXA

$$
\begin{array}{lr}
5.0 & 8.0 \\
8.0 & 14.0
\end{array}
$$

F02WCF - NAG FORTRAN Library Routine Document

NOTE: before using this routine, please read the appropriate implementation document to check the interpretation of bold italicised terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

F02WCF computes the singular values and left- and right-hand singular vectors of a real rectangular $m \times n$ matrix $\mathrm{A}, \mathrm{A}=\mathrm{Q} D P^{T}$, where $\mathrm{Q}^{T} \mathrm{Q}=P^{T} P=I_{k}, k^{\prime}=\min (m, n)$ and $D=\operatorname{diag}\left(s v_{1}, s v_{2}, \ldots, s v_{k}\right)$ with $s v_{1} \geq s v_{2} \geq \ldots \geq s v_{k} \geq 0$.

2. Specification

SUBROUTINE F02WCF (M, N, MINMN, A, NRA, Q, NRQ, SV, PT, 1 NRPT, WORK, LWORK, IFAIL)
 C INTEGER M, N, MINMN, NRA, NRQ, NRPT, LWORK, IFAIL
 C real A(NRA,N), $\mathrm{Q}(\mathrm{NRQ}, \mathrm{MINMN}), \mathrm{SV}(\mathrm{MINMN}), \mathrm{PT}(\mathrm{NRPT}, \mathrm{N})$,
 C 1 WORK(LWORK)

3. Description

A real $m \times n$ matrix A may be factorised by the singular value decomposition (SVD) as:

$$
\mathrm{A}=\mathrm{Q}\left[\begin{array}{l}
D \\
0
\end{array} P^{T} \text { if } m \geq n\right.
$$

Or

$$
\mathrm{A}=\mathrm{Q}[D 0] P^{T} \text { if } m \leq n
$$

Here Q is an $m \times m$ orthogonal matrix, P is an $n \times n$ orthogonal matrix, and D is a diagonal matrix of order $k=\min (m, n)$, whose non-negative diagonal elements are the singular values of A.
Let \bar{Q} be the $m \times k$ matrix consisting of the first k columns of Q - these are the left-hand singular vectors of A. Let \tilde{P} be the $n \times k$ matrix consisting of the first k columns of P - these are the right-hand singular vectors of A. Then

$$
\mathrm{A}=\hat{\mathrm{Q}} D \tilde{P}^{T}
$$

This routine returns \tilde{Q} and \tilde{P}^{T} as well as the diagonal elements of D, arranged in descending order.
If the matrix A is of rank r then in exact arithmetic $\quad s v_{r+1}=s v_{r+2}=\ldots=s v_{k}=0$, $k=\min (m, n)$.
The routine first reduces A to upper triangular form by Householder transformations when $m \geq n$ and by Givens plane rotations when $m<n$, the upper triangular form is then reduced to bidiagonal form by Givens plane rotations and finally the QR algorithm is used to obtain the SVD of the bidiagonal form.

4. References

[1] WILKINSON, J.H.
Singular - Value Decomposition - Basic Aspects.
In Numerical Software - Needs and Availability'. Ed. JACOBS D.A.H., Academic Press, London, 1978.

5. Parameters

M-INTEGER.
On entry, M must specify the number of rows of A. $\mathrm{M} \geq 1$.

Unchanged on exit.
N - INTEGER.
On entry, N must specify the number of columns of $A . N \geq 1$.
Unchanged on exit.

MINMN - INTEGER.

On entry, MINMN must specify the minimum of M and N .
Unchanged on exit.

A - real array of DIMENSION (NRA,r)

where $r \geq N$.
Before entry, the leading $M \times N$ part of A must contain the matrix to be factorised.
Unchanged on exit, unless the routine is called with the same array supplied for both A and Q or for both A and PT.

NRA - INTEGER.

On entry, NRA must specify the first dimension of A as declared in the calling (sub)program. $\mathrm{NRA} \geq \mathrm{M}$.
Unchanged on exit.

Q - real array of DIMENSION (NRQ,s)

where $s \geq$ MINN .
On successful exit, the leading $M \times$ MINMN part of \mathbf{Q} contains the MINMN left-hand singular vectors of A , stored by columns.
The routine may be called with the same array supplied for both A and Q, provided that a different array is supplied for PT: In this case the leading $\mathrm{M} \times$ MINMN part of A is overwritten by Q, and NRQ must be equal to NRA.

NRQ - INTEGER.
On entry, NRQ must specify the first dimension of Q as declared in the calling (sub)program. $N R Q \geq$ M.
Unchanged on exit.
SV - real array of DIMENSION at least (MINN).
On successful exit, SV contains the MINMN singular values of A arranged in descending order.

PT - real array of DIMENSION (NRPT,t) where $t \geq N$.
On successful exit, the leading MINMN $\times \mathbf{N}$ part of PT contains the MINMN right-hand singular vectors of A, stored by rows.
The routine may be called with the same array supplied for both A and PT, provided that a different array is supplied for Q. In this case, the leading MINMN $\times N$ part of A is overwritten by PT, and NRPT must be equal to NRA.

RPT - INTEGER.

On entry, NRPT must specify the first dimension of PT as declared in the calling (sub)program. RPT \geq MINMN.
Unchanged on exit.

WORK - real array of DIMENSION (LWORK).

On successful exit, WORK (1) contains the total number of iterations taken by the QR algorithm. Otherwise WORK is used as workspace.

LWORK - INTEGER.

On entry, LWORK must specify the length of the array WORK as declared in the calling (sub)program. LWORK must be at least $3 \times$ MINMN, but unless M is close to N and provided that sufficient storage is available, then
it is strongly recommended that LWORK be at least ($3 \times$ MINN + MINN ${ }^{2}$).
If M is not close to N then the routine is likely to be considerably faster with the larger value of LWORK. See Section 8.
Unchanged on exit.

IFAIL - INTEGER.

Before entry, IFAIL must be assigned a value. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0 .
Unless the routine detects an error (see next section), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:-
IFAIL $=1$
On entry,
$\mathrm{M}<1$, or
$\mathbf{N}<1$, or
$\operatorname{MINMN} \neq \min (M, N)$, or
NRA $<\mathrm{M}$, or
$\mathrm{NRQ}<\mathrm{M}$, or
NRPT < MINMN, or
LWORK $<3 \times$ MINN.
IFAIL > 1
The QR algorithm has failed to converge to the singular values in $50 \times$ MINMN iterations. In this case SV(1),SV(2),..SV(IFAIL-1) may not have been correctly found and the remaining singular values may not be the smallest singular values. The matrix A has nevertheless been factorised as $A=Q B P^{T}$ where B is an upper bidiagonal matrix with SV(1),SV(2),,.,SV(MINMN) as its diagonal elements
WORK (2), WORK (3),.., WORK(MINMN)
as its super-diagonal elements.
This failure is not likely to occur.

7. Auxiliary Routines

This routine calls the NAG Library routines F01LZF, F01QAF, F01QBF, F02SZF, F02WAY, F02WBY, F02WBZ, F02WCW, F02WCX, F02WCY, F02WCZ, P01AAF, X02AAF and X02AGF.

8. Timing

The following figures are intended only to be an approximate guide. They are based upon the assumption that the QR algorithm takes an average of two iterations per singular value.

If the routine is called with LWORK $\geq(3 \times$ MINMN + MINMN ${ }^{2}$), then the time taken is approximately proportional to $3 n^{2}(m+4 n)$ when $m \geq n$, and $5 m^{2}(n+2 m)$ when $m<n$.
If the routine is called with LWORK $\leq(3 \times$ MINMN + MIN N^{2}), then the time taken is approximately proportional to $8 n^{2}\left(m+\frac{1}{2} n\right)$ when $m \geq n$, and $10 m^{2}\left(n+\frac{1}{2} m\right)$ when $m<n$.
The same approximate proportionality factor applies in each case.

9. Storage

There are no internally declared arrays.

10. Accuracy

The computed factors $\hat{\mathbb{Q}}, D$ and \tilde{P}^{T} satisfy the relation

$$
\tilde{\mathrm{Q}} \tilde{D}^{T}=\mathrm{A}+E,
$$

where

$$
\|E\|_{2} \leq c \times_{e p s} \times\|\mathrm{A}\|_{2}
$$

ep being the machine accuracy (see NAG Library routine X02AAF) and c a modest function of M and N. Note that $\left\|A_{2}\right\|=s v_{1}$.

11. Further Comments

Singular vectors associated with a zero or multiple singular value, are not uniquely determined, even in exact arithmetic, and very different results may be obtained if they are computed on different machines.
This routine is column-biased and so is suitable for use in paged environments.

12. Keywords

$\mathrm{M} \times \mathrm{N}$ Real Matrix, Rank, Singular Value Decomposition.

13. Example

To obtain the singular value decomposition of the matrix A given by

$$
\mathrm{A}=\left[\begin{array}{rrrr}
22.25 & 31.75 & -38.25 & 65.50 \\
20.00 & 26.75 & 28.50 & -26.50 \\
-15.25 & 24.25 & 27.75 & 18.50 \\
27.25 & 10.00 & 3.00 & 2.00 \\
-17.25 & -30.75 & 11.25 & 7.50 \\
17.25 & 30.75 & -11.25 & -7.50
\end{array}\right]
$$

WARNING: This single precision example program may require amendment for certain implementations. The results produced may not be the same. If in doubt, please seek further advice (see Essential Introduction to the Library Manual).

13.1. Program Text

C F02WCF EXAMPLE PROGRAM TEXT
C MARK 8 RELEASE. NAG COPYRIGHT 1979.
C .. LOCAL SCALARS.
INTEGER I, IFAIL, J, LWORK, M, N, NIN, NUT, NRA, NRPT, NRQ
.. LOCAL ARRAYS ..
REAL A(10,6), PT (6,6), $\mathrm{Q}(10,6), \operatorname{SV}(6), \operatorname{TITLE}(7), \operatorname{WORK}(28)$
C . SUBROUTINE REFERENCES ..
C FO2WCF
DATA NIN /5/, NOUT /6/
READ (NIN,99999) TITLE
WRITE (NOUT,99998) (TITL E(I),I=1,6)
$\mathrm{NRA}=10$
NRQ $=10$
RPT $=6$
WORK $=28$
$\mathrm{FFAIL}=0$
$\mathrm{M}=6$
$\mathrm{N}=4$
DO $20 \mathrm{I}=1, \mathrm{~N}$
READ (NIN,99997) (A(J,I),J=1,M)

20 CONTINUE

CALL F02WCF(M, N, N, A, NRA, Q, NRQ, LV, PT, RPT, WORK,

```
    * LWORK, IFAIL)
    WRITE (NOUT,99996)
    WRITE (NOUT,99992) ((A(1,J),J=1,N),I=1,M)
    WRITE (NOUT,99995)
    WRITE (NOUT,99992) ((Q(I,J),J=1,N),I=1,M)
    WRITE (NOUT,99994)
    WRITE (NOUT,99992) (SV(I),I=1,N)
    WRITE (NOUT,99993)
    WRITE (NOUT,99992) ((PT(I,J),J=1,N),I=1,N)
    STOP
99999 FORMAT (6A4, IA3)
99998 FORMAT (4(1X/), 1H , 5A4, 1A3, 7HRESULTS/1X)
99997 FORMAT (6F7.2)
99996 FORMAT (9H MATRIX A)
99995 FORMAT (9H0MATRIX Q)
99994 FORMAT (16HOSINGULAR VALUES)
99993 FORMAT (12H0MATRIX P**T)
99992 FORMAT (IX, 4F9.3)
    END
```


13.2. Program Data

FO2WCF	EXAMPLE	PROGRAM DATA			
22.25	20.00	-15.25	27.25	-17.25	17.25
31.75	26.75	24.25	10.00	-30.75	30.75
-38.25	28.50	27.75	3.00	11.25	-11.25
65.50	-26.50	18.50	2.00	7.50	-7.50

13.3. Program Results

F02WCF EXAMPLE PROGRAM RESULTS

MATRIX A			
22.250	31.750	-38.250	65.500
20.000	26.750	28.500	-26.500
-15.250	24.250	27.750	18.500
27.250	10.000	3.000	2.000
-17.250	-30.750	11.250	7.500
17.250	30.750	-11.250	-7.500
MATRIX Q			
0.929	0.143	0.071	-0.143
-0.143	-0.714	0.143	-0.286
0.071	-0.143	0.929	0.143
0.143	-0.286	-0.143	-0.714
-0.214	0.429	0.214	-0.429
0.214	-0.429	-0.214	0.429
SINGULAR	VALUES		
91.000	68.250	45.500	22.750
MATRIX PR			
0.308	0.462	-0.462	0.692
-0.462	-0.692	-0.308	0.462
-0.462	0.308	0.692	0.462
-0.692	0.462	-0.462	-0.308

