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Abstract 

The goals of this research are to study to what extend the air in the narrow geometry 
between tyre and road will influence the vibrations and sound radiation of the tyre. To 
achieve these goals two different models are made using the "low reduced frequency 
model" described by Beltman. The first model consists of a patch vibrating just above 
the ground and the second model consists of a patch vibrating inside a tube. Both 
models are used in combination with input data from measurements and calculations 
to study the effect for different mechanisms that play a role in tyrelroad noise. The 
main concliwions axe that the air in the narrow geometry has an effect on the vibration --- 

of the tyre and that the radiated somd is not directly affected by the narrow geometry, 
but indirectly by the change of the vibration of the patch due to the narrow geometry. 
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Chapter 1: Introduction 

1.1: General Introduction 
Noise, which is unwanted sound, has become an environmental pollution that affects 
most people's health, comfort or general well being during the last decades. 
For example, it was concluded by Stanners & Bourdeau (1995 [13]) that 
approximately 20% of the population in the European Union is exposed to noise 
levels that are considered to be intolerable and 60% to levels which are considered as 
undesirable. Not even the remaining 40% would be enjoying a good acoustical 
enviroriient, since the exposure levels would then need io be below approximaiele:y 45 
&(A). 
Road traffic noise is traditionally associated with engine and exhaust noise of 
vehicles, but during the later part of the 2oth century the emission and propagation of 
noise from these sources is partly reduced, while at the same time the noise emission 
fiom the tyrelroad interaction on a relative scale becomes more and more prominent. 
Now it appears that tyrelroad noise is the component that needs to be reduced more 
than anything else! This tyrelroad noise is the main source of the noise if a car drives 
faster than 50 kmlh and if a truck drives faster than 80 kmlh [3]. 
There are two main mechanisms involved in tyrelroad noise. 
The first one is the vibration mechanism, where the vibration can be introduced by 
different xech2nisms (sticWsnap, tjjre t r e d  i=pact, rmd r ~ u g h e s s  etc). 
The second mechanism is related to aerodynamics, i.e. the air that flows around the 
tyre will cause noise. Examples of this mechanism are air turbulence and air-pumping. 
All the mechanisms will be discussed in greater detail in Chapter 2. 
In the last decade improvement in modeling and understanding of the problem is 
achieved for instance at the university of Chalmers. The model developed there is at 
this moment (2004) already quite accurate in predicting the radiated sound for tyres 
on normal road surfaces, but on smooth surfaces (i.e. highways in Germany and 
France) there is still a significant deviation between the results from the 
measurements and the model especially for high frequencies. A part of the reason of 
this difference is that adhesion and stick-slip are not modeled yet. 
Further, what is not modeled yet is the effect of the surrounding air around the tyre on 
the tyre and most important the air in small gapsllayers between the tyre and the road. 
How much the tread blocks and the vibrating walls inside tyre grooves are affected by 
this air is still unknown. In this report two models will be developed that can simulate 
these two situations. 
Knowing this all, the subject of this research can be defined as: vibrations in "narrow" 
geometries. 
First the project objectives will be given and there will be a brief discussion of the 
mechanisms that are related to tyrelroad noise. After this a brief description of the 
model developed at the Chalmers University will be given. Next the report will go on 
with a solution for two models that will be used to draw conclusions. The first model 
will be of a block vibrating just above the ground and the second will be a patch 
vibrating in a tube. Finally conclusions and recommendations will be given. 



1.2: Project objectives 

The objectives of this project are: 
* To investigate to what extent the dynamic load of the surrounding air will influence 
the vibrations on a tyre during tyrelroad interaction. 
* To investigate to what extent the narrow geometry will influence the radiation from 
the contact patch. 

To be able to say something about the objectives two different models will be used. 
Model A is a vibrating object in fiont of a rigid surface and model B is a patch 
vibrating in a tube. 
These two modeis are both "simple" models that can be used to study some general 
parameters such as amplitude, distance between object and surface, forces, noise 
radiation etc. 



Chapter 2: Overview of Tyrelroad noise 

An overview of the tyrelroad noise in combination with the related generation 
mechanisms and the Chalmers model will be given as an introduction into the back 
ground of this report. 

2.1: Tyrelroad noise introduction 

2.1.1: Tyrehoad noise as part of vehicle noise 
Vehicle noise can be divided in 3 parts; wind turbulence noise (chassis), power unit 
noise (i.e. engine, gearbox and differential) and tyrelroad noise. From the general 
frequency characteristic of the total noise of a vehicle (figure 2.1 [3]) it can be 
concluded that there is a peak around 1000 Hz. 
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Figure 2.1: The peak around 1 OOOHz (Normalized to -8 dB) [3] 

Above a certain driving speed the tyre noise starts to dominate over power unit noise. 
This "crossover" speed is for each car different, but for a normal car it is around the 
50 km/h.[3]. 

2.1.2: Wave types along the circumference of the tyre 
The waves in the circumference of the tyre will be discussed, because these are 
important for the understanding of the total problem and for the assumptions made in 
the model(s). 
The vibrations of the belt consist of three types of waves ([3] and [4]). 
Typel: This type mainly represents the radial motion of the belt. At low frequencies it 
corresponds to membrane waves (loss factor 0.05-0.1), which at higher frequencies 
(250 Hz) are changed into bending waves (loss factor 0.2-0.45), which are a better 
"radiator" because of the higher loss factor. 
Type 2: This type corresponds to longitudinal waves similar to waves on a beam. This 
type has a cut off fi-equency given by the ring frequency, which is 400 Hz for usual 
passenger car tyres). 
Type 3: This is a shear wave where the outer surface of the soft rubber tread layer and 
the stiff steel reinforced belt are vibrating out of phase relative to each other. 

2.2: Tyrelroad noise sources and generation mechanisms 
In the next part the tyrelroad noise generation mechanisms and the amplification or 
reduction mechanisms will be discussed. It is important to mention what type of 



mechanisms there are, because they are the inputs for the systems that are going to be 
studied here. 

2.2.1: Tyrehoad noise generation mechanisms 
Tyrelroad noise generation mechanisms can be divided into 2 main groups [3]:  
1) Vibrational (structure-borne) 

Impact mechanisms 
Tyre tread impact: Impact of the tyre tread blocks which cause radial and 
tangential vibrations in the tyre tread and belt, spreading to the sidewalls. 
Rnn/J t ~ t u v o  impact: Impact ~f rmd slxfare texture on the % y e  tread, which have L."-- "- V "  ", - 
the same effect as the impact of the tyre tread blocks. 
Running deflection: Deflection of tyre tread at leading and trailing edges due to the 
non-circular shape of a mounted tyre, giving the beltlcarcass vibrations. 
Adhesion mechanisms 
Sticklslip tread element motions relative to the road surface, causing tangential tyre 
vibrations, also called "scrubbing" 
Rubber to road sticklsnap (adhesive effect); giving either tangential or radial 
vibrations 

2) Aerodynamical (air-borne) 
Air displacement mechanisms 
Air turbulence: Turbulence around a tyre due to the tyre displacing air when 
rolling on the road and air dragged around by the spinning tyrelrim. 
"Air-pumping": Air displaced intolout of cavities in or between tyre tread and road 
surface, without necessarily being in resonance 
Pipe resonances: Air displacement in grooves ('pipes") in the tyre tread pattern 
amplified by resonances, so-called A12 and 114 resonators 
Helmholtz resonance: Air displacement intolout of connected air cavities in the 
tyre tread pattern and the road surface amplified by resonances 

Research of noise-texture and vibration-noise relations has been performed by 
Sandberg & Descornet [3]. A result from this research is that at low frequencies the 
vibration mechanism is most important and that at high frequencies the aerodynamical 
mechanism is most important. 
Almost all the mechanisms play a role in this report, but the most important 
mechanisms for this report are sticklslip, air-pumping, running deflection and 
sticldsnap. These can be seen as a direct input for the parameters of the models. 

2.2.2: Amplzj5cation or reduction mechanisms 
Here a summary of the amplification and reduction mechanisms that play a role in 
tyrelroad noise is given. A more detailed description of each part can be found in [3]. 
- Torus cavity resonance in the tyre tube 

Resonance of the medium inside the tyre. 
- Horn effect 

The amplification because of the "horn" formed by the tyre and the road. 
- Mechanical impedance influence 

The influence of the stiffness/impedmce of the road to tyre noise. 
- Sound radiation JFom the road 
- Acoustical impedance effect 

How voids in the road influence the absorbing of the noise. 
- Tyre resonance 



2.3: Tyremoad noise modeling 
There are several institutes that develop models that model tyrelroad noise. In general 
there is still some discussion about the modeling of the air pumping mechanism, 
because it is not clear how to model it properly. For instance M.J.Gagen (1999) [9] 
concludes that the monopole theory and the 114 theory, which are both used for 
squeezed cavity, are not a complete explanation for the noise. He concludes that the 
squeezed acoustic wave equation is maybe a better way to model the squeezed cavity. 
He shows that the usual assumption of a small amplitude acoustic wave equation and 
the acoustic monopole theory derived from this equation is incorrect for squeezed 
systems, because the amplitude of the pressure and density are so large that the small 
amplitude acoustic monopole theory and the W4 theory are not good approaches 
anymore. There is however still a huge discussion about these conclusions. This 
report is more focused on the effect of the vibration of walls than the effects due to 
the compression of the cavity. However later on some effects studied by Gagen [9] 
(i.e. the increased density) maybe can be taken into account to improve the model for 
the tubeslgrooves of the tyre. 
In the Chalmers model (Krister Larsson [S]) the air pumping is modeled using the 
tread deformation as an input. The volume change between road and tyre caused by 
the local deformation of the tread is used as an input to calculate (some of) the air 
pumping. Hence, the air pumping mechanism is sometimes termed as local 
deformation by Chalmers. 

2.3.1: The Chalmers model 
The Chalmers model is one of the so-called "complete" models, which means that it 
tries to simulate the total tyrehoad noise problem. It consists of 3 main parts: the tyre 
model, the contact model and the radiation model. 
The tyre model is a flat double-layered plate supported by springs where the top layer 
represents the tread cap and the second layer represents the rim. The springs represent 
the support by the sidewalls and the air load. Each layer is modeled as an elastic solid, 
governed by elastic field equations. 
The contact model consists of a set of Green's functions pre-calculated with the tyre 
model, which define the relation between the contact force and the deformation. In the 
latest contact model the coupling between all contact points are taken into account 
using an elastic halfspace. 
The radiation model consists of 2 multipoles, which reduce the problem to a 2D 
radiation-model. The Horn effect and the reflection properties of the road are taken 
into account. 

In this report the focus will be on the problem that at this moment the model is in 
some kind of "vacuum". The effect of the surrounding air on the vibrations of the tyre 
is not modeled. To find if there is an effect two models will be discussed and later on 
conclusions about the size of the effect will be made using those two models. 



Chapter 3: Literature study of air behavior in small gaps 
The literature is found in 3 different ways: handed out by the coach at the department, 
the Internet and library in the department. Several papers are found but the papers of 
Gagen and Beltman appeared to be very useful. The paper of Gagen [3] is about the 
modeling of the squeezing of a tyre cavity using the squeezed acoustic wave equation. 
The paper of Beltman focuses more on a patch vibrating above a plate and more of 
those examples. From this paper the low reduced frequency model will be discussed, 
because this model will be used to develop the models that can be used to say 
somet!-iing the objectives of this report. 

3.1: The low reduced frequency model 
In the paper by Beltman [l]  a model is introduced which is called the low reduced 
Ji.equency model. It is a model with dimensionless parameters that is derived from the 
linearized Navier Stokes equations, the equation of continuity, the equation of state 
for an ideal gas and the energy equation. Some assumptions are made from which the 
most important ones are: small sinusoidal perturbations, the acoustic wavelength is 
large compared to the length scale (1) and the acoustic wavelength is large compared 
to the boundary layer thickness. The length scale can for instance be seen as the 
distance between a patch and the ground. The solution strategy is based on the fact 
thzt the presswe is constmt over the cross section. This mems th& the t e q e r z t r e  
perturbation can be solved from a Poisson type of equation after which the velocity 
and density profile can be calculated in the same way. These three equations can now 
be inserted in the equation of continuity and after integration with respect to the cross- 
sectional coordinate(s) the basic formula of the low reduced frequency is found. 

First the basic equations are formulated, cf. [I]. 
av - 4 -- 

po - = -VP + (-p + q)V(V . V) - pvx ( v x  5) : The linearized NS eq. (1) 
at  3 

aP po ( v .  F) + - = 0 : The equation of continuity. 
at 

j7 = ~R,T : The equation of state for an ideal gas. (3) 
aT aF p C - = a T  + - : The energy equation. 

O at at 
where F is the velocity vector, p is the pressure vector, T is the temperature, p i s  the 

density, p, is the mean density, q is the viscosity,p is the bulk viscosity, R, is the 

gas constant, A is the thermal conductivity, C, is the specific heat at constant 

pressure, t is the time, v is the gradient operator and is the Laplace operator. 

To get to these equations the following assumptions are made: 
There is no internal heat generation, there is a homogeneous medium, there is no 
mean flow, there is a laminar flow and there are small sinusoidal perturbations that 
can be formulated as: 

iu2 v = cove ( 5 )  

T=To(l  + ~ e ' " )  (6)  

j7=po(1+ pe'") (7) 



p = p 0 ( 1  + pei") (8) 

where v is the dimensionless velocity, c, is the undisturbed speed of sound, T, is the 

mean temperature, T is the dimensionless temperature, p, is the mean pressure, 

p is the dimensionless pressure, p is the dimensionless density. 

The model is a model with dimensionless parameters from which the shear wave 
number (s) and the reduced frequency (k) are the most important ones. These are 
defined as: 

ul k=-  
CO 

(10) 

where 1 is the length scale and o is the angular frequency. 

The low reduced frequency model is derived from the (dimensionless) basic equations 
under the additional assumptions: k<<l, which means that the acoustic wavelength is 
large compared to the length scale 1 and Ms<<l, which means that the acoustic 
wavelength is large compared to the boundary layer thickness. 
With these additionai assumptions the basic equations resuit in [ i j : 

where vPd is the velocity in the propagation coordinate(s) direction, 7 is the ratio of 

specific heats, V P d  is the gradient operator in the propagation coordinates, ACd is the 
Laplace gradient in the cross-sectional coordinates and o is the square root of the 
Prandtl number. 

The solution strategy is based on three steps: 
1) The pressure is a function of the propagation coordinates only so the pressure is 

constant on a cross section or across the layer thickness. This is also the reason 
why low reduced frequency models are sometimes referred to as constant pressure 
models. 

2) Using the fact that the pressure does not vary in the thickness direction of the layer 
the temperature perturbation can be solved from a Poisson type of equation. 

3) After the solution from the temperature profile is obtained, the velocity and density 
profile can be obtained as well. 

The expressions for density, temperature and velocity are now inserted into the 
equation of continuity. Before quoting the formulas the boundary conditions needed 
to solve the problem can be defined: 



- The continuity of velocity: The tangential velocity at the walls is zero, so a no- 
slip condition is imposed. The normal velocity is equal to the velocity of the 
wall(s) [I]. 

- The temperature boundary conditions are isothermal walls or adiabatic walls in 
common boundary conditions. For an isothermal wall the temperature 
perturbation is zero, but for an adiabatic wall the gradient of the temperature 
normal to the wall vanishes [I]. 

- The pressure at the end of a tube or layer can be defined (for instance zero or with 
an end-impedance). 

Now the resulting basic equations after integration with respect to the cd-coordinate 
are: 

xPd are the coordinate(s) in the 
% is the function which states 

where xCd are the coordinate(s) of the cross section, 
propagation direction, ACd the cross-sectional area, 
how and which part of "the construction" vibrates, A is the function describing 
velocity and temperature profiles, C is the function describing the temperature profile, 
n(so) is the polytropic constant, B is the function accounting for viscous or thermal 
effects, r is the propagation constant and D is the function describing the 
temperature profile. 

In general the absolute value ofn(so) goes to 1.4 for high values of (so) (>lo) and 
for low values of (so) ( 4 )  the absolute value goes to 1. The absolute value of A has 
a parabolic profile for low shear wave numbers (viscous forces dominate) and for 
high shear wave numbers it has a flat velocity profile (inertial forces dominate). 
For isothermal walls A and C are directly related, ~ ( s o , x ~ ~ ) = ~ ( s o , x ~ ~ )  and for 
adiabatic walls c(so,xCd)= -1. For isothermal walls D and B are directly related, 
D(so)=B(so) and for adiabatic walls D(so)= - 1. 
By Beltman [I] it is concluded that the low reduced frequency models can be used in 
most viscothermal problems under normal circumstances (atmospheric conditions and 
normal temperatures). The h l l  linearized Navier Stokes model is only needed tinder 
extreme conditions, because for "normal" conditions there are more simple models 
available that also give accurate results. 



Chapter 4: Model A: a vibrating object in front of a rigid surface 

In this chapter model A: a vibrating object in front of a rigid surface will be discussed. 
This model is developed to simulate the forces on the tyre treads at the trailing and 
leading edge during driving. The tyre treads are vibrating just above the ground due to 
the mechanisms discussed in chapter 2. The dimensions of the object of the model 
will be the same as the dimensions of an ordinary tyre tread blocks. At the end of this 
chapter some general conclusions about the model will be made. 

4.1 nm-" 1 
I I 1vxuue1 

The model layout is shown in figure 4.1. Here the mean distance betweer, the plate 
and the fixed surface is defined as 2ho. The amplitude will be defined as hoh so the 
distance between the plate and the fixed surface is defined as: 

h(t)=ho(2 + helwt) (22) 
Where h is the dimensionless amplitude. 

Figure 4.1: Layout ofproblem I (see also appendix B and [I])  

where kx is defined as: 

alx kx =- 
co 

(23) 

As stated in chapter 3 boundary conditions for the pressures at the edges are needed to 
solve the problem. Because it is a model with dimensionless parameters the boundary 
conditions are introduced at x=+/- kx and y=+/- akx where kx is the wave number and 
a is 1,/1,, where 1, and 1, are the half-lengths of the plate (dimensions: 21, x 21,) (see 
also appendix B). At the boundaries, which are here the ends of the plate, it is 
assumed that the pressure is zero. This is a simplification, since the pressure 
distribution outside the gap will be affected by the pressure distribution in the gap and 
vice versa. For narrow gaps the magnitude of the pressure perturbation in the gap is 
very large compared to the magnitude of the pressure perturbation outside the gap, so 
the boundary condition p=O is a good approximation, which is confirmed by Beltman 
[ll. 
This all results in the formula for a rectangular plate (see appendix B for the 
derivation): 

Formulas for the pressure, the force on the plate and the transfer function are 
formulated from these equations using the boundary conditions. The results from 
these formulas are dimensionless pressures and forces. To get the real pressures the 



dimensionless pressures must be multiplied by p, (mean temperature outside). To get 
the real forces on the patch the dimensionless force must be multiplied by l,l,p, [I]. 
Beltman has done experiments to validate the model from which the results produced 
(experiments and model) are shown in [I]. He concludes that the low-reduced 
frequency model gives a good description of the shift of the eigenfrequencies and 
pressures of the problem. 

4.2: Validation m-filelmodel 
The formulas from the literature are implemented in Matlab and are validated by 
reproducing the results shown in [I] at page 74,75 and 76. The validation can be seen 
in appendix A. 
Rhe conclusion from the validation can be that the isothermal wall approach gives a 
better estimation of the pressures and the eigenfrequencies of the experiments. It 
looks like the model under predicts the pressures for small gaps if the adiabatic, 
inviscid system is used and over predicts the eigenfrequency. That is the reason why 
in this report the approach of the isothermal, viscid system will be used. 

4.3: The usefulness of the low frequency model for the tyrelroad noise problem 
To be sure that the low reduced frequency model is useful to study tyre treads 
vibrating just above the ground two things are checked: 

1) First there slre 2 restrictions to 2 dimension!ess sum-bers; 
k<< 1 and Ws<< 1 

2) Second there is a boundary condition for the pressure at the edges (p=O), 
which is a good approximation only if the pressure distribution outside the gap 
is very small compared to the pressure in the gap. 

To study these limitations some typical values of tyre treads are chosen. Because the 
model is suitable for a patch vibrating above the ground there is chosen to model tyre 
tread blocks instead of the whole tread. In general the length and width of a tyre tread 
block are about 20 mm x 20 mm maximum. 
The frequency range of interest is between 0 and 4000 Hz, because in this region all 
the main effects of tyrelroad noise appear and also the eigenfrequency of interest of a 
"normal" tyre tread block is in this region [8]. 

4.3.1: The dimensionless factors k and k/s 
k And Ws are checked for the frequency range of 0-4000 Hz. 
What can be concluded is that Ws is always much smaller than 1. The problem is the 
condition k<<l, because this becomes critical (>0.2) for higher frequencies if the gap 
is larger than 5mm. It is assumed that the model still gives an indication for gaps from 
5 mm - 10 mm. For larger gaps the model will get less and less valid, but gaps larger 
than 10 mm are not interesting for the effects studied in this report. 

4.3.2: pressure distribution 
To check the boundary condition p=O a plot is made for four different gap heights. In 
figure 4.2 the line of the maximum real pressure (po*p) divided by the real amplitude 
(hob) is plotted, so for instance if the gap is 0.1 mm and the amplitude is 0.Olmm then 
the red maximum pressme would be the pressure in figure 4.2 multiplied by 0.01. 



Exaiples of the pressme distrib~tior, or, the tyre head: 

x ?05 2h0=0 Imm 2h0=3 1 mm 

Figure 4.3: Pressure distribution/amplitude: lx=IO, ly=IO, 2*h0=1 mm 

It can be concluded that the low reduced frequency model can be used if the 
amplitude of the tread is not to small, because otherwise the boundary condition of 
p=O is not valid anymore. In appendix G this conclusion is confirmed using model B, 
which will be discussed in chapter 5. 
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4.4: Results 
It is important to define interesting parameters for the whole region of the tyrelroad 
noise problem to produce interesting results. 

Size vibratingpatch 
The size of the vibrating patch must be of the same size as the blocks of a 
normal tread. It is chosen to study 2 sizes: lOxlOmm and 2Ox20mm. 
Size gap 
The model is valid up to gap sizes with a maximum of 5-10 mm, so values 
between 0 and 10 are chosen: 0. lmm, 0.5mrn, Imm, 2mm, 5mm and 1 O m .  
-Amplitude 
The amplitude of the tyre tread is hard to determine. "Assuming small 
amplitudes" it is chosen to normalize the pressure and the force using the 
amplitude, so later on it is easy to determine the pressure and force if the 
amplitude is known from further research. 
Frequency 
For the frequency the range 0-4000 Hz is chosen (see 4.3). 

Now for each size of the tread block the force and the eigenfrequency plot will be 
shown. For the calculation of the eigenfrequencies the data for the mass and stiffness 
of the springs from [8] are used. In this report the tread block is supported with 2 
springs that each have a stifhess of 6.946 lo4 Nlm. The mass of the tread block is 
3.63 kg. This is of course only general data, but it is good enough to get an idea 

Figure 4.4: Force/mm amplitude against the zequency for a 10x1 Omm patch - 
The gap varies between 0.1 m h  and 16mm. The smallest gap gives the highest force. 

The eigenzequency of the 10x1 Omm patch plotted against the gap size. 
(eigenfiequencyj?om FE calculation with the same parameters: 31 13.6Hz [8]) 



Figure 4.5: Forcehm amplitude against the frequency for a 2Ox20mm patch 
The gap varies between 0. lmm and I Omm. The smallest gap gives the highest force. 

The eigenfiequency of the 2Ox20mm patch plotted against the gap size. 
(eigenfiequency fiom FE calculation with the same parameters: 31 l3.6Hz [8]) 

Figure 4.6: Transfer function fiom force to displacement of 3 different heights for a 
patch of 2Ox2Omm. The smaller the gap, the more eigenfiequency 
changes. (dB re I N) 

In figure 4.6 and 4.5 part two an eigenfrequency around the 3000 Hz is shown, but 
this eigenfrequency is not visible in part one of figure 4.5. This is because the input in 
part one sf figme 4.5 is constant over the whole fieq~ency raEge, which means that 
the mass-spring system properties are not taken into account in this figure. 



4.5: General conclusions 
The first conclusion is that the eigenfrequency decreases with decreasing gap size and 
that this effect increases with an increasing patch size. The explanation for this is that 
the air in the gap acts like an "added" mass, so the eigenfrequency (the 

eigenfrequency of a mass-spring system: f - ) will decrease. The second 
conclusion is that the transfer function is more damped if the gap size decreases. This 
is due to the extra damping added by the increased viscous and thermal effects in the 
air. The third conclusion is that the force increases rapidly if the gap sizes get smaller 
for given amplitude. The force is plotted in the graphs as Nlrnrn. To make real 
conciusions about the force the ampiitude of a tyre tread block shouid be known. At 
this moment there is no measured data available of the amplitude of a rubber block 
due to adhesion, because it is difficult to measure the adhesion, because it is hard to 
mount the transducers near the contact where the adhesion force acts. There are 
measurements available from tyres, but in these measurements the effect of the air 
layer is included, so it is difficult to extract from these experiments what size the 
amplitude would be without the air. 
At the end of the layer there is no pressure perturbation due to the boundary condition 
p=O. It would have been useful to rewrite the formulas to include an end-impedance 
("pressure divided by velocity" at the edges), but there are two problems with this 
approach. First to find a good end-impedance, because of the non-linear pressure 
profiie and second the whoie formula is based around the assumption of p=O and so 
the whole formula must be formulated at a different way. 
It has been proven in this chapter that the model is a powerful tool to study a part of 
the air-effect on the tyrelroad noise problem. 



Chapter 5: Model B: a patch vibrating in a tube 

The model that will be developed in this chapter can predict the forces on a patch 
vibrating inside a tube and it can predict the far field sound in free air. This model can 
be used to simulate the vibration of the walls in tyre grooves. The formulas for a tube 
from the low reduced frequency model (appendix C) are used to develop this model, 
but also a paper from Tijdeman [5] and the book Theoretical Acoustics (1968) [6] are 
used for this problem. 

5.1: Model 
The model looks like this: 

Figure 5.1: 3 parts coupled; with dimension and dimensionless 

The tube is divided in three parts as can be seen in figure 5.1. For the part with a 
vibrating patch and for the parts without vibrating patch there is a separate calculation 
of the pressure with the low reduced frequency model. 
First the dimensionless parameters are defined: 

lx, . w 
kx, =- (27) 

co 
lx2 - w  

kx, =- (28) 
c 0 

Ix, . w 
kx, =- (29) 

co 
The basic formula is formulated as (chapter 3): 

A ~ ~ P ( x ~ ~ )  - k2r2p(xpd)  = -ikn(so)r2% (16) 
It is assumed that the pressure only depends on the x coordinate [I]. The velocity 
depends on all the coordinates, because: 

- i 
vPd (s, xpd, xCd) = - A(S, xCd)Vpdp(xcd) (30) 

ky 

For the tubes the basic equations are: 



where (32) is for the part with one vibrating patch (L is dimensionless amplitude of 
the patch = Lo (2 + ~e '" ) ) and formula 33 is for the parts without vibrating patch. 
The exact derivation of the formulas is shown in appendix C. 
For both a solution of the pressure must be found. From the literature [I] and [6] it is 
concluded that a standard solution for the pressure for a tube without vibrating patch 
is of the foim: 

p = ~ e - ~  + Berx (34) 
In this solution one-dimensional wave propagation with one wave traveling from !eft 
to right and one vice versa are included. For the part with vibrating patch an extra 
factor is added to the basic formula (34) to make it fit to (32). This results in the next 
three formulas are available for the different parts: 

Together there are six unknown variables in the equation: Al,A2,Bl,B2,Cl and C2. 
But two extra unknowns, pxl and p ~ ;  the pressures at the coupling point, are 
introduced by the fact that the parts are coupled together. So in total there are eight 
unknowns, which means that eight boundary conditions are needed. 

1) pop1 (-kxl)/covl(-kxl)=Z for an open end. (3 8) 
vl(-kxl)=O for a closed end. (3 9) 

2) ~l(kxl)=pxl (40) 
3) p2(-kx2)=px1 (41) 
4) p2(kx2?=px2 (42) 
5) p3(-kx3)=px2 (43) 
6) pop3 (kx3)/cdJ3 (kx3)=Z (44) 
7) S1*vl(kXl)=S2*v2(-kx2) (45) 
8) S2*v2(k&S3 *v3(-k,> (46) 

Where S1, S2 and S3 are the cross-section areas of the tubes and Z is the end- 

ap2 - 3 ~ 3  if the '' - '' and (46) reduces to - - - impedance. Formula (45) reduced to - - - ax ax ax ax 
tubes have the same cross-section area. In (38) and (44) Z is the same, but the sign is 
different, which is because the velocity changes sign. Also the dimensionless pressure 
is multiplied by po and the dimensionless speed by c,. This is necessary, because the 
end-impedance is based on real pressures and real velocities. 
With these conditions a basic A*b=C system can be set up to determine the value of 
the variables. It must be mentioned that these values are all frequency dependent. 
If p3(kd)=O and pl(-kxl)=O, so if it is assumed that the pressure is zero at the 
beginning and end of the tube, then the following equation follows: 



Of course it is possible for "easy" boundary conditions (pl(-kxl)=O and p3(kd)=0) to 
solve the problem analytically. The procedure for this is shown in Appendix D. For 
more difficult boundary conditions (with end-impedances etc) it becomes a lot more 
work to solve it analytical. It is beyond this report to look at that complicated time 
consuming analytical solutions. 
For the system with two open ends the next A*b=C system is used to calculate the 
values of the variables: 

A1 

A 2  

Bl 

E2 
c, 
c 2  

P x l  

, P x z  

For the system with one open end and one closed end the following system is used to 
calculate the values of the variables: 

As can be seen in the defined systems there is one unknown extra in the matrix called 
Z. This is a function that describes how the pressure divided by velocity is defined at 



the end of the tube(s). It is interesting to implement an end-impedance, because it is 
then possible to calculate a velocity and pressure at the ends of the tube, so it is 
possible to say something about the radiated sound from the tube. Another benefit is 
that the predicted pressure inside the tube will be more accurate. The expression for Z 
for an end-impedance of a tube with a rectangular cross-section will be discussed in 
this report. 
First it is important to say that the open tube end will be simulated with a driving 
piston. This is valid for the long-wavelength limit [5] in which the wavelength is long 
compared to the contour of the tube. The wavelength at 3000 Hz is 0.1 14 m. So if the 
tube has a cmss-section with sides of 5 wanw than the contour is 0.02m and so it can be 
conclude that the long-wavelength limit is valid in the cases that are studied in this 
report. 
Also the velocity profile is checked to look if the approximation of a piston makes 
sense. The velocity profile is completely determined by the dimensionless function A 
[I], so the function A is plotted for the dimensionless values of z and y for a square 
tube cross-section. As can be seen in figure 5.2 the velocity is almost constant over 
the whole area of the tube, so it seems that the use of a piston is a valid approximation 
for the frequencies of 100 Hz and higher. 

Figure 5.2: Absolute value of A for 4 differentfiequencies 

5.2.1: End-impedance of a tube with rectangular cross-section 
As said before the piston impedance will simulate the end of the tube. In the literature 
([6] and 171) the impedance of a flanged piston is described. This is the impedance of 
a piston moving in an infinite plate, which is the best approximation in this case. This 
is because a tube in free space is even less comparable to the profile (tube) ending at 
the wall of the tyre. 
In the literature ([6] and [7]) the radiation impedance of a piston, which is the force on 
the piston divided by the velocity, can be found. For this research the pressure divided 
by the velocity is required. This is achieved by dividing the radiation impedance with 
the area of the piston. This can be done, because the pressure in the model is almost 
constant over the whole area (one of the assumptions of the low reduced frequency 
model; chapter 4). 
The dimensions used in the formula for the tube with rectangular cross-section are a 
and b. These are the lengths of the sides of the piston. Two different impedances are 
found. One impedance is valid if b is about the same size as a (case one). The second 

one is valid as long as is neither very iarge nor very small (case two). % 
2, = pcab[6, (ka) - iX, (ka)] for case 1 (54) 



a28, (ka) - b28, (kb) - i a 2 x 0  (ka) + ib2x0(ka)  
2, = pcab for case 2 (55) 

a2 - b2 

W k=-  
C 

(58) 

where Jo is the Bessel function of the zero order and Mo is the Struve function of the 
zero order. 
The Z that will be used in this report is Z, defined by (54) or (55) divided by the area 
of the tube, which is ab. 

In figure 5.3 an example of the impedance and the reflection factor is given. 
The reflection factor is defined as the impedance minus the impedance of a plane 
wave in free air (poco) divided by the impedance plus the impedance of a plane wave 
in free air. 

Reflection factor = 
- P O C O  

2- + POCO 

Figure 5.3:The real and imaginary value of the impedance and reflection factor of an 
opening o f1  Ox1 Omm (-) and of an opening of1 Ox3Omm(--) 

The conclusion from the figures is that there is not that much leakage of air if the 
opening is small, because the reflection factor is close to -1. This implies that the end- 
impedance of the opening is very small (near zero), which implies that the boundary 



condition of p=O could be valid too. However if the opening gets larger the reflection 
factor gets smaller, so the end-impedance of the tube has an effect on the pressure 
distribution in the tube, so for small amplitudes in combination with large gaps p=O is 
not a valid boundary condition. This is the reason why the end-impedance Z will be 
used for the calculations in this report. 

5.2.2: Bessel and Struve function 
In the impedance functions of a rectangular opening Bessel and Struve functions are 
used. The Bessel function is a function that is implemented in Matlab, so 
implementing this in the m-file is straightforward. The Struve function is not 
implemented in Matlab (R12). 
The Struve function of zero order is defined as in [6]: 

M ,  ( z )  = 2 Tsin(z cos(u))du 
n o  

The analytical Struve function is solved in 2 different ways: 
1) With a for loop in Matlab (iterative) 
2) With external m-file from the internet ([I 01) 

In the calculations in this report the external m-file is used, because it needs the least 
calculation time. 

5.2.3: Implementation of end-impedance to the model 
Before implementing the end-impedance in the model it is important to look if it can 
be implemented straightforward from the book. 

Model: 
In the model the real pressure variation and velocity are defined as: 

im! v = cove (5)  

P = popezm (6 1) 
And the dimensionless pressure in tube 1 and 3 is defined as: 

p3 = -el ePrx + c2 e rx (62) 
Because r has an imaginary part 1 is purely imaginary it is possible to write the real 
pressure variation in the next way: 

p = Ae-Jke J" + Be jkeJ" (63) 
Where the first part will be called p + ~  and the second part will be cailed p-B. 
The velocity function is defined as: 

For small oscillations this can be rewritten as: 

Now it can be stated that the impedance is of a general form a+jb, so: 



The can be rewritten as: 

Theoretical Acoustics [6]: 
In the book the pressure is defined as: 

p = ~ ~ j k x ~ - j w  + ~ ~ - j k r ~ - j u "  (69) 
Where the first part will be called p + ~  and the second part will be called p-T. 
The velocity in the book is deJined as: 

Now can be stated that the impedance is: 

'This can be rewritten as: 

Comparison: 
From the two formulas for the pressure it can be concluded that p + ~ =  P+c and p + ~  =p<. 

Now it can be concluded that both formulas are of the same form, but that they are the 
complex conjugate of each other. So the complex conjugate of the impedance found 
in the book Theoretical Acoustics [6] has to be taken for the model. 

5.3: Far field pressure 
To look at the sound pressure at a certain distance at a certain angle, it is not enough 
to just know the pressure and velocity at the end of the tube. It is necessary to include 
a formula for the far field noise. The far field noise equation for a rectangular piston is 
found in [6] and is defined as: 

1 1 e ikr 
p, ( r )  = 2ikpcu,abS(- ka sin(@ cos(q))S(- kb sin(8) sin(p)) - 

2 2 4nr 
where S(z) is sin(z) divided by z, .r9 is the vertical angle between the normal line 
through the piston and the position of the receiver, p is the horizontal angle between 
the normal line through the piston and the position of the receiver, k is the frequency 
in radls divided by the speed of sound and a and b are the dimensions of the 
rectangular. 



/ piston 

Figure 5.4: Definition of the angles 

Again for the same reason as mentioned before with the implementation of the end- 
impedance the complex conjugate of the far field pressure found in the book 
Theoretical Acoustics [6] must be implemented in the model. 

5.4: Experimental Setup 
To validate the model an experiment is performed. The idea is to do measurements 
with only two different tubes of plexiglas. The two tubes have both the same vibrating 
patch, so part two is of the same length in both cases, but the other parts are different. 
To measure great effects and to be able to construct the tubes quite easy the next 
dimensions are chosen: 

2 Accelerometers (Deltashear/Briiel & Kjaer type 4393V; sensitivity 0.316 p~ /ms2 ,  
0.1-16500Hz and 2.4 grams each) are mounted on the patch to measure the 
acceleration. The patch is driven by a shaker (LDS V406), which is attached to the 
patch with glue. The patch is a bit smaller than the gap in the tube to avoid friction 
forces. A rubber sealing is added betweedon top of the patch-tube connection to 
avoid air-leakage. 7 Microphones are inserted in a wall of the tube of 360 mm to 
measure the sound pressure on 7 different places: 2,4,6,8,10,12 and 14 mm from the 
opening of the tube. Also a microphone is sldded just in front of the opening (5mm) to 
measure the pressure at the end of the tube. The microphones are calibrated using a 
calibration tool that has a fixed sound pressure level at 1000 Hz (Briiel & Kjaer Type 
423 1). In total 2 sound pressures can be measured at the same time but it is possible to 
switch between the microphones with a switch box. The far field noise in a free 
environment is not measured, because the conditions are not good enough 
(surrounding noise of the shaker and the computer). Another problem is that the tube 
has two openings, so if the far field noise is measured at a point it is a combination of 
those two. 
The output signal of the computer is amplified with a power amplifier (LDS 
PA100E). The input signal of the accelerometers is amplified and conditioned with a 
conditioning amplifier of Briiel & Kjaer. The computer unit that is used consists of a 
Hewlett Packard ICPIvoltage 8ch input, Agilent E8408AVXI Mainframe and a 
Netwerver LPr. The output signal is made with the program Triggerhappy v1.0 and 

Table 1 
Width 

20 mm 
20mm 

Length part 3 
100 mm 
150 mm 

He igth 
11,16 or 21 mm 
11.16or21mm 

Length part 2 
60 mm 
60 mm 

Tube 1 
Tube 2 

Length part 1 
100 mm 
150 mm 



this program is also used to read the input signals (lx output, 2x accelerometers, 2x 
microphone). The data processing is performed with Matlab R12. 

Schematic overview of the setup: 

I: Shaker 
2: Switchbox 
3: Receivers 

4: Condition amplifier 
5: Input collector 

6: Output generator 
7: Amplifier 

8: Link to computer 

Figure 5.5: Schematic overview setup 
Photos of the set1 



5.5: Experimental Results - Results model 
The transfer function, where the output is the pressure and input is the acceleration, of 
the tube is measured using a random signal. After some measurements at different 
frequencies the conclusion is that above 2500 Hz the patch does not vibrate in phase 
anymore. One accelerometer gives a high value and the other one a low value. This is 
the reason why only measurements until 2500 Hz are performed. 

5.5.1 : Transfer f unction 
In the model the transfer function is made using a sinusoidal signal as input. 
In the experiments there are some extra peaks in the transfer function at certain 
frequencies. If a measurement is performed with a sinusoidal signal at these 
frequencies the high levels do not show up. If the voltage level of the random signal is 
lowered the peaks are clearer visible and if the voltage is increased the peaks become 
less dominant. The coherence between the input (the shaker) and the accelerometers is 
checked and at the frequencies of the "strange" peaks there is a large coherence dip. 
This has two different reasons. The first is that there is a strange cracklinglrattling 
noise at the vibrating patch, which causes problems. The second is that the patch does 
not vibrate with the entire surface in one phase. 
A difference in level between the plots of the transfer function that is measured or the 
transfer function from the model by calculating the acceleration at the whole 
frequency range with steps of 1 Hz is clearly visible. However if a measurement is 
performed with a sinusoidal signal then the levels of both plots are the same. 
For these reasons it is decided only to look at the differences between the frequencies 
of the peaks of the model and the experiment. 

First an experiment with the tube of 360 mrn length is performed. The height of the 
tube is 1 lmm, because the lower the height the lower k and kls (see 4.3. l), so the 
more reliable the model. 

Ism rn 

Figure 5.7: Coherence and transfer function for the output to both accelerometers 



From figure 5.7 it can be concluded that there are 3 peaks around the 500, 1400 and 
2300 Hz that show up in both figures and have about the same size. The coherence is 
reasonable at those peaks, so that means that the results can be trusted. What also can 
be concluded from the figures is that the peaks around 800 and 2000 Hz do not have 
the same amplitudes in both figures, so for each accelerometer the effect at those 
frequencies is different, although the amplitudes at the "eigenfrequencies" of the tube 
are the same. Also the coherence is bad, so that is the reason why only the three peaks 
around 500,1400 and 2300 Hz are trusted. A final remark is that the 2300 Hz peak is 
net ?hit c!em as the 500 Hz and the 1400 Hz peak; However the peak at 2300 Hz is 
considered to be good enough to use in the comparison. 

Model: 

e 5.8: TransfeP.function and 

The input for the model is the amplitude in meters of the patch and the output is the 
pressure. The input in the experiments is the acceleration, so the "original" transfer 
function of the model is divided by w 2 ,  which is the factor between the second 
derivate and the original of a sinusoidal function. 

Comparison: 
I I I I "  I I 

Figure 5.9: Comparison between model and experiments 



From figure 5.9 it can be concludes that the shape of the figure is the same, but that 
there is a large difference in the value of the eigenfrequencies. 
Table 2: 

1 Model ([Hz]) I Experiment ([Hz]) 1 Difference ([%I) 

( Eigenfiequency 3 1 19 12 ( 2250 1 17.6 

Eigenfiequency 1 
Eigenfrequency 2 

Over the whole frequency range there is a difference of about 15 %: 
The same conclusion can be drawn for the tube of 240 mm. 
Table 3: 

382 
1 147 

Over the whole frequency range there is a difference of about 16 %. 
The difference for both tubes is around the 15-16%, which is quite large and that is 
the reason why all the variables in the model are checked. 
It appeared the function B (19), as given in [I], does not convert to -1 for high values 
of the shear wave number but to -0.74. It would be expected that the vzlw goes to -1, 
because: 
- It is stated in [I] and appendix D that "B" should go to -1 for high shear wave 

numbers. 

Eigenfrequency 1 
Eigenfrequency 2 

1 - "B" is defined as: B(s) = - I ~ ( s ,  xCd )&" 
A" *, 

43 0 
1335 

It is known from earlier calculations that "A" is -1 (absolute value is 1) over 
almost the whole area, because the piston approximation is based upon this. If 
"A" is seen as a constant it is easy to conclude from (1 9) that "B" is also -1. 

- By numeritical integration of "A" over the whole area and than dividing by the 
area the function converts to -1 for high shear wave numbers. 

- The value of "B" of a tube with a circular cross-section [I] also goes to -1 for 
high shear wave numbers. 

12.5 
16.4 

Model ([Hz]) 
530 
1 5 80 

It can be concluded that very strong indications are available that the B function as 
stated in [I] is wrong. In appendix F calculations are performed with a "corrected" 
"B" and in these calculations a better match is achieved between the model and the 
experiments. 
However in this report the calculations will be performed with the "B" from [I], 
because this is a "B" that is published. Despite the strong indications that this "B" is 
wrong, it is unclear what is a good "B", because there are no publications known 
about how the A and B functions are determined in [l] and so it was impossible to 
find the "correct" values. 
If it would be proven later that the "B" function found in [I] is wrong than the only 
thing that would differ are the frequencies, because the levels that are predicted with 
the "B" found in [I] and the "correct" "B" are the same at the same places on both 
the curves (for example around the "same" eigenfrequency peak). So the conclusions 
stated in this report would remain the same. 

Experiment ([Hz]) 
6 18 
1840 

Difference ([%I) 
16.6 
16.4 



5.5.2: Sound-pressure in tube 
This measurement is only performed with the tube of 360 rnm, because this is the only 
tube with microphones. To make a good comparison between the experiment and the 
model a frequency shift is adapted. This frequency shift is necessary because the 
frequencies of the peaks are about 15 % different (table 2 and 3). To make a fair 
comparison there is a factor 1.15 introduced (frequency model * 1.15=frequency 
measurement). So if the experiment is performed at 2000 Hz, the calculation in the 
model is performed at 1740 Hz (200011.15). This shift is necessary, because it could 
be possible that the measurement is made at the eigenfrequency (for example 1335 
TT- - - C-- Z n\ L-.L :- LL- - - A - l  +L- -:---C-A~I. n - 7  : n  m a t  + th' &;.P x q a n n x l  m ~ ,  set: ~lg l l i -e  3.71, U U L  111 LUG l l l u ~ ~ l  LUG G L ~ G I U L G Y U Z E ~ J  13 llVL a~ L ~ L S  I L ~ ~ U , L L , ,  , so fio 
fair comparison would be possible. 
Four results are made from the calculation of the model, one of the calculated 
frequency and three around this frequency. The reason for this is that the factor that is 
introduces is maybe not exactly 1.15. The complete results of the comparison can be 
seen in appendix G. Here only the results from the calculated shifted frequency will 
be shown. 

The measurements are performed between 250 and 2500 Hz with steps of 250 Hz. All 
the measurements are performed with a different acceleration, so it is not possible to 
compare the results from 500 Hz with 1000 Hz and conclude something about the 
difference in sound presslxe betveer, those two. It is en!y possible to conclude 
something about the sound pressure level between the experiments and the model for 
each frequency separately. 

In figure 5.10 the results of the model and the experiment are plotted for five 
frequencies. The pressure measured at the end of the tube is also plotted in this figure, 
but it must be mentioned that it is measured just outside the tube (about 5rnm), so a 
different result from the model and the experiment is expected. 



-02 -a 4 0 f: 0 2  
Figure 5.10: Soundpressure level in the tube in dB (re 2e-5 Pa) 

The conclusion is that there is a good fit between the results. However it looks like the 
model overestimates the pressures a bit, which has various reasons. One can be that 
during the measurement the baffled end was not large enough to simulate a real 
baffled end. However it is hard to say how large this effect is so further 
measurementslcalculations are needed. Another reason is that the input of the model 
is a bit too high. The simulation is performed at the average acceleration of the two 
accelerometers, but in reality the real average acceleration can be lower. 

5.5.3: Conclusions of comparison between measurements and model 
It can be concluded that the results from the experiments and the model are about the 
same. However the match between the model and the experiment becomes less 
evident if the frequency is high. This can have two reasons: First the measurements 



can be wrong and second the reduced frequency (k) is already quite high (0.2). The 
main reason is that the measurements are not that good anymore at those high 
frequencies, because the patch is not vibrating everywhere with the same acceleration, 
so the model is not valid anymore. 
But in general it can be concluded that it is a powerful tool for the tyrelroad noise 
problem and then especially for the vibrating walls in tyre grooves. 

5.6: Results model with tyre tread parameters 

To simulate all the possible dimensions of a tyre profile tube is beyond the goals of 
this report. The calculations are performed with the next dimensions for the tube: 
Table 4 

I Length part 1 1 Length part 2 / Length part 3 1 Width I Heigth I 
I Tube I 20 rnrn 20 rnm 120and40mm/ lOmm I 1,3and5 mm 1 
This results in two tubes where for each tube the force on the patch and the far field 
noise will be calculated. They all will be normalized with the acceleration in m/s2. 
The far field noise figure consists of the far field noise at 1 meter and with two angles 
of 0 rad. Not only the far field noise of the tube is plotted in the figures, but there is 
also a line plotted that is called "free", which is the far field noise that would be 
generated by the patch of 20 x 10 mm if it would be vibrating in a wall. 

Figure 5.11: FarJieldsound 202020 tube (re 2e-5 Pa) (-=I mm,--=2.5 mm and -. 
=5 mm) 



Figure 5.12: Force on the patch 202020 tube (re 2e-5 Pa) (-=I mm,--=2.5 mm and -. 
=5 mm) 

20*logIOfabs(p far fi eld}/(acc*2*e-5)) 



Force on patch - 20*log1 O((abs(Force centre))/acc) 
40 I I I I I 5 I A 

Figure 5.14: Force on the patch 202040 tube (re 2e-5 Pa) (-=I mm,--=2.5 mm and -. 
=5 mm) 

5.7: Conclusions regarding the model 

The first conclusion from the simulations is that the force on the patch increases if the 
height of the tube is decreased. Also the eigenfrequency of the tube decreases if the 
height of the tube is decreased, but this effect is small. 
At this moment it is not possible to say what happens with the eigenfiequency of the 
patch, because the calculation of this eigenfiequency is not implemented in the model. 
It is hard to draw conclusions about the far field noise, because it depends on the 
configuration of the tube, but there is an amplification at the resonance frequencies of 
the tube. Also the level of the far field sound is not directly related to the height of the 
tube. The reason for this is that the pressure and velocity at the end of the tube can be 
larger if the gap size gets smaller, but also the area of the tube gets smaller. Those two 
effects vanish against each other. 



Chapter 6: Translation to tyrelroad noise problem 

In this chapter the two models will be used to predict the effect of the air in small gaps 
around the tyre for different mechanisms, which are discussed in chapter 2. Data of 
calculations performed with a tyre with grooves in circumferential direction on an 
ISO-road is available. A point on the tyre is taken and it is followed how it enters the 
contact patch and leaves it again. The distance between the road and the point is 
calculated and from this the distance, the velocity and acceleration are determined. 
The values of the frequencies and the values of the acceleration levels, which are the 
input parameters for the model, are calculated from this data. 

Figure 6.1: distance, velocity and acceleration against time of a point on the tyre (60 
km/h) 

Figure 6.2: distance, velocity and acceleration against traveled distance of a point on 
the tyre (60 km/h) 
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6.1: Adhesion (stick-snap)/running deflection 

These are effects that cause vibrations just in front and after the contact patch. The 
paragraph will be divided in two parts. In the first part vibrating tyre treads and the 
corresponding forces will be discussed and in the second part the vibrations due to the 
tyre movement and the corresponding forces will be discussed. 

6.1.1: Vibrations oftread bock 
In figure 6.1 the data is plotted versus the t h e ,  in figwe 6.2 the &?a i plotted versus 
the traveied distance. Tne region between 0 and 4 mm is interesting, because above 
the 4-5 mm the pressurelforce that is build up is much smaller than between 0-4mm. 
The interesting frequency is 3000 Hz, because this is the eigenfrequency of the mode 
related to the adhesion mechanism of a tyre tread block [8]. From figure 6.1 it can be 
conclude that the point travels from 0 to 4 mm distance in 0.0018 s. Five cycles of a 
vibration of 3000 Hz fit into this period. From figure 6.2 can be concluded that the 
distance the point travels in this time is about 3 cm. Using this distance, a tyre tread 
of 2 cm fits once and a tread block of 1 cm fits twice in this region. 

Figure 6.3 Tread blocks in the "vibrating" zone 

Model A consists of a patch vibrating perpendicular to the ground, but the tread 
blocks in figure 6.3 are not fully perpendicular to the ground, but they will be 
modeled as perpendicular patches. In the first case in figure 6.3 there are 2 blocks 
vibrating; one at an average distance of 1 mrn and one at an average distance of 3 mrn. 
In the second case of figure 6.3 the system is translated in a patch vibrating 2 mm 
above the ground. 
The calculations for a tyre tread of lOxlOmm, at 2800-3200 Hz at 1 mrn and 3 mm 
height with acceleration amplitude of 3000 m/s2 are shown in figure 6.4. The value of 
3000 m/s2 is determined out of the calculated peak values at the trailing edge in figure 
6.1. 



Figure 6.4: Force on a patch of 10x1 Omm with an acceleration amplitude of 3000 
m/s2 (solid: 1 mm, --:3mm) 

For a typical tyre tread block the mass is around 3.63 kg [8], so the force 
becomes 3.63 kg*3000m/s2=1.0890 N. The force delivered by the air onto the 
patch is around 0.12 N if the distance is 1 rnm. The force delivered by the air onto the 
patch is around 0.045 N if the distance is 3 mrn, so these forces do not have a 
significant influence on the vibration of the tyre tread blocks. 
The calculations for a tyre tread of 2Ox20rnm, at 2800-3200 Hz at 2 mm height with 
an acceleration of 3000 m/s2 are shown in figure 6.5: 

Force on t h e ~ a t ~ h  

Figure 6.5: Force on apatch of 2Ox20mm with an acceleration amplitude of 3000 
m/s2 (distance is 2mm) 

Again using the typical mass of a tyre tread block the force becomes 1.0890 N. The 
force delivered by the air onto the patch is around 1 N if the distance is 2 mm, so this 
force does have a significant influence on the vibration of the tyre tread block. It 
works against the vibration, because the force of the air is in opposite direction of the 
force due to the acceleration of the patch. 

6.1.2: Tyre movement: 
Here conclusions regarding a tyre tread approaching and leaving the contact patch due 
to tyre rotation will be drawn. A tread will travel in 0.0016 s from 1 to 5 mrn (figure 
6.1). This can be seen as a half period of a sinusoidal function, so it can be translated 
into a vibrating patch. These approximations result in the next parameters: 



The calculation for a tyre tread of lOxlOmm and 2Ox20mm, at 200-400 Hz at 3 mm 
distance with an amplitude of 2 mm is shown in figure 6.6: 

Table 5 

Figure 6.6: Force on a patch of 10x1 Omm (le3) and 2Ox20mm (right) with an 
acceleration amplitude of 3000m/s2 (distance is 3mm) 

The force becomes 3.63 kg*771 0m/s2=2.8 N using the typicai tyre tread mass [8] 
and the acceleration amplitude. The force delivered by the air onto the patch is around 
0.12 N for the patch of 10x10 mm, so this force does not have a significant influence 
on the vibration of the tyre tread block. The force delivered by the air onto the patch 
of 2Ox20mm is around 1.8 N, so this force does have a significant influence on the 
vibration of the tyre tread block. On the trailing edge the pressure is build up, because 
tyre tread goes down, so the force will push the tread block fwther into the belt. On 
the trailing edge there is a pressure drop, because the tyre tread goes up. Due to the 
pressure drop the force will pull on the tyre tread and pull it out of the belt. It is now 
possible to see this force as an "impulse" force that pulls the system in the 
eigenfiequency-vibration. 
This model is a large simplification of the reality, so it is difficult to say how valid the 
conclusions are in this case. 

He igth 
3mm 

6.2: Stick-slip/airgumping/belt-vibration 
Gagen [9] concludes that the density of the air can increase up to 10 % in cavities1 in 
the profile. This is something to remember when model B is used for tyrehoad noise. 
The vibration of a patch on the topside of a groove in the circumferential direction of 
the tyre will be simulated. Just after the tyre has left the contact patch the belt is 
vibrating. This can be seen in figure 6.1 and 6.2 as an acceleration-peak. The belt that 
is vibrating will be simulated as a patch in a tube that simulates the groove in 
circumferential direction. The tube that will be used in model B is constructed in the 
next way: 

Width 
10and20mm 

Length 
10and20mm 

Part one simulates the part of the profile just after the contact patch. 
Part two has the width of the acceleration peak in figure 6.2. 

amplitude 
2mm Patch 

Table 6: 

Pequency 
3 12.5 Hz 

Width 
10 mm 

Length part 3 
100 mm 

Heigth 
3mm 

Length part 2 
10 mrn Tube 

Length part I 
10 mm 



Part three is the length of the contact patch as can be seen in figure 6.2. 

Bottomview of contact patch 
I I 

Figure 6.7: Tyre profile 

The height will be set to 3 mrn and the width to 10 mm, which are just standard 
parameters of a tyre groove. Adhesion does not have an effect in the tube, because the 
vibration of the patch is caused by a part of the tyre that is not in contact with the 
road. The frequency is 500Hz. This is a result of the next calculation:. The width of 
the peak is about 0.001 s. This is a half period of a sinusoidal function, so this results 
in a frequency of 500 Hz. For the acceleration 3000 m/s2 can be taken according to 
figure 6.1 and 6.2. The results of the calculations for this tube, at 300-800 Hz at are 
shown in figure 6.8. This frequency range is chosen to get a total view of the forces 
around the 500 Hz. 
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Figure 6.8: Force on the vibratingpatch due to the air with an acceleration 
amplitude of 3000 m/s2 . 
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The force in this case is 3.63 kg*3000m/s2=1.0890 N using the typical tyre tread 
mass [S]. The force delivered by the air onto the patch is around 2.4 N, so this force 
has a significant influence on the vibration even if the mass of the patch is in reality a 
bit larger due to the fact that the patch is a part of the belt. The conclusion is that there 
is quite a large force due to the air working against the vibration of the belt. 

6.3: Conclusions 
In general it can be concluded that the air has an effect on the vibrations of the 
pa;tc_httread block. However in "free" air; so not in a tube, the effect is only large on 
patches of reasonable size (2Ox20mrn). However in a tube the effect is also large for 
smaller patches (10x10). The force that works on the patches works against the 
vibrations in most cases. Only in the case of the tread block in combination with the 
tyre movement it maybe will introduce vibrations. In reality the forces/vibrations of 
patchesltyre treads will be smaller than calculated with the model, because the model 
is a simplification of the reality and in reality the surface is not completely smooth as 
supposed here. 



Chapter 7: Conclusion and recommendations 

Conclusions: 
The objectives of this project are to investigate to what extent the dynamic load of the 
surrounding air will influence the vibrations on a tyre during tyrelroad interaction and 
to investigate to what extent the narrow geometry will influence the radiation from the 
contact patch. 
Two models of patches vibrating in narrow geometries are used to study and estimate 
the air load and radiation of sound for some cases of the tyrelroad interaction. The 
models are based on work done by Beltman's [ 11 121 and the main approximations in 
the calculations was done to the input data, with simplifications of the geometry, 
pressure and velocity boundary conditions, while the model is general and validated 
for several cases. 
The effect of the air load, in a small gap between tyre and road, on the vibrations of 
the tyre is predicted using the narrow geometry models and data from Chalmers tyre 
model. A significant effect is predicted for a normal passenger car tyre around 60 
W h .  The air load on the patches is of the same magnitude as the forces needed to 
create the calculated vibrations. At the trailing edge, when the tread block is leaving 
the contact patch, the air load will introduce vibrations in the block. It can be 
concluded that the calculations show that in reality the forces/vibrations of 
patchesltyre treads will be slightly different than calculated with the Chalmers tyre 
model, because the tyre model neglects the effect of the air load. 
It looks like the far field sound 1 radiation does not change with the gap size, but 
changes with the vibration of the patch. This result comes from the model but it must 
be named that the model is not validated for the far field sound, because it was not 
possible to measure the far field sound of the experiment due to the surrounding noise 
from for example the shaker. However the expectation is that the far field sound 
equation is correct. 
It is proven by this report that the low reduced frequency model is suitable to solve 
these type of problems, because it is also possible to make gaps very small and still be 
able to say something about the forcesleigenfrequency changes. 
To summarize, the effect of the air load due to the narrow geometry may be 
significant. However, further investigations, especially on the input data, are needed 
to get more precise quantitative predictions. 

The goals of this research are achieved, but there is still a lot that can be done to get 
more and better results so that the model for the tyrelroad noise from the Chalmers 
University will be improved. Some of the things that can be done in the future will be 
discussed now. 

Recommendation/Future work 

It is necessary to do a further research to the problem with the B function described in 
chapter 5. At this moment (March 2004) the problem is submitted to the University 
Twente in Holland where the low reduced frequency model is developed, but no 
results are achieved yet. 
It is important to validate the far field sound equation to make sure that the 
conclusions regarding the effect of the air on the far field sound is correct. 



It can be interesting to have more vibrating patches inside a tube. For example a 
longitudinal groove with 2 patches; one almost in the beginning simulating the 
leading edge and one almost at the end simulating the trailing edge. This is possible 
by expanding the matrices of the linear system that describes the tube. 
Another recommendation is to see to what extend the effects found here are also 
present in a real life situation with varying track surface. It could also be interesting to 
research the effects at higher speeds than 60 krnlh. Lower speeds are not that 
interesting, because the lower the speed the less relevant the tyrelroad noise is for the 
total noise of the car. 
It is interesting to see to what extend the FEM element? based on the low reduced 
frequency model, can be used for these type of problems. 
Finally a time domain formulation of the low reduced frequency model can be 
interesting, because with this it is possible to really simulate a tyre tread approaching 
the track surface. 
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List of symbols 

a, b 1 Dimensions opening tube for the 1 m 
I end-impedance calculation 

A1 , A2, B 1, B2, C 1,  C2, pXl,pd I Model parameters problem 2 1 - 
I3 j The function accounting for j - 

viscous or thermsl effects 
C The function describing the 

C 0 

C" 
C.. 

temperature profile 
Undisturbed speed of sound 

Y 

D 

FEI 

I I 

h I Dimensionless amplitude patch I - 

m/s 

Specific heat at constant volume 
Specific heat at constant 

&&;; 
g ,  . (1) 

JkgK 
JkgK 

pressure 
The function describing the 
temperature profile 
Driving force 
Force due to the pressure 
distribuiion in the gap 
Greens function m/N 

N 

i 
JI .Jn 

Imaginary unit 
Bessel functions 

k 

kx 
L 

d s o )  I The polytropic constant I - 

lx,ly,lz,ho,Lo 
m 

MLMO 

- Reduced frequency 
- Angular frequency divided by 
the speed of sound 
- Spring stiffness 
Wave number in x direction 
Dimensionless amplitude patch 

- "  I I 

P 1 Pressure 1 N/m2 

radh 

N/m 

- 
in tube 
Dimensions tube and patch 
mass 

Struve functions 

, , 

P 

Pn 

m 

kg 

Dimensionless pressure 
amplitude 
Mean pressure 

- 

Q1,Q2 

S1, s2 I Area of tube cross-section 

r I Shear wave number 

I?/m2 

- 

r 
% 

Rn 

Parameters of the functions A 
and B for problem 2 

- 

Reflection factor 
The fbnction which states how 
and which part of the 
construction vibrates 
Gas constant 

t I Time 

- 

J/k& 

s 



[ Symbol 1 Quantity Unit 

- 
T 1 Temperature I K 

T 

To 

I I - 
v I Velocity vector I m/s 

Dimensionless temperature 
amplitude 
Mean temperature K 

vPd 

V 

I zr 1 Radiation impedance I N l d s  I 

Velocity in the propagation 
coordinate(s) direction 
Dimensioless velocity 

xPd 

xcd 
z 

I r I The propagation constant 

1 3 .  1 Ratio of specific heats I - I 

Coordinate(s) in the propagation 
direction 
Coordinate(s of the cross section 

End-impedance 

I rl I Bulk viscositv I Ns/m2 I 

- 

- 
~ / r n ~ / m / s  

d 

5, 

I P 
I - I 

I Density I kg/m3 

2 
p 

The vertical angle between the 
normal line through the piston 
and the position of the receiver 
Displacement at point e 

rad 

m 

Themsl condwtivity 
Dynamic viscosity 

P 0 

P 

WIrrX 
Ns/m2 

p 

0 

W 

I I ~ r o ~ a ~ a t i o n  coordinates I I 

Mean density 

Dimensionless density 

- v 
v pd 

I X I Laplace operator I - I 

kdm3 

amplitude 
The horizontal angle between 
the normal line through the 
piston and the position of the 
receiver 
Square root of the Prandtl 
number 
Angular frequency 
Gradient operator 

Gradient operator in 

rad 

Rads 

- 

Laplace gradient in the cross- 
sectional coordinates 



Appendix A: Validation of model A 

In this appendix the validation of model A will be shown. 
One change to the formulas found in [l] is made; the formula for F,,, formula 4.8 [I] 
is changed, because the k," must be k:. This can be concluded from formula 4.12 [ l ]  
and also from formula B24 (Beltman 1997 [2]). 

A. 1: Experiment 
A stiff plate (solar panel) of 0.98m x 0.98111 is fked with 8 springs just above a flat 
panel. It is driven at the center at relative low frequencies (1-1OHz). The pressure is 
measured at three different points (center, halfway and at the edge). 
The setup was mainly used to measure the shift in eigenfrequency and the pressure 
distribution in the gap. 

The following properties of interest are used in the model [I]: 
m = 2.54Okg po = 1 .2kg / m3 
1, = 0.49m co = 343m / s 
I, = 0.49m i l = 2 5 . 6 . 1 0 - ~ ~ / m ~  

Ro =287JlkgK lu=18.2 .10-6~s /m2 

C,  =1004JlkgK ~ = 1 1 8 6 N / m  

C, =716JlkgK To =290K 

A.2: Eigen frequenties 

The results achieved with the Matlab file written by Vissers (2003) are shown in fig 
A.1. Also the results from the experiment performed by Beltman are shown in this 
figure. The exact results can be found in [I]. 

Figure A. 1: Eigenzequency (M-jle 200 iments and isothermal, viscid) 

As can be seen the same result is shown as in figure 4.8 [I]. 
The eigenfrecpencies of the adiabatic, inviscid system are plotted in one figure (figure 
A.2) 



Figure A.2: EigenJFequency (M-Jile 2003) (isothermal, viscid and adiabatic inviscid) 

From figure A.2 can be concluded that the isothermal, viscid system is a better 
approximation if the gap becomes smaller. For larger gaps there is a lm~st  no 
difference. 

A.3: Pressure 

In the first figure the pressure at the center of the plate @I) is shown for the 
experiments, the low reduced fiequency model, the inviscid and adiabatic low 
reduced frequency model (T=i and n(so)=y). At the last figure the pressure halfiay 
the plate b2) is shown. The real pressure is divided by hoh, which is the amplitude of 
the plate. The dividing is done to give a more general impression of the pressure. The 
pressure in the layer is frequency dependent so that is the reason why the pressure was 
measured at the eigenfrequency for each gap. The figure can now be used for all 
amplitudes, because the value in the figure just has to be multiplied by the amplitude 
and than the pressure for that specific amplitude can be determined. 

The results achieved with the Matlab file are shovm in figure A.3 - A.6: 

Figure A.3: Scaled pressure pl for the experiments and the low reduced fiequency 
model. 



Figure A.4: Scaledpressure pl for the experiments and the inviscid and adiabatic low 
reduced low reducedpequency model. 

Figure A. 5: Scaled pressure p2 for the experiments and the low reduced@equency 
model with isothermal walls. 

Figure A. 6: Scaledpressure p2 for the experiments azd the inviscid and adiabatic low 
reduced low reduced9equency model. 

Again the results from the matlab file match with the results from [I] so it can be 
concluded that the Matlab model is valid. Now it is important to look if the low 
reduced frequency model can be used to study tyre tread blocks. 



Appendix B: Low reduced frequency model for a plate 

Deviation of the low reduced fi-equency for a plate vibrating just above the ground. 

Basic: 
A ~ ~ P ( x ~ ~ )  - k 2 1 ? 2 P ( ~ p d )  = -ikn(so)r2% 

Parameters for a rectangular plate [[I] appendix B]: 



Also given: - 
iul  v = cove 

- 
h = h, (2 + heia) 
v,(x,y,-I)+, because the lowest plate is not moving 
vz(x,y, 1 )= ? 

These last 2 combined give: - 
h = kc, h i m  iol 

- - 
Because v, = h 

L 

This all combined gives: 

Isothermal walls: D(so)=B(so) 
Adiabatic walls: D(so)=- 1 



Appendix C: Low reduced frequency model for a patch in a tube 

Deviation of the low reduced frequency for a patch vibrating in a tube 

Basic: 
Apdp(xpd)  - k 2 r 2 p ( ~ p d )  = -ikn(so)r2% 

1 
%=- 1 v e,dJACd 

A" ,, 
Parameters for a tube plate (appendix B in [ I ] ) :  

xCd = ( y ,  z )  xed = ( x )  



Also given: 
- 

I" v  = cove 

z= L0(2 + LeZU") 
vz(x,y7-l)=0 and vz(x,y,l)= 0 because the sides are not moving. 
v,(x,-1 ,z)= 0, because the bottom is not moving. 
v,(x,l,z)= not known yet if the top plate is moving.( If this is not the case than 
v,(x, 1 ,z)=O and so % = 0 ) 

- 
I" v y  =covye 

- 
- & 
v ,  = L  
- 

L = Lo Liwe'" 

Low k=- 
Co 

These last 2 combined give: 
- 

L = kc,Liwei" 
- - 

Because v ,  = L 
v,=kL,i 

1 
so %=-kLi 

2 
This all combined gives: 

Isothermal walls: D(so)=B(so) 
Adiabatic walls: D(so)=-1 

(In this report only isothermal walls are used for the calculations) 



Velocity 
Defined in [I] as: 

- i 
vpd (s ,xpd,  xCd)  = - A ( S , X ~ ~ ) V ~ ~ ~ ( X ' ~ )  

ky  



Appendix D: Analytic solution 
In this appendix an analytic solution for 1 "simple" case can be found. It is for the case that the 
pressure at both ends is zero. 

3 basic equations and 8 boundary conditions: 

p, = - ~ , e - ~ ~ + A , e ~ ~  

p3 = -c1eprx +c2erx 

l : p l ( - k x l ) = O  

2:131(kx,) =px1 

3 : P2 (-kx, = Pxl 

4 :  p2(kx2)= ~ x 2  

5 : P3 (-kx3 = Px, 

6 :  p 3 ( k x , ) = 0  

It is not enough to just say that the pressures should be the same, because there also should be a smooth 
overlap from pressure 1 to pressure 2. That's why the conservation of mass is used. 

1 and 2: 
x=-k . xl. 

A I -  A 
PI =-- e +- e : So condition 1 is ok. 

- % I  

x=kxl: 
Insert kxl in the formula that's just found: 
pxl = -A(~- '~" ) 2  + ~ ( ~ ~ ~ 2 1  )2  

A =  Pxl : So condition 1 and 2 are ok! (erkxl )2 - (e-rkxl )2 

5 and 6: 
x=kx3: 

C -rx C 
P3 =-- e +- erx : So condition 6 is ok. 

-I-kx3 '-k*; 

x=-k . x3. 
Insert kx3 in the formula that's just found: 

' px2 = -c(erk=3 ) 2  + ~ ( e - ' ~ ~ 3  l2  

Px2 : So condition 5 and 6 are ok! 

3 and 4: 
x=-k, 



insert x=-ka in the formula just found: 

L 

So: 

1 
B,, = - p x ,  + B22 - -n(so)L 

2 
Insert x=ka in the formula found 5 lines back: 

L 

Insert the equation for Bll in the formula just found: 
1 1 

0 = -(-pxl + B,, - - n ( s o ) ~ ) ( e - ~ ~ ~ ' ) ~  + ~ ~ ~ ( e ~ ~ ~ ~ ) ~  --n(so)L - px2 
2 2 

Rewritten: 

Now 3 an 4 are ok! 

7 with x=kxl and -k,: 

 AT(^-^^^^)^ +  AT(^^^^^)^ = Bl lr + B2,T 
8 with x=-kx3 and ka: 

CF(eW3 l2 + CF(e-rkx3 )2 = B~ Ir(e-rkx2 )2 + B ~ ~ F ( ~ ~ ~ ~ ~  )2 

A, BI1 and B22 inserted in 7: 

Rewritten: 

This can be written as pxl=D1-p,D2-D3 with: 



1 
-n(so)LT 
2 

r((e-"~)~ + (e"~)~)  + - 2r(e-'"~ 
f k  2 (erkx1 l2  - (e- XI ) (e-'kx2 >2 - (erk12 )2 

C, BI1 and B2Z inserted in 8: 
I 

Rewritten: 

This can be rewritten as: p,=El+E2+pxlE3 with: 

Now it is possible to rewrite the equations for p,, and p,: 
paZ(E1+E2+D1E3-D3E3)/(1+D2E2) 
pxl=D1 -((El +E2+D 1 E3-D3E3)/(1 +D2E2))D2-D3 

So all the 8 unknowns (Al, A2, B1, B2, C1, C2, p,, and p,) are known, which means that the pressure 
in the 3 tubes can be calculated. 



Appendix E: Results comparison 
In this appendix the results of the comparison between the model and the experiments 
will be given for the sound pressure level in the tube and the far field pressure. 

Data experiments: 

X data=[0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.041; 
~ i t a  - meas - 1000=[90.2 101.5 104.95 105.75 106.4 105.25 103.35 96.271; 
Q P P P ~ P T Q + ; ~ ~ = ~ . ~ ~  
UVVWIWl ULlVll 

Data - meas - 500=[96.9 108.86 113 115.3 117.56 118.8 119.93 120.24:; 
acceleration =O. 18 
Data meas - 250=[87.4 98.34 102.77 105.065 107.6 108.92 110.693 11 1.841; 
acceleration =O. 137 
Data meas 750=[85.73 94.727 101.15 100.5 101.74 102.7 103.33 103.11; 
acceiration=0.177 (between 0.165-0.19) 
Data meas 1250=[101.3 112.32 115.5 116 115.255 111.327 101.15 1061; 
acceiration=0.36 (between 0.32-0.4) 
Data meas - 1500=[94.79 106.3 1 108.845 108.5 1 105.89 94.975 100.276 107.511; 
acceleration =0.45 (between 0.4-0.5) 
Data mesls 1750=[97.354 108.177 110.3 108.15 100.88 98.96 108.08 1 lO.0251; 
acceiration=0.73 (between 0.68-0.76) 
Data meas 2000=[89.7 100.8 102.24 98.31 80.53 98.41 102.22 100.351; 
acceleration =0.3 5 (between 0.3-0.40) 
Datameas 2250=[96.97 107.03 107.15 96.95 101.9 107.4 106.04 901; 
acceleratioi=0.25 (between 0.14-0.3 5) 
Data-meas-2500i[81.6 91.377 89.7 76.65 90.4 91.25 83.242 87.41; 
acceleration =(0.12 (estimation)) 

Soundpressure level (re 5e-5 Pa): 

In each graph there are 4 frequencies. The figure at the left-bottom is the 
frequencyll .l5. The figure at the left-top is (frequencyll .l5)-40, the figure at the right 
top is (frequency11 .l5)-10 and the figure at the right bottom is the 
(frequencyll . 1 5)+3O. 





Measurement at 750 Hz 

Measurement at I000 Hz 



Measurement at 1.250 Hz 

Measurement at 1500 Hz 



Measurement at 1750 Hz 

Measurement at 2000 Hz 



Measurement at 2250 Hz 

Measurement at 2500 Hz 



Appendix F: B function 

After some research it appeared that the value of the function B (function 19), as 
given in [I], does not convert to -1 but to -0.74 for high values of the shear wave 
number. It is expected to convert to -1, because: 

It is stated-in [I] and appendix D that B should go to -1 for high shear wave 
numbers. 

1 
B is defmed as: B(s) = - ~ ( s ,  x" )dACd 

l I C d  ;m 
It is known from earlier calculations that A is -1 (absolute value is 1) over almost 
the whole area, because the piston approximation is based upon this. So over the 
whole area there is a value -1, so if one than integrates A over the whole area and 
divides again over the whole area one gets a value of -1 for B. 
By numeritical integration of A over the whole area and than dividing by the area 
also the result of -1 for high shear wave numbers is achieved. 
The value of B for the expression for a tube with a circular cross-section [I] also 
goes to -1 for high shear wave numbers. 

In figure F.1 the following 4 B functions will be shown; The original one as used in 
[I j, the originai one divided by a factor to bring it to -1, the B formula for a round 
tube and the B formula derived by numeritical integration of A. 
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Figure F. 1: Dzflerent B formula's (dark solid=original B form [I], dark dashed=B 
determined with a numeritical integration, light solid=original BJFom [I] divided by 

afactor and light dashed=BJFom a tube with a round cross-section [I]) 



Because there is a strange difference between the B formula of [l] and what could be 
expected it is chosen to perform a calculation of the transfer function of the tube of 
360 mm with the 4 different B functions described in figure F.1. Figure F.2 shows the 
result of this calculation. 

What can be concluded from figure F.2 is that there is a better match between the 
results from the model and the experiments with the 3 "new" B formulas. However 
there is now an over prediction of the eigenfrequency instead of an under prediction. 
This over prediction of about 2% can be explained by the fact that the measurement is 
performed with a tube without a good baffled end, so there is more leakage out of the 
system than there would be with a good baffled end system. This can be a reason why 
the frequencies do not completely match. What also can be a reason is that the 
impedance of the model is maybe a bit to low, because the impedance "virtually" 
lengthens the tube, so if the impedance is larger the "virtual" tube gets longer and thus 
the eigenfrequency decreases. 
What also can be concluded from the figure is that the overall transfer-function looks 
the same for the "old" B from [I] and the new "B's", only the frequency is different. 
This is at least true for the case of the B from the round tube and the B with the factor. 
Only the transfer function with the B determined on an iterative way is a bit different. 
This can be because the iteration is not good enough at the edges of the opening of the 
tube. 



Appendix G: Validation boundary condition 

In this appendix the p=O boundary condition in model A will be validated using the 
end-impedance used in model B. 

There the "opening" of the layers has a maximum of 4Omm x 5 mm (20rnrn x 20mm x 
5mm patch translated in a tube with 2 openings of 40mm x 5mm). 
The reflection factor is -0.8 at 2000 Hz and -0.5 at 4000 Hz for this opening. This is a 
large factor, but on the other hand it is the maximum factor for a tyre tread as defied 
in model A. The smaller the gap the more the factor will go to -1. With this in mind it 
is possible to conclude that for the largest tread block with the maximum gap size it is 
important to have a high amplitude, because than the pressure at the center is not that 
much affected by the leakage at the sides. However for smaller tread blocks and 
smaller gaps the reflection factor nears -1, so than the boundary condition of p=O is 
valid. The conclusion can be that also for some smaller amplitude the calculation will 
be valid. 


