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Summary 

In [45], a method for selection of actuators and sensors (Input Output (IO) selection) in linear 
control systems was studied. Its main shortcoming was the inability to effectively deal with 
structured uncertainties and robust performance. This is partially resolved by two IO selection 
methods studied here. The key idea is to eliminate actuator/sensor combinations (IO sets) 
for which a controller meeting a guaranteed level of robust stability or robust performance 
cannot be designed. The structured singular value plays a key role, so the report starts with 
a discussion on this concept and how it can be employed for control system design. 

The first method is closely related to the one in [45], i.e., for each IO set six conditions are 
checked for existence of a stabilizing KFt, controller. However, these “viability conditions” now 
apply for a generalized plant extended with scaling filters, which are introduced t o  account for 
structure in the uncertainty block. The resulting condition for IO set viability is a sufficient 
one, mainly because the scalings are only determined for the IO set including all actuators 
and sensors and so may not be optimal for other IO sets. The second method is based on 
a necessary condition, which is mainly due to the fact that the stabilizing property of the 
controller is dropped. The viability conditions (in the form of linear matrix inequalities) are 
checked for various frequencies, using transfer matrix data of the generalized plant. A major 
shortcoming is the inability to effectively deal with uncertainties consisting of more than two 
full blocks. 

The two IO selection methods have been implemented in MATLAB and an active suspension 
control problem for a tractor-semitrailer combination served to evaluate them. A total num- 
ber of 45 candidate IO sets are assessed for their ability to  meet a specified level of robust 
performance under one scalar uncertainty. Due to  its sufficiency, the first IO selection method 
rejects two viable IO sets, while, due to its necessity, the second method accepts two non- 
viable IO sets. Based on this single example, it is impossible to conclude on the methods’ 
effectiveness in general. In the current implementation, the second IO selection method takes 
considerably more computation time than the first one; improvement of the efficiency of both 
met hods merits further investigation. 

A major topic for future research is IO selection for nonlinear systems. First, it must be 
revealed if the investigated methods can be applied successfully to linearizations of nonlinear 
systems, accounting for the neglected nonlinearities via the uncertainty block. Second, it 
must be investigated if the theory of nonlinear E ,  control offers prospects in case of nominal 
performance or robust stability against unstructured uncertainties. 
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Chapter 1 

Introdenct ion 

Preceding the design of a controller, an appropriate number, place, and type of actuators and 
sensors must be selected. This process is here referred to as “Input Output (IO) selection.” 
Compared to  modeling and controller design techniques, relatively little attention has been 
paid to  IO selection. Nevertheless, it is a crucial step in control system design. First, the 
IO set may put fundamental limitations on the system’s performance, e.g., it may introduce 
right-half-plane transmission zeros, which impose restrictions on the achievable bandwidth, 
regardless of the controller type, see, e.g., [ll]. Second, the IO set partially determines aspects 
like system complexity, hardware expenses, and maintenance effort. Due to the combinatorial 
nature of the problem, the number of “candidate” IO sets may be huge and favorable ones 
are easily overlooked. So, an efficient and effective IO selection is desired. 

The goal for IO selection in this report is stated as follows (see also [47]): minimize the 
number of inputs and outputs, subject to  the achievement of a specified Robust Performance 
(RP)  level. Thus, with the IO set it must be possible to design a controller which stabilizes 
the system and meets the performance specifications in the presence of a particular class of 
uncertainties. Candidate IO sets for which it is possible to design such a controller are termed 
“viable.” 

Various IO selection methods are surveyed in [42,46,47]. Three commonly encountered lim- 
itations are the following. First, IO selection is often restricted to systems with an equal 
number of inputs and outputs. Second, the controlled and measured variables are not always 
treated separately: it is frequently assumed that controlled variables can either directly be 
measured, or suitably be represented by measured variables. Third, quantitative performance 
specifications and uncertainty characterizations (if employed at all) are usually restricted to 
one particular frequency (range). In [45], a new IO selection approach for linear systems is 
discussed, which avoids these limitations, but which is only able to deal with RP in a con- 
servative way. Instead, the method employs criteria based on Nominal Performance (NP)  
and Robust Stability (RS) against separate uncertainties, which are properties necessary for 
RP. Fundamentally, the conservativeness of the method is due to  the inability to  account for 
structured uncertainty representations, arising in systems with multiple uncertainty sources. 

1 



CHAPTER 1. INTRODUCTION 2 

Two IO selection methods for linear control systems will be compared. Both are able to 
handle structured uncertainties and RP. For this purpose, the structured singular value p is 
employed. The first, newly proposed, method gives a suse ien t  condition for IO set viability. 
After extending the generalized plant with particular scaling filters, the method essentially 
checks six conditions for existence of an X, controller, as discussed in [45, Section 2.41. Via 
the scaling filters, the structure of the uncertainty block can, to some extent, be accounted for. 
The secondly investigated method is adopted from [22j. i t  is based on necessary conditions for 
viability, formulated as Linear Matrix Inequalities (LMIs). Unfortunately, it is not guaranteed 
that a stabilizing controller can be designed for an accepted IO set. 

The report is organized as follows. Chapter 2 discusses the structured singular value concept 
and the way in which it is applied for RP analysis and RP design. The two IO selection 
methods to be investigated are treated in Chapter 3. An active suspension control problem 
is proposed in Chapter 4 as an example to evaluate the IO selection methods; performance 
specifications and a parametric uncertainty model are given. For 45 candidate IO sets, Chap- 
ter 5 compares the results for the 10 selection methods. In Chapter 6, the pros and cons of 
both methods are discussed and Chapter 7 provides needs for future research on IO selec- 
tion for h e a r  systems. As a special topic for further study, the final chapter explores the 
(im)possibilities to generalize the IO selection method based on existence of an ‘Ft, controller 
(as discussed in 1451) to nonlinear systems. 



Chapter 2 

Robust Performance! 

A disadvantage of the IO selection method studied in [45] is the inability to account for struc- 
tured uncertainty representations in an adequate way. This is due to the fact that ‘Hm theory 
relies on the small gain theorem [59, Section 9.21, which is conservative in case of structured 
uncertainties, see [45, Section 2.21. To resolve this shortcoming, the two IO selection methods 
to  be compared employ the so-called structured singular value, abbreviated p, which was first 
introduced in [6J. Section 2.1 discusses p in a purely algebraic context; with slight modifi- 
cations, the treatment is adopted from [33, Section 31 and [51, Section 2.21. This is followed 
by discussions on how to use p for Robust Performance (RP) analysis (Section 2.2) and RP 
design (Section 2.3) for linear control systems. 

2.1 The Structured Singular Value 

In this section, the structured singular value p will be treated as a matrix function operating on 
complex matrices M E Cxm. In the definition of p, there is an underlying structure A, which 
is a set of block diagonal matrices. As will become clear in Section 2.2, for control systems 
the structure A depends on uncertainty characterizations and performance specifications. 
Defining the structure involves specifying three things: 1) the total number of blocks, 2) the 
type of each block (repeated scalar or full, real or complex), and 3) the dimension of each 
block. 

In this report, only fulZ complex blocks making up A will be considered, leaving out full 
real, repeated complex and repeated real blocks. The restriction to fuZ1 blocks not only 
simplifies the notation, but appears also appropriate for the truck example, see Section 4.3. 
The restriction to  compZex blocks is motivated by the avoidance of extra complications in 
the first exploration of the IO selection methods. Since some algorithms in the MATLAB 
p-Synthesis and Analysis Toolbox [i] (abbreviated “p-Toolbox” ) can also deal with mixed 
real and complex, full and repeated blocks and since real blocks are more appropriate for the 
uncertainty model in the truck example, IO selection involving more general uncertainties 

3 



CHAPTER 2. ROBUST PERFORMANCE 4 

Figure 2.1: Constant matrix feedback connection M - A 

is certainly a need for future research (see also Chapter 7). Hence, the structure A to be 
considered here is as follows: 

7 1 

A = {diag(Al,A2, . . . ,A1)  : Ai E CYaxna};  Emi = m; Eni = n. (2.1) 
i=l i=l 

Contrary to  the treatments in [33,51], each block Ai is allowed to be nonsquare. Often, a 
norm bounded subset of A is used, denoted as: 

BA= A E A :  @ ( A ) < -  , (2.2) { Y ‘1 
with a the largest singular value of a matrix. The structured singular value is now defined as 
follows, see, e.g., [33, Section 31: 

Definition of p: Given a matrix M E ex” and a compatible block diagonal structure A, 
the structured singular value ~ A ( M )  of M with respect to A is defined as: 

1 
min{@(A) : A E A, det(I  - MA) = O}’ pA(M) := ( 2 . 3 )  

unless no A E A makes I - M A  singular, in which case p .a (M)  := O .  

Note, that p c ( M )  not only depends on M ,  but on A as well. It is illustrative to give a 
“feedback” interpretation of the p definition [33] .  Consider Fig. 2.1, which represents the 
loop equations z = Mul and UI  = AZ. As long as I - MA is nonsingular, the only solutions z 
and w to these equations are z = 20 = O. However, if I - M A  is singular there are infinitely 
many solutions and the norms of z and 20 can be arbitrarily large, i.e., the constant matrix 
feedback system in Fig. 2.2 is “unstable.” Likewise, the system is “stable” when the only 
solutions are zero. Thus, ~ A ( M )  provides a measure of the smallest structured A causing 
instability. The “magnitude” of this A is l / p ~ ( M ) .  

Unfortunately, exact computation of p cannot be performed efficiently in general. Instead, p 
is approximated by lower and upper bounds, based on the following inequalities: 

f ( M )  5 pA(M) 5 @ ( M l ,  (2.4) 

with p the spectral radius of a matrix, i.e., the magnitude of the largest eigenvalue (in 
magnitude). Since the gap between the upper and lower bounds can be arbitrarily large 
(see [59, Section 11.2.21 for an analytical example), these bounds are not directly suitable 
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Figure 2.2: Scaled, constant matrix feedback connection M - A 

for p computation. To (partially) solve this, transformations on M are used, which do not 
affect p ~ ,  but which do ageet p and a. The computation of the lower bound will not be 
further addressed here (see, e.g., [33] for details), because only the upper bound is used for 
the IO selection methods. To compute a better upper bound, two sets of invertible scaling 
matrices (“D-scales”) are defined, see also Fig. 2.2: 

Note, that the sets D, and D ,  are such that each full block Ai in A is accompanied by 
diagonal scaling matrices diImt and dJnZ with positive real numbers di as diagonal entries. 
These numbers are collected in the set d: 

Without loss of generality, the scaling matrices will be normalized with respect to the last 
diagonal matrices in D, and D,, i.e., dl = 1 [33]. For any A E A, D, E D,, and D, E D ,  
(e.g., [59, Section 11.2.21): 

and hence the upper bound for p can be tightened to: 

This bound can be reformulated as a convex optimization problem (in fact, a Linear Matrix 
Inequality (LMI), see [33, Section 3]), so the global optimum can in principie be found. 

The upperbound in (2.10) is only an equality for some special cases of the uncertainty structure 
(so-called “p-simple structures,” [33]). For the structure in (2.1), p computation is exact if the 
number of blocks is less than four, i.e., 1 5 3. Fortunately, computational experimentation 
has shown, that in most cases the upper bound is nearly equal to p ~ ( A 4 )  [l, Chapter 21. The 
use of the upperbound instead of p itself is also justified by the following two reasons. First, 
in the context of control systems, p is essentially a stability measure (see Section 2.2) and 
it would be more dangerous to underestimate p than to overestimate it. Second, robustness 
against arbitrarily slowly time-varying uncertainties is covered by the upperbound [36]. 
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Figure 2.3: Standard control system set-up 
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2.2 ,+Analysis 

While in the previous section ,u was related with constant matrices, in this section p will be 
discussed in the context of Transfer Function Matrices (TFMs) for dynamic control systems. 

To start with, the standard set-up for finite dimensional, linear, time-invariant control sys- 
tems in Fig. 2.3 is considered. Block G is called the generalized plant, which includes nominal 
system data via G and which may also include TFMs reflecting performance specifications 
(Vu*, Wz*)  and uncertainty characterizations (Vp, W,), see [45, Section 2.11 for more de- 
tails. Uncertainties are represented by the block A,, while a fictitious uncertainty block Ap 
is introduced to  account for performance specifications; in general, A, is an unstructured 
complex block. It is assumed, that A, and Ap are stable, i.e., that all poles are in the open 
left-half-plane C-. The controller is denoted K .  In the sequel, it is assumed that G and 
K are real-rational and proper and that their state-space descriptions are stabilizable and 
detectable, see [59, Section 16.11. Controllers K with the additional property of being inter- 
nally stabilizing are termed “admissible” ( [7], [59, Section 16.11) and the set of all admissible 
controllers is denoted K A .  

From Fig. 2.3, the open-loop TFM G can be written as follows: 

(2.11) 

Figure 2.4 is obtained from Fig. 2.3 by closing the control loop. The generalized closed-loop 
TFM M can be written as a so-called lower linear fractional transformation of G and K: 

M = Fi(G, K )  := GI1 + GiaK(1- G22K)-1G21, 

(2.12) 

The nominal closed-loop i@ can be found in a similar way via i@ = & ( G , K ) .  Note that the 
system in Fig. 2.4 can be viewed as a dynamic equivalent of the feedback interconnection in 
Fig. 2.1. The following feedback interpretation of ,u*(M) in the frequency domain can now 
be given [3, Section 5.7.11. 

Consider the loop in Fig. 2.4 as the feedback of a nominally stable closed-loop control system 
M ( s )  and a set of stable uncertainty TFMs A(s) with structure like A. According to  the 
multivariable Nyquist criterion (see, e.g., [3, Section 1.3.4]), the feedback loop is stable if 
and only if the plot of det {i - M ( j w ) A ( j w ) }  does not pass through or encircle the origin. 
Suppose that a given uncertainty A destabilizes the system, so det {i - MA) passes through 
the origin or encircles it at least once. Also consider det {I - M .  EA}, with E between zero 
and one. For E = 1 the original Nyquist plot is retained, while for E = O the plot reduces to 
the point 1. Since the Nyquist plot depends continuously on E, there is an E E (O, 11 such that 
det { I  - M - EA} passes through the origin. Hence, if A destabilizes the perturbed system, 
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rm- ................................................. 

................................................. i M 

z 

M : generalized closed-loop control system 

A : A = diag(A,,A,) 
V : V = diag(V,,V,*) 
W : W = diag(Wq,Wz-) 

: nominal closed-loop control system 

u), .w : w = (,p), .w = (JJ 
2) 2 : z = (,4), z =  (p) 

Figure 2.4: Standard closed-loop control system set-up 

there exist an w E R and a “smaller” uncertainty EA such that det {i - M ( j w )  - 6 4 ( j w ) }  = O. 
Thus, under the specified uncertainty structure A, the feedback loop is destabilized if and 
only if for some w E R 

det {i - M(ju)4(jw)} = O. (2.13) 

Involving the definition of p in (2.3) in this reasoning, the frequency dependent p ~ { M ( j w ) }  
is the reciprocal of the smallest structured uncertainty A causing instability of the feedback 
loop, if such an uncertainty exists. The peak value of p over the frequency domain determines 
the size of uncertainties the loop is robustly stable against. 

With p it is possible to test, e.g., the RP properties of a control system, i.e., it can be 
used to  test if a system is stable) at  the same time meeting the performance specifications in 
the face of a prescribed set of uncertainties. To arrive at a normalized test, the set A will be 
restricted to the subset B A  in (2.2). It is emphasized, that with a slight abuse of notation 
BA now represents the stable) X, norm bounded rational TFMs with a block structure like 
A. The following provides a necessary and suse ien t  condition for RP [33]:  

Robust Performance: Consider Fig. 2.4: Given that A and M are stable, stability of the 
uncertain system for all 4 E B A  is achieved i f  and only i f  

I I M I I P  Y7 (2.14) 

with 

(2.15) 

Testing this condition is referred to as “p-analysis.” Though llM1lp lacks the positive-definite- 
ness and triangle properties of norms (see, e.g., [3, Section 5.4.2]), the notation is similar to 
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the ?-Lm norm: 

llM1loo := sup á { M ( j w ) } .  
w 

(2.16) 

The value llM[lp could be seen as a multivariable stability margin, since it indicates how “far” 
the uncertain closed-loop is from instability with the worst case uncertainty A E A. The 
reciprocal of an ~ ~ M ~ ~ p  smaller than one yields the value with which the worst case uncertainty 
can be multiplied before it causes instability. 

The RP test (2.14) is a stability test against an uncertainty block A, composed of a true 
uncertainty block A, and a fictitious uncertainty block Ap. Hence, the requirement of com- 
bined stability and performance under a class of uncertainties (RP requirement) has been 
transformed into a single stability test. An analogous test for Robust Stability (RS) can 
be given, in which case only the block A, in A and the subsystem MI1 in the generalized 
closed-loop M are considered. 

To conclude this section, it is recalled that 11M11, in (2.15) is usually not computed exactly. 
Instead, the upper and lower bounds for p are computed. If the upper bound “llMllP)’ for 
IIMIIp is used, replacing (2.14) and (2.15) by 

IIMIIP Y, (2.17) 

with 

IIMJIP := sup inf ~ i D t ( j w ) ~ ( j w ) ~ ~ l ( j w ) } ,  (2.18) 
w d€d 

a suficient condition for RP is provided, which is generally tight, i.e., IIMllP N IIMIIp. In 
practice (see also [i]), llMllP is computed by successively choosing a suitable frequency range 
and frequency grid, optimizing the D-scales at  each considered frequency, and computing the 
supremum of B(D,MDi1) over all considered frequencies. Note, that the obtained l]Mllp 
value is too small if “critical” frequencies are absent in the specified grid. 

Comparing (2.18) with the definition of the H ,  norm (2.16)) the p upperbound is simply 
the Xm norm of a scaled system. This will be employed by the first IO selection method in 
Section 3.1 and the p-synthesis in the next section. 

2.3 p-Synthesis 

In the previous section, p-analysis served to check if a plant G closed with a given controller 
K achieves RP. In this section, the problem of designing a controller achieving (the best 
possible level of) RP is considered, which is referred to as p-synthesis. The goal of “optimal” 
p-synthesis can be expressed as follows: 
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........................................................ a 

: . . . I . .  ......................................... . . . . . I . .  .: 
I I 

Figure 2.5: Extending G with rational D - s c a a  for D-E iteration 

Recall that KA is the set of all admissible controllers. Unfortunately, this problem is currently 
unsolved. Instead, (2.19) is replaced by the following “approximate” goal [59, Section 11.41: 

with “5, X” denoting stable, minimum phase, real-rational approximations of the frequency 
dependent variables 2, X .  It is remarked, that compared to  the unstructured optimal XW- 
synthesis, this structured p-synthesis problem has extra freedom via the scalings Bz and B,. 
This is exploited to lead to  lower achievable closed-loop “norms.” 

The approximate p-synthesis problem in (2.20) is nonconvex for K and 2 simultaneously and 
the global optimum may be hard to  find. Instead, a sequence of convex minimizations can be 
performed, which is often called “D-K iteration,” see, e.g., [i, Chapter 31, [3, Section 6.9.31, 
and [59, Section ii.41. This process is summarized as foUows, see also Fig. 2.5: 

O .  Compute an initial controller. 
An initial, stabilizing controller K is designed (e.g., an X, controller for the unstruc- 
tured version of Bh) and the corresponding nominal closed-loop M is computed. 

1. Perform p-analysis. 
For the given M ,  the convex optimization problem infdEd á { o z ( j w ) ~ ( j w ) D , ’ ( j w ) }  is 
solved for a finite number of frequencies w in a representative frequency range. The 
supremum over the frequency grid of this p upper bound yields / ]Ml lp ,  see (2.18). 

2. Find rational D -scaling approximations. 
Over the frequencies of interest , stable, minimum phase, rational transfer functions are 
fit (in magnitude) to d from the previous step. The data in d are replaced by their 
rational approximations d. 
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3. Perform R, optimization. 
Given the rational approximation 2, IIBzM(G, K)B;lJI, is minimized with respect to 
all stabilizing K ,  see Fig. 2.5. With the newly obtained M ,  the panalysis in step 1 is 
repeated. 

-7 . inls  iteration could be repeated until iiIvfiiP in step 1 dues not fürther dscïease (“optima! 
D-K iteration”), or until IIMllP < y ,  e.g., for y = 1 (“suboptimal D-li: iteration”). Other 
stopping criteria are that the plot of p ~ ( A 4 )  in step 1 does not change anymore, or that the 
plot of the D-scales remains the same [59, Section 11.41. Although the D - K  iteration is not 
guaranteed to  converge, it usually does in practice [59, Section 11.41. 

The controller order is equal to the order of G plus twice the order of 2 which was lastly used 
in step 3. To limit the controller order, it may thus be preferred to use low order D-scaling 
approximations in the final iteration step. It is however advisable to perform a p-analysis for 
the resulting M ,  to check if the D-K iteration has not diverged in the final step. 



Chapter 3 

Input Output Selection Methods 

One way to  check if IO sets are viable in the sense of RP is to perform D-K iteration for 
all candidates. However, for a large number of candidates, this “brute force” approach is 
undesirable. More efficient, but probably less effective, IO selection methods are discussed 
in this chapter. To our knowledge, the first method (Section 3.1) has not been investigated 
elsewhere in literature. The second method (Section 3.2) was proposed in [La] and is further 
studied in [35]. While the first IO selection approach is based on a sufficient condition for IO 
set viability, the second one relies on a necessary condition. 

3.1 Input Output Selection Based on D-Scale Estimates 

Suppose that optimal D-A’ iteration is performed for the overall IO set, i e . ,  the IO set 
including all candidate actuators and sensors. Call the closed-loop for the overall IO set M*. 
If llM*llp from- steg 1 in the final iteration is smaller than y,  the overall IO set is guaranteed 
to achieve an RP level y. Note, that in case IIM*II, > y,  the overall IO set may still be viable 
in the sense that it achieves the desired RP level, since l]M*llp 5 llM*llp. For the finally 
obtained M*, a p-analysis is performed and the associated D-scales D, and D, are fit with 
rational approximations denoted by 8, and 8,. With 8, and B,, an “estimate” IIM*II, for 
the upperbound llM*llp is defined as: 

/lM*ll$ := IIDZM*D,1II,. (3.1) 

Comparing equations (2.15), (2.18), and (3.1), three different “norms” related to the overall 
IO set’s closed-loop M* can be computed, for which the following inequalities apply: 

The higher the order of 8, and 8,, the better infdEdt?(D,M*D;l) and S(8,M*8;1) will 
match and the closer llM*llp and ~ ~ M * ~ ~ ~  will be. 

12 
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The rational D-scales 8, and 8, for the overall IO set play a crucial role in the IO selection 
method proposed in this section. Suppose that w and z in Fig. 2.5 represent the same goals for 
all candidate IO sets, implying that w does not contain measurement noise ( “ y - n ~ i s e ~ ~ )  and z 
does not include input weights (“u-weights”). The following notion provides the key idea for 
IO selection. An optimal closed-loop Ad for an IO set which is “almost as good” as the overall 
IO set will have approximately the same dynamic behavior as M*, i.e., M*(s)  N M ( s ) .  The 
following measure will serve to  quantify the closeness of M and M*: 

If $2 < 1, M and M* behave approximately the same, ~ A ( M )  N ~ A ( M * ) ,  and the D-scales 
for M are roughly the same as those for M*. In that case, 8, and 8, are good estimates 
for the D-scales associated with M ,  provided 8, and h, are good estimates €or the D-scales 
associated with M*. If so, ~ ~ ~ z M 8 ; 1 ~ ~ m  N IIMIIp. 

For each IO set, G can be extended with the rational scalings h, and Di1  arising from 
the overall IO set’s optimal closed-loop M*. An estimate of the achievable IIMIIp value 
for each IO set can be obtained by computing an optimal ‘,YFt, controller for each IO set’s 
extended G (compare with the 3rd step in D-K iteration). It is emphasized, that this may 
be a conservative estimate, since 8, and 8, might not be the best approximations for other 
IO sets than the overall one. This is expressed by the following inequality: 

For the purpose of IO selection, the rational D-scales b, and D, are now used as follows: 

IO Selection wi th  D-Scale Estimates: Consider Fig. 2.5. For each candidate IO set, 
G is scaled with D,, D;l and it is tested i f  an  admissible K can be designed achieving 
IIM(G, K)llfi := llB,M(G, K)D;lllm < y .  Since this is a sufficient condition for existence of 
an admissible controller achieving I(M(G, K)((, < y, IO sets for  which this condition is met 
are guaranteed to achieve RP against all A E BA. 

Unfortunately, due to sufficiency, IO sets which are actually viable might be eliminated. This 
shortcoming is expected to be more serious if y-noise is included in w and u-weights in z .  
The presence of u-weights and y-noise is reflected in the lower right blocks of the D-scales 
(associated with A,), which are normalized to identity (d l  = 1 in (2.7)). To subject other 
IO sets than the overall one to the viability tests, identity diagonai entries in h, and h, 
corresponding to non-considered inputs and outputs must be skipped. It is expected, that 
the larger the y-noise and u-weights are, the less “close” fi, and hw are to  the optimal D- 
scales for each IO set, i.e., the gap in inequality (3.4) will be larger. After all, D-K iteration 
for the overall IO set accounts for u-weights on all inputs and y-noises on all outputs. The 
IO selection example in Chapter 5 will be used to investigate the severity of this problem 
(Section 5.2). 

Essentially, the IO selection proposal amounts to  the same approach as in [45, Section 2.41, 
where six conditions test the existence of an admissible controller achieving a desired closed- 
loop ;Ft, norm. It was already noted in the explanation of D-K iteration (Section 2.3), that 
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by extending the generalized plant G with rational D-scales, a new X, control problem can 
be formulated. For IO selection, the existence of an admissible controller achieving RP is 
checked via the same six conditions. For the sake of completeness, these conditions will be 
summarized here. 

The generalized plant G in Fig. 2.3 can be represented as: 

2 = AX + B ~ w  + B ~ u  
G :  { z = ClX + DllW + D12u 

y = C2X + D21w + D22% 
(3.5) 

with z E Etn= the state vector and the inputs and outputs as defined in Fig. 2.3 and Fig. 2.4: 
w E Etn,, u E Etn=, z E IRn,, and y E E%”.. For the state-space parameterization of 3-1, con- 
trollers in [la], six assumptions on (3.5) are made. These must be satisfied for k!, design via 
the Riccati equation approach (e.g., with [l]) and for the suggested IO selection method: 

1,2. ( A ,  B2) is stabilizable and (C2, A )  detectable, 

3,4. Ol2 has full column rank and D21 has full row rank, 

5,6. [ A ;y1 ::2 ] has full column rank ‘v’ w and [ A ;y1 :il ] has full row rank V w. 

In the derivation of the controller parameterization in [la], u and y are scaled and unitary 
transformations on w and z are performed. Without loss of generality, these manipulations 
are such, that 

(3.6) 

(by assumptions 3 and 4)) and 

f R(nz -nu)x (nw-n , )  

Dlli2 E R ( n z - n u ) x n ,  

Dl12, E R n u x ( n w - n , )  (3.7) 
Dllli D 1 1 i 2  , with 

E Rn=xn, 
i a l z i  DllZZ 1 Dll = 

For more details on the involved transformations, it is referred to, e.g., [30, Section 6.71 and [59, 
Section 17.21. To obtain an admissible controller achieving IIMll, < y,  two Riccati equations 
must be solved, see, e.g., [la], [30, Section 6.71, or [59, Section 17.11 for documentation of 
these equations. One of them is related with a state-feedback-like problem (“state-feedback 
Riccati”), the other with an observer-like problem (“observer Riccati”). The following lays 
the foundation for the IO selection method: 

There exists an  admissible controller such that IIMll, < y if and only if the following condi- 
tions hold [59, Section 17.11: 
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2,3. The two Hamiltonians H x  and H y  associated with the state-feedback Riccati and the 
observer Riccati respectively do not have ju-axis eigenvalues. Moreover, Im(ynX:) is 
complementary to each Hamiltonian’s invariant subspace corresponding t o  the stable 
eigenvalues. 

4,5. The solutions X, and Y, to  the state-feedback and observer Riccati respectively are 
positive semi-definite: X, 2 O and Y, 2 O 

6. The spectral radius of the product X,Y, is smaller than y2: p(X,Y,) < y’. 

In the context of IO selection, the conditions 1-6 will be called the “viability conditions.” 
Note, that condition 1 also depends on the IC set under consideration, since (possible very 
small) input weights and measurement noises are included in z and w respectively to  meet 
assumptions 3 and 4. However, if Dll = O for the overall IO set, it will also be zero for the 
other IO sets and so condition 1 need not be checked. For an elaboration on conditions 2-6, 
it is referred to  [45, Section 2.41 and Chapter 7. 

For the RP based IO selection, the viability conditions are checked for the generalized plant 
G extended with the rational approximations for the overall IO set’s D-scales fi, and Di1. It 
is remarked, that once the standard assumptions are met for G, they will also be met for the 
extended generalized plant, thanks to the properties of the rational D-scales, see Section 2.3. 
Having obtained the state-space formulation of the extended generalized plant, each IO set 
is subjected to the viability conditions. As soon as one condition fails, the rest need not be 
checked. 

3.2 Input Output Selection Based on Linear Matrix 
Inequalities 

This section discusses the key ideas of the IO selection method proposed in [22] and summa- 
rized in [44]. For a more detailed treatment of the theory, it is referred to  [35]. 

Consider the control system set-up in Fig. 2.3. Although not explicitly mentioned in [22], it 
wiU be assumed here that the generalized plant meets the six assumptions listed in Section 3.1. 
First, assumptions 1 and 2 guarafitee the entire closed-loop being stable and not jrist the loop 
around GZ2 (see (2.11) for the partitioning of G). Second, assumptions 3 and 4 guarantee 
K to be proper (and hence physically realizable) and, third, assumptions 5 and 6 guarantee 
Glz and Gal to have full column rank n, and full row rank ny respectively for all frequencies, 
which is needed in the derivation of the IO selection formulas, see (3.12). A more detailed 
discussion on these assumptions is found in [45, Section 2.31. 

Another difference with [22] is, that A is not restricted to consist of square diagonal blocks. 
The formulas for nonsquare uncertainty blocks are straightforwardly obtained by following 
the derivation in [22]. 
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The basic idea for the IO selection approach in [22] is to  check if minKEics ] ] M ( G ,  K)llp < y7  
with ICs  the set of all proper, real-rational, and stabilizing controllers (actually, y = 1 in [22]). 
Due to the inability to exactly compute p,  this inequality is replaced in [22] by: 

yielding a suficient (but generaiiy tight) condition for existence of a robustly peïfoiming 
controller. The so-called Youla controller parameterization (see, e.g., [lo, Chapter 41, [30, 
Chapter 61 for elaboration) is invoked to create an expression for the closed-loop M which is 
affine in the “new controller” &, whereas the expression (2.12) is not affine in K .  Inequality 
(3.8) is then replaced by its equivalent 

with RX, the set of all proper, real-rational, and stable transfer functions and N a modified 
version of G. Note, that the requirement of K being stabilizing (K itself not necessarily 
stable) is replaced by the requirement of Q itself being stable. 

Unfortunately and in analogy to (2.20), the optimization (3.9) in the parameters Q and d 
jointly is nonconvex [22] and it also requires controller design. Both problems are circumvented 
in [22] by replacing Q E RX, with Q E E M .  Here, R M  is the set of all proper, real-rational 
transfer functions, which need not be stable (R’FI, c: R M ) .  Hence, due to this modification, 
the requirement that the controller must be stabilizing is dropped. It is claimed in [22], that 
dropping the stability requirement on Q is equivalent to dropping the causality requirement 
on Q ;  see also [59, Section 4.31, where a TFM which is analytic (i.e., all of its entries are 
differentiable in the considered space) and bounded in the open left-half-plane is defined as 
antistable or anticausal. 

Without going into detail here, the following “screening tool” for IO selection can be derived: 

A necessary condition for existence of a proper, real-rational, stabilizing controller achieving 
the ,u upperbound specification ~ ~ M ~ ~ p  < y is the existence of a D-scaling “d” such that: 

G2iL{GT1X,(d)G11 - r”xw(d)}G;lL < 0 b’ w (output selection), (3.10) 

G12L{GiiXG1(d)GT1 - y2XJ1(d)}G12, < O ti w (input selection), (3.11) 

with 

and {}* denoting the complex conjugate transpose and (}I the orthogonal complement. Note, 
that if p and its upperbound are the same, the above is also necessary for existence of a K 
achieving the exact p specification IIMllp < y. In [La], X, = X ,  = X, due t o  the restriction 
to  square blocks in A. 

With respect t o  conditions (3.10) and (3.11), a few remarks are made. First, suppose that 
y-noise is not included in w and u-weights are not included in z. It is obvious, that condition 
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(3.10) is now independent of the input set and hence is referred to as “output selection 
condition,” while (3.11) is now independent of the output set and is referred to as “input 
selection condition.” This also holds true if y-noise and u-weights are incorporated in the 
design. Suppose, u-weights are accounted for by extending z with z, = W,u and y-noise is 
accounted for by extending w with wy and adding V,w, to  y. In that case, G1l, GI2 and G21 

in conditions (3.10) and (3.11) are replaced by Gil, Gi2, and 62, respectively: 

(see also Appendix D). Again, screening tool (3.10) is independent of the input set and (3.11) 
of the output set. It is emphasized however, that for an IO set to be viable, the two conditions 
must be met jointly, ie., for the same d. 

In [22], it is remarked that (3.11) drops out if G12 has full row rank, for which it is necessary 
that n, 5 nu. However, to meet the full column rank assumption on G12, n, 2 nu is required. 
So, (3.11) can only drop out if n, = nu. In analogy, (3.10) drops out if G2, has full column 
rank. Under the full row rank requirement for G21, this situation can only occur if n, = ny.  

The individual conditions (3.10) and (3.11) are convex feasibility problems; (3.10) in the 
squared D-scale entries and (3.11) in the reciprocals of the squared D-scale entries. Unfor- 
tunately, testing the two conditions jointly is a noneonoex feasibility problem and therefore 
more difficult. According to [La], this problem is currently only solved if A consists of two 
full blocks, e.g., one full block A, and one full block Ap. In that case, the following results: 

(3.14) 

(3.15) 

with s = d2 and t = l /d2.  Further, nq = dim(q), np = dim@), n,* = dim(z*), n,* = 
dim(w*), see also Fig. 2.3. It can now be checked if the solution intervals of s and l / t  
intersect, i e . ,  if (3.10) arid (3.11) are jointly s e t .  

Note, that Gil, G121, and G211 in (3.10) and (3.11) are complex matrices. Therefore, these 
conditions are not Linear Matrix Inequalities (LMIs) according to the definition in [4]. How- 
ever, noting that both conditions can be written in the form Cl(d) + j C 2 ( d )  < O with Cl and 
C2 real matrices and noting that C1 = CT, C2 = -CT, the following is employed to  rewrite 
(3.10) and (3.11) as LMIs: 

(3.16) 

Appendix A proves this equivalence and further details the transformation into LMIs. For 
each frequency in a specified grid, the resulting LMI feasibility problems can be tackled with 
lmisolver from the MATLAB Toolbox LMITOOL [9]. In fact, a (constrained) LMI problem 
is transformed into a so-called semidefinite programming problem, which is solved with the 
MEX-file sp from [53]. For details on how (in)feasibility is established, see [53, Section 21 
and [52, Section 3.31. 



Chapter 4 

Active Suspension Control Problem 

The two IO selection methods discussed in Chapter 3 will be evaluated for an active sus- 
pension control problem. First, the system model is introduced (Section 4.1), second, the 
control objectives are quantified via shaping and weighting filters (Section 4.2), and third, 
a parametric uncertainty model model is given (Section 4.3). Though this was also done 
in [45, Chapter 31, there are some important differences with respect to motivations for filter 
parameter choices and uncertainties. 

4.1 Tractor-Semitrailer System 

The 4 Degree-Of-Freedom (DOF) model of the vehicle in Fig. 4.1 will serve as an example for 
IO selection. Its state-space description is documented in Appendix B. This system was also 
used to evaluate the IO selection proposal in [45], while in [43] a 6 DOF model illustrated the 
IO selection method of [37]. Compared to  the model in [45], small tire dampings are included, 
see Appendix C for the motivation of this modification. 

For the active suspension control problem, two actuators u1 and uz placed between the axles 
and the chassis are proposed as candidate inputs, while measurements of the suspension 
deflections (yl, yz) and the chassis accelerations (y3, y4) are suggested as candidate outputs. 
This yields 45 candidate IO sets, among which the 4 x 2 overall IO set yly2y3y4/u~u2 and 
eight 1 x 1 IO sets. 

4.2 Performance Specifications 

In this section, shaping and weighting filters Vw*, W,* are proposed to  quantify the perfor- 
mance specifications in the control system set-up of Fig. 2.3. 

18 
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y3 = 2; 

i 

Figure 4.1: 4 DOF tractor-semitrailer combination 

The exogenous input io* includes the excitation by the road surface (io;, Ga) and the mea- 
surement noises (WQ, . . . ,e:). Due to the presence of tire damping, *: and w2 represent the 
derivatives of the road surface height. Assuming the road surface height to be lowpass-filtered 
white noise, its derivative is a highpass-filtered version. The corresponding shaping filter in 
Vwl is chosen as: 

see also Fig. 4.2. For a fair motorway and a forward vehicle speed of 25 m/s, wo = 271- 0.25 
rad/s and vo = 8.0. lop3  are representative choices [14, Section 2.2.21. 

The four m-easurements are assumed to be disturbed with zero-mean, white noises with an 
intensity of 0 times the order of magnitude of each measurement. So, parameter e can be 
interpreted as the error fraction in the measured variables. The associated magnitudes are 
obtained by computing the ?iFlz norms of the TFMs from w* (not G*) to each measurement. 
For the road surface modeled by (4.1), this results in the following choice of the shaping filters 
incorporated in Vw*: 

vw; = 3.3- 10-30, 

vwz = 3.3.10-38, 
vw; = 5.7.10-9,  
vw: = 8.7. io-le. 
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Four main design goals are distinguished [5,14]. First, good driver comfort must be guaranteed 
(as well as cargo comfort, but this will not be considered). The tractor’s vertical acceleration 
at  the front 2; and the rotational acceleration 2; are used to quantitatively represent driver 
comfort. Though the limitation of accelerations due to stochastic road surfaces actually 
involves limiting the 3i2 norm [5], this goal must as well as possible be transformed in the 
Z, norm setting by the choice of suitable weighting filters in W,*. These filters are based 
on human sensitivity plots for vertical and horizontal acceierations provided in [5]. However, 
since the driver’s horizontal acceleration can be approximated by a constant times Z;, the 
horizontal sensitivity will be used to represent rotational sensitivity. The sensitivity contour 
for 2; is approximated by the magnitude of W.;: 

with wlo = 0.4, [ = 1, w1 = 27r-10 rad/s, and w2 = 2n.5 rad/s. Via pi, the attenuation of the 
most crucial accelerations can be specified. The sensitivity contour for 2; is approximated by 
the magnitude of W.;: 

with w20 = 1 and w3 = 2n . 2 rad/s. The acceleration weights in (4.6) and (4.7) are also 
depicted in Fig. 4.2. 

The second and third design goals are limiting the suspension deflections (due t o  space lim- 
itations) and the tire deflections (for good handling and minimum road surface damage) 
respectively. This means that the L1 norm of the corresponding TFMs must be restricted 
and suitable weights in the Z, norm setting are hard to  give. Here, the front and rear weights 
are chosen equal and constant: 

w.; = w.4 = w.;,, = p3 (suspension deflections), (4.8) 
W.; = W.2 = W.;,, = p4 (tire deflections). (4-9) 

Finally, weights for the inputs u must be formulated. In general, the bandwidth of actuators 
is limited and high-frequency inputs cannot be realized. To account for this, the following 
bi-proper weighting filter for 2; = u1 and Z: = u2 is used (see also Fig. 4.2): 

s/w4 + 1 
s/w5 + 1‘ 

w.; = w.; = w.;,, = p5 (4.10) 

It is assumed, that the bandwidth of the actuators is 5 Hz, i .e. ,  w4 = 2n-5 rad/s. Furthermore, 
w5 = 100. w4 is used. 

Up till now, it has only been decided on the shape of the filters, while numerical values for the 
parameters 0, pi, .  . ., p5 still have to be chosen. This will be done to  conclude this section. 
The Z, controllers are designed for the overall IO set y1y2Y3y4/u1u2. 

o Acceleration Weights: In accordance with the original sensitivity contours in [5], p1 
and p2 in (4.6) and (4.7) are “normalized” at one. 
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Shaping : 

t 
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Frequency [rad/s] 

Figure 4.2: Performance specifications V& (-), W.; ( e . ) ,  W.; ( - e ) ,  and W.;,, (--) 

o Measurement Noise: To represent a 5% error in each measured variable, û = 5 .  lo-’ 
is used. Designing an ‘H, optimal controller aimed at minimizing 2; and 2; in the 
presence of y-noise yields IIMllo. = 0.0259, which equals 23% of the corresponding 
open-loop ?ím norm: 0.1123. 

o Actuator Weights: Next, p5 in (4.10) is fixed at 5 - For an ‘Hm optimal 
design accounting for ZT, Z;, but without y-noise, IJMlloo = 0.0700 results (62% of the 
open-loop norm). If both y-noise and u-weights are included, IJMlloo = 0.0700. 

o Suspension and Tire Deflections: Though the suspension and tire deflection limits 
will not be exceeded for stochastic road surfaces [5], this might happen for deterministic 
disturbances. It is decided to set p3 and p4 such, that ?ím optimal designs with u- 
weights and y-noise aimed at minimizing Z;, .i?: or 2:, 2; achieve approximately the 
same llMllm as a design for 2:) 2s. In this way, accelerations, suspension deflections, 
and tire deflections are specified “equally important.” The values p3 = 90 and p4 = 330 
result. 

An ‘H, optimal controller design with all controlled variables zT, . . . , Z: and y-noise included 
gives JJMJJ, = 0.1479 (open-loop norm equals 0.2784). In [14], rounded pulses are proposed as 
a class of deterministic road profiles. Five rounded pulses with specific characteristic lengths 
and heights are suggested in [5] and classified from “tiny” to “huge.’) If the maximum height 
of each rounded pulse is such, that for the uncontrolled system at least one of the suspension 
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or tire deflections hits its limits, it is observed that for the controlled system only the front 
suspension deflection slightly exceeds its lower limit for a “large7’ rounded pulse and exceeds 
its limit by 28% for a “huge” rounded pulse. Apparently, with the proposed parameters the 
controlled system fairly well accounts for deterministic road profiles. An attempt to  find 
constant weights for 2 3 , .  . . , z: with which the controlled system does not exceed any of its 
limits results in large weights and the other controlled variables become of minor impcjrtance. 

4.3 Uncertainties 

In the 4 DOF truck model, various uncertain parameters play a role for which an uncertainty 
model is developed, see Appendix B. The following uncertainties are accounted for: 

o kt, ,  k,,, k,,,  ksr :  sire and guspension stiffnesses at the front and gear, 

b,,, btr,  b,,, bsr: tire and suspension dampings at the front and Fear, 

maf7 mar: axle mass at the iront and gear, 

e Mch, Jeh: dassis mass and inertia, 

e M,: semi-trailer eSfective mass. 

The approach for modeling uncertain spring and damper parameters is described in [38] 
(see also [45, Section 3.3]), while [34, Section 41 provides an example for an uncertain mass. 
Suppose a is the nominal value of an uncertain parameter a’, which are related as a’ = 
a + wasa,  IISalloO 5 1. The 6,’s for the uncertain parameters together build the uncertainty 
block, resulting in a 13x13 structured, diagonal A,; the w,’s express the amount of uncertainty 
included in W,, while V, is fixed at identity. 

With respect to  the uncertainty model, an important remark must be made. Though the un- 
certainties are modeled as time-invariant, real parametric ones, in this report the IO selection 
and the controller design with p-Tools [i] will treat them as time-invariant, complex uncer- 
tainties, see also the restriction in (2.1). Thus, the IO selection and controller design account 
for a too large class of Uncertainties, introducing conservativeness. Therefore, in the current 
approach w, should be interpreted as a specification for the maximum complex uncertainty 
in the real nominal parameter a. For the tractor-semitrailer this means, that real parametric 
uncertainties are covered with E, norm bounded dynamical uncertainties. Recent research 
has been aimed on solving p-analysis [55,56], [8, Chapter 41 and p-synthesis [40,54] for mixed 
real and complex uncertainties. Thus, the development of an IO selection method for mixed 
uncertainties certainly merits further investigation, see also Chapter 7. 

Finally it is remarked, that in [35] an uncertainty model for a 6 DOF truck model is derived 
in terms of perturbed natural frequencies and damping ratios. 



Chapter 5 

Input Output Selection for the 
Active Suspension Problem 

The two IO selection methods proposed in Chapter 3 are illustrated for the active suspension 
control problem sketched in the previous chapter. To start with, ,u-synthesis will be performed 
for some “typical” IO sets (Section 5.1) aimed at  achieving performance under uncertain 
semitrailer mass. This is followed by IO selection with the methods based on D-scale estimates 
in Section 5.2 and linear matrix inequalities in Section 5.3. Finally, some results for the two 
methods are shortly compared in Section 5.4. 

5.1 ,u-Synthesis for Typical Input Output Sets 

In this section, optimal D-K iterations will be performed for the same nine “typical” IO sets 
as in [05, Section 4.21, see Table 5.1. IE this way, insight is acquired on the importance of 
each sensor and actuator for RP. This information will be used to  assess the results of the 
two IO selection methods. 

To serve an easier interpretation, only the uncertain effective mass of the semi-trailer (Ut) 
wil! be incorporated ir, the uncertainty blmk A,. In practice, this parazetric uncertainty 
is probably dominant over the other ones in Section 4.3, since Mt strongly depends on the 
transported cargo; the semitrailer might even be empty or absent. Here, Mt is assumed to  
vary between its value for an empty and a fully loaded semitrailer. The nominal value is 
taken the mean of these two, allowing a 90% variation in the nominal Ut. Figure 5.1 depicts 
the effect of this uncertainty on the open-Zoop TFM between the road inputs w;, W2 and the 
controlled variables Z; ,  . . ., 2:. Note, that the difference between the TFMs for the mean and 
minimum Mt is clearly visible, but not for the mean and maximum value. 

In Table 5.1, closed-loop norms 114411, from ‘FI, optimal controller designs aimed at  achieving 
Nominal Performance (NP)  are listed for the cases with and “without” measurement noise 
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Figure 5.1: Influence of uncertain Mt on the maximum singular value of the TFM between 
road input and controlled variables: (-) mean M,; ( e - )  minimum Mt;  (- -) maximum Mt.  
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Table 5.1: Optimal controller design for some typical IO sets. 

IO set Outputs Inputs Excluding y-noise Including y-noise 
and u-weights and u-weights 

1 1 ~ 1 1 ~  (NP) I I W P  (RPI Q l l ~ l l ~  ( N P )  I l W l P  (RPI !-2 
1 Y1 Y2 Y3Y4 u1 UZ 0.13 0.75 0.00 0.15 0.76 0.00 

2 Y i Y z  Y3Y4 u1 0.17 1.06 0.48 0.17 1.06 0.65 
3 Y1 Y2 Y3Y4 UZ 0.27 0.76 0.40 0.27 0.76 0.10 

4 Y1 Y2 % U 2  0.13 0.76 0.90 0.15 0.77 1.11 
5 Y 3 Y 4  U 1 U 2  0.13 0.76 0.50 0.16 O. 76 0.54 

6 Y1 u1 u2 0.16 1.01 1.52 0.16 1.01 1.70 

8 Y3 u1 u2 0.17 0.82 2.93 0.17 0.83 4.51 
9 ?/4 u1 u2 0.27 0.76 0.59 0.28 0.77 0.53 

7 Y2 u1 u2 0.27 0.76 0.98 0.27 0.77 1.11 

and input weights. To meet assumptions 3 and 4 in Section 3.1, y-noise and u-weights must 
always be included here. Therefore, “no” y-noise and “no” u-weights refer to their effects 
being negligible, ie., 0 = and p5 = lo-’. For the RP problem, Table 5.1 also shows 
IIMllp values for the optimal closed-loops. 

The D-K iteration is performed with the p-Toolbox [i]. In the Ern design part (hinfsyn) 
of D-K iteration, the tolerance for the y-iteration is fixed at tol= lo-’ to  avoid potential 
numerical problems if the optimum is approached too closely [3, Section 6.6.11. The p-analysis 
part (mu) of D-K iteration is performed in the interesting frequency range between 10-1 
and lo3  rad/s, using 100 logarithmically spaced frequency points. For computation of the p 
upperbound, the LMI-based algorithm is selected in mu. For the purpose of finding rational D- 
scaling approximations, two algorithms are available in p-Tools: musynf it and musynf l p .  In 
pievieus research ( [45, Section 5.21, [48]), r n u s p f i t  sometimes caused convergence problems, 
which might be due to incorrectly returned constant D-scales, see Section 5.2. Therefore, 
musynflp was used instead. In this research, D-IC iterations for each IO set are checked 
with both options, using second order rational D-scales. In general, the D-K iteration with 
musynf it better converges and tends to give more reliable results than with musynflp. The 
llM1lll vahes listed in Table 5.1 are therefore compnted with musynfit. The 0 - K  iteratior, 
is stopped if the reduction in consecutive IIMIIp values is no larger than t o l =  lo-’. 

The first observation from Table 5.1 is, that both the optimal N P  level and the optimal 
RP level are approximately the same for the cases with and without y-noise and u-weights. 
Apparently, the influence of measurement noises tü;, . . . ,2oS and input weights 2; , 2; is negli- 
gible compared to the other exogenous variables I ) ,  w:, fü; and the other controlled variables 
q, ZT, . . . , 2: respectively. 

Comparing IO sets 1, 2, and 3, a second and third conclusion follow from Table 5.1. First, 
IO set 2, based on the front actuator ul, is not viable for RP under the imposed performance 
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specifications and uncertainty. This implies, that also the other 14 IO sets which employ u1 
as the single actuator are nonviable. Second, the overall IO set 1 and IO set 3 are equally 
best for RP and IO set 3 is better for RP than IO set 2. While IO set 1 is better than IO set 
3 if only N P  is considered, adding u1 is not beneficial in the case of RP. This is due to  the 
control of ij being dominant over the control of Z*. So, adding u1 may be advantageous for Z”, 
but the effect on 4 is negligible. Moreover, if only one actuator is used, the rear actuator u2 
is better for RP than the front actuator uI. This is also felt intuitively, since u2 is physicaiiy 
“closer to the uncertainty source” Mt than ul; see [45, Section 5.21, where a similar conclusion 
is drawn with respect to the ease of achieving robust stability against uncertain springs and 
dampers. 

A fourth observation from Table 5.1 is, that for IO set 4 and 5 the achievable N P  and RP 
level are the same. Apparently, a set of two suspension deflection measurements is equally 
best as a set of two acceleration measurements. 

In case of two actuators and a single sensor (IO sets 6-9), the acceleration measurement at the 
front y3 is preferred (for RP) over the displacement measurement at the front yl. The IO sets 
based on the front suspension deflection yl, i e . ,  yl/ulua,  yl/ul, and yl/uz are not even viable 
for RP. The rear displacement and acceleration measurements y2 and y4 are equally best and 
better for RP than the front measurements. Again, it seems preferable to  use measurements 
close to the uncertainty. 

In Fig. 5.2, the frequency-dependent upperbounds for p . a ( M )  are plotted for IO sets 3-5, 
7, and 9, which achieve “the same” RP level IIMllp as the overall IO set. The case without 
y-noise and u-weights is considered. Though the l / M / / p  values are the same and also occur 
around the same frequency (J (k t r /maT)  = 57.74 rad/s), the shapes of the upperbounds and 
the associated D-scales are considerably different. Recall from Section 3.1, that the R-values 
in Table 5.1 are a measure for the “closeness” in dynamic behavior between the overall IO set’s 
optimal closed-loop and those for the other IO sets. The fact that none of the R’s for IO sets 
3-5, 7, and 9 are close to zero is in line with the fact that the D-scales are considerably 
different. Note that IO set 3, which has the smallest R = 0.40, also has a D-scale which 
best matches the overall IO set’s D-scale. The above is a crucial observation to bear in mind 
for the forthcoming IO selection based on D-scale estimates. For this IO selection, rational 
D-scales 8, and D, obtained via the overall IO set’s optimal closed-loop M* are employed. 
If b, and E, are significantly different from the other IO sets’ D-scales with the optimal 
M’s, the IO selection may yield conservative results. 

5.2 Input Output Selection with D-Scale Estimates 

This section investigates the perspectives for the IO selection method based on D-scale es- 
timates as suggested in Section 3.1. To start with, the case without y-noise and u-weights 
is studied. The overall IO set then achieves an optimal RP level of 0.75, see Table 5.1. A 
plot of the p upperbound of the associated closed-loop M* is depicted in Fig. 5.3. To be on 
the safe side for IO selection, a larger range and denser grid of frequencies are used than for 



CHAPTER 5. I N P U T  O U T P U T  SELECTION FOR T H E  ACTIVE SUSPENSION PROBLEM 27 

1 oo 

10- 

Upperbounds p 

$--/--y- 
.-f -.' . 

I : 

',!. 
.\ 

1 o-2 1 oo 1 o2 1 o4 

I \ 

\ / 
/ 

\ 

! 

. -. 

10- 
1 o-2 1 oo 1 o2 1 o4 

Frequency [rad/s] 

D-scales 

1 o - ~  
1 o-2 1 oo 1 o2 1 o4 

1 oo 

1 o - ~  

\' 
\ 
\ 
\ \ /  \ \ /:' 

,., .:/' 
\'. . /  
y 

1 o-2 1 oo 1 o2 1 o4 
Frequency [radls] 

Figure 5.2: Upperbounds for p * ( M )  and frequency-dependent D-scales for IO sets achieving 
] /Ml lp  N û.75 in the case without y-noise and u-weights: upper plots: (-) IO set 1, ( S . )  IQ set 
3, (--) IO set 4, (--) IO set 5; lower plots: (-) IO set 1, ( O - )  IO set 7, (--) IO set 9. 
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Figure 5.3: The frequency-dependent upperbound of p for the overall IO set and some ap- 
proximations using rational D-scales (musynf it) in the case without y-noise and u-weights: 
upper plot: (-) p upperbound and approximations via 0th order (a.), 1st order (--), and 2nd 
order (--) D-scales; lower pZot: (-) p upperbound and approximations via 3rd order ( . e ) ,  4th 
order (--), and 5th order ( - 0 )  D-scales. 

p-synthesis: 200 logarithmically spaced frequencies between and lo4  rad/s. Figure 5.3 
also shows plots of ~ { ~ , ( ~ ~ ) ~ * ( ~ w ) 8 ; ' ( ~ w ) }  for 0th till 5th order rational D-scales, ob- 
t 2 h e d  with msynfit. For the problem considered here, only the first entry dl of D, and D, 
(associated with the 1 x 1 A, block) is used to  fit the optimal, frequency-dependent D-scales 
computed with mu; the other entry d2 (associated with the Ap block) is equal to  one. The 
magnitudes of the investigated rational transfer functions dl are depicted in Fig. 5.4. Note, 
that musynf it returns an incorrect 0th order D-scale; if musynf l p  is used, a more plausible 
constailt D-scale is retirrnecl. Obviously, the higher the order, the better the D-scale approx- 
imations. Table 5.2 lists the corresponding values IIM*II, = ~ ~ 8 , M * ~ ; 1 ~ ~ m .  Note, that only 
for 4th and 5th order D-scales, IIM*IIp N IIM*IIFi = 0.75. For the 0th-3rd order D-scales, 
the IIM*II, values are achieved near w = O. If more emphasis were put on the fit in the 
low-frequency region (by specifying a denser frequency grid in this region), the results for 
IIM*Il, with low order D-scales would become better. 

The generalized plants G for the nine IO sets in Table 5.1 are extended with rational D-scale 
estimates 8, and Bi1 of various orders obtained via the overall IO set (see Fig. 2.5), followed 
by E ,  optimal controller designs. The computed closed-loop norms provide (conservative) 
estimates of the achievable JJMIJ, values for each IO set. The results are depicted in Table 5.3, 
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Figure 5.4: The frequency-dependent D-scale for the overall IO set and some rational approx- 
imations in the case without y-noise and u-weights: upper plot: (-) D-scale, (--) 0th order 
(lower line with musynfit, upper line with musynflp), (--) 1st order, and ( - e )  2nd order 
D-scale; lower plot: (-) D-scale, (-.) 3rd order, (- -) 4th order, and (--) 5th order D-scale. 

Table 5.2: Rational D-scale orders (musynf it) and resulting IIM*11, for the overall IO set. 

Order of D,, D, 
O 1 2 3 4 5 

llM*llfi7 excluding y-noise & u-weights 6.56 lo4  21.54 1.23 1.16 0.75 0.75 
IIM*IIfi7 including y-noise & u-weights 73.73 0.77 0.76 0.76 0.76 0.76 
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Table 5.3: Influence of the rational D-scale order (musynf it) on the optimal Em norm of the 
scaled, generalized plant for some typical IO sets; ezcluding y-noise and u-weights. 

IO set Outputs Inputs / /Ml lp  m i n ~ e l i ~  I I & M (  G7 K)a; I 100 

D-scale orders 
X O 1 2 3 4 5  

musynflp musynfit 
1 y1 ~ 2 ~ 3 ~ 4  ~ 1 ~ 2  0.75 3.49 3.47 1.84 0.76 0.76 0.76 0.76 0.76 

2 ~ 1 ~ 2 ~ 3 ~ 4  u1 1.06 187.86 34.30 6.07 1.09 1.12 1.13 1.13 1.13 
3 ~ 1 ~ 2 ~ 3 ~ 4  u2 0.76 3.73 3.70 2.48 0.76 0.76 0.76 0.76 0.76 

4 ~ 1 ~ 2  ~ 1 ~ 2  0.76 3.49 3.47 1.88 0.77 0.76 0.76 0.76 0.76 
5 7 ~ 3 ~ 4  ~ 1 ~ 2  0.76 3.49 3.47 4.58 0.76 0.76 0.76 0.76 0.76 

6 Y1 ~ 1 ~ 2  1.01 972.35 35.02 2.56 1.03 1.03 1.03 1.02 1.02 
7 Y2 ~ 1 ~ 2  0.76 53.33 3.47 1.88 0.77 0.76 0.76 0.76 0.76 
8 Y3 ~ 1 ~ 2  0.82 946.19 34.08 4.58 0.98 0.95 0.94 0.93 0.93 
9 Y4 u1 U:! 0.76 202.97 7.31 4.58 0.76 0.76 0.76 0.76 0.76 

leading to  the following conclusions. 

If G is not extended with rational D-scales (indicated with “x”), a L‘conventional” Em op- 
timization is performed. From Table 5.3, it is observed that the optimal closed-loop norms 
llM1lOO are between 3.49 (overall IO set 1 and IO sets 4 and 5) and 972 (IO set 6). Comparing 
these llMllOO values with the 11M11, values illustrates the conservativeness of the XFt,  design, 
which is due to  its inability to deal with the structure in A. By extending the generalized 
plant with the D-scale estimates i)z and i),, it is attempted to account for the structure in 
A to some extent. 

The opiimal XFt,  norms of the overall IQ sei 1 considerably diEer from llM*llp = 0.75 if 0th 
order rational D-scales are used, while they do not for higher order approximations. Since the 
Xm optimization for the overall IO set in fact completes an additional step of the formerly 
performed D - K  iteration, this means that the D-K iteration would not converge anymore for 
0th order D-scales. Also note, that the RP levels for the overall IO set are 0.76 instead of 
0.75. This slight difference is due to limited numerical accuracy: for further 0-11‘ iterations 
with 2nd order D-scales the RP level varies between 0.75 and 0.76. Note, that also for the 
other IO sets the optimal “im norms are larger than one for 0th order D-scales. Though the 
constant D-scale obtained with musynflp looks better (Fig. 5.4), the gap between the optimal 
X, norms and the llMllp values are smaller for the D-scale obtained with musynf it, except 
for IO set 5. Hence, IO selection based on this D-scale would term the nine IO sets nonviable 
(implying all 45 candidate IO sets are nonviable), which is incorrect. 

For 1st and higher order D-scales, the results are significantly better, in the sense that none 
of the nine IO sets would unjustly be rejected during IO selection. It is remarkable, that 
for IO sets 3-7 and 9 the optimal Em norms are (approximately) the same for 1st-5th order 
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Table 5.4: RP-based IO selection results; excluding y-noise and u-weights 

D-scale Number of Nonviable CPU time [s] 

O O all 160 

2 28 7 ,  238 
3 28 7 ,  279 
4 28 7 7  348 
5 28 3, 408 

order viable IO sets IO sets 

1 28 y1/u2, yl/uluz, and 15 IO sets with single u1 200 

D-scales. In addition, the ‘FI, norms for IO sets 3-5, 7, and 9 are (almost) equal to their 
IIMllp values, which are in turn equal to IIM*ll, for the overall IO set 1. So, even though the 
D-scales (and hence their approximations fi,, Bul) for the overall IO set considerably differ 
from the D-scales for IO sets 3-5, 7, and 9 (Fig. 5.2), good estimates for IIMIIP result; also 
see the final remark in Section 5.1. However, for IO sets 2 and 8 there is a “gap” between 
the optimal X, norms and IIMIIP. Note, that for IO set 2 this gap increases for higher order 
D-scales, while for IO set 8 it decreases. Apparently (and counterintuitively), high order 
D-scales for the overall IO set do not guarantee a better match of the optimal ‘FI, norm and 
IlMll, for the other IO sets. This indicates that a suitable choice of the D-scale order to be 
used in IO selection might not be straightforward. 

If musynflp is used instead of musynfit (no results depicted), it is observed that for 1st order 
D-scales the gaps between the llM/lfi values and the optimal E ,  norms are (considerably) 
larger; IO set 8 would even incorrectly be rejected during IO selection. For 2nd-4th order 
D-scales, the results are qualitatively comparable with the results for musynf it. However, 
musynflp fails to return 5th or higher order rational D-scales. 

For the purpose of IO selection, all 45 candidate IO sets are checked for viability with re- 
spect to RP, i.e., it is checked if an admissible K exists which achieves /lM(G,K)llb := 
l/~2M(G‘,K)b;111, < 1. This is done via the six viability conditiom in Section 3.1. For 
D-scale orders 0-5 (musynf it), Table 5.4 shows the results. 

As stated before, IO selection based on 0th order D-scales eliminates all 45 IO sets as can- 
didates. For D-scales of 1st and higher order, always the same 28 IO sets are termed viable. 
As predicted from Table 5.1, all 15 Candidate IO sets employing only the front actuator u1 
and the three IO sets employing only the front suspension deflection measurement y1 are 
nonviable. So, no other IO sets are termed nonviable than could be predicted from Table 5.1. 
The 1 x 1 IO sets y2/u2, y3/u2, and y 4 / ~ 2  are the lowest-dimensional viable IO sets, which are 
preferable in the sense of the IO selection goal stated in the Introduction. Performing D-K 
iterations for these IO sets, it appears that y2/u2 and ~ 4 / ~ 2  are equally best (llMllP = 0.76, 
like for y2/u1u2, ~ 4 / ~ 1 ~ 2 ) ,  while y3/u2 is worst (IIMllp = 0.82, like for y3/u1u2). 

Unfortunately, IO selection based on higher order D-scales requires more computation time, 
because the order of the original G is increased with twice the D-scale order. This in turn 
yields higher order Hamiltonians and more complex viability conditions. For the case where 
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Figure 5.5: The frequency-dependent upperbound of p for the overall IO set and some approx- 
imations using rational D-scales (musynf it) in the case with y-noise and u-weights: upper 
plot: (-) p upperbound and approximation via 0th order (--) D-scale; lower plot: (-) p 
upperbound and approximation via 1st order ( - e ) ,  2nd order (--), and (-.) 3rd order D-scale. 

all six viability conditions are checked, Table 5.4 compares the CPU times on a SUN work- 
station. Obviously, for reasons of efficiency, low order D-scales are preferred; other ways to 
improve efficiency are discussed in the final chapter. For the particular problem considered 
here, it appeared from Table 5.3 that there is no need to zse 2nd or higher order D-scales. A 
"guideline" for choosing appropriate D-scale orders for IO selection is highly desirable, but 
currently lacking. This certainly merits further investigation. 

Next, IO selection including input weights and measwement noise is stiidied. In Section 3.1, 
it was conjectured that the IO selection will now be more "conservative." 

In the presence of y-noise and u-weights, the overall IO set achieves IIMllp = 0.76. Comparing 
Fig. 5.5 with Fig. 5.3, it is concluded that a very good approximation of the p upperbound 
is already obtained with 2nd and 3rd order D-scales. Also note from Table 5.2, that the 
corresponding IIM*IIfi value is already approximately equal to IIM*II, for a 1st order D-scale. 

Table 5.5 is generated as an equivalent of Table 5.3. Though the gap between llM1lp and the 
optimal ;Ft, norms for 0th order D-scales is now smaller than in the case without y-noise 
and u-weights (at least with musynfit), during IO selection the IO sets 4, 5, 7, and 8 would 
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Table 5.5: Influence of the rational D-scale order (musynf it) on the optimal ‘fl, norm of the 
scaled, generalized plant for some typical IO sets; including y-noise and u-weights. 

IO set Outputs Inputs IIMllp minKEICa Ilfi,M(G, qD,’llco 
D-scale orders 

X O 1 2 3 4 5  
musynflp musynfit 

1 ~ 1 ~ 2 ~ 3 ~ 4  ~ 1 ~ 2  0.76 189.96 3.38 0.83 0.76 0.76 0.75 0.75 0.75 

2 ~ 1 ~ 2 ~ 3 ~ 4  u1 1.06 190.17 12.40 2.32 1.06 1.07 1.08 1.07 1.07 
3 yiy2y3y4 u2 0.76 189.96 3.58 0.93 0.76 0.76 0.75 0.76 0.75 

4 ?/i y2 ~ 1 ~ 2  0.77 435.63 5.66 1.02 0.77 0.77 0.77 0.76 0.77 
5 ~ 3 ~ 3 ~ 4  UiU:! 0.76 207.50 3.38 1.70 0.76 0.76 0.76 0.76 0.76 

6 Y1 ~ 1 ~ 2  1.01 972.46 12.48 1.53 1.16 1.13 1.07 1.10 1.10 
7 Y2 ~ 1 ~ 2  0.77 436.08 5.66 1.02 0.77 0.77 0.77 0.77 0.77 
8 Y3 ~ 1 ~ 2  0.83 946.19 12.16 1.73 1.18 1.13 1.06 1.10 1.11 
9 Y4 ~ 1 ~ 2  0.77 288.35 3.70 1.70 0.76 0.76 0.76 0.76 0.76 

still incorrectly be rejected for constant D-scales computed with musynf it, while all IO sets 
would be rejected for constant D-scales obtained with rnusynflp. For 1st and higher order 
D-scales (musynf it), the optimal Em norms and the llM1lp values almost perfectly match for 
IO sets 1-5, 7, and 9. If musynflp is used to  generate dynamic D-scales, the same qualitative 
conclusions are drawn for 1st-4th order D-scales. However, for a 5th order D-scale all IO sets 
are again rejected, which is most likely due to ill-conditioning of the extended generalized 
plants. 

In the case without y-noise and u-weights, it is expected that the optimal ‘Hm norms are 
closer to the IIMIIP values than in the case with y-noise and u-weights (see Section 3.1). This 
conjecture is based on the following reasoning. 

Obviously, p-synthesis aimed at RP for the overall IO set is not “hindered” by y-noise and 
u-weights if these are absent or very small. Also, the influence in determining the D-scale 
estimates fi, and i>, for the overall IO set’s optimal closed-loop will be absent or negligible. 
So, for very smaii y-noises and u-weights, the exogenous variables in w and the controlled 
variables in z are roughly “the same” if particular input weights or output noises are elim- 
inated. As a consequence, skipping identity diagonal entries in i)d and D, corresponding 
to  non-considered inputs and outputs will not introduce extra conservativeness in the esti- 
mates for / / M ] l p .  Note, that these estimates for IO sets 3-5, 7, and 9 in Table 5.3 are very 
good (despite the relatively large difference between their optimal D-scales and those for the 
overall IO set (Fig. 5.2), as already remarked). The IIMllD estimates for the same IO sets in 
Table 5.5 are also very good. Apparently, the effect of y-noise and u-weights in the RP design 
is relatively small. 

For IO sets with an optimal closed-loop M which considerably differs from M* for the overall 
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IO set, the rational D-scales 8, and D, employed in an optimal design may result in an 
inaccurate estimate for IIMIIP, see 10 set 8 (Q = 2.93) in Table 5.3. In case of y-noise and 
u-weights, this effect is expected to be even more serious, since p-synthesis for the overall 
IO set including all y-noises and u-weights in fact accounts for additional objectives. The 
resulting 8, and 8, will therefore be less appropriate to arrive at a reliable estimate for the 
achievable l/Mllp7s. This conjecture is supported by the results for IQ sets 6 (fl = 1.70) and 
8 (0 = 4.51) in Table 5.5: the gaps between the optimal 321, norms and the IIMIIP values are 
relatively large and much larger than in the case without y-noise (and u-weights, but this is 
not important since the inputs are the same as for the overall IO set) in Table 5.3. Note, that 
IO set 8 will even be rejected in the IO selection. However, contrary to the expectations, the 
optimal ‘Hm norms for IO set 2 (Q = 0.65) are even cZoser to llMllp than in the case without 
u-weights (and y-noise). 

Performing IO selection for the case with y-noise and u-weights, 18 IO sets are termed viable 
for 0th order D-scale approximations resulting from musynfit, while no IO sets are viable 
for 0th order D-scales obtained with musynflp. For 1st-5th order D-scales (musynf it), 26 
IO sets are termed viable. Apart from the 17 nonviable IO sets mentioned in Table 5.4, the 
two IO sets y 3 / ~ 2  and y 3 / ~ 1 ~ 2  are rejected. According to  Table 5.5 however, y 3 / ~ 1 ~ 2  has an 
RP level of 0.83, while D-K iteration for y 3 / ~ 2  shows that the same RP level of 0.83 can be 
achieved. Hence, these two IO sets are incorrectly rejected by the IO selection approach. The 
lowest-dimensional, viable IO sets are y2/u2 (11M11, = 0.77), y4/u2 (11M11, = 0.77), and the 
rejected one 1 ~ 3 / ~ 2 .  

5.3 Input Output Selection with Linear Matrix Inequalities 

This section illustrates the IO selection for the method based on Linear Matrix Inequalities 
(LMIs) discussed in Section 3.2. Emphasis will be on the case including y-noise and u-weights, 
since these will be present in a natural control problem formulation. Moreover, contrary to  
the method based on D-scale estimates, there is no reason to expect that the IO selection 
results will be less reliable than in the case without y-noise and u-weights. 

Both the input selection LMI (A.13) and the output selection LMI (A.4) are strict inequalities. 
Moreover, d must be strictly larger than zero, see (2.7). Since LMITOOL relies on nonstrict 
inequalities, a small positive parameter [ is introduced to replace inequalities of the form 
‘‘E > O” by ‘‘E - [ I  2 O.” Parameter el = is used to  account for the strictly positive 
D-scales (so, s - t: 2 O and -t + l/[: 2 O), while t2 = 10-l’ accounts for the negative- 
definiteness of the left-hand-sides of the LMIs. 

To start with, condition (3.11) is studied to eliminate nonviable input sets among the can- 
didates ul, u2, and u1u2. The same frequency grid is used as in the p-synthesis, i.e., 100 
frequencies logarithmically spaced between 10-1 and lo3 rad/s. The input selection LMI is 
checked at each frequency, starting with w = 10-1 and working upwards to w = lo3 .  For the 
purpose of efficiency, checking (3.11) for a particular input set could be stopped as soon as an 
“infeasible frequency” is encountered, i.e., a frequency for which the input set is nonviable. 
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Table 5.6: Input selection results including u-weights 

y Nonviable input sets Infeasible frequencies [rad/s] CPU time [SI 
155 1 .O6 

1.05 u1 12.62, 13.85 155 
1.00 u1 11.50,. .., 16.68 156 
0.75 u1 7.92,. . ., 55.91 179 

- - 

0.74 u1, u21 U l U 2  7.92,. . ., 55.91 (ui), 55.91 ( U Z ,  ~ 1 ~ 2 )  I79 

However, to better interpret the results the whole frequency range will be studied here. 

To check the feasibility of the input selection LMI with LMITOOL, an initial estimate do for 
d (in fact, for t )  must be specified. The computation time is considerably reduced if do is 
feasible. In order to supply a good initial estimate to  the LMI-solver, the following is done: 
if the LMI is feasible for w;, the corresponding d is used as do for the next frequency if 
the LMI is infeasible, do corresponding to the latest, feasible d is used; for wl,  do is fixed at 
one. 

The nonviable input sets for various RP levels y are depicted in Table 5.6. Also the CPU 
times are listed, as well as the infeasible frequencies in the investigated grid. Note, that first 
input u1 is eliminated for a decreasing y. This is also expected, since with all four sensors 
included IIMllp = 1.06 for u1 and IIMllp = 0.76 for u2 and u1u2, see Table 5.1. Moreover, the 
infeasible frequencies for u1 correspond to the frequency range where p ~ ( i M )  for the optimal 
closed-loop with y1y2y3y4/u1 is largest. In analogy, the infeasible frequency for u2 and u1u2 
with y = 0.74 is close to the frequency w = dkt, . /maT) = 57.74 where p*(M)  peaks for 
y1 y2y3y4 /UZ and Y1 y2 y3y4 /u1 u2 - 

Also observe from Table 5.6, that the input sets are first eliminated for y values which are 
approximately the same as the best achievable IIMIIP values with all four measurements. 
Apparently, the conservatism introduced by dropping the stabilizing property of K and ne- 
glecting the oirtput selection LMI is negligible f m  the particular problem stiidied here. In 
the “absence” of u-weights, the same results as in Table 5.6 are obtained, except that the 
infeasible frequency range for u1 with y = 1.00 is somewhat smaller: 12.62,. . ., 16.68 rad/s. 
Finally, it is observed that the CPU time tends to increase for decreasing y values, because 
for a smaller y an iterative search for a feasible d must be performed more frequently. 

Next, the output selection condition (3.10) is checked for the same frequency range and grid 
as the input selection condition. Unfortunately, the output selection is hindered by numerical 
problems. For t1 = t2 = 10-l’ and y = 1.00, the output selection LMI may be called 
feasible by the LMI-solver, though this is contradicted by substituting the corresponding d (in 
fact, s) in the LMI: positive eigenvalues with order of magnitude occur in the LMI’s left- 
hand-side, which must be negative-definite. It is expected, that this phenomenon is reduced 
by using a larger &, in this way imposing a stronger requirement for negative-definiteness. 
However, for 6 2  = only the output sets 
including y4 are accepted; this is obviously incorrect according to the p-synthesis results in 
Table 5.1. If El is manipulated while holding f2 fixed at similar problems occur: with 

the same problem still occurs, while for t2 = 
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Table 5.7: Output selection results including y-noise 

y New nonviable output sets Infeasible frequencies [rad/sJ CPU time [SI 
814 1.00 

0.24 Y2 8.70, 9.55 965 
0.19 y47 8.70, 9.55 1016 

0.08 y1y4, ylyZy4 50.94, . . . , 73.91 1124 
o*04 y37 !/2!/3, Y3y47 Y2Y3y4t 46.42,. . ., 97.70 1150 

- - 

0.09 Y1 7 y1 y2 55.91, 61.36 1121 

yly3, ylY2y3, 
ylY3y4, ylyZY3Y4 

55.91, . . . , 97.70 
61.36, . . . , 97.70 

y = 1.00, el = lo-’, all output sets are termed nonviable, while with Fl = 
sets are termed viable, but small positive eigenvalues may occur. 

all output 

It is now decided to perform output selection with c1 = bearing in mind 
that the negative-definiteness requirement on the output selection LMI might be “slightly” 
violated. With four candidate measurements, there are 15 candidate output sets. The results 
are depicted in Table 5.7, which has a somewhat different set-up than Table 5.6. For various 
y values, the table shows the output sets which are for the first time eliminated for that 
particular value, reducing y with steps 0.01. The investigated frequencies for which the 
associated output selection LMIs are infeasible are also printed. 

and t2 = 

The most striking observation from Table 5.7 is, that the y values for which an output set 
is first eliminated are significantly smaller than the best achievable llM1lp values for the cor- 
responding output sets using u1u2 (this observation can of course only be done for output 
sets subjected to  p-synthesis, see Table 5.1). Under the assumption that the numerical errors 
do not play a crucial role, the reason for this is twofold. First, the output selection condi- 
tion (3.10) does not require K to  be stabilizing. As a consequence, a larger class of controllers 
is allowed than during p-synthesis, which is aimed at designing stabilizing controllers. Second, 
if the output selection is only based on (3.10) it is implicitly assumed that 2!l variables z can 
be controlled independently. For this it is necessary that nu 2 n, , but here n, = 7 + nu. It is 
currently unclear why these two sources of ineffectiveness play such a significant role in the 
output selection for the investigated problem, where they did not for the input selection. 

Studying the p-synthesis results in Table 5.1, it is expected that during ûiitput selection yl 
is first eliminated for decreasing y,  followed by y3. However, Table 5.7 shows that the rear 
measurements y2 and y4 are first rejected, while output sets including the front acceleration 
measurement y3 are eliminated last, ie., for y 5 0.04. Furthermore, it is observed that the 
frequency ranges where the “typical” output sets yl, y2, y3, y4, y1y2, y3y4, and ylyZy3y4 
first drop out do in general not correspond to the frequency ranges where p a ( M )  for the 
corresponding optimal closed-loop with u1u2 is largest. For y 5 0.04, all candidate output 
sets are eliminated. In the “absence” of y-noise, all  output sets are viable for y 2 0.01, except 
y2 (nonviable for y I: 0.23) and y4 (nonviable for y 5 0.01). 

In the considered problem, the only uncertainty is the semitrailer mass, so A, is a 1 x 1 full 
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block. In addition, Ap is a full block. Thanks to this special structure of A, a combined 
input and output selection (IO selection) is easily performed, see Section 3.2. Only the input 
and output sets which passed the individual LMIs for y = 1.00 are considered, see Tables 5.6 
and 5.7. The implementation of the IO selection is detailed next. 

Fundamentally, it must be checked if the intervals for s = d2  in (3.14) and t = l / s  = l / d 2  in 
(3.15) intersect. For this purpose, the IO selection is split up into two optimization parts (1, 
2) and a feasibility part (3): 

1. For all considered input sets and frequencies, t is minimized subject to feasibility of the 
input selection condition (3.11); this yields the value t. Note that t is allowed to be 
zero, since possibly d + 00. 

2. For all considered input sets and frequencies, t is maximized subject to  feasibility of the 
input selection condition (3.11); this yields the value f. Since d 2 &, f 5 1/[; is required 
in the maximization (strictly speaking, 5 l/[f is also required in the minimization). 

3. Given t and f for a particular input set and frequency, s for that same input set and 
frequency is restricted according to l / f  5 s 5 i/$. This is imposed as an additional 
requirement on s in checking the feasibility of the output selection condition (3.10). If 
t is below a small number K ,  say K = 10-lo, an upperbound on s is not imposed. If the 
output selection LMI is feasible under the additional restrictions for s, the investigated 
IO set is viable for the considered frequency and RP level y. 

With respect to  this implementation, the following additional remarks are made. First, the 
search for t and f i s  useless if the input selection LMI is nonfeasible. Therefore, IO selection is 
only performed for y values for which this LMI is feasible, see Table 5.6. Second, in contrast 
with the above, part 1 and 2 of the IO selection could be performed for the output selection 
condition and part 3 for the input selection condition. This is not done for the following 
reasons, the second and third of which are tied to the active suspension control problem 
studied here: 

o Under the requirement d 2 &, the following applies for s and t: cl 4 s 5 co, O 5 t 5 
i/,$:. Since f i s  bounded and S unbounded, the search for f will stop in a finite number 
of steps, while the search for S may continue (until the prescribed maximum number of 
iterations is exceeded). 

o From an efficiency point of view, a feasibility problem is preferred to an optimization 
problem. Since the number of candidates is less for the input sets than for the output 
sets, the input selection LMI is subjected to the optimizations. 

o The results for the input selection LMI (Table 5.6) are better than for the output 
selection LMI (Table 5.7)) in the sense that they better match with the results from 
p-synthesis aimed at designing internally stabilizing controllers. For this reason, it is 
conjectured that t and f provide a better estimate for the “viable D-scale range” with 
stabilizing controllers than s and 3 would do. 
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Performing the IO selection for the 30 candidate IO sets left (recall that 15 candidates based 
on the single u1 did not pass the input selection for y = l . O O ) ,  a22 30 IO sets remain viable for 
y E [0.75, 1.OOJ with the same frequency grid as used before. Hence, the combination of the 
input and output selection LMIs is not able to  eliminate extra IO sets. Note from Table 5.1, 
that for y = 0.75 all 30 IO sets should be termed nonviable if only stabilizing controllers 
were considered. The fact that all 30 IO sets pass is therefore due to  dropping the stabilizing 
property of the controller. However, the numerical problems with the output selection LMI 
may also affect the outcome considerably. Based on the goal of IO selection as stated in the 
Introduction, the IO sets y1/uz (llMllp = i . O i ) ,  ya/uz (IIMII, = 0.77)) ? J ~ / U Z  (IIMIIp = 0.83)) 
and y4/u2 (llMllp = 0.77) are indicated as the lowest-dimensional IO sets achieving an RP 
level y = 1.00, but p-synthesis shows that this is incorrect for yl/uz. 

5.4 Comparison of Input Output Selection Results 

The results with and efficiency of the two RP based IO selection methods applied in the 
previous sections are shortly compared. For a further discussion on these and various other 
issues, see Chapter 6. The method based on D-scale estimates will be abbreviated “DSE 
method” and the one employing linear matrix inequalities “LMI method.” 

In the case of u-weights and y-noise and a desired RP level y = 1.00, the DSE method with 
1st or higher order D-scale estimates accepts 26 IO sets and the LMI method 30. Due to its 
sufficiency, the DSE approach incorrectly rejects IO sets y3/uz, y3/u1uz (11M11, = 0.83), while 
due to its necessity the LMI approach incorrectly accepts IO sets yl/uZ, yl/uluz (llMllp = 
l . O l ) ,  even for all y E [0.75, 1.001. 

In the current implementation, the DSE method checks the six viability conditions of Sec- 
tion 3.1 for each candidate IO set until one condition fails. Depending on the D-scale order, 
the CPU times when all six conditions are checked for each of the 45 IO sets are listed in 
Table 5.4. In case of the LMI method, the CPU time not only depends on the (number of) 
investigated frequencies, but also on the specified y.  For checking the combined LMIs for the 
45 candidates at  one frequency, a typical CPU time is 40 seconds. So, an IO selection with 
the LMI method based on only five frequencies would take approximately as much time as the 
DSE method with 1st order D-scales. It is emphasized, that this only applies if the LMIs are 
checked for all Jive frequencies. The efficiency of the LMI method is improved if for a given 
IO set and frequency grid the computations are stopped as soon as an infeasible frequency is 
encountered. Chapter 7 provides an extensive discussion on how to further improve efficiency 
for both IO seIection methods. 



Chapter 6 

Discussion 

Two approaches for IO selection based on robust performance have been proposed and applied 
to a practical example. This chapter assesses these methods, using the list of desirable 
properties proposed in [47] as a guideline. For the method based on D-scale estimates, there 
is quite some overlap with the Discussion in [45, Chapter 61. 

1. Efficiency: Eficiency is related to the amount of analytical and computational eS fr t  
inherent in the IO selection. 

The analytical effort for both methods mainly consists of (uncertainty) modeling and spec- 
ifying appropriate shaping and weighting filters. In addition, the method based on D-scale 
estimates (DSE method) requires specifying a suitable frequency grid to be used in the p- 
synthesis for the overall IO set. Moreover, a sensible choice of the order of the rational D-scale 
estimate must be made. For the method employing Linear Matrix Inequalities (LMI method), 
a representative but not too dense frequency grid must be chosen. 

The computational effort for both methods could be reduced significantly, see Chapter 7. 
From Section 5.4 it is concluded, that with the current implementations and for the active 
suspension example, the DSE method is considerably more efficient than the LMI method. 
Currently, for each candidate IO set the DSE method checks six conditions (until one fails) 
for existence of a stabilizing controller satisfying an 7iw performance specification on a scaled 
plant. The computation time with this method is strongly affected by the order of the 
D-scale estimates. The LMI method is split up into two or three phases: input selection, 
output selection, and combined input and output selection if A consists of two full blocks. 
In case of input or output selection, a feasibility problem is solved for the associated LMI 
at each considered frequency, until an “infeasible frequency” occurs. In case of three-phase- 
IO selection, this is followed by two optimizations for each viable input (or output) set and a 
feasibility check for each viable output (or input) set. For this purpose, lmisolver from [9] 
can be used. 

39 
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2. Robust Performance: The control system must remain stable and achieve the perfor- 
mance specifications in the presence of uncertainties. 

Both methods account for RP against structured uncertainties A consisting of full complex, 
not necessarily square, diagonal blocks. In [35], an extension is made to  repeated complex 
blocks for the LMI method. While that method is based on a necessary condition for existence 
of a stabilizing controller achieving RP, the DSE method is based on a sufficient condition, also 
see the Effectiveness property below. The two IO selection methods require the performance 
and uncertainty to  be characterized via the ‘Hm norm, which is obviously restrictive if other 
norms are more appropriate. 

3. Robust Stability: The control system must remain stable in the presence of uncertainties. 

Essentially, the RP problem is an RS problem with an additional block Ap (see also Sec- 
tion 2.2) and hence the same remarks apply as for RP. 

4. Nominal Performance: The control system must achieve the performance specifications 
in the absence of uncertainties. 

In case of NP, A reduces to an unstructured complex block Ap. Consequently, for the DSE 
method the D-scales are identity and IO selection boils down to checking the existence of 
a stabilizing K achieving IIMlloo < y instead of IIMIIp < y. The IO selection is then again 
based on a necessary and sufficient condition, like in [45]. In analogy, X ,  and X, in the 
LMI method become identity and the IO selection simplifies to checking properties of the 
generalized plant. However, the resulting conditions do still not require the controller to be 
stabilizing. Hence, in case of N P  the ineffective “LMI method” is better replaced by the more 
effective “DSE method.” 

5. Controller Independence: An IO selection method must provide a way to  eliminate 
IO sets for which any controller meeting the control objectives does not exist. 

Both the DSE and LMI method check for the existence of a linear, time-invariant, finite- 
dimensional, and proper controller meeting a desired RP measure. In contrast with the DSE 
method, the LMI method does not require the controller to be internally stabilizing. 

If for a given IO set all six viability conditions in the DSE method are met, the controller 
is “almost” obtained: only some straightforward algebraic operations involving the Riccati 
equation solutions X ,  and Y, must be performed to synthesize K .  For an IO set passing 
the LMI method, the obtained d might provide a useful initial guess for the D-scales to  be 
used in D-K iteration, possibly reducing the number of iterations. 

6. Effectiveness: An IO Selection method must be able to  eliminate nonviable candidates 
and maintain viable ones. 

Since the DSE method is based on suficiency, IO sets may incorrectly be rejected as il- 
lustrated by the example. This conservatism is due to various sources. First, IO selection 
focuses on the pupperbound, since in general the exact p cannot be computed efficiently: 
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/IM*II, 4 / lM*l/p,  with M* the overall IO set’s optimal closed-loop. Fortunately, the upper- 
bound is usually tight. Second, due to finite order of the D-scale estimates the approximation 
of the true D-scales might be crude: IIB,M*B;l/loo 4 [lM*llp. Recall, that from an efficiency 
viewpoint low order D-scale estimates are preferred. For this reason, a guideline for choosing 
efficient and effective D-scale orders is highly desirable. Third, the D-scale estimate resulting 
from M* might be worse for other IO sets, see inequality (3.4). One reason is, that compared 
to the other IO sets the D-scale estimate from M* accounts for additional control objectives 
if y-noise and u-weights are included. 

Assuming that the p-upperbound is tight [22], the LMI method is completely based on ne- 
cessity and nonviable IO sets may be accepted. This ineffectiveness arises from the following 
sources. First, the requirement that K must be stabilizing is dropped. Second, critical fre- 
quencies may be overlooked in the specified frequency grid. An indication for a suitable grid 
is provided from a p-synthesis with the overall IO set (at least, if all critical frequencies are 
present in the grid for p-synthesis) . However, critical frequencies for stabilizing controllers 
may not be critical with not-necessarily-stabilizing controllers. A third source of ineffective- 
ness is the inability to jointly check the LMIs for problems with A consisting of more than 
two blocks. To partially resolve this shortcoming, all possible combinations of two full blocks 
could be studied. Note however, that an IO set which passes all possibilities may not pass 
the IO selection for the original multi-block A. 

7. Quantitative Nature: The IO selection must be based on quantitative measures to  clearly 
distinguish between the candidate IO sets. 

In both the DSE and LMI method, design filters quantitatively account for performance 
specifications and uncertainty characterizations. As an “extra” design parameter, y is used 
to prescribe the desired RP level. 

8. General Applicability: An IO selection method should be applicable to  a large class of 
control problems. 

Both methods are restricted to linear, time-invariant, finite-dimensionai, and proper systems. 
In addition, the system must satisfy the standard ‘Ft, assumptions. Although this is not 
explicitly remarked for the LMI method in [La], assumptions 5 and 6 are necessary to derive 
the IO selection conditions and the other four assumptions are also appropriate for a physically 
meaningful control problem formulation. The (fictitious) uncertainties must be stable and 
bounded by the EFt, norm. 

Three frequently encountered generality restrictions in IO selection (see Introduction) are 
resolved by both the DSE and LMI method, i.e., the IO sets are allowed to  be nonsquare, 
y and z are treated separately (no performance specifications are imposed on y), and the 
method is applicable in any frequency range of special interest. 

9. Applicability to Nonlinear Systems: Desirably, the IO selection method can be applied 
to, or can be generalized to be applied to nonlinear systems. 

Since the ‘Ft, concept has been extended to  nonlinear systems, there might be some prospects 
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for generalization of the DSE method to  nonlinear systems with unstructured uncertainties, 
involving identity D-scales. Chapter 8 addresses this issue in detail. In case of structured 
A, a p-synthesis for the overall IO set must be performed, but this is unsolved for nonlinear 
systems. Therefore, it is unlikely that the general DSE method and LMI method can be 
extended to nonlinear systems in the short term. 

Further research must reveal if the DSE and LMI methods can be applied successfully to 
linearizations of nonlinear systems. It must be investigated, if nonlinearities due to deviations 
from a nominal operating point can be accounted for via the uncertainty block A, see, e.g., 
[3, Section 5.5.51. If various “operating points” play a role, the DSE and LMI methods could 
be applied to the corresponding linearizations in succession. It is emphasized, that such an 
approach may yield incorrect results, since crucial features of the nonlinear system can be 
lost due to linearization. For instance, it is well-known that a linearized description can be 
uncontrollable, while the original nonlinear system is controllable [32, Chapter 31. On the 
other hand, [21,41] show that existence of an ‘,YFt, controller for the linearized model implies 
that there also exists a nonlinear AlfFt, controller locally solving the original nonlinear problem. 

10. Control System Complexity: During IO selection, it must be possible to impose the 
allowable control system complexity. 

Trivially, both IO selection methods are able to  limit the maximum number of actuators and 
sensors by prescription. For the DSE method, the controller order and design effort as other 
complexity aspects can be addressed as well. The maximally required controller order for a 
viable IO set is equal to the order of the generalized plant including the D-scale estimates. 
So, by limiting the D-scale order it can be checked if there are admissible controllers with a 
prescribed order ((stronger) restrictions on the controller order could also be taken care of 
after the controller design, by applying model reduction techniques, see, e.g., [59, Chapter 
193). The controller design effort is equal to the effort of designing a sub-optimal E ,  controller 
via the Riccati equation approach. For the LMI method, there is no clear relation between 
required controller order or design effort and the IO selection. 

For both methods, no prospects are seen to automatically account for compiexity issues such 
as hardware and operating costs, reliability and maintainability, and implementation effort. 
Instead, these considerations could be done beforehand when defining the candidate IO sets, 
or afterwards when evaluating accepted IO sets. 

11. Directness: Desirably, the IO selection directly indicates the favorable IO set(s). 

The investigated IO selection methods are both indirect, since all relevant candidate IO sets 
are checked for viability. Both procedures are also iterative if accepted IO sets are subjected 
to other requirements, such as smaller y values. 

12. Solid Theoretical  Foundation: The theory behind an IO selection method must be 
well-founded and a successful application should prove its practical relevance. 

The theoretical foundation of the DSE method is rather weak, in the sense that it is currently 
unclear how to choose the D-scale order to “work well” for all IO sets. As a result, the gap be- 
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tween the resulting sufficient condition for an IO set to be viable (minK l]BzM(G, K)B;'lloo < 
7 )  and the necessary and sufficient condition (minK llM(G, < -y) may be large. For a bad 
D-scale estimate, it is even possible that minK l l f izM(G, K)b;'llm > minK IlM(G, K)llm, see 
IO set 5 in Table 5.3 with the 0th order D-scale estimate from musynfit. The LMI method 
is based on a stronger theoretical foundation. Unfortunately, there is currently no method to 
solve the general RP problem with multi-block uncertainty. 

In the absence of y-noise and u-weights, the DSE method was successfully applied in the active 
suspension problem. However) two IO sets were incorrectly eliminated in the presence of y- 
noise and u-weights. It appeared) that in general the conservatism is larger for IO sets with a 
larger difference between their optimal llM1lp and llM*llFi for the overall IO set. It is unclear, 
if the same would be concluded from other applications. For the LMI method, the results 
with the input selection LMI could be interpreted and are consistent with the results from 
p-synthesis. On the other hand, the results with the output selection LMI are counterintuitive 
and conflict with p-synthesis; numerical problems might have played a critical role here. The 
combined input and output selection suffers from the shortcoming that it accepts too many 
IO sets, which is mainly due to the output selection part. In [22], the LMI method was 
used for sensor selection in a distillation column. Although that application was qualified 
successful, it is emphasized that only steady-state was considered. 

13. Practical Applicability: The implementation and application of the method must be 
straightforward. 

Both IO selection procedures have been implemented in MATLAB. For the DSE method, 
algorithms available in the p-Toolbox [i] are employed: mu to  perform p-analysis and to 
obtain frequency-dependent D-scales, followed by musynf it or musynf 1p to derive rational 
D-scale estimates. From the active suspension application it became clear, that  musynf it 
delivers incorrect constant D-scales. However, for dynamic D-scales musynf it gives better 
results than musynf l p .  Once the scaled generalized plant is generated, existing programs 
for the IO selection method in [45] are used; see Chapter 6 of E451 for a detailed discussion 
on the implementation aspects. The LMI method relies on lmisolver from LMITOOL [SI, 
which calls sp from [53] to solve a standard optimization problem. Tne active suspension 
application illustrated that the LMI method is not free of numerical problems. 

With the provisional MATLAB programs (which are available from the author), RP based 
IO selection is straightforward. It is emphasized however, that besides supplying the system 
model G and the filters V and W ,  the designer must be aware of potential numerical problems, 
e.g., in D-K iteration, in D-scale approximation, and in solving the LMIs. 



Chapter 7 

Further Research on IQ Selection 
for Linear Systems 

This chapter discusses some topics related to  the improvement and generalizations of the two 
IO selection methods, as well as one potential alternative approach. 

1. Improvement of Efficiency: It must be studied how the eficiency of the current imple- 
mentations of the DSE and LMI methods can be improved. 

Due to the combinatorial nature of the problem, an IO selection must be performed as effi- 
ciently as possible. To illustrate this, in case of 10 candidate actuators and sensors there are 
1,0467,529 candidate IO sets and computation time becomes a major issue. Three possible 
ways to  improve efficiency are discussed below, the first of which applies to both the DSE 
and LMI method. 

I. Brunch-and-Bound Procedure (DSE 43’ LMI): In the current implementations of the DSE 
and LMI method, all candidate IO sets are checked. Obviously, IO sets made up of sensors and 
actuators from a larger but nonviable IO set are also nonviable, since control will never become 
better by eliminating sensors or actuators. For instance, if IO set y iy2 /u1u2 is nonviable, the 
eight subsets associated with it are also nonviable. So, efficiency is improved if, starting with 
the overall IO set, only those lower-dimensional IO sets are further studied which are subsets 
of viable, higher-dimensional IO sets (“subset approach”). 

Based on the IO selection goal of finding the lowest-dimensional IO set achieving RP, the 
following (complementary) approach would also improve efficiency: start with the 1 x 1 IO sets 
and work upwards to higher-dimensional supersets ( “superset a p p r o a ~ h ~ ~ ) .  Obviously, IO sets 
incorporating actuators and sensors from a smaller and viable IO set are also viable. The 
IO selection can be stopped as soon as a viable m x n IO set is detected. Note, that in this 
way other m x n viable IO sets can be overlooked, which might be preferable with respect 
to additional complexity aspects such as costs. Therefore, it is advisable to check the other 
m x n IO sets as well. 

44 
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11. Splitting up IO Selection (DSE): Like in the LMI method, it is conjectured that in the DSE 
method the IO selection can be split into the following three phases: i) input selection, 2) 
output selection? and 3) IO selection for the candidate IO sets made up of inputs and outputs 
passing phase 1 and 2. Recall from Section 3.1, that the DSE method involves checking six 
viability conditions. Assume Dll = O (eventually of the scaled plant), so the first viability 
condition is met for each IO set. It is conjectured that the reqiiirements on Hx and X ,  
(viability conditions 2 and 4) are independent of the output set, while the requirements on 
H y  and Y, (viability conditions 3 and 5) are independent of the input set. If this is true and 
if Dll  = O, phase 1 requires checking Hx and X, , phase 2 requires checking H y  and Y, , and 
phase 3 requires checking viability condition 5, i.e., p(XooY,) < y2. 

The preference for the three-phase-approach is illustrated by the active suspension example. 
Suppose that Dll = O (as for the N P  problem in [45, Chapter 41) and that all 45 candidate 
IO sets are viable. In the current implementation? 45 x 5 = 225 tests are performed? whereas 
in the three-phase IO selection 3 x 2 tests would be performed in phase 1, 15 x 2 tests in 
phase 2, and 45 x 1 tests in phase 3, yielding a total number of 81 tests. 

It is currently unclear if this implementation of the DSE method is possible, because it may 
be ruined by the following two effects: 

1. The influence of the output set via y-noise in H x ,  X ,  and the influence of the input 
set via u-weights in H y ,  Y,. In Appendix D, the effect of y-noise and u-weights in the 
generalized plant's state-space description is explicitly documented. 

2. The scalings of u and y together with the unitary transformations on w and z, which 
are needed to rewrite D12 and Dzl in the appropriate form, see Appendix D. 

111. LMIs instead of Riccati Equations (DSE): In [19,20], a necessary and sufficient condition 
for existence of a stabilizing controller achieving IIMll, < 1 is given in the form of an LMI 
feasibility condition. Realizing that IlMIl, < y e ll$MII, < 1 and scaling C1, Dl17 and 0 1 2  

in (3.5) with y? the following provides a useful notion for IO selection: 

There exists an  internally stabilizing controller such that [ lM/l ,  < y i f  and only i f  there exist 
X E RnXxnx7 X = X T  2 O and Y E Rn=Xnx7 Y = YT 2 O for which: 

with the matrices A ,  B1 , . . . , Dzl related to the generalized plant's state-space representa- 
tion (3.5), possibly extended with rational D-scale estimates. It is emphasized? that these 
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Figure 7.1: Effective frequency grid policy; N = 4 + n = 17 

LMI existence conditions are derived without any assumptions on these matrices. In IO selec- 
tion, an IO set is termed viable if the corresponding LMIs (7.1)-(7.3) are feasible. In future 
research, it must be investigated if the efficiency of the DSE method is improved by using 
these three LMI feasibility conditions instead of the six viability conditions arising in the 
Riccati equation formulation. 

IV. Eyffeective Frequency Grid (LMI,,: Assume that for the LMI method an interesting frequency 
range and grid w l , .  ~ ., w, have been chosen. In the current implementation, the LMIs are 
checked for consecutive frequencies w1 , wz,  . . . , w, until an “infeasible frequency” occurs. 
Suppose that wi is feasible. If wi+l is close to  wi, this frequency is likely to be feasible as 
well, since the system dynamics is approximately the same. For this reason, it is expected 
that efficiency can be improved by working through the frequency grid with a policy aimed 
at  raising the chance of early encountering an infeasible frequency. With n frequencies given 

where N is the number of “layers,” see Fig. 7.1, a potential scheme is by n = 2 + 
to  check feasibility as follows: 1) wl, u+, w,, 2) w ~ ,  w-, 3) w-, w y ,  w v ,  WE+ 

etc; stop if an infeasible frequency is encountered. 

N-1 2i-1 

2. Extension to Real and Repeated Perturbations: It  must be studied i f  the methods 
can be used for repeated complex uncertainty blocks, as well as repeated or full real blocks. 

In this report, A was restricted to consist of full complex individual blocks, but also other 
block types are important, as already mentioned in Section 2.1. Possible generalizations of 
the DSE and LMI method in this direction are considered next. 

First, repeated complex blocks could be added to the full complex blocks in A, i.e.: 

A = { diag(blIr,,,. . . , SJ,,, Al, . . . , At) : Si E C, nj E CY’ , 

with D-scale sets: 

D, = 

D ,  = 
{ diag(Dl, . . ., Dk, d,I,, , . . ., d & )  : Di E Cz “%, Di = 0: > O ;  d j  E IR’} , 
{ diag(D1,. . . , I J k ,  dil,,,. . . , d & )  : Di E CYi x T z ,  Di = Df > O; dj E IR+} . 

So, each repeated uncertainty &ITI is accompanied by a positive-definite scaling matrix Di. 
In the DSE method, the D-I! iteration for the overall IO set should account for repeated 
complex blocks. Although this is possible in the p-analysis part, the current version of the p- 
Toolbox [i] does not allow rational approximation of D-scales for repeated uncertainties. As 
an alternative, during D-K iteration each repeated block could be replaced by the appropriate 
number of independent scalar blocks. For the resulting optimal closed-loop, a p-analysis 
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accounting for repeated blocks must be performed to verify the p-upperbound. The derivation 
of the LMI method in [22] already accounts for repeated complex blocks, which was employed 
by the active suspension example in [35]. 

Second, full real and repeated real blocks may be important in practice, see the truck un- 
certainty model in Section 4.3. Although (to our knowledge) full real blocks have not been 
treated in literature and can neither be handled with the p-looibox, repeated reai blocks have 
been paid attention to. In [54], the D-K iteration is modified to account for full and repeated 
complex blocks and repeated real blocks. For this purpose, an extra “G-scaling” is invoked. 
Like in the D - K  iteration described in Section 2.3, the frequency-dependent D- and G-scalings 
are fit with real-rational approximations and the generalized plant is augmented with them. 
So, it is again possible to  perform an approximate p-synthesis by alternate p-analysis for 
mixed reallcomplex blocks, approximation of scalings, and ‘Ft, design for an extended plant. 
Unfortunately, with the current p-Toolbox it is neither possible to  approximate G-scales due 
to  real repeated blocks, nor to  approximate D-scales due to real or complex repeated blocks, 
as mentioned before. In [40], an alternative p-synthesis for mixed uncertainties is highlighted, 
which is claimed to be simpler and more reliable than the approach in [54]. Again, ’& design 
for a scaled plant is involved. 

Based on the above, extension of the DSE method to deal with complex and real uncertainties 
is straightforward, once the problems with the approximations of the scalings are solved. 
However, no prospects are seen for generalization of the LMI method. 

3. An Alternative Sufficiency-Based IO Selection for RP: It must be studied if em- 
ploying constant D-scales instead of frequency-dependent ones can be useful for IO selection. 

A major disadvantage of the LMI method is the need to check feasibility for possibly many 
frequencies, leading to large computation times. Moreover, effectiveness is endangered if 
critical frequencies are absent in the specified grid. Both problems are avoided if the so-called 
State-Space UpperBound (SSUB, [33, Section 10.31) for p is used instead of the Frequency 
Domain UpperBound (FDUB, see (2.18)), which has been the focus throughout this report. 
In fact, the SSUB and the FDUB are the same in case of conciani 0-scales in the frequency 
domain: 

SSUB 5 inf sup á{DzM(jw)D;’} .  
d€d w 

(7.4) 

The RI) specification SSUB < y is much stronger than the RI’ specification FDUB < y,  since 
for the SSUB the same D-scale must work for all frequencies. If the RP specification on 
the SSUB is satisfied, then RP also holds for arbitrarily fast time-varying uncertainties and 
cone bounded nonlinear uncertainties [33, Section 10.21. So, if the uncertainties are better 
modeled as linear and time-invariant, the SSUB is conservative and the “common” FDUB is 
more appropriate. 

In the full information case (both 2 and w are measured) and with square diagonal blocks in 
A, the following condition is derived in [34], which might serve as an alternative for the input 
selection condition (3.11): 
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There exists a stabilizing, static, full information controller K achieving SSUB < 1 i f  and 
only i f  there exists a Z such that: 

In this condition, 2 not only involves D-scales, but a positive definite state-coordinate scaling 
as well. The matrices A, B1, B2, C1, Dil, Ol2 are discrete time versions of those in (3.5). 
It is conjectured, that an analogous condition can be derived for the full control case (where 
K has direct access to the states 2 and the controlled variables z ) ,  which might be a useful 
alternative for the output selection condition (3.10). 

Note that (7.5) depends on state-space matrices, whereas input selection condition (3.11) 
depends on frequency-dependent TFMs. So, if (7.5) is used for input selection there is no 
need to specify a suitable frequency grid and each candidate input set need only be checked 
once. The same advantages apply for the output selection equivalent of (7.5). Unfortunately, 
IO selection based on the SSUB may give conservative results, since it accounts for a large 
class of uncertainties. Moreover, the combination of (7.5) and its output selection complement 
would introduce additional conservativeness, since it would give a necessary and sufficient 
condition for existence of a static output feedback controller achieving SSUB < 1. Future 
research must reveal the usefulness of this sufficiency-based IO selection approach. 



Chapter 8 

Nonlinear Hm Control and Input 
Output Selection 

This final chapter tries to give an answer to the following specific question: are there prospects 
for an IO selection procedure for nonlinear control systems based on the ‘H, concept, without 
the need for linearization? The findings of a mini literature search on ‘Ft, control for nonlinear 
systems are described. A representative paper on this subject is [15]. Emphasis will be on 
the controller existence conditions (“viability conditions”), since such conditions could lay 
the foundations for an IO selection method for nonlinear systems. The actual computation 
of the controllers is a difficult problem and finding an exact solution is often impossible. 
Instead, approximation techniques are used, see, e.g., [18,49] and [31, Chapter 91. To start 
this chapter, some definitions are made and the goal of nonlinear ‘H, control is formulated, 
followed by a survey of controller existence conditions for three classes of nonlinear systems, 
characterized by an increasing degree of generality. 

8.1 Some Definitions and Notations 

In this section, some commonly encountered definitions and notations are listed: 

A function is said to be of class Ck if it is continuously differentiable b times [26]. So, 
Co stands for the class of continuous functions. A function is smooth, if k = oc, [17]. 

The notation Ilz(t)[I is used to express the Euclidean norm of the vector 2 at time t: 
Ils(t)ll := &mm. 
For z E IR”, a function V(z) : IR” --f [ O , o o )  is globally positive-definite if V(z) = O 
implies that z = O and limz,,V(z) = ca; with B, := {z E R” 1 I [z[/  < T } ,  V(z) is 
locally positive-definite if there exists T > O such that for z E B,, V(z) = O + z = 
O [26]. 

49 
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Figure 8.1: Standard control system set-up 

o Consider the general nonlinear system It. = f ( z ,  w, u) ,  z = g(z, u). This system is called 
detectable if for w = O and for any bounded x ( t )  for which g ( z ( t ) , u ( t ) )  = O b’ t this 
implies that limt+oo x ( t )  = O [BI. 

o The notation V, is used to  denote the row vector [aV/8zl,.. .. 8V/8zn]. 

o The Hessian matrix of a function F ( x l , .  ... 5,) : R” -+ R can be interpreted as the 
“second-derivative-matrix” of F ,  whose entries are given by a2F/dx iax j .  

e The notation x ( t )  E C2[0,T]  expresses that (f Ilz(t)I12dt < co), i.e., that the energy of 
the signal ~ ( t )  is bounded in the interval [O,T]. 

8.2 Nonlinear 7& Control Problem Formulation 

The set-up for nonlinear control systems in Fig. 8.1 is similar to that for linear systems with 
the same meaning of the variables as in Fig. 2.3. The goals in nonlinear ‘H, control are 1) 
to achieve closed-loop stability with w = O and 2) to  achieve a prescribed performance level. 
The performance is expressed in terms of the L2 gain of the closed-loop, see, e.g., [29,49]: 

Definition of Cc2 gain: The closed-loop system M with zero initial state is said to have 
L2 gain less than or equal to y for some y > O i f  

for all T 2 O and for  all w ( t )  E L2[0,T]. 

Note, that (8.1) expresses the difference between the energy supply and the energy outflow, 
with y a measure for the energy gain. The commonly used but incorrect terminology “nonlin- 
ear ‘H, control” is due to  the fact that the ‘H, norm of a linear system equals its C2 induced 
norm. In [ S O ] ,  it is remarked that the above definition is slightly different from the one in 
the linear ‘Hm case, where (8.1) is considered only for T = co, together with the requirement 
that the closed-loop is asymptotically stable. It is stated in [50],  that for the linear case this 
implies that (8.1) holds for arbitrary T 2 O. It is also remarked, that in the nonlinear case 
stability is often implied by the finite L2 gain condition. 
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The studied literature on nonlinear E,  control deals with various descriptions of the nonlinear 
plant G and the controller K ,  differing in structural restrictions. Three distinct descriptions 
will be considered here, starting with the most restrictive one. 

The following nonlinear time-invariant plant G (x evolves on X) and controller K ( x k  evolves 
on X , )  are considered in [24,29]: 

i k  = Ak(xk>xk + &(xk)Y 
u = C,(x,>x, + D k ( 2 k ) Y .  

K : { 
(compare (8.2) with the linear plant in (3.5)). The closed-loop A4 is written as: 

M : {  xm - = A,(x,)Gn + &&n)W 

z = ~ m ( ~ m ) x m  + &(x,)’w, 

(8.3) 

(8.4) 

with x ,  = (,), X ,  = X x X k .  The following is assumed on G: all involved matrix 
functions are Co; X and X I  are convex subsets and include the origin; the initial states are 
x ( 0 )  = O and ~ ~ ( 0 )  = O; n, + n, 2 nyi nz + n, 2 nu, which is guaranteed if y-noise and 
u-weights are incorporated. Four additional assumptions are made. While the first three 
assumptions are made for technical reasons, the fourth assumption guarantees well-posedness 
of the closed-loop [29]: 

1. rank (rr(x) := [ ::::) I )  = nu for all x E X ,  

2. rank ( N ( x )  := [ C,(x) D21(2) 1) = ny for all x E X i  

3. D 1 l ( x ) ~ ~ l ( x )  < I for all x E X ,  

4. I - D , ( z ~ ) D ~ ~ ( ~ c )  is invertible for all x, E X , .  

In [24,29], the focus is on y = 1 and so-called “strong” ‘FI, performance, which will not be 
defined here. The necessary conditions for existence of a controller solving this problem are 
characterized in terms of three NonLinear Matrix Inequalities (NLMIs) [29]: 

Consider the system (8.2), satisfying the above assumptions. There is a solution to the 
‘FI, control problem with y = 1 only i f  there exist Co positive-definite matrix-valued func- 
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with M ( x )  and N ( z )  as defined in assumptions 1 and 2. Note the similarity between these 
NLMIs and the LMIs (7.1)-(7.3); conditions (8.5)-(8.7) are actually state-dependent LMIs. 
Though a separation structure is not assumed for Ii, the NLMIs (8.5) and (8.6) are closely 
related to  state-feedback and observer design problems respectively. 

In [29], it is claimed that all couples Y(.), Z ( x )  satisfying the three NLMIs form a convex set. 
Therefore, the NLMIs provide a convex characterization to  the solvability of the nonlinear 
(strong) X m  control problem. However, it is emphasized that meeting the NLMIs is in general 
not sufficient, since an additional condition must be met. More specific, it is also required, that 
there exists a positive-definite Lyapunov function V ( x r n )  such that Vz,(zm) = 2z2P(zm),  
with P(xrn) = PT(x,) > O satisfying: 

B: (.m>P( xrn) -I DZ(xrn)  < o .  (8.8) 1 [ C,(X:,) Drn(xrn) -I 

A ~ ( ~ r n ) P ( ~ m )  + P(xm)Arn(xrn) P(xrn)Brn(zrn) C:(xm) 

Note, that this NLMI depends on closed-loop matrices, the computational implications of 
which are unclear at the moment. For instance, the existence of P ( x m )  meeting (8.8) is 
guaranteed if (8.5)-(8.7) hold, but it is unclear how to construct I’(.,) and how to exploit 
Y(.) and Z ( z )  for this purpose. For a given P(s,) satisfying (8.8), [29] describes a method 
to check the existence of a Lyapunov function V(x,). If the ‘Mm problem is considered only 
locally (x E B,.), it is proven in [29], that the NLMIs (8.5)-(8.7) provide a necessary and 
sufficient condition, as in the linear case. 

In the context of IO selection, the NLMIs (8.5)-(8.7) would be useful if their solvability were 
“easily” checked. Unfortunately, it is unclear how this should be achieved in general. In this 
respect, it is remarked in [28, Section 2.31 that point-wise (i.e., for all interesting x) feasibility 
of the NLMIs is too strong. In [29], an efficient but potentially conservative alternative 
approach is proposed. This is illustrated by the NLMI (8.8), with the matrix functions 
A,(z), . . . , D m ( z )  continuous on X ,  and in a convex set: 

[Arn(X), Bm(z), Crn(4, ~ r n ( z ) l  E co {[Amt ,  Bm*, crn,, ~ r n z l I % { l , 2 , . .  J}} 2 E xrn, 
for some 1, where “Co” stands for the convex hull, If there is a constant P such that 
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then the constant P also satisfies (8.8) for all J: E X , .  Note, that (8.9) represents a set of 
LMI feasibility conditions, which could efficiently be solved with, e.g., LMITOOL [9]. It is 
mentioned in [29], that this treatment suggests a tractable approach to get local solutions, but 
that it may lead to conservative results if the prescribed convex hull is too large (as illustrated 
by an example in [28, Section 6.31). So, for IO selection, viable IO sets may incorrectly be 
rejected. 

In [27,28] , robust performance and structured nonlinear uncertainty blocks are considered. 
Like in the linear case, scalings are involved to  (partially) account for a structured A block. 
The aim is to achieve closed-loop stability and bounded ,C2 gain of the scaled closed-loop 
D,MD;l, with D, and D, real invertible matrices as in (2.5) and (2.6). For the state- 
feedback case, [27,28] derive a condition for controller existence expressed in an NLMI, which 
is very much alike (8.5) and which involves Y(,) and the “D-scales” as free variables. Due 
to the restriction to static D-scales, this condition may be arbitrarily conservative. In the 
same way, the NLMIs (8.5)-(8.7) associated with the output feedback case can be modified 
to include D-scales. 

8.4 Input Affine Nonlinear Systems 

In the majority of the studied papers on nonlinear E ,  control, the plant G is restricted to 
be affine in the exogenous inputs w and the manipulated inputs u, while the controller K is 
affine in the measured outputs y [25]: 

(8.10) 

(8.11) 

where all mappings a,  . . . , Dk E C2 (sometimes different smoothness properties are required) 
and a(0 )  = O, a k ( 0 )  = O, cl(0) = O, cz(0) = O, = O. Further, the initial states .(O) and 
~ ~ ( 0 )  are zero. Note, that “D11(2)” and “D22(~)77 are fixed at zero, as often seen for Dll and 
DZ2 in linear control [ 7 ] ;  mostly, D k ( z k )  is also fixed at zero. It is remarked in [as], that 
in many cases system (8.10) can (nonuniquely) be rewritten in the form (8.2). 

The following assumptions on (8.10) are made in addition: 

1. 

2. 

3. the pair { C ~ ( J : ) ,  a(.)} is detectable. 
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As in the linear case [7], the first two assumptions are introduced to  simplify algebra, but 
they can be relaxed, see, e.g., [15] and [31, Chapter 71. According to [15], the detectability 
assumption corresponds to the fifth standard assumption in the linear case (see Section 3.1), 
implying that the TFM GI2(jw) does not have jw-axis transmission zeros. 

In [25] and its compressed form [26], the nonlinear 'FI, control problem is tackled by splitting 
it up into a full information problem ( x  and w are measured) and a fuii control problem (u 
has direct access to x and z) ,  as it is done in the linear case of [7]. An additional assumption 
is made in [25] (remarkably not in [as]), namely the detectability of the pair { ~ ~ ( z ) , a ( x ) } .  
Before discussing the conditions for existence of an output feedback controller solving the 
'FI, problem, the conditions for the full information and full control problems will be given. 

Consider the Hamilton- Jacobi (HJ) inequality associated with the full information nonlinear 
X, problem with y = 1 [25]: 

This control problem is solvable if there exists a C3 positive-definite function V ( x ) ,  V ( 0 )  = O 
such that (8.12) holds. So, this sufficient condition could be useful for input selection in the 
full information case. 

In analogy, consider the HJ inequality associated with the full control nonlinear ;Ft, problem 
with y = 1 [25]: 

This control problem is solvable if there exists a C3 positive-definite function U ( x ) ,  U ( 0 )  = O 
such that (8.13) holds and if there exists a C2 function L ( x )  such that U,(x)L(x)  = -2c;(x) 
holds. This sufficient condition could be useful for output selection in the full control case. 

With some modifications and an additional requirement, (8.12) and (8.13) are combined to 
give a sufficient condition for the solvability of the original problem: 

The output feedback nonlinear 3-t, control problem with y = 1 is locally solvable i f  there is  
some positiue-definite function $(x), $(O) = O such that the following conditions hold: 

1. there exists a positive-definite V ( x ) ,  V(0)  = O solving the HJ equality H F I  + $ ( x )  = O ,  

2. there exists a positive-definite U ( x ) ,  U ( 0 )  = O satisfying the HJ inequality H F c  +y!(.) I 
O with H F C  + $ ( x )  having a nonsingular Hessian for x = O ,  

3. { U ( x )  - V ( x ) }  2 O and {Us(.) - V z ( x ) } L ( x )  = -2c;(x) has a solution L ( z ) .  

In [a] and [50], closely related necessary conditions in the form of HJ inequalities are given. 
Essentially, the local solvability of the 'FI, problem requires positive-definite solutions to 
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a HJ equality associated with a “state-feedback-gain design” (condition 1) and a HJ in- 
equality associated with an “observer-gain-design” (condition 2), together with the coupling 
condition 3. As in the linear case, the controllers have a separation structure. In fact, the 
HJ equality and inequality replace the Riccati equalities in the linear case [7]. In [25,26], it 
is shown that the solutions V ( x )  and L ( z )  parametrize the controllers which locally solve the 
‘Fl, problem, but an expression for the validity region B, is lacking. Unfortunately, in [25,26] 
no attention is paid to the (un)solvability of conditions 1-3 and to possible solution methods. 

In [57], the same nonlinear ñ!, problem is treated, except that the plant is assumed to be 
smooth and that y is not necessarily equal to one. The following sufficient condition for 
controller existence is proposed: 

The output feedback nonlinear ñ!, control problem is locally solvable i f :  

I .  there exists a smooth positive-definite function V ( x ) ,  V(0)  = O satisfying the nonstrict 
HJ  inequality 

2. there exists a smooth positive-definite function Q ( x ) ,  Q ( 0 )  = O satisfying the HJ strict 
inequality 

(8.15) 

and which is such that the Hessian of H O F  is nonsingular at x = O .  

Notice the resemblance between the HJ inequalities (8.12) and (8.14). Also note, that the so- 
lution to  (8.14) is substituted in (8.i5). So, the H i  inequalities are coupled, while (8.12) 
and (8.13) were only coupled via their solutions. Closely related conditions are derived 
in [15,16], where [18] replaces assumptions one and two by the less restrictive alternatives of 
D ~ z ( x ) D 1 2 ( x )  and DT1(x)Dzl(x) being nonsingular for each z. 

In [15] and [17] (the first with less restrictive assumptions), different sufficient conditions for 
existence of an ‘Ft, controller are given; in a slightly different formulation, the same results 
can be found in [58]. Since the formulas are much more complicated than the ones discussed 
earlier in this section, they are omitted here. Checking controller existence again involves 
checking the solvability of two HJ (in)equalities. One major problem with the approach is, 
that the second HJ (in)equality has twice as many independent variables as the first one, 
which is not the case for the previously discussed approaches. Essentially, this problem is due 
to the presence of both the states of G and the same number of states in the controller K to 
be designed ( K  is structured as a copy of the plant dynamics, together with a correction term 
for the measurement estimation error). It is shown in [17], that under certain assumptions 
on the linearization of the system the sufficient conditions are necessary as well. 
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Especially for IO selection, it is important that the solvability of the controller existence 
conditions (“viability conditions” for IO selection) can be checked efficiently and effectively. 
In this context, the following observation from [17] is important: if there exists a controller 
solving the ‘,YFt, problem for the linearized version of G (which can be checked via the viability 
conditions mentioned in Section 3.1) and if the resulting linear controller is either controllable 
or observable, then the nonlinear ‘,YFt, control problem is locally solvable-in a region B, around 
the origin (2, z k )  = (O, O).  See also [50], which shows that iocai soivabïity of the nonlinear 
state-feedback Em control problem is implied by soivability of the linearized problem. In 
fact, checking the solvability of HJ equalities is replaced by checking the solvability of Riccati 
equations associated with the linearized plant. In analogy, it is conjectured that checking 
the local solvability of HJ inequalities can be done by checking the solvability of Riccati 
inequalities, which can be reformulated as LMI feasibility problems [4]. It is however unclear 
if the size of the validity region B, is easily determined, or can be determined at all. Ideally, 
the IO selection would incorporate a specification for the size of B,. 

Unfortunately, checking the solvability of the linearization only provides a sufleient con- 
dition for IO set viability: if the ‘,YFt, problem for the linearized system is unsolvable, the 
original nonlinear 3-1, problem may still be solvable (as for the example in [Hl). It is un- 
clear if this conservatism can easily be reduced. A brute-force approach would be to solve 
the HJ (in)equalities. However, it is in general impossible to solve them exactly. Moreover, 
the polynomial approximation technique as discussed in [49], [31, Chapter 91 assumes the lin- 
earized problem to have a solution, but it is currently unclear if this is also a strict requirement 
for its application. 

8.5 General Nonlinear Systems 

This final section briefly discusses some results for rather general nonlinear systems. In [is] 
and [31, Sections 7.5, 7.61, the local “IFt, control problem is studied for the following nonlinear 
plant, defined in a neighborhood B, of the origin: 

(8.16) 

with f(0,  O, O) = O, g(0, O) = O, and h(0, O) = O. Notice that, as in (8.2), the exogenous input 
w and manipulated input u do not occur in the smooth mappings g and h respectively (f is 
also assumed smooth). Furthermore, it is assumed that the matrix ag/dul(o,o) has full column 
rank, that dh/dw)(o,o)  has full row rank, and that the system G possesses a detectability-like 
property. The controller is restricted to take the form: 

(8.17) 

with w* the worst-case exogenous input. 
measurement estimation error [15], which is a possible limiting factor for this controller. 

Note, that the correction term is affine in the 
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The approach for the general nonlinear system (8.16) in [is] is analogous to  that for the 
input affine system (8.10) in [15]. Though the resulting sufficient conditions for controller 
existence have a similar interpretation, they appear in less transparent, implicit forms. As 
expected, the solution of the W, control problem is related to  the existence of solutions to 
a (coupled) pair of HJ inequalities, both of which depend on n, independent variables. The 
inequalities are associated with a state-feedback-gain and an observer-gain design, together 
with some additional requirements. Unfortunately, it is currently unciear if the solvability of 
the HJ inequalities is easily checked and so if they offer prospects for IO selection. Maybe a 
similar approach as for the input affine systems can be used, i.e., checking solvability for the 
linearized system. 
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Appendix A 

LMk for IO Selection 

This appendix provides the formulas for the LMIs replacing the IO selection conditions (3.10) 
and (3.11). As noted in Section 3.2, these convex conditions contain the complex matrices 
Gll, GIZL, and GZIL. For the MATLAB toolbox LMITOOL [9] to  be applicable, (3.10) and 
(3.11) must be transformed into two LMIs which only involve real matrices. 

First, the following equivalence is shown (3.16): 

with C1 real and symmetric (Cl = CT) and C2 real and skew-symmetric (E2 = -Ca). Because 
(C, + j C 2 ) *  = (Cl + j C 2 ) ,  the number (x + jy)*(Cl + j C 2 ) ( x  + j y )  is real for all complex 
vectors x + j y  with x and y real [39, Section 5.51. Straightforward computation yields: 

(. + jY)*(Cl + j C 2 ) ( x  + j v )  < 0 * 
Z T & Z  + 2yTC2x + yTC1y + j ( z T C 2 2  + yTC2y) < o. 

( A 4  
(A.2) 

Due to  skew-symmetry of Ca, the imaginary part in (A.2) equals zero: the real number U*CZU 
equals (uT&.)' = -uTC2u, so it must be zero. Consequently, (A.2) can be rewritten as: 

which shows the equivalence in (3.16). 

Given this equivalence, the output selection condition (3.10) 

G2iL{G71X1G11 - 72X2}G&L < 0 

is replaced by the LMI 

(A.3) 
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with 

Cl  

C, 

= (Sl + S%)X1(Sl + Sa)* + (S3 - S4)X,(S, - S4.y 
-Y~T~x~T: - Y~T,x,T;, 

(Sl + SZ)Xl(S3 - s4y + (-s3 + S4)X,(Sl+ 
+.-y2TJ,T,T - y 2 T 2 X 2 T ~ ,  

= 

and 

In analogy, the input selection condition (3.11) 

is replaced by the LMI 

with 

and 

(A. 6 1 

(A.7) 
( A 4  
(A.9) 

(A.10) 
(A.11) 
(A.12) 

(A.13) 

(A.14) 

(A.15) 

( A X )  

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 



Appendix B 

4 DOF Tractor-Semitrailer Model 

In this appendix, the state-space description of the 4 DOF tractor-semitrailer model is given. 
Table B . l  lists the variables playing a role (see also Fig. 2.3), while Table B.2 lists the various 
physical parameters (see also Fig. B.l ) .  

The equations of motion of the nominal tractor-semitrailer combination can be written as 

(B-1) M i  + B i  + KS = E,@* + EZ@* + E ~ u ,  

with @* the road surface height and w* the derivative of the road surface height (exogenous 
input): w* = 5.. The mass matrix M ,  the damping matrix B ,  and the stiffness matrix K are 
as follows: 

03-31 

(B.4) 

btf + b s ,  o 4 . f  ab,, 
btr + bsr -bs r -bbsr 

B = I  4 f  o -bsr b s ,  + bsr -ab,, + bbsr 
ab, f -bbsr -ab,, + bb,, a2b,f + b2bSr 

1 .  kt, + k ,  u -k f  &.f 

ktr + ksr  -ksr -bksr 
- k s r  k s j  + k s r  -aks, + bksr 

O -k f  
UkSf -bksr -aks, + bksr a2ks f  + b2kSr 

These matrices are symmetric and positive definite. The distribution matrices El,  Ea,  and 
E3 in (B.l) are as follows: 
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semitrailer 

' I ' bt, XLLL  
Figure B.1: 4 DÛF tractor-semitrailer combination 
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Table B.l: List of variables 

Symbol Description 
Degrees-of-freedom s 
displacements front and rear axle 

33 displacement chassis center of mass 
s 4  rotation around chassis center of mass 

Road surface heights 8" 

v;, v; front and rear road heights 
Outputs p from A, and inputs q to A, 

pl/ij17 p2/ij2 due to uncertain front and rear tire stiffnesses 
p3/q3 ,  p4/ij4 due to uncertain front and rear tire dampings 
p 5 / i j 5 ,  1 ) 6 / i j 6  due to uncertain front and rear suspension stiffnesses 
p7/&, p8/Q8 due to uncertain front and rear suspension dampings 
p9/ij9,plo/ijlo due to uncertain front and rear axle masses 

yll/ijll due to uncertain chassis mass 
p12/ij12 due to  uncertain chassis inertia 
p13/ij13 due to  uncertain semitrailer effective mass 

Exogenous inputs W* 
w;, W2 road height derivatives at front and rear 

w3 . . . WE measurement noises for yi . . . ) y4 
Controlled variables Z* 

z; vertical chassis acceleration at front 
2; rotational chassis acceleration 

.z;? 2; front and rear suspension deflections 
g7 2; front and rear tire deflections 
g7 2; controller outputs u1 and u2 

s2 

- *  

Inputs u 
forces generated by front and rear actuators u l s  u2 
outputs y 

Y17 y2 

Y37 Y4 

front and rear suspension deflections 
front and rear chassis accelerations 
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Table B.2: List of model parameters 

Parameter Value Unit Description 
Spring coefficients 

kt.f 2.5 lo6  N/m front tire stiffness 
kt r 5.0 . lo6  N/m rear tire stiffness 
ksf 5.0. lo5  N/m front suspension stiffness 
k s r  5.0. lo5 N/m rear suspension stiffness 

bt, 1.0. lo3  Ns/m front tire damping 
bt r 1.7. lo3 Ns/m rear tire damping 
bsf 5.0 - lo4 Ns/m front suspension damping 
bsr 5.0 - lo4 Ns/m rear suspension damping 

Damper coefficients 

Masses and inertias 

a 
b 
e 

1.0. lo3  kg front axle mass 
1.5 - lo3  kg rear axle mass 
1.1 lo4 kgm2 chassis inertia 
7.0 lo3 kg chassis mass 
6.5 . lo3  ka effective semitrailer mass 
Geometric parameters 

0.46 m front chassis to COM chassis 
3.04 m rear chassis to COM chassis 
2.44 m kinmin to  COM chassis 

By stacking up the degrees-of-freedom s ,  their derivatives S, and V* in the state vector 3 and 
extracting additive parametric uncertainties (“a’ = a + Sa”) ,  the state-space description is 
derived. In order to illustrate the influence of the uncertainties? the inputs @, Z* to and the 
outputs 27, G* from the uncertainty block are considered separately: 

with: 

02x2 04x2 1 04x4 14x4  
A =  -M-lK -M-’B M-lEl ? [ 02x4 02x4 
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BT. = 

Clq = 

- 

Cl,* = 

1 O 

1 0  o o -1 o 
o -1 o 1  o o 
O 0  1 0 - 1  a 

O 1 -1 -b O 0  

0 4 x 4  

1 0  o o 
0 4 x 4  

o 1  o o 
1 0 - 1  a 04x2  

O 1 -1 -b 
{ A }  5 - 8: 

{&7: + C { A } s :  

{A}? - a{A}s:  
{AIS: 

-1 0 1 - a 0 0 0 0  o o 
0 - 1 1  b O O O 0  O O 
1 O 0  0 0 0 0 0 - 1  o 
o 1 0  0 0 0 0 0  0 - 1  

02x10 

0 8 x 5  

O O O 
-1/mav O O 

O + C2Mt)$  O 

7 

7 

O 
O 
O 
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= 

DTIF = 

-1 o 1 -a 
O -1 1 b 02x4 

{ A } 7 :  - a{A}8: 
{&7: + b{A},: 

c, = 

7 

In the above, $ = i / (MchJeh  + c2MChMt + MtJch) ,  { X } i :  denotes the i-th row of X ,  {X}k-l :  

the b-th till I-th row of X ,  and { X } : ?  the j - th  column of X .  



Appendix C 

Motivation for Tire Damping 

Consider the 4 DOF vehicle in Fig. B.l without tire damping, i.e., b,, = b,, = O. Suppose the 
only control goals are minimization of the front vertical and rotational chassis accelerations 
and suppose that besides the suspension deflections yl and yz their derivatives & and i2 are 
measured. The following is incorrectly conjectured in [45, Section 4.21. The control law 

would make the TFM between the road inputs and the chassis accelerations equal to  zero, 
since it compensates the forces generated by the suspension springs (k , , ,  k,,.) and dampers 
(b,,, bsT). Although K in (C.1) is not an admissible ‘FI, controller, because it does not 
asymptotically stabilize the system (closed-loop eigenvalues on jw-axis occur), it  was expected 
in [45] that a stabilizing controller achieving 11Mll, N O could be computed. 

However, Ft!, design with p-Toois rejected this conjecture: Ill,lll, was iower bounded by 
0.25, unless front and rear tire damping was introduced. This appears to be due to the fact, 
that at the eigenfrequencies of the front and rear axle/tire “subsystems,” the input u with a 
stabilizing controller has no influence on the two accelerations and they cannot be arbitrarily 
small simultaneously. For a 2 DOF vehicle model in [13], this phenomenon is imputed to 
so-called “invariant points” in the transfer function between the single road input and the 
single acceleration to be controlled. A similar phenomenon occurs for a 7 DOF model in [13] 
and the 4 DOF model studied here. This explains the lower bound on IIMllm: at the invariant 
frequencies, a ( M )  cannot be made arbitrarily small without endangering stability and the 
achievable performance expressed in the ‘FI, norm is limited. 

If tire damping is introduced, invariant points are avoided [23], the effect of which is clear 
from E ,  designs with damping ratios p = 0.01: llM1lm N O results. Introduction of small 
tire damping is justified by the fact, that in practice they are always present. Moreover, the 
optimal performance levels for candidate IO sets are not “hindered” by a nonzero lower-bound, 
which serves a better assessment of the IO sets. 
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Appendix D 

Sensor Noise and Actuator Weights 
in the Generalized Plant 

Consider the generalized plant’s state-space description in (3.5), excluding controller output 
weights (u-weights) and measurement noise (y-noise): 

Next, u-weights “z, = Wuu” and y-noise ‘‘w, = VYw,” are defined, with W, and V, diagonal 
TFMs: 

z, = C,X, + D,U, 

Xy = A, xY + BY wY 
wy = C,X, + D,w,. (c1.3) 

Combining (D.l)-(D.3), the following state-space description results for the generalized plant 
including u-weights and y-noise: 

r -, 
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The augmented matrices in these equations will again be referred to  as “A,  B1, . . . , DZ1.” The 
Hamiltonians Hx, H y  in viability conditions 2 and 3 depend on these matrices: 

(see, e.g., [12] for the exact expressions), as well as the Riccati equation solutions X,, Y, in 
viability conditions 4 and 5 :  =i, = Xic(Hx), and jt, = I t i ~ ( ~ l ~ )  ( s e ,  e.g. ,  [E ,  Sectim 2.41 
for details on the function “Ric”). 

Hence, due to the influence of A, and B,, Hx and X ,  depend on the output set. In analogy, 
HY and Y, depend on the input set via A, and Cu. This explains the first potential reason 
that the three-phase IO selection as mentioned in 1.11 in Chapter 7 is impossible. Future 
research must be performed to support the conjecture, that these influences “drop out.” If 
this conjecture holds, the efficiency of the IO selection can be improved, provided the second 
potential problem does not occur. In order to write D12 and Dzl in the form (3.6), non- 
singular transformations are performed on u and y [30, Section 6.71: 

together with unitary transformations on w and z: 

with T,T; = I ,  T,T,* = I .  These transformations are obtained via singular-value decompo- 
sitions of D12 and Oz1: 

Under these transformations, the generalized plant is rewritten as follows: 

(D.lO) 

The effect of y-noise in T,, S, and u-weights in T,, SU is a second potential reason that the 
three-phase IO selection suggested in Chapter 7 is impossible. Moreover, due to the effects 
of T, and T, on Dll it is expected that the first viability condition in Section 3.1 must be 
checked for each IO set again, which was indeed found to  be true for the active suspension 
example. 
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