

Designing debugging tools for Simplexys expert systems

Citation for published version (APA):
Philippens, E. H. J. (1990). Designing debugging tools for Simplexys expert systems. (EUT report. E, Fac. of
Electrical Engineering; Vol. 90-E-234). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d7ba15e1-0cf7-454b-9ab6-d5426853593f

-- -- ------- -- --

- - - -- - -
- ~- -------

-- -- - - -- ~ ~ - -- ~

- --- - ~ ~~..:.-- ~ - - .: -- ~ - --

~ ----:::. .::--~"- ..., -:::' ::-- -.;--~- - - - ~

--=-- --.-'"" - - --- - -

Designing Debugging Tools for
Simplexys Expert Systems
by
EH.J. Philippens

EUT Report 90-E-234
ISBN 90-6144-234-5

January 1990

ISSN 0167- 9708

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

DESIGNING DEBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS

by

E.H.J. Phi1ippens

EUT Report 90-E-234

ISBN 90-6144-234-6

Eindhoven

January 1990

Coden: TEUEOE

This report was submitted in partial fulfillment oj' the Y'equirements
for the degree of Master of Electrical ~'ngineering at the 6'indhoven
University of Technology, The Netherlands.
The work was carried out from January 16, 1989 until December 1, 1989
under responsibility of Professor J.E.W. Beneken, Ph.D., at the Division
of Medical Electrical Engineering, Eindhoven University of Technology,
under supervision of J.A. Blom, M.E.E.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Philippens, E.H.J.

Designing debugging tools for Simplexys expert systems / by
E.H.J. Philippens. - Eindhoven: Eindhoven University of Technology,
Faculty of Electrical Engineering. - Fig., tab. - (EUT report,
ISSN 0167-9708, 90-E-234)
Met lit. opg., reg.
ISBN 90-6144-234-6
SISO 608.1 UDC 616-089.5 NUGI 742
Trefw.: anesthesie; patientbewakingj expertsystemen.

2

Summary

As a result of the increasing success in large scale
integration techniques, rulebased expert systems have entered
the application area of PC-systems. In connection with the
research concerning Simplexys, a toolbox enabling the
realization of real-time expert systems, some debugging tools
have been developed. These debugging tools consist of a tracer,
which makes it possible to 'trace' through the whole
inferencing process, and an explain facility for examining the
evaluation structure of the process. with the help of these
tools, the users, usually knowledge engineers, can control and
debug their rulebases or can prove the correctness and
efficiency to experts in the domain problem-field.
The final implementation is working and has already been used
to examine existing Simplexys expert systems.

3

Table of Contents

1. Introduction

2. Expert Systems and debugging
2.1 Expert systems: general approach
2.2 Debugging in general

2.2.1 debugging tools
2.2.2 debugging and testing

2.3 Debugging Expert Systems

3. The Simplexys programming language
3.1 The Declaration section DECLS ..
3.2 The Initialization sections INITG/INITR
3.3 The Exitcode sections EXITG/EXITR
3.4 The declaration section of the rules
3.5 The process description section

4. The Simplexys Toolbox
4.1 The Rule Compiler .
4.2 The Semantic Checker
4.3 The Protocol Checker
4.4 The Option Generator
4.5 The Inference Engine
4.6 The explanation facility FACE
4.7 What the debugger should do

5. Design of the Simplexys debugger
5.1 Simulating the inferencing process
5.2 Simplexys debugging tools

5.2.1 The Tracer option
5.2.2 The Tree option

5.3 Special Considerations

6. Ergonomics, the user-interface
6.1 Ergonomics in general
6.2 Visual displays

6.2.1 Sizes of the displays
6.2.2 Menus

6.3 Controls
6.3.1 Situation of the controls
6.3.2 Cursor movement keys
6.3.3 Feedback after a command

6.4 Special input
6.5 Examples of debugging
6.6 Conclusions

7. User's manual for the debugger
7.1 The initialization
7.2 The main menu
7.3 Changing options
7.4 The debugger

7.4.1 Tracer or process information windows
7.4.2 Single run information windows
7.4.3 Help information windows
7.4.4 Cursor movement keys

5

6
6
8
9

11
12

14
14
14
14
14
17

19
19
20
22
23
23
24
25

27
27
29
30
33
36

38
38
38
39
39
39
40
40
40
40
41
42

43
43
43
44
45
46
46
46
47

7.5 Simulating next block
7.6 Exit the debugger
7.7 Explain

8. Conclusions

References

4

Enclosure 1: possible modes of Inference Engine

Enclosure 2: Adjustments for the Inference Engine

Enclosure 3: dumpbool.pas

Enclosure 4: The debugging procedure

48
48
48

49

50

52

54

55

56

5

Chapter 1: Introduction

Because of fast developments in computer techniques, Artificial
Intelligence (AI) carne within the range of PC-systems. A
special field within the AI-science is the design of real-time
rulebased expert systems. Most existing expert systems can't
manage real-time processes because it takes too much time for
them to look up in their complex LISP-program-structures the
knowledge they need.
At the division of Medical Electrical Engineering of the
Eindhoven University of Technology a real-time Expert System
Toolbox called Simplexys is under development for several years
now [Blom,1988]. This group is performing a study in
cooperation with the Department of Anesthesiology of the
University of Florida in Gainesville.
Simplexys was mainly designed for monitoring tasks in medical
applications, where efficiency and performance are of primary
concern. Simplexys applications in development are an expert
system for intelligent alarming for a anesthesia machine and a
blood-pressure controller. The controller, which was developed
by P. Hoogendoorn [1989] is now being tested at the
Catharina Hospital in Einahoven.
When testing these first real-time Simplexys expert systems,
the need arose to examine the inferencing processes more
closely. The knowledge engineer (or rulebase programmer) wanted
to see how these expert systems really function in a real-time
environment and whether he needs to add to or to correct the
original rulebase. In other words, there was a need for some
debugging tools to simulate the process and look inside the
'expert system black box'.
In this report we shall discuss what possible errors can occur
in real-time expert systems and how and with what kind of
debugging tools we can detect and locate them. We also shall
describe these tools.

6

Chapter 2: Expert Systems and debugging

2.1 Expert systems: general approach

There are many definitions for the term 'Expert Systems'
[Harmon,1987; Rolston,1988; Aleksander,1986], but in my opinion
the most general and complete one is:

'An expert system is a computer application that solves
complicated problems that would otherwise require extensive
human expertise. To do so, it simulates the human reasoning
process by applying specific knowledge and inferences.'
[Osterweil,1983].

To build up an expert system the expert system designer or
knowled~e en~ineer first need6 to acquire the knowledge from
one or more domain experts and he has to 'transport' that
knowledge into a socalled knowled~e base.
This process of acquiring the knowledge and building up the
knowledge base (according to the system's knowledge
representation) is called knowled~e en~ineerin~. If the
specific knowledge is represented as production rules in the
knowledge base then we call the resulting Expert System a
rulebased Expert System. The big advantage of expert systems
above normal conventional programs is the flexibility of thqse
expert systems. By flexibility we mean that when the
surrounding of the expert system is changing we only have to
add new or subtract old rules in the rulebase.
There exist two types of expert systems: Analysis Systems and
Plannin~ Systems. The goal of planning systems is a search for
the best path between the current and a specific future state
of the process. The goal of analysis systems like the Simplexys
expert systems, is an analysis of one specific static situation
only, although some earlier results may need to be remembered
to achieve this analysis.
In this field of Artificial Intelligence some successful
results have already been achieved, for example the medical
expert system NEOMYCIN [Has1inE,1984], which is a new version of
the already existing MYCIN [Shortliffe,l976]. This expert
system can be used by doctors who try to determine what kind of
bacterial disease a patient suffers from. By asking questions
to the user, this expert system tries to formulate a diagnosis
about the disease and will propose a therapy as well. Some
general ideas about expert systems and 'debugging' were taken
from this expert system.

The big problem of expert systems is that we can distinguish
several kinds of users who will use the Expert Systems in
different ways:
-> The Testers: They attempt to verify the validity of the

system's behavior.
-> The Tutors: They provide additional knowledge to the system

or want to modify knowledge already present in the system.
-> The Pupils: They seek to rapidly develop personal expertise

relative to the subject domain by extracting organized,

7

distilled knowledge from the system.
-) The customers: They apply the system's expertise to a

specific real task.

Depending on the kind of user the Expert System Toolbox will be
used differently and there will be a different need of certain
aids/tools. On the contrary, for traditional software systems
we only recognize one kind of user i.e. the customer.

Data
Problem::::
questions

ro:::\~ ____
\E~<pert(c:,) ~~"""E/pert

I
'· ., ------// "'" . ,

"-

~r\.n.Jwledge

C·:.)ncepts
::,OJutl(A'lS

\\

[Inf€'! enu? Erqlne

1- ------------l OI,t,r-,n r,.",...,..",tor r- -~-----,-
PrrAOCOI Cto'?cver •

[Semantic Checker

f-
F:.ule Compiler

:", Clmpl p • yc: 1-
.J ~ .'" ___ ,

Toolbo>;
I-

~J l'
E/planatloll

- FaCility

-'----,

Figure 2.1: Simplexys Expert System Toolbox

Figure 2.1 shows how Expert Systems are made with the Expert
System Toolbox Simplexys. In contrast with MYCIN, Simplexys
assumes a fixed knowledge base which means that no rules can be
added dynamically. So rules, links and data can be stored in
known memory locations which results in no searching during the
inferencing process at all. Another contrast with most expert
system toolboxes is that Simplexys can be efficient in a static
and in a dynamic environment.
The toolbox contains a Rule Compiler for translating the

B

rulebase into an internal representation that can easily be
handled by the Inference Engine. This Inference Engine
implements the necessary reasoning ability and delivers a
computer program or expert system which is able to reason about
its specific knowledge. The toolbox also contains some rulebase
checkers and an Explanation Facility for explaining the rules
of rulebases in a graphical way.

2.2 Debugging in general

Because there are no theories or methods for debugging expert
systems, we will have to examine what exactly the differences
are between 'normal' programs and expert systems. Afterwards we
only have to adjust the debugging methods/tools of conventional
programs for expert systems by taking these differences into
account.
Debugging is the process of determining and eliminating
different errors (bugs) in a certain program. Debugging is an
important and often underestimated part of the process of
programming.
Normally every programmer who is designing a program, tool or
system, will recognize several stages in his so called software
life cycle:

A=>= Preliminary design
The programmer is trying to formulate a correct definition of
the problem. He also has to study the system and software
possibilities and requirements.

B=>= Detailed design
The programmer is trying to invent and implement an algorithm
which can solve the problem.

C='; Compiling and Debugging
During this developing stage the programmer will try to
compile his program. During the compiling the programmer may
also have to debug his program

D=>= Testing and Debugging
When the program is compiled correctly, the programmer is
still not sure that his program is working satisfactorily: he
has to test it.

E=>= Maintenance
Because the environment where the program is used can change
and because some users are allowed to change the
requirements, the programmer may have to update the program.
To do it effectively the programmer should take care of
program readability in earlier stages.

The only difference in the software life cycle of expert
systems is that it contains another stage: knowledge
acquisition.
When we look more carefully at the software life cycle, we
notice that a programmer will spend most of his time on
debugging (according to [Tassel,l974] ca 50%). During this time
he will make heavy use of the machine he is working on. Whilst
quality control was primarily restricted to one phase of the
software life cycle (stage C), it is assumed today that quality
assurance should be performed in parallel with the construction

9

and application of the software, i.e. that each intermediate
and each final product of the production process should be
examined immediately after its completion. The programming
errors we will meet during each developing stage and which we
also should detect during that same stage are:

A=>= Errors in the problem definition because of lack in the
understanding between the programmer and the user(s)
(lack of complete and adequate specification).

B=>= Errors in the design because of unsolved or overlooked
questions of strategy and algorithm development:

B1-> Incorrect algorithm
The program is not doing what the user expects it would
do

B2-> Errors in analysis because of incorrect solving of the
problem.

C=>= Errors in using the language because of inadequate
knowledge of the language:

C1-> Semantic errors
failure to understand how a command works.

C2-> Syntax errors
failure to follow the rules of the programming language
These errors are often detected and rejected by the
compiler.

C3-> Execution errors
failure to predict the possible ranges in calculations
or failure to anticipate the ranges of the data. .

C4-> Transcription errors or handwriting slips
Some of these errors will be detected by the compiler
but most of them will not.

D=>= Errors in selecting appropriate tests
E=>= Errors due to incorrect adaptation of the program for

more users.

Normally when a programmer is speaking about errors in his
program, he actually means the errors which will be detected
during the Compiling and Debugging stage.

2.2.1 debugging tools

Not every good programmer is also a good debugger. For good
debugging a programmer not only needs a certain amount of
knowledge about the problem-field, but he should also have the
ability:

to think logically
to be creative
to observe attentively (attention to details)

After each development stage a programmer should use different
debugging techniques. For example when a programmer is tracing
Pascal code, his debugger should use variable names instead of
memory locations and Pascal statements instead of machine
instructions.

At level C and D of the software life cycle, the best method to
allocate an error in the program is to follow the "hypothesize

10

and test" algorithm:
1-> Describe the problem
2-> Guess where the error could be
3-> Guess what might be going wrong because of that error
4-> Test your guess
5-> Refine and repeat the process until you have found the

error
6-> Determine the fix
7-> Weave it in

This debugging process will be much easier and faster if we use
debugging tools. Debugging aids are stethoscopes necessary to
isolate the cause and location of an error. We distinguish
three different categories of debugging tools:

A Snapshot tools
They give a picture of how the program or its variables look at
a certain point in time.
Only two kinds of snapshot tools exist; listings (before
execution of the program) and specific/non specific dumps
(during the execution of the program).

B Dynamic tools
They show the program or its variables in operation. We
distinguish two different kinds of dynamic tools:
--> tracers:

They indicate what statements are performed and in what
order. In debugging there are two dimensions to be
traced: space and time. With space dimension is meant the
storage space of the program in the computer and with
time dimension is meant the computation cycles completed
during execution of the program. Usually the time
dimension is the most important and longest tracer. But
debugging aids should always allow the programmer to
trace both dimensions.

--> variable displays:
While the program is running these tools show the value
of one or more variables each time they change.

C Interactive tools
These tools offer the user broad powers to stop the execution
of the program in arbitrary places and under broadly
specifiable conditions. During such suspensions of execution,
these systems allow the user to examine such internal status
information as the values of variables. These systems enable
the user to study error phenomena in minute detail, and they
support the process of unravelling the causal threads leading
to the first manifestation of an error which might have
actually occurred long before.
We distinguish three kinds of these debugging systems: Systems
which offer the user to suspend execution (1) at any specified
program location (the breakpoint capability), (2) when any
specified program variable changes value (the watchpoint
capability), or (3) after some fixed prespecified number of
program statements have been executed (the program stepping
capability) [Osterweil,1983].

11

Because debugging is the largest program developing cost it is
better to prevent bugs as much as possible. The best way to do
this is to follow certain common programming rules [Brown,1973]
like:
-) avoid questionable coding

Use the simplest statements and do not try new features
until you are sure they will work.

-) avoid dependency on defaults
Computer manufacturers can change the defaults.

-) never allow data dependency
do not expect data to be in a special form but instead check
the data at input time.

-) always complete your logic decisions
for example when you expect only two different values do not
check only for one and if false assume it is the other one.

2.2.2 debugging and testing

Another important stage in the development stage is the Testing
stage. A lot of programmers always mix this stage up with the
Debugging stage, but Debugging is the part of the software
developing process which is performed while the product is
unstable while Testing is the final exercise carried out on the
stable software product before releasing it. Or in other words:
testing determines that an error exists and debugging tries to
localize the cause of the error. Thus, there is some
overlapping of the two stages.

We can improve the software quality by:
1-- reducing the number of execution errors
2-- improving the performance of the software
3-- improving the portability of the software
4-- improving the adaptability of the software
5-- improving the correctness of the software

Beginning programmers often feel only the program needs to be
debugged. That is, once the program works for one carefully
selected group of data, they believe it will work for all other
data. However we can distinguish five different levels of
program correctness:
1 no language syntax errors
2 no runtime errors like arithmetic overflow or division by

zero
3 correct results for a typical set of valid test data
4 correct results for a typical set of valid and invalid data
5 correct results for any possible data both valid and invalid

For most conventional programs it is possible to prove the
correctness of the program for level I to 4 and it is
impossible to prove the correctness of the program for level 5.
Large or complex programs or tools will have already problems
by proving the correctness for level 4.

The first level of errors that should be detected during
compilation of the program and not during testing are:

12

C1-- Some semantic errors like:
-Improper use of built-in functions

C2-- Almost all syntax errors that can occur like:
-Incorrect statement syntax
like incorrect variable names, incorrect use of
operators, misspelled keywords, undeclared variables etc.

-Incorrect termination of program sequence (missing ends)
-Invalid expressions
-Improperly mixed data
-Incorrect nesting
-Incorrect matching of arguments and parameters

C4-- A few handwriting slips like:
-Uninitia1ized variables

The errors that a compiler will not detect constitute a correct
use of the language which is not correct for the application.
They can only be discovered by examining the output and
following certain testing procedures. For conventional programs
these errors are for example:
-, Logic errors
-, Misspelled variable names
-, Incorrectly Initialized variables
-, Forgetting to reset a variable
-, Incorrect termination of program sequences
-, Array subscripting out of bounds
-, File and data formats unmatched
-, Incorrect use of boolean expressions
-, Counters too small
-, Incorrect termination of loop
-, Attempting to process data after end of file
-, Using the wrong version of a program

2.3 Debugging Expert Systems

After having discussed the way how debuggers are used in
'normal' programs and/or tools, we are now ready to examine why
we need a debugging tool for expert systems and what makes them
different from the normal conventional programming languages.
The kind of errors that can occur in the rulebase or during
execution of the expert system are quite similar to the ones of
normal programs. So first of all, the expert system toolbox
should contain compilers which check the rulebase on
syntactical errors, some semantical errors and some execution
errors.
When the rulebase is compiled successfully it is still possible
that the Expert System is not doing what it should do. We can
distinguish several shortcomings, typical for expert systems
only, at this stage (execution errors) [l!asling,1984]:

a) Ignorance
b) Stupidity
c) Incompetence

d) Superfluity

a piece of knowledge is missing
a piece of knowledge is incorrect
current set of conceptual primitives is

incapable of expressing a needed piece of
knowledge

a piece of knowledge is supplementary and

13

will never be used.
e) formalism bug: one of the control sections has a bug or the

set of available representations is
inadequate.

The process of solving these problems can be divided into two
different phases: a phase of determining/uncovering the mistake
in the knowledge-base called debugging phase and a phase of
correcting the incorrect knowledge called the knowledge
acquisition phase.
Testing and/or debugging are the hardest tasks in developing an
expert system [Pau,1987; Hendler,1988]. In comparison with
procedural languages, rulebased systems are extremely hard to
trace. Nevertheless, it would be desirable to be able to
"reverse" the actions as if under instant replay. Unfortunately
the tools needed for this task are not available (yet).
On the other hand most expert system designers know already
intuitively where the 'bug' is without detailed tracing. In
this case the eyes of the knowledge engineer are the most
important debugging tools. So if a programmer wants to be
successful in debugging, he should better be a near-expert in
the problem domain as well.
Another big difficulty in debugging is to discover that
problems or shortcomings still exist in the rulebase.
Taking all these needs and problems in consideration it would
be of great use to have the ability to look at the whole
"inside world of action" of an expert system, and at the proper
level.

Before we can discuss how we have to change Simplexys or add
some new "debugging" tools to the toolbox, we first need to
know what the rulebase and the already existing different tools
of Simplexys look like. We also have to examine what kind of
errors already will be detected by these tools.

14

Chapter 3: The Simplexys programming language

The structured rulebase built up by the knowledge engineer must
have a special format before it can be presented to the
Simplexys Toolbox. This rulebase contains seven sections which
must start with the following keywords:

1 DECLS
2 INITG
3 INITR
4 EXITR
5 EXITG
6 RULES
7 PROCESS

declarations
global initializations
run initializations
run exitcode
global exit code
the rules
the protocol

J--- Op'ioo., ,0,.100'

Because the first five sections are Pascal sections most of the
syntax errors and some of the semantic errors that can occur in
these sections will be detected by a Pascal Compiler.

3.1 The Declaration section DECLS

This section is optional and contains the Pascal declarations
of all the variables, procedures and functions that will be
used by initializations, exit codes , TEST rules and THELSE DO's.
The Inference Engine will include this section without any
changes.

3.2 The Initialization sections INITG/INITR

These sections are optional and contain only Pascal code. The
difference between the two sections is that the statements of
the INITG section will be executed immediately after the system
startup and the statements of the INITR section will be
executed immediately at the start of each new run.

3.3 The Exitcode sections EXITG/EXITR

These sections are optional too and contain only Pascal code as
well. The EXITG section will only be executed at the end of the
last run and the EXITR section will be executed immediately
after each run.

3.4 The declaration section of the rules

section 6 must contain all the descriptions and definitions of
all the rules. Each rule consists of two to four parts:

ad 1) rule header:

1-- rule header
2-- rule type
3-- initial value
4-- thelses

Contains the name of the rule and an explanatory text-string.
For example:

15

Diabet_patient: 'Patient is suffering from diabetes'
ad 2) rule type:

Depending on the type of rule, evaluation of a rule can be
achieved in three ways:
a) for the evaluation of the rule information is needed from
outside the rulebase: primitive rules.
There are four different primitive rules:

FACT rules are assigned a certain value only at the
beginning of the process. So they will never change value
during the process. They can only be the value True,False
or Possible. An example of such a FACT rule is:

Diabet_patient: 'Patient is suffering from diabetes'
FACT

ASK rules ask a question (=textstring) to the user and the
answer will be the value of these rules (y(es)=True,
n(o)=False and ?=Possible). An example of this kind of rule
is:

must_Finish: 'You want to quit the process'
ASK

During the process we will see the message: 'Is true: You
want to quit the process?'
TEST/BTEST rules contain one or more valid Pascal
statements which will assign a value (True,False or
Possible) to these rules (default=False). An simple example
of a TEST rule is:

temp_too_high: 'the temperature is too high'
BTEST temp> 40

MEMO rules 'remember' their value and therefore can only be
changed by a THELSES (part four of the rule) in a previous
run. An example of a MEMO rule is:

SETP: 'A setpoint has been defined'
MEMO

b) For the evaluation of the rule, values of other rules are
needed. We call these rules EVALUATION rules. They contain
an expression which is a combination of other rules
(primitive or evaluation rules) and a number of operations.
We have two different groups of operators:

Operators with one argument:
NOT v ::= if v = TR then FA else if v = FA then TR else v
MUST v ::= if v = PO then FA else v
POSS v ::= if v = PO then TR else FA
history operators: these operators are used as follows

RULE historyop «numeric expression»
historyop are '=',' <) 'f') , , ') = ' , ' <' and ' < = '

The resulting value is first set to the result of RULE. Then,
if the result is TR, the RULE's history counter value is
compared, using the history operator, to the value of the
numeric expression. If the comparison yields true, the result
will be TR else the result will be FA.

Operators with two arguments:
There are five different operators which need two arguments:
AND, UCAND, OR, UCOR and ALT (see figure 3.1).

16

AND/ucAND OR/ucOR ALT
u u u

w TR FA PO w TR FA PO w TR FA PO

TR TR FA PO TR TR TR TR TR TR FA* TR

FA FA FA FA FA TR FA PO FA TR* FA PO

PO PO FA PO PO TR PO PO PO TR PO PO

AND: if u=FA then
w is not evaluated

OR: if u=TR then w
is not evaluated

* contradiction
ALT=logically
equivalent
alternative

figure 3.1: the operands AND,UCand,OR,UCor and ALT

An example of an evaluation rule is:
ShortDown: 'Too quick from fase 1 to 2'
Autofase1 < (45) and trig or not dumm

history expression

c) Another totally different rule-type needed to describe the
dynamics of an expert system is the STATE rule. The values of
these rules can only be changed by a STATE transition and
their value can only be False or True. We will discuss these
rules in section 3.5.

ad 3) initial value (not mandatory):
With this section we can give the rule a value (true,false or
possible) for the first run

ad 4) thelses (not mandatory):
This section allows multiple consequences from a single rule
evaluation. There are three types of THELSES: THENs,ELSEs and
IFPOs. THENs are used to allow consequences if the result of
the rule evaluation is TRue. ELSEs are used to allow
consequences if the result is FAlse and IFPOs are used to
allow consequences if the result of the evaluation was
POssible.
A thelse must be followed by one of the next three
possibilities:
a) a value (THELSE TR/FA/PO)

These THELSES allow multiple conclusions from just one
evaluation. Under condition that the evaluated rule has a
certain value, other rules will be assigned to certain
values too. For example: "THEN TR: BIRD".

b) a goal (THELSE GOAL)
The argument, which must be a rule, is evaluated
immediately. For example: "ELSE GOAL: BIRD".

c) a Pascal section (THELSE DO)
This kind of THELSES provides a "hook" to Pascal to
manipulate data, to print etc. The Pascal statements are
executed if the rule was evaluated to TR (THEN DO), FA
(ELSE DO) or PO (IFPO DO).

17

An example of a rule containing four parts is:
Must_finish: 'You want to quit the process'
ASK
INITIALLY FA
THEN FA: Running

3.5 The process description section

The section 7 is mandatory and describes the dynamics of the
process. The total analysis process is divided in a number of
runs, during which the rule values do not change (only from
undefined to a certain value). Each run can be divided in
several subruns, which are evaluations of one GOAL rule. So we
can distinguish a static environment during which the rules are
evaluated at most once and a dynamic environment during which
the rule values can change.
Because the Inference Engine is designed to work within a
static environment, the dynamic environment needs to be
translated into a sequence of static environments (see figure
3.2).

static
environment

< dynamic environment'
r-----..,

run #1 t-'-

subrun 1
subrun 2
subrun 3

run #2 ~,

subrun 1
subrun 2

- run #3

subrun 1
sub run 2
subrun 3
subrun 4
subrun 5

figure 3.2: An example of a process containing several
(sub)runs

'--,-

What Goals will be evaluated during one run mostly depends on
what States are active (true) in that run. In the first run at
least one State rule is initially true. The Process section
contains all the state transitions, which have the following
format:

ON Trigger FROM Fromlist TO Tolist

A State transition causes a change in active State(s)i some
States can become active (true) while others can become
inactive (false).The State transition takes place if all the
States in the Fromlist are active (true) and if the trigger
evaluates to TRue. The process will end if no states are active
anymore.
One way to analyze the dynamical behaviour of Simplexys expert
systems, is by describing the process with 'Petri Nets'
[Reisig,1985].
Figure 3.3 shows us a simple example of how to build up a
process section by drawing a graph of the process. In this
graph every circle represents a State rule and every connection
between two circles represents a state transition (the example

18

is a simplification of the total debugging process of section
2.1} .

States:
51: 'Describe the problem'
52: 'Guess where and what
the error ;n the program
is'
53: 'Determine how to fix
the error and weave it in'
54: 'Testing the program'
Triggers (for example ASK
rules):
Tr1 : I New guess'
Tr2:'Satisfy;ng guess'
Tr3:'Yrong consideration'
Tr4:'Error not solved'
Tr5:'Error solved'
Tr6:'Still errors in the
program'
Tr7:'Program is correct'

PROCESS
ON TR1 FROM 51 TO S2
ON 1r2 FROM 52 TO 53
ON lr5 FROM 53 TO S4
ON 1r7 FROM 54 TO *
ON 1r6 FROM 54 TO 51
ON 1r4 FROM 53 TO 52
ON 1r3 FROM S2 TO 51

figure 3.3: An example of how to 'understand' triggers and
states

19

Chapter 4: The Simplexys Toolbox

If we want to design debugging tools for Simplexys, we have to
know exactly how Simplexys builds up a certain expert system.
The Simplexys Toolbox already contains several Pascal programs
or tools, which tend to incorporate restrictions that make them
easy to use for certain purposes. Figure 4.1 shows us how to
use the tools to build up a Simplexys expert system. Some tools
already detect certain errors which we do not have to detect
with the debugger anymore:

a) a Rule Compiler (Ruc.pas)
b) a Semantic Checker (Chk.pas)
c) a Protocol Checker (Pet.pas)
d) an Option Generator (Opt.pas)
e) an Inference Engine (Sim.pas)
f) an explanation facility called FACE (Face.pas +

FaceExpl.pas)

RULE BASE

Expert System

Ruses.qqq
Rinex.qqq
Rinfo.qqq
Rhist.qqq
Rtest.qqq
Rdodo.qqq

Options.qqq

Runln.qqq

Explanation
Facility

figure 4.1: How to build up a Simplexys expert system

4.1 The Rule Compiler

The Simplexys Rule Compiler translates the rulebase into an
internal representation of six qqq-files:

20

1) Rinfo.qqq
This file contains almost all the arrays and tables
representing the rules and their mutual
relationships.

2) Rtest.qqq
All the test sections of the several defined test rules are
translated into one function called" FTEST".

3) Rdodo.qqq
The DO commands in all the Thelses-Do statements are
converted into one procedure called "_FDOS".

4) Rhist.qqq
All the history sections of the used evaluation rules are
translated into one function called "_FHIS".

5) Rinex.qqq
This file contains the in the rulebase programmed
initialization sections; INITR,INITG,EXITG,EXITR,EXITG.
These sections are represented in this file as procedures
with the same name.

6) Ruses.qqq
Ruses contains the needed Turbo Pascal 'uses' libraries
(specifically needed for programs written in Turbo Pascal).

The Rule Compiler also checks the rulebase for some semantic
and syntax errors and gives an appropriate error message to the
programmer.
The six semantic errors which can be detected in this stage
are:
1) STATE rules are not allowed to have the value possible
2) At least one STATE rule must be initially true
3) FACT,MEMO,STATE rules cannot be used as goal rules
4) It is not allowed to THELSE FACT or STATE rules
6) In FROM,TO list it is only allowed to specify STATE rules

The compiler not only checks for syntax errors like mistakes in
expressions, transition description lines,thelses etc, but also
for errors like using more than one rule with the same name or
internal (overflow) errors like using to many history checks.

4.2 The Semantic Checker

The Simplexys Semantic Checker performs several semantic checks
on the file Rinfo.qqq and generates error messages if any
errors are detected.
The six semantic errors checked by this program are:

1) Self-referencing evaluation loops:

•••••• ->- Evaluation c-->---l Rule i
Rule i ->- Expression L-___ ~

->-

figure 4.2: A self-referencing evaluation loop

We get a conflict if we want to use a rule in its own

21

evaluation expression.

2) Thelses loops to itself:

Rule i -'1L--TH_E_N _T_R ~_T_HE_N_F_A--,~'-

~

Rule i

figure 4.3: A rule with a THELSES loop to itself

Conflict: If rule i evaluates to true then rule j becomes true
and wants to set rule i to false.

3) Conflicting Thelses:

Two possibilities:

Rule i -,
Rule i -, THEN~ F' ~THEN TR THEN TR' or , THEN FA

Rule j Rule j

figure 4.4: An example of a conflicting THELSES

Rule i
Rule i

we get a conflict if we try to set a rule to true and to false
at the same time.

4) Thelses to successors (semantic conflict):

-,-
Rule j -,-

-,-
Evaluation e--,
Expression

THEN TR

figure 4.5: A rule with a THELSES to a successor

Rule j

Rule i needs for its evaluation rule j; it will try to evaluate
rule j. After this evaluation rule i will set rule j to true
even if the result of the evaluation of rule j was false.

Note: There will be no conflict if the rule is a MEMO or
STATE rule.

5) Thelses to predecessors (semantic conflict)

22

Rule j -,----4 THEN TR f-,-------.
-,- Evaluation -'---1

Rule j -,- Expression -,-

figure 4.6: A rule with a THELSES from a predecessor

Conflict: If we try to evaluate rule i, rule j needs to be
evaluated as well. If a certain rule is evaluated, all its
THELSES will be executed immediately. This means in this case
that whatever the result of the evaluation of rule i was, if
rule j became true then rule i will be set true.

Note: There will be no conflict if the rule is a MEMO or
STATE rule.

6) Unconnected non STATE rules
A warning will be generated if a certain rule will never be
used in the process:
---the rule is not used in any expression
---the rule is not THELSEd by any rule
---the rule is not a trigger rule

4.3 The Protocol Checker

This checker tries to find the errors in the process
description part or protocol of the rulebase (rinfo.qqq). It
checks the protocol on three different types of errors:

A--Syntax errors:
1. 'No start states'; no rules are initially true
2. 'No end states'; no ON statement has an empty TO list
3. 'Conflicts at states'

Two transitions have equal From lists and the same
trigger.

4. 'Empty prestate'
Each State must be in at least one To list.

5. 'Empty poststate'
Each State must be in at least one From list.

B--Topology errors:
Topological checking is performed in order to find errors in
the way States and transitions are connected.

6. 'Self loops'
The From list and the To list of a On statement are not
disjunct.

7. 'Identical ON statements'
Two On statements have the same From list and the same To
list.

8. 'Identical STATEs'
9. 'Net part not connected to start state'

To each State there must be a forward path from one of

23

the start States (result of the error: superfluity).
10. 'Net part not connected to end-state'

From each State there must exist a path to an end-State.
C--Dynamic errors:

If we analyze the dynamic behavior of the protocol by
constructing all reachable contexts, we can discover several
dynamic errors.

11. 'Deadlock'
There is a firing sequence resulting in a context where
no further change of State is possible.

12. 'Non safe state'
A non safe state is a State that becomes true due to
firing of a transition while that State was already true
before firing.

13. 'System cannot stop'
There is no firing sequence so that only end-States are
true.

14.'Not all transitions can fire at least once'
15. 'Conflicts'

Conflict when the From lists have a non empty
intersection.

4.4 The Option Generator

With the Simplexys Option Generator we can determine several
run-time options for the Inference Engine (for example the
choice between real-time and simulated time).

4.5 The Inference Engine

The Simplexys Inference Engine actually builds the expert
system by compiling the several qqq-files and inference
processes into one 'program'. The expert system is now ready to
run.

We can divide one execution of a Simplexys Expert System into
three main parts and several small steps:

A One-time initialization:
l--Initialize the time
2--Execute INITG
3--Initialize all the rules with an 'INITIALLY'-section
4--Determine all the FACT rule values
5--Execute the THELSES of all ASK, TEST and EVAL rules

with value<'UnDefined
B Execute runs

l--Execute the 'THELSE'-section of all FACT and MEMO rules
2--Execute INITR
3--Execute the THELSES of the active STATE rules
4--Evaluate all the state transitions
5--Update the history of the MEMO and STATE rules
6--Execute EXITR
7--Undefine all ASK, TEST and EVAL rules
8--Goto B if any STATE rule is still active

C Finish
9--Execute EXITG

24

4.6 The explanation facility FACE

An explanation system must be capable of explaining, to some
significant degree, the expert system's operations to anyone
who understands the framework for explanation and who
understands the domain subject. There are three types of
explanation:

1-> Retrospective reasoning
Trying to explain what the system already has done.

2-> Counterfactual reasoning
Trying to explain what the system prevented from using
rules that would have established specified facts.

3-> Hypothetical reasoning
Trying to answer the question: "1:illM would happen .it "

Nowadays explanation systems mostly use the explanation of type
one. They are often designed in such a way that they can answer
three types of questions:

WHY is it important to determine that
Asking WHY questions is the same as moving in the direction
of the root or goal in the evaluation tree.
HOW was it established that
Asking HOW questions is the same as moving to the leaves or
primitive rules of the evaluation tree.
WHEN was it established that•...
In contrast with the other two types of questions for
WHEN-questions we are not moving in the evaluation tree, but
just asking for the time or the history of that rule.

Mostly explanation system are used for assisting in debugging,
for testing the expert system, for learning and teaching how to
use/make an expert system and for updating the rulebase.

For Simplexys there already existed an explanation system
called FACE which was developed by de Hair [lit. 2]. This
'FACility for Explaining simplexys expert systems' tries to
answer the questions by just displaying the graphical
presentation of the rule concerned with that question. It uses
colors to express the run-values of all the rules used in that
evaluation tree. There is also the possibility to 'trace' (run
by run) through the whole process.
But several considerations lead to the decision not to use the
explanation facility FACE as a part of our debugging tool:
1)
FACE does not function for more complex rulebas~s. If the
rulebase contains Thelse-Do statements or initialization
procedures FACE will crash. '
2)
FACE uses colors to display the values of the rules in the
rule evaluation tree. This means that a color monitor must
always be available.
3)
FACE uses several smart algorithms to sort th;e rules of an

25

evaluation tree in such a way that it is easy to draw the
tree. For debugging, however, we want to display the
rulebase as the knowledge engineer programmed it.
4)
FACE just displays the result of one run. It is possible to
trace through the whole process but you cannot recognize
certain patterns and you can easily get 'lost' in the
process. Especially when you have a rulebase with a lot of
states, it takes a lot of time to find out what states are
active and what rules were evaluated during that run.
5)
FACE uses the rule-names for representing the rules in their
evaluation tree but it is possible that the knowledge
engineer chooses very long names for his rules. This will
make the display of the tree quite broad and it is now
possible that the lines are longer than the predefined
window.
6)
FACE also contains a simplified copy of the Inference Engine
for simulating and tracing the process. But this means that
if the original Inference Engine program is updated, we also
need to alter FACE in the same way (which is the reason why
FACE was not working correctly anymore).

Because we did not want to use FACE as our explanation
system we had to look for other existing explanation system.
In the literature we found several built-in explanation
systems for all kind of expert systems which all try to
answer the earlier mentioned questions [~asling. 1984,
Neches. 19841 KhoroshevskY,1985j. However it turned out that
the lmplementation and layout of these systems depend on the
kind of expert system to be explained and the degree of
knowledge of the user.

4.7 What the debugger should do

As mentioned in section 2.3, it is possible that there are
some errors in the rulebase which cannot be detected by any
of the already discussed Simplexys checkers. Most of these
errors will result in one of the shortcomings mentioned in
the same section:

-) Incorrect expressions in the evaluation rules
This handwriting slip can result in a Logic error, for
example:
You typed in for the evaluation part of a certain rule

ATRI AND EQV3 ALT AL60
but you actually meant

ATRI AND (EQV3 ALT AL60)
result of this mistake in the rulebase: Stupidity

-) Handwriting slips in the names of rules can cause new
unwanted rules in the rulebase (misspelled variable
names).
result of this mistake: Superfluity

-) Incorrectly initialized rules or just forgotten to

26

initialize a rule
-> wrong or no INITIALLY-section
-> execution errors
-> using the wrong version of the expert system

For these errors or to detect shortcomings of the rulebase,
we need to design debugging tools for Simplexys. As
discussed before one of these debugging tools has to be an
explanation system.

27

Chapter 5: Design of the Simplexys debugger

As we already saw, a lot of errors will be detected by the
different Simplexys checkers. The best way to debug errors that
took place in real-time processes (=execution errors) and the
best way to check the rulebase on some shortcomings (see
section 2.3), is to simulate and trace the whole process again.
Simulation gives us also the opportunity to examine the
rulebase more carefully and to show internal variables
(possibility to look inside the black box). The problem here is
to design a good interface for showing the whole inside world
of action to some understandable degree for the knowledge
engineer.
In many cases the process consist of many runs (if one run
takes 5 seconds, and an operation lasts 6 hours, the number of
runs is 4320) and is it impossible to simulate and debug the
whole process at once. So we split up the debugging process
into a chain of several simulations where each simulation block
can be examined by the debugging tools (breakpoint debugger,see
figure 5.1).

there was an error during
the execution

try to allocate the error

know where the error is
and so we can correct the
rulebase

Execution of Expert
System

I

Simulation of the
process

Examine process with
Debugging Tools

error not found yet

r

figure 5.1: The total overview of the debugging process

So we can distinguish two different parts in the whole
debugging process: simulating and examining the simulation with
debugging tools.

5.1 Simulating the inferencing process

Before we can simulate the real-time process, we have to solve
a number of problems. First of all, the data used during the
process is not available anymore at the moment of simulating.
In Simplexys there exist several ways to acquire data from
outside:
A) The sections INITR,INITG,EXITR,EXITG of the rulebase are

Pascal sections and can therefore contain read(ln) or other
input/output (IO) statements.

28

B) The RULES section:
-1- FACT rules acquire their values before the inferencing

process starts (they obtain their value by asking a
question).

-2- ASK rules also need real-time answers.
-3- TEST rules need externally supplied data.
-4- EVAL rules combine other rules in their expression

It is possible that they use history expressions in
their evaluation expression. These history expressions can
contain Pascal variables (for example: "BOIL) (12*temp)"
with temp = variable of type integer).

-5- The 'THELSE DO' section of the rules provide a 'hook' to
Pascal and therefore can contain IO-statements.

A solution to all these problems is to change the Inference
Engine in such a way that it dumps the values of all the
assigned FACT rules (two-bit value) in the beginning of the
real-time process to a certain dumpfile. We also need to dump,
for each run, the starttime (32 bit value) of that run and the
results of the in that run used TEST, ASK rules and history
expressions (two bit value). So the dumpfile will have a length
of approximate

(number of runs) *
{«number of evaluated B1,B2,B3,B4,B5) + 7) div 8 + 4) bytes

The advantage of this solution is that the simulator will now
look almost the same as the Inference Engine with the following
exceptions (see also enclosure 1 and 2):

A -) the Pascal sections INITR,INITG,EXITR and EXITG are not
executed.

B -) the values of the ASK, TEST rules and history expressions
are read in from the file made by the Inference
Engine during the expert system's actual operation.

B5-) the THELSES-DO parts of all the rules are not
'evaluated' .

C -) for every new run the run-time is read in. During the
simulation it is possible that a run lasts shorter than
it really did during the real-time process. If we would
not dump the start-time of a run, the history of the rules
would be incorrect during the simulation.

* -) in order to save some memory, we will make the file
ruses.qqq empty. For the simulator we do not need any
special libraries (no graphics).

So we can distinguish three different Inference Engines:
1-) original Inference Engine or inference engine which

generates expert systems that do not generate a dumpfile.
It is not possible to simulate the processes of these
expert systems.

2-) Inference Engine which creates a dumpfile. It is possible
to simulate the processes of expert systems generated by
this inference engine.

3-) Inference Engine as simulator/debugger. The Inference
Engine is used to simulate and debug a certain process.

29

To get fast tracers, it is better to look at all the rule
values (except the FACT rule-values) of several runs around the
problem-area and put them in memory, than simulating and
tracing for every run alone. How big a simulation block may be,
depends on how big the rulebase is and how much memory is
available. The worst case is that the rulebase is so big that
each block is just one run.
If the programmer knows almost exactly when the mistake took
place, he can choose the simulation block very small and
simulate the process until that specific time. If he knows
nothing about the error or if he just wants to examine the
process, he will choose the simulation blocks very large in
order to have the ability to look at many runs at the same
time.

5.2 Simplexys debugging tools

Now that we know how we can simulate the process, we can try to
find the error or just examine the different simulation blocks
more carefully. The best method to find an error in the
rulebase is (see also figure 5.2):
A)
First of all try to find out ~ the error actually took place
in the real-time process. Processes which lasted very long,will
be simulated in blocks. So before we can determine in what run
the error actually took place we first have to determine which
simulation block. The tracer should therefore not only allow
tracing through the whole process run by run but also block by
block. Because a Simplexys expert system is working time
dependently and because memory is limited, we will not allow
the programmer to trace one or more blocks back in time. If we
know ~ the error took place we can determine with the tracer
what states were active at that moment.
B)
Secondly we have to examine ~ caused the error and ~ it
took place. For these questions we need an explanation facility
to look at the structure of the rules in question. The
structure of the STATE rules will tell us what rules were
evaluated first.
If we keep on going down in the total evaluation tree of one
run, we will finally reach the primitive rules.
We will call this facility the tree option of the debugger. It
is possible that after you examined the structures of some
rules, you discover that the error took place sooner but still
in the same block and so we need to go back to the tracer (back
to A).
C)
At last we know now what caused the error and so we can update
or correct the rulebase.

30

Rulebase I < <
I

< C >

I

~ I
Simplexys*

Tracer < > Tree
~--A B----~

Simulator

real-time »----_
Expert system

figure 5.2: The process of debugging the rulebase

So we need a tracer and an explanation facility for our
Simplexys 'debugger':

5.2.1 The Tracer option

If we examine the rUle-types more carefully then we can
distinguish three groups of rules which only differ in the
number of different values they can be during the process:
A-> FACT rules: just one value (TR,FA or PO)
B-> STATE rules: two different values (TR,FA)
C-> ASK, EVAL, MEMO and TEST rules: four possible values

(TR,FA,PO,UD)
Of course each group needs a different approach for displaying
their values:

Ad A) Displaying FACT rules

The FACT rules are evaluated only once in the process and they
can have only the value True, False or POssible. So the value
of a FACT rule can be displayed by just printing one string ('
true',' false' or 'possible') in a rule-information-window

(snapshot debugger).

Ad B) Displaying STATE rules

The STATE rules can only be FAlse or TRue and so we need only
one character-line to display the values of the STATE rules;
TRue; level 0 and FAlse; no level.

31

Figure 5.3 shows us an example of how to display a State rule.

run /I
1 2 3 4 5 6 7 8 12 13 14 15 16 17 18

value .. T .F .. F T F ... T T T. T .T", T
STATE 1 -,-. ->,:-,' .-:::,:: ;::': .. .

;-'-.-'-'.

9 10 11
L T F .

.".,· .. ' ... • .••.. ',· .. i> .. , +P,=",=",=",=",=",=",="~
T T .. ',l'',l'.

.. '.,--,',

figure 5.3: An example of how to display a STATE rule

It should also be possible to display ASK, EVAL, MEMO and TEST
rules in this way (TRue;level 0, FAlse/POssible/UnDefined; no
level), because with this method we can display more rules.
Because STATE rules determine what other rules will be
evaluated during the run, it would be of great use to display
all the rule-numbers of the active STATES at each run.

ad C) Displaying ASK. EVA!', MEMO and TEST rules

In each run these rules can have one of the four values: TRue,
FAlse, POssible or UnDefined. There are several possibilities
to display the values of these rules during the process:
A- with one character; for example T F P AND U
B- with colors; for example green red magenta and black (FACE)
C- with 'graphics'
Because we want to recognize certain patterns in the process
and because we do not want to be dependent on the kind of
monitor, we choose method C for displaying the values of these
rules,

One way to display the values of these rules is using just
three different levels:
False;level O,Possible;level 1,True;level 2,Undefined;no level,
But now there are still several methods left to draw such a
graph:

method 1:Draw one horizontal line for each level
method 2:Draw an almost 'closed' graph by drawing vertical

lines when the level changes.
method 3:Same as method 2 only now when the value is undefined

this method will remember the last level and will act
like the UD-values do not exist.

An example of each method is given in figure 5.4.

32

run#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

value

method 3

figure 5.4: Several examples of how to display the rule-values

The advantage of method 3 is that certain patterns are easily
recognized (it looks more like a graph than the other two), but
the disadvantage is that it is difficult to determine what
value the rule has in a certain run (for example run #9:False).
On the other side, this method remembers what the last value of
the rule was before it became undefined, which can be useful if
the value of run #1 is undefined and if this run is not the
first run of the total process.
Method 1 has the disadvantage that if we want to display
several rules besides each other, it becomes quite hard to,
determine what line belongs to what rule. Of course we will
still have this problem even for method 3 if we have rules
which are almost all the time undefined.

It is also possible to display the rule-values in just one or
two character-lines but the problem then is, that the
character-set is quite limited. For example method 4 (see
figure 5.5) is an example of displaying the rule-values in two
levels (level 0 = FAlse + POssible and level 1 = TRue +
POssible) .

value
method 4

run #
8 9 10 11 12 13 14 15 16 17 18
U F P P U U T T F T T

.. ~ ••••.....•..•...••...••..•.•. ~ •...• • •••• •· •••• ···iritl.····i •••.••• · ••• 6
figure 5.5: Another example of how to display the rule-values

The advantage of using this method is that we can display more
rules on the screen but the disadvantage is that the eyes get
fixed first at the possible-values. The conclusion is that
method 2 is the best way to display the rule-values of ASK,
EVAL, MEMO and TEST rules.

Because every knowledge engineer wants to look at the process
in a different way, we should provide a way to change the
number of rules to display by the tracer (number of STATE rules
(one level) and number of other rules (three levels».

33

5.2.2 The Tree option

If we want to debug Expert systems or just verify their
knowledge base, we also need an explanation system to provide
the visibility of the rulebase.
For this option we are not so much interested in what value a
certain rule has, but more ~ it obtained that value and ~
the effect of the rule on other rules is. This means that we
need an explanation facility which will use retrospective
reasoning (section 4.6).
All the different parts of a rule (see also section 3.4) tell
us a little bit about the structure of that rule and how the
rule will be used during the process:

ad A) the rule header:

The rule-name and the rule-text are two strings of determined
length (in file rinfo.qqq) and they identify the rule.
However we do not want to present a rule by its name or text,
because these two string can be very long and they would
require a lot of space in the tree. Therefore we will present a
rule just by a unique number assigned to it in the file
'rinfo.qqq' (we will reserve three characters for every rule
because we expect that a rulebase will contain at most 999
rules) .

ad B) the rule-tyge:

This part tells us ~ the rule will be used during the
process. Every rule-type needs a different presentation:
FACT rules obtain their value at the very beginning of the
process and they never change during the process and so we just
have to display that this rule is a FACT rule.
ASK rules obtain their value from asking a question and so we
need only to display the question somewhere to 'explain' that
this rule is an ASK rule. Displaying the question is the same
as showing the rUle-text string in a rule-information window.
TEST rules obtain their value by testing external data which
will not be available anymore at the moment of debugging.
Because most programmers are not interested in how the test
looks, but more in that the rule is a TEST rule, we present
these rules by their code. If the programmer is interested in
how the test looks, he can find the code of the appropriate
Pascal test in the file 'rtest.qqq'.
MEMO rules remember their values across runs and can only be
changed by a THELSE of another rule. So for these rules the
programmer will only be interested in when the rule was
assigned the current value, which is the same as displaying the
history of the rule at that moment.
STATE rules are assigned either by their initial value or by a
state transition. So the programmer would want to know how the
script section looks and what state transition changed the
value of this state. A programmer mostly designs the process
section by drawing a protocol network (for example a petri
network) and converting this network into state transitions. So
the best way to explain the state transitions in which a

34

certain state is involved is to draw a protocol-like graph of
that state.

Figure 5.6 contains not only the protocol network and the
process section that State S1 is involved in, but also the
protocol-like graph of that rule.

PROCESS
ON Tr1 FROM S1 TO 52
ON Tr2 FROM S2 TO S3
ON Tr4 FROM 53 TO 52
ON Tr3 FROM 52 TO 51

{Tr1 = 10}
{Tr2 = 11}
{Tr4 = 12}
{Tr3 = 13}

1 -?-1 D-->----1 1---3
St Tr t=ir St

3-?-1~ 3-4

Tr3 Tr...1.

figure 5.6: An example of how to display STATE transitions

Notice that each State rule can be used in two different ways;
In the TO list where it can become active (true) or in the FROM
list where it can become inactive (false). Because mostly
programmers are also interested in what triggers and what
states are active, we will highlight all the rules in the state
transitions which are true at that specific run. ,
EVAL rules need the values of other rules to obtain a certain
value. The expressions of a rule can be very complex and
difficult to oversee. The best way to explain the structure of
these expressions to a programmer is to draw a graph like the
explain facility FACE did [Hair,1988]. Only now we display the
values of the used rules by just one character instead of
giving colors to the rules (F;false, T;true, P;possible and
U;undefined). Further, we draw the graph like the Inference
Engine interprets it, so no smart reordering of the arcs and
nodes (rule or expression).
Figure 5.7 is an example of an evaluation rule and its
evaluation tree.

ERROR: 'There was an error in the program'
(NOT Fin;shCompile AND (log;cError OR SyntaxError OR StructError OR TranScripError» OR RunError
{------ 2 --------------- 3 ------------ 4 ------------- 5 ----------- 6 ---------------- 7}

F 2
F 3
T 4
U 5
U 6
F 7

figure 5.7: An example of how to display an evaluation rule

Trigger rules are not a different kind of rules (they can be
any kind of rule), but they need a different approach for their
graphical representation. First of all a programmer wants to
know if the rule is a trigger rule and secondly if it is, he
wants to know in what state transitions this rule will be used.
We will use the same method as the one we used to display the

35

STATE rules. Figure 5.8 shows us the graph for trigger Tr4 (12)
of the example of figure 5.6.

St 12 St
3 ->+>- 2

figure 5.8: An example of how to display a trigger rule

ad C) The INITIALLY section:

The initial value is only important at the beginning of the
process. So we do not need to display this information in the
graph itself but in a rule-information-window ("initially:
true") .

ad D) The THELSES section:

This section tells us what effect a rule can have on other
rules. We distinguish two kinds of THELSES: Thelses-In and
Thelses-Out.
If a rule has a Thelses-Out it means that this rule assigns a
typical value to another rule under the condition that this
rule has a certain value. If a rule has a Thelses-In it means
that another rule has a Thelses-Out to this rule.
If we display the thelses in the evaluation tree of a rule, we
can always determine during the simulation ~ certain rules
are evaluated or ~ rules will also be evaluated during that
run.

ERROR: tThere was an error in the program'

THEN FA: OkelNewRun THEN TR: Debug,Test
{--------- 10 -- 11 ------------ 12 -- 13 ------}

g THEN
THEN
THEN
THEN

1

Thelses-Out rule 1

FA 10
FA 11
TR 12
TR 13 1 THEN FA----,

11

Thelses-In rule 11

figure 5.9: An example of how to display the THELSES of a rule

For example the graph of rule 'Error' (1) tells us that if this
rule evaluates to true then rule 10 and 11 will be set false
and rule 12 and 13 will be set true (see figure 5.9).

Remarks:
-A rule can only have THELSE-DO's out.
-STATE rules cannot have Thelses-In at all and THELSE-GOAL's in
are not possible for FACT and MEMO rules.

-In the last version of Simplexys the Rule Compiler generates
an array which contains all the THELSES-in except the 'THEN
GOAL's. These kind of THELSES will therefore not be displayed
in the evaluation tree (only in the THELSES-out section).

36

So, in general, a tree of a rule will have the format of figure
5.10. In this figure every section is optional and depends on
the kind of rule.

r r
u thelse-expressions thelse-expressions u
1 r in out 1
e u e
v 1

rule I a e
1 n evaluation
u r tree
e

figure 5.10: Schematic diagram of how to represent a rule

As we saw already, STATE rules and rules used as triggers
describe a total different part of the process (dynamic part)
and therefore need a different presentation (see figure 5.11).
Most programmers will not always be interested in how this
section looks and so we must see the drawing of these trees as
extra features which can be activated by stroking a special
function key.

Sl T1 T2 S2 Sl I=lel S2

-- ---
'FROM' r- --- 'TO'
states -- --- states

-- ---
-- ---0= =0

~

ON Tl FROM Sl TO rule ON rule FROM Sl TO S2
ON T2 FROM rule TO S2

figure 5.11: Schematic diagram of how to present trigger and
state rules

Remark: Because the structure of evaluation rules can be very
complex and large, it is possible that the tree does not fit
into the predefined window. If we still want to see the whole
tree we need to scroll the display, and thus a Scrllock
function.

5.3 Special Considerations

As discussed before, most kinds of syntax and semantic errors
will be detected by the Rule Compiler or one of the checkers
(Protocol Checker or Semantic Checker). But, it is possible
that the rulebase becomes so big that it is impossible to check
this rulebase for, for example, the semantic errors (this is
due to current limitations of the checkers, which cannot handle

37

knowledge bases containing 200 or more rules).
The debugger however will still function for rulebases
consisting of up to 999 different rules, because the additional
memory needed for the debugger can be kept small by making the
number of runs in one simulation block smaller. with the help
of the built-in explanation facility, it should be quite easy
then to recognize for example the semantic errors which would
otherwise be detected by the semantic checker. Section 4.2
shows us the graphics of how these errors will appear in the
evaluation trees drawn by the tree mode.
Some of the errors detected by the Protocol Checker can be
recognized easily by the debugger (like 'selfloop' or 'net
parts not connected') but most of the topological and dynamic
errors cannot be detected clearly. They mostly result in some
kind of strange behavior of the expert system during real-time
execution.

38

Chapter 6: Ergonomics, the user-interface

6.1 Ergonomics in general

Because we already discussed ~ we need to display for
debugging, we will now discuss some ergonomic aspects of how to
organize the total display and control of the system.
Ergonomics seeks to maximize safety, efficiency and comfort by
shaping the machine to the operator's capabilities. By linking
the machine to the operator in this way a relationship is
established where the machine presents information (displays)
to the operator via the operator's sensory apparatus to which a
response may be made by the operator to alter the machine's
state (controls). The theory about ergonomics in general and
what kind of displays and controls exist, is already examined
by other researchers [Hoogendoorn,1989; Oborne,1987;
Hendler,198B].
The design of interfaces for expert systems differs in a way
from the design of 'normal' programs because we distinguish
different users with different needs.
The user, who will directly communicate with the
simulator/debugger will probably be a knowledge engineer or
someone who wants to know more about the Simplexys rulebases.
We expect that these users already know the basic ideas about
Simplexys and so we can represent the important process- .
information in a knowledge-base-like way.

6.2 Visual displays

Visual displays are the most commonly used instruments for
communicating information from the machine to the user.
As mentioned before, the first demands of the debugger were
that it should be possible to display all the information in
text mode on a monochrome monitor. This implies that the
debugger is not allowed to use graphics and/or colors to
display the process-information '.
The debugger is a top-down display of the world of action of an
expert system. By this we mean that on the top of the screen we
display all the information which is most important to the
total process: the rule-values of the State rules (tracer); on
the bottom of the screen we display less important information
like evaluation trees or rule-information windows (run
information).
To emphasize certain information in a display without using
graphics, we can highlight the characters (for example rule is
true in evaluation tree) or inverse the 'colors' of the
characters and their background (for example rule-name in
tracer) or just use capitals (for example rule-name in rule
information window). By using one of these three possibilities
we will not use extra space on the screen.
Figure 6.1 shows us a simplified layout of the total screen

text mode, on an IBM PC, does include a number of
"graphics characters"; these can be used of course

•

39

with its visual display windows.

single run information window

tracer window

tree window

rule information window or system comment window

layout of the function control keys

figure 6.1: The layout of the user interface

Notice that the two main visual displays, the tracer and the
tree, are placed in the middle of the screen. These two main
displays often consist of several smaller sub-displays (for
each rule one).

6.2.1 Sizes of the displays

We let the user define the sizes of the two main displays
because the number of rules that a user wants to display on the
screen depends not only on how large his rulebase is but also
on what this user prefers.
For large knowledge bases there must also be the possibility to
define two separate virtual screens for both options (when the
tracer is defined too large the debugger will switch to this
mode automatically). Because rule- and run-information do not
change extremely, the size of these (information) windows will
be fixed during the whole debugging process.

6.2.2 Menus

If we let the user determine certain display options, we will
need a multiple selection menu, where we can choose certain
debugger options.
Because the total debugger consists of a simulator and a
tracer, we also need a main menu where we can choose between
simulation, examining or just changing the display options.
After quitting one of these options, the debugger will always
return to this main menu.

6.3 Controls

Controls represent the second link in the man-machine closed
loop system and are very much the complement of displays
because they allow the operator to return information to the
system environment.
All the control keys should allow the user to communicate with

40

the machine and therefore they should be represented by single
push buttons. For both options these function keys should have
a similar function. This implies that some keys will have a
meaning in one mode but no meaning in the other.

6.3.1 Situation of the controls

Because most of the users of the debugger will have some
experience with the Pascal-packet 'Turbo Pascal' version 4 or
5, the layout of the control keys looks like the ones of this
tool. This means that we will display the active keys in a
horizontal row on the bottom of the screen.
The difference with Turbo Pascal is that for our two tools we
only need to display seven different active function keys.

6.3.2 Cursor movement keys

All the needed cursor movements in the tracer and tree mode can
be done with the four arrow keys '~','~','!' and '.' on the
keyboard. Because the allowed cursor movements in both modes
are quite limited, we will not use special computer input
control devices like touch displays, light pens, bar-code
scanners or mouses. Another reason not to use these devices was
that the working space of the programmer will be quite limited
and there will be no space left for special input devices like
mouses. For example in the case of the blood-pressure .
controller the knowledge engineer will also use a blood
pressure-simulator beside the debugger which will show the
real-time blood-pressure-signals on the screen again.

6.3.3 Feedback after a command

After pressing one of the function keys most of these commands
will respond by changing a part of the screen-layout. Only the
function keys 'STATE' and 'Scrll' are commands which only put
the tree mode in a special mode. The result of these commands
will therefore only be noticed after displaying another rule
evaluation tree. To show to the user that these special options
are activated we will reverse the 'colors' of the appropriate
control-button on the bottom of the screen.

6.4 Special input

For more experienced users we support special keys for making
shortcuts in the debugging process. We can reduce the number of
interactions by defining special keys for moving to the first
or last run of the simulation block.
Another helpful option can be not to display the extended rule
information window.
Displaying all the values of all the rules on the screen is not
desirable and not possible (the knowledge base is usually too
large). Therefore the system asks the user to type in the rule
number of the rule he wants to examine. Every user can look up
in the appropriate file rinfo.qqq what rule-number belongs to
what rUle-name.
rf the input is not the right format or is not within the

41

predefined limits, the system will generate a (soft-toned) beep
and ask the question again. Informative feedback is given by
showing the extended rule-information about the asked rule.

6.5 Examples of debugging

The best way to show how the total layout of the debugger
looks, is by giving some screen-dump-examples of the debugger
in operation.

run II 23

~
THEN

THEN
THEN

133

Tree
GO-99

GO-100

GO-43

r THEN
I-THEN

T133 HIST fAND -100
F 15

U141 -HIST

rTHEN TR -83
I-THEN 00 -20050

133 HlST fAND -99
15

141-HlST

TR-82

DO -20051
rTHEN DO -20038

43

figure 6.2: Debugger in the explain-mode

Time 00:01 :55

For this example the debugger was installed for two virtual
screens, one for the tracer (see figure 6.3) and one for the
explain facility called tree (figure 6.2).

run # 23
ST I-
TR I-
PO
FA
TR

PO
FA
TR

PO
FA

42

Tracer Time: 00:01:55
,,13';RE&ll)jl';;· 140
1QO:SIIORTUi'S. 147

'::::';~: ~iC:x:~ .. ::.:. ::::=: 133
, ··.iii .,.' ...

i,.99.;$IIORTl)()W

ro~~:~TOSC : "Goal of Reglon 4, 5 8:~ 6"
I~EST-rule Initially : Undefine

F1-Chang" . i F2 ., ., .. '.,.,'. F3-Baelt . F4c(o~t . F5-tr"" ,'i'\F6~j!lti>.'n';ElOit

figure 6.3: Debugger in the tracer-mode

6.6 Conclusions

The final system turned out to be easy to use. The time needed
to learn how to use the commands is very short, because almost
all the possible commands are displayed on the bottom of the
screen (no need to remember) and the appropriate actions
belonging to a function key are carried out immediately after
stroking the key (speed of performance).
All the commands are reversible except the read-next-simulation
block command because it is not possible to go back in time
(because of rUle-histories).
Depending on the kind of user some aspects of the system will
be used more than others. The Scrllock function key probably
will not be used very much. A programmer can avoid using this
special option key by installing the displays of the debugging
tools in a convenient way.

43

Chapter 7: User's manual for the debugger

If an expert system is generated by the adapted SIMPLEXYS and
executed in a real-time environment, then we can simulate the
whole process again and examine it more carefully with the
debugging tools. The simulator needs only the files
rinfo.qqq,rhist.qqq and the dumpfile. Using the debugging tools
in the simulation of a real-time process is following a
predefined debugging process:

1. Initialization
2. choosing item in main menu:

2.1. changing options
2.2. debugging (tracing/explaining)
2.3. simulating next block (until last block)
2.4. exit

Each step needs a different approach and will therefore be
discussed separately.

7.1 The initialization

If we execute the simulator it will first print the header of
the Simplexys application:

A SIMPLEXYS EXPERT SYSTEM APPLICATION

Copyright (C) 1987-89, Hans Blom
Eindhoven University of Technology, Netherlands

All rights reserved

Simulating block of 100 runs

At this point the simulator starts simulating the first block.
After simulating 100 runs (default size for a simulation block)
it will show the message how many runs it simulated and what
the start- and finish-time of that block are. We also get the
main menu on the screen now.

7.2 The main menu

The main menu consists of four possibilities (see figure 7.1).

Menu :

1 Change Options
2 Run Debugger
3 Next Block
4 Exit

figure 7.1: The layout of the main menu

44

Each option can be selected by just pressing the key with the
appropriate number ('1', '2','3' or '4') or by pressing the
appropriate function key ('F1', 'F2','F3' or 'F4') or just by
pressing the key with the first character of the explanation
string of the action ('0', 'a', 'R'f 'r'f 'N', 'n', 'E' or 'e').

7.3 Changing options

The first option of the main menu gives the possibility to
change the start-time of the next simulation block and the
possibility to change some display options (see figure 7.2).

Common Options :

1 Simulation-block from
2 : Screen-presentation

Tracer Options :

00:00:00 to 00:08:25
: tracer+tree

3 Number of states shown by the tracer 1
4 : Number of rules shown by the tracer 2

Evaluation-Tree Options :

5 : Automatic display rule-information : TRUE

Comment : 100 runs in this simulation-block

r
comment .. Select

.;, .::",.-,:,-.-.-.":','.-: " ...

figure 7.2

option

The change-option menu

Each option can be chosen by just pressing the appropriate key
('1' to '5') or function key ('F1' to 'F5'). For option 3,4 and
5 the cursor will move to the default value and the user may
type in the value. The computer will check if that value is
within the predefined bounds.
For option 1 the user has to enter a string containing 8
characters. If he enters a shorter string, the start-time will
not be changed.
Option 2 is special because there are only three allowed
values. The appropriate key will automatically 'switch' the
value. Choosing for the option 'tree' will allow the user to
use the debugger together with a small start-up program
("explain.pas") as a stand alone explanation facility like FACE
was.
By pressing function key F7, the character 'e' or 'E' or the
key combination Ctrl-Z will quit this mode and return to the
main menu. If one of the options 2 to 5 is changed, then these

45

options will keep this value during the whole debugging process
(option 1 is block-dependent).

7.4 The debugger

Option two of the main menu allows to examine the last
simulated block of the process more carefully with the two
debugging tools: tracer and tree. Depending on how the user
defined the tracer, the layout of the two tools can look very
different but the default one is shown in figure 7.3 (in this
case the tracer option is installed for one State rule
representation (1) and two 'normal' rule-representation (11 and
111)) •

Run ,

ST la

TR

PO lla

FA

TR

PO llla

FA

D

figure 7.3: The screen-layout of the debugging tools

The total screen is divided into three types of independent
windows:
A-> Tracer or process information windows 1 to III
B-> Single run information windows A to D
c-> help information windows HI to H9

46

7.4.1 Tracer or process information windows

The windows la,lla and lIla contain the graphical presentations
of the run-values of the three chosen rules and the windows
lb,llb and lllb are the information windows of these same
rules. Notice that the normal rule information windows (llb and
lllb) are larger than the State information window (lb) and so
we can also display the history of the rule which it had at the
first run.

7.4.2 Single run information windows

There are four run information windows:
-) Window A

A tells us which run we are examining with the tree mode.
The information in this window is only changing when we are
moving the cursor to the left or to the right in the tracer
mode.

-) Window B
B tells us when the run actually took place. For real-time
processes this window shows us the real-time of the run and
for simulated processes this window shows us how many
seconds are passed since the process began.

-) Window C
C tells us what State(s) are active (true) in this run_

-) Window 0 or the tree option window
This window shows us the structure of one or more rules and
highlights them if they are true at that run. Also the
values of the leaves of the structured tree are displayed
(T=true, F=false, p=possible, U=undefined).

7.4.3 Help information windows

There are nine different help information windows:
-) Window Hl

Hl shows us what mode is active (tracer or tree) at that
moment. We need to display what mode we are in because for
some rules like FACT rules only the information window H2
is displayed and we do not know then what mode is active at
that moment.

-) Window H2
H2 is a more complete information window than Ib,llb or
lilb. It contains the rule-number, the rule-name, the rule
string, the kind of rule (FACT, ASK, TEST, MEMO, STATE) and
the initial value. When the rule is also used as a trigger
then this extra information is added to the information
window ("used as trigger").

-) The windows H3 tIm H9
These windows contain the action-strings belonging to the
appropriate function keys. Some of these function keys
contain the same string for both options:

Fl-~A~ng~: With this function key we can display in the
tracer option a different rule from the one in the
window where the cursor is. In the tree option this
function key will clear window 0 and it will display
the structured tree of the entered new rule-number.

47

F6-Info : With this function key we can display the
extended information of every rule where the cursor is
pointing, in window H2. So in the tracer mode we will
get the information of the rule displayed in the
windows la,lla or lIla, which is a more complete rule
information window than window Ib,llb or Illb.
In the tree mode it is possible to move the cursor to
the rule of which we want more information.
If the user presses this key twice, he will be able to
see extended information of all the rules in the
rulebase (starts with the rule first entered in the
tree mode). By pressing any key but the F6-key the user
will quit this special feature and go back to the
curE!pr.pqsition where he started this special feature.
F7-'E:){it",0· also Ctrl-Z: With this function key we can
leave the tracer and/or tree mode and return to the
main menu for reading a new simulation block or to quit
the tool. If there is no simulation block left (number
of runs in last block is smaller than 100) we will also
automatically quit the program.

Function keys which differ for both options:
Special.,TrCl.c;:~r optionK~Ys;.

F3-Back{ and F4~Cbnt ... : It is not possible to show 100
runs at once at the screen and so we need special keys
to walk fast through these 100 runs. With the key F4 it
is possible to move one half window forward (default
value is 29 runs) and with F3 we can move the same
number of runs back again.
F5-Tree : With this function key we can switch to the
tree mode: the cursor will move to window D.

Special .. Tree.pption keys
F2,'I'tee.. : This function key allows us to display the
trees of the primitives of an already displayed
structured tree.
F3-state and F4-Scrll : These function keys can
activate special features for the tree mode. When the
State feature is active, all the State transitions
which use this rule are displayed in a special way (see
section 5.2.2). This feature can be useful when the
user wants to have a look at the process description or
if he wants to know what states will be active in the
next run. When the Scrll feature is active all the
structured trees will be displayed line by line. This
feature can be useful if the structure of one rule is
so large that it does not fit in any window and we
still want to look at all its leaves. When a feature is
active, the appropriate string will be displayed in
reveFs"" ... (window H5 and/or H6).
F5-',Ttac~r.: This function key allows the user to switch
back to the tracer mode (window lla).

7.4.4 Cursor movement keys

With the exception of the special Tracer-keys F3 and F4, the
cursor movement keys are not implemented in the option key
menu.

48

For the tracer mode (or when the cursor is in the window la,lla
or llla):

left arrow ('-'): with this key we can move back in time:
current run:;current run-l. When the cursor reaches the
left end of the window, all the graphs will move to the
right. This is possible until we reached the first run of
the simulation block (run #1).
right arrow ('-'): with this key we can move forward in
time: current run:;current run+1. When the cursor reaches
the right end-of the window all the graphs will move one
run to the left. This is possible until we reache the last
run of the simulation block (for most of the simulation
blocks: run #100).
Home ('Hom.'): This key will move the cursor to the
beginning of the window la,lla or llla.
End (' End'): This key will move the cursor to the end of the
window la,lla or llla.

For the tree mode (or when the cursor is in window D):
Right Arrow ('-'): With this key we can move to the
position of the rule-numbers of the THELSES-expressions-out
of the current 'active' tree.
Left Arrow ('oJ): with this key we can move back to the
left side of the structured tree.
With these two keys it is possible to get to the position
in the screen of all the rule-numbers used in the tree.
With function key F2 it is possible to draw a new sub-tree.
Home ('Hom.'): This key will redraw the socalled parent
structured tree. So together with function key F2 and the
four arrow keys we can show all the trees of the leaves of
the current parent tree.

7.5 Simulating next block

Option three of the main menu will clear the screen and try to
simulate another block of 100 runs. The simulation will start
at the time defined in the 'Change Options' menu (default is
the finish-time of the last simulated block).

7.6 Exit the debugger

The debugger will not simulate the process to the end, but will
quit the process by just making all the states inactive.

7.7 Explain

Besides examining the expert system by simulating the process,
it is also possible just to examine the structures of the
rulebase with the explanation facility 'tree'. To do so, there
is developed a small program called 'explain' which includes
the tree option of the debugger in its program.

49

Chapter 8: Conclusions

The simulator-debugger combination can be used by all kinds of
expert system users, but the knowledge engineers who know a
little bit about Simplexys will have more profit from these
facilities; users who know more about the problem-field are
more able to optimize their knowledge-bases. The debugging
tools can help these system-designers in doing this more
efficiently and faster.

After trying out the new Inference Engine with the two
debugging tools on some small rulebases, there was a great need
of examining the large rulebase of the blood-pressure
controller. Although this rulebase contained many more states
and although it was used for complex real-time processes,
containing many links to Pascal, the new Inference Engine and
Simulator had no problems on debugging/examining it. Lammers,
however, used the debugger/simulator mainly for examining the
process more carefully. He tried to find out ~ and ~
certain rules were evaluated during the real-time process. This
examination of the process resulted in several modifications of
the rulebase.

Experts and knowledge engineers will not trust an existing
expert system by just looking at the final decisions it takes.
They want to know how the system came to these decisions. The
debugger can be a tool to convince these people of the
efficiency and correctness of the expert system.

We have to mention here that it saves a lot of time in
debugging if the programmer makes notes during the real-time
process of the times when certain 'strange' decisions were
taken (the special time-change option in the "Change option"
menu turned out to be very useful).

50

References

Aleksander, I. et al.
ROBOT TECHNOLOGY. Vol. 6: Decision and intelligence.
London: Kogan Page, 1986.

Blom, J.A.
THE SIMPLEXYS EXPERT SYSTEMS TOOLBOX: Simplexys manual.
Internal document.
Division of Medical Electrical Engineering, Faculty of Electrical
Engineering, Eindhoven University of Technology, June 1988.

Boon, P.H.G.
EFFICIENTIE EN CORRECTHEID VAN SIMPLEXYS EXPERT SYSTEMS.
M.Sc. Thesis. Division of Medical Electrical Engineering, Faculty
of Electrical Engineering, Eindhoven University of Technology, 1987.

Brown, A.R. and W.A. Sa~pson

PROGRAM DEBUGGING: The prevention and cure of program errors.
London: Macdonald/New York: American Elsevier, 1973.
Computer monographs, Vol. 18.

Cassel, D.
THE STRUCTURED ALTERNATIVE: Program design, style, and debugging.
Reston, Virginia: Reston Publishing Co., 1983.

Hair, P.J.A. de
REALISATIE VAN EEN UITLEGFACILITEIT VOOR SIMPLEXYS EXPERT-SYSTEMEN.
M.Sc. Thesis. Division of Medical Electrical Engineering, Faculty of
Electrical Engineering, Eindhoven University of Technology, 1988.

Hasling, D.W. et ale
STRATEGIC EXPLANATIONS FOR A DIAGNOSTIC CONSULTATION SYSTEM.
Into J. Han-Mach. Stud., Vol. 20, No.1 (1984), p. 3-19. Reprinted
in: Developments in Expert Systems. Ed. by M.J. Coombs.
London: Academic Press, 1984. Conputers and people series. P. 117-133.

Harnon, P. and D. King
EXPERT SYSTEMS: Artificial intelligence in business.
Chichester: Wiley, 1985.

Hausen, H.-L. (ed.)
SOFTWARE VALIDATION; Inspection, testing, verification, alternatives.
Proc. Symp., Darmstadt, 25-30 Sept. 1983.
Amsterdam: North-Holland, 1984.

Hendler, J.A. (ed.)
EXPERT SYSTEr.1S: The user interface.
Norwood, N.J.: Ablex, 1988. Human-computer interaction: a series
of monographs, edited volumes and texts.

Hoogendoorn, P.
THE DESIGN OF A RULE BASED BLOOD PRESSURE CONTRO~LER.
101. Sc. Thesis. Division of 1-1edical Electrical Engineering,
Faculty of E:ectrical Engineering, Eindhoven University of
Technology, 1989.

51

Khoroshevsky, V.F.
ATN-BASED EXPLANATION SUBSYSTEMS: Design and implementation.
Comput. & Artif. Inte11. (Czechoslovakia), Vol. 4(1985), p. 289-311.

Neches, R. et al.
ENHANCED MAINTENANCE AND EXPLANATION OF EXPERT SYSTEMS THROUGH
EXPLICIT MODELS OF THE DEVELOPMENT.
In: Froc. IEEE Workshop on Principles of Knowledge-Based Systems,
Denver, Col., 3-4 Dec. 1984. New York: IEEE, 1984. P. 173-183.
Reprinted in: Principles of Expert Systems. Ed. by A. Gupta and
B.E. Prasad. New York: IEEE Press, 1988. IEEE Press selected
reprint series. P. 283-293.

Oborne, D.J. (ed.)
ERGONOMICS AT WORK. 2nd ed.
New York: Wiley, 1987.

Osterweil, L.
INTEGRATING THE TESTING, ANALYSIS AND DEBUGGING OF PROGRAMS.
In: Software Validation: Inspection, testing, verification, alternatives.
Proc. Symp., Darmstadt, 25-30 Sept. 1983. Ed. by H.-L. Hausen.
Amsterdam: North-Holland, 1984. P. 73-102.

Pau, L.F.
PROTOTYPING, VALIDATION AND MAINTENANCE OF KNOWLEDGE BASED SYSTEMS
SOFTWARE.
In: Proc. 3rd Annual Expert Systems in Government Conf., Washington,
19-23 Oct. 1987. Ed. by H.J. Antonisse.
New York: IEEE, 1987. P. 248-253.

Reisig, w.
PETRI NETS: An introduction.
Berlin: Springer, 1985. EATCS: Monographs on theoretical computer
science, Vol. 4.

Rolston, D.W.
PRINCIPLES OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS DEVELOPMENT.
New York: McGraw-Hill, 1988.

Seviora, R.E.
KNOWLEDGE-BASED PROGRAM DEBUGGING SYSTEMS.
IEEE Software, Vol. 4, No. 3(May 1987), p. 20-32.

Shortliffe, E.H.
COMPUTER-BASED MEDICAL CONSULTATIONS: MYCIN.
New York: American Elsevier, 1976.
Elsevier computer science library: Artificial intelligence series, Vol. 2.

Smith, T.
SECRETS OF SOFTVIARE DEBUGGING.
Blue Ridge Summit, Penn.: TAB Books, 1984.

Tassel, D. van
PROGRAM STYLE, DESIGN, EFFICIENCY, DEBUGGING, AND TESTING.
Englewood Cliffs, N.J.: Prentice-Hall, 1974.

52

Enclosure 1: possible modes of the Inference Engine

The Inference Engine can be used in three different modes (see
section 5.1). To install the Inference Engine in one of these
modes, you have to define one or two conditional compilation
symbols 1:

1- Inference Engine without generating a dumpfile
no extra conditional symbols

2- Inference Engine with generating the dumpfile 'simplex.sav'
define conditional symbol EXAMEN

3- Inference Engine as simulator/debugger
define conditional symbols EXAMEN and SIMUL

A
Ruses.qqq
Rinex.qqq
Rdodo.qqq
Rhist.qqq
Rtest.qqq
Rinfo.qqq

Dumpbool.pas I
Inference Engine

figure 1: The adjusted Inference Engine

A
Ruses.qqq

Rinfo.qqq

Dumpboo 1 . pas I
Inference Engine

figure 2: The Inference Engine as Simulator

dumpfile

Simplex.sav

f
Real-time expert

system

dumpfile

Simplex.sav

U
Debugger/Simulator

So the Inference Engine in mode two will generate an expert
system (see figure 1), which can be simulated by the Inference
Engine in mode three (see figure 2).
All the files in block A in figure 1 and 2 are generated by the
Simplexys Rule Compiler. The files in figure 2, which are

The procedure to do this more conveniently will be
incorporated into the Options Builder tool.

53

represented bold, are different for both modes.

54

Enclosure 2: Adjustments for the Inference Engine

mode 1 mode 2 mode 3
p rocedure Old Inf. Eng. New Inf. Eng. Simulation

in it time _timeO:=sys_ time _timeO:=sys_ time - timeO:=
or 0 or 0 read time

dump_time(_timeO)

u pdate_ time time:= - time: = - time:= - dump_time <-time) read time -
e val rule ask : value:= ask : value:= ask:value:= - --ASKval (...) ASKval (...) read_ rule

dump_rule (value)

test : value:= test : value:= test:value:= - - read rule JTEST(...) JTEST(...) -dump_rule (value)

applyHIST dummy: = dummy:=_FHIS(...) value:=
JHIS(...) if dummy then read rule

value:=TR else if value=TR
value:=FA dummy:=true

dump_rule(value) else
dummy:=false

- his _arr[] := u

getFACTS _R[rule]:= _R[rule] := R[rule] :=
ASKval (...) ASKval(...) read_ rule

dump_rule (value)

m ain infer open_dumpfile open_dumpfile
program infer infer

close_dumpfile close_dumpfile

55

Enclosure 3: dumpbool.pas

Depending on whether the conditional symbol SIMUL is active or
not, the debugger-file dumpbool.pas will look quite
differently.
Dumpbool.pas will be included by the Inference Engine and
contains all the procedures and functions for writing/reading
values to/from the dumpfile 'simplex.sav'.
For the Inference Engine in mode three, this file will also
include all the procedures and functions needed for the
debugger (see table 1).

Table I : The procedures of file dumpbool.pas

not SIMUL

dump_buf
dump_time
dump_ rule

open_dumpfile
close_dumpfile

SIMUL

debug
read buf
read-time
read-rule
find:::history
{ counts the number of
history-expressions in
rhist.qqq.

}
open_dumpfile
close_dumpfile
expand

make arr
{ puts the result of
the history
expressions and all
the rule-values into
two big trace-arrays

}
{ stops the process at a
certain point for examining
the last block

}

56

Enclosure 4: The debugging procedure

The file debug.pas, which will be included by dumpbool.pas, is
actually only one procedure: procedure 'debug'. This procedure
contains all that is needed to display and use the tracer and
the explanation facility called tree (file debugmod.pas).
In order to trace, we have to make some large arrays during the
simulation:
* for each run we need to remember the value of each rule

(2 bits * [number of runs in one block] * [number of rules])
* for each run we need to remember the value of history

expressions
(2 bits * [number of runs in one block] * [number of
expressions])

* for each run we need to remember the run-time of that run
(long integer * [number of runs in one block])

* for the first run of the block, we need to remember the
history of all the rules

The procedure debug consists of several internal procedures:

1. Debug
1.1 show time

display the time (longinteger) as __ __
1.2 Invers color

Changing color of text and background
1.3 Screenwriter

To display all the needed menus and to determine sizes
of different visual displays
1.3.1 Get kind
1.3.2 Get=init

1.4 Check
Check if input from user is within the predefined
bounds

1.5 graph1
one-level method for displaying rule-values in tracer

1.6 make_dyn_list
three-level method for displaying rule-values in
tracer
1.6.1 drawdyn

1.7 write inv
writing the rule-number + shortened rule-name

1.B write info
system asks for new rule-number to display

1.9 what hist
how to display the history of a rule

1.10 Change_color
Inversing the colors of the control buttons on the
screen

* 1.11 change_option
possibility to change the five display options for
tracer and tree

* 1.11.1 What time
* 1.11.2 switch
* 1.12 Make tree

displaying tree structures of rules (=explain

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

1.13

1.14

1.15

1.16

facility}
1.12.1 fin draw

57

1.12.1.1 Showiftrue
1. 12.1. 2 Convert
1.12.1.3 count
1.12.1.4 HandleWindow
1.12.1.5 trigger_list
1.12.1.6 state list
1.12.1.7 thelses

1.12.1.7.1 Conv thelses
1.12.1.8 DrawTree1

1.12.1.8.1 Conv code
1.12.1.8.2 Make_con

1.12.1.9 DrawTree2
1. 12.2 Find rule
1.12.3 HandleMove
conv_code
transferring bool-values into numbers
write time
display new run-time and new run-number
get_graph
displaying the rule-values of one rule in tracer mode
move cursor
handling all possible key-strokes of user in tracer
mode
1.16.1 make init
1.16.2 update_graph
1.16.3 flash back
1.16.4 continu
1.16.5 follow

1.17 rd data
buIld up the whole tracer: display rules until no
sub-display is left free in the tracer mode
1.17.1 get_states

The procedures/functions marked with a '*', are situated in the
file debugmod.pas.
The special program 'explain' contains the same
procedures/functions only some of them are 'empty' (the ones
referring to the tracer).

Eindhoven University of Technology Research Reports
Faculty of Electrical Engineering

ISSN 0167-9708
Coden: TEUEDE

(205)

(206)

(207)

(208)

Butterweck, H.J. dnd J.H.F. Ritzerfeld, M.J. Werter
FINITE WORDLENGTH EFFECTS IN DIGITAL FILTERS:-x-review.
EUT Report 88-E-205. 1988. ISBN 90-6144-205-2

Bollen, M.H.J. and G.A.P. Jacobs
rxTEN5IVE TESTING OF AN AL~HM FOR TRAVELLING-WAVE-BASEO OIRECTIONAL
OETECTION ANO PHASE-SELECTION BY USING TWONFIL ANO EMTP.
EUT Report 88-E-206. 1988. ISBN 90-6144-206-0

Schuurman, W. and M.P.H. Weenink
STABILITY OF A TAYLOR-RELAXEO CYLINORICAL PLASMA SEPARATEO FROM THE WALL
BY A VACUUM LAYER.
EUT Report 88-E-207. 1988. ISBN 90-6144-207-9

Lucassen, F.H.R. and H.H. van de Ven
A NOTATION CONVENTION IN RIGID ROBOT MODELLING.
EUT Report 88-E-208. 1988. ISBN 90-6144-208-7

(209) Jozwiak, L.
MINIMAL REALIZATION OF SEQUENTIAL MACHINES: The method of maximal
adjacencies.
EUT Report 88-E-209. 1988. ISBN 90-6144-209-5

(210) Lucassen, F.H.R. and H.H. van de Ven
OPTIMAL BOOY FIXEO COOROINATE SYSTEMS IN NEWTON/EULER MOOELLING.
EUT Report 88-E-210. 1988. ISBN 90-6144-210-9

(211) Boom, A.J .. J. van den

(212)

(213)

~-CONTROL: An exploratory study.
EUT Report 88-E-211. 1988. ISBN 90-6144-211-7

Zhu Yu-Cai
ONITHE ROBUST STABILITY OF MIMO LINEAR FEEDBACK SYSTEMS.
EUT Report 88-E-212. 1988. ISBN 90-6144-212-5

lhu Yu-Cai, M.H. Driessen, A.A.H. Damen and P. Eykhoff
AlNEW SCHEME FOR IDENTIFICATION AND CONTROL.
EUT Report 88-E-213. 1988. ISBN 90-6144-213-3

(214) Bollen, M.H.J. and G.A.P. Jacobs
TMPCEHENTATION OF AN ALGORTTRPifOR TRAVELLING-WAVE-BASED DIRECTIONAL
DETECTION.
EUT Report 89-E-214. 1989. ISBN 90-6144-214-1

(215) Hoeijmakers, M.J. en J.M. Vleeshouwers
EEN MODEL VAN DE SYNCHRONE MACHINE MET GELIJKRICHTER, GESCHIKT VOOR
REGELDOELEINDEN.
EUT Report 89-E-215. 1989. ISBN 90-6144-215-X

(216) Pineda de Gyvez, J.
LASER: A LAyout Sensitivity ExploreR. Report and user's manual.
EUT Report 89-E-216. 1989. ISBN 90-6144-216-8

(217) Duarte, J.L.

(218)

(219)

MINAS: An algorithm for systematic state assignment of sequential
machines - computational aspects and results.
EUT Report 89-E-217. 1989. ISBN 90-6144-217-6

~aFl' M.M.J.L. van de
o WARE SET-UP FOR DATA PROCESSING OF DEPOLARIZATION DUE TO RAIN

AND ICE CRYSTALS IN THE OLYMPUS PROJECT.
EUT Report 89-E-218. 1989. ISBN 90-6144-218-4

Koster, G.J.P. and L. Stok
~ETWORK TO ARTWOR~utomatic schematic diagram generation.
EUT Report 89-E-219. 1989. IS8N 90-6144-219-2

(220) Willems, F.M.J.
CONVERSES FOR WRITE-UNIDIRECTIONAL MEMORIES.
EUT Report 89-E-220. 1989. ISBN 90-6144-220-6

(221) Kalasek, V.K.I. and W.M.C. van den Heuvel
L-SWITCH: A PC-program for computing transient voltages and currents during
switching off three-phase inductances.
EUT Report 89-E-221. 1989. ISBN 90-6144-221-4

Eindhoven University of Technology Research Reports
Faculty of Electrical Engineering

ISSN 0167-9708
Coden: TEUEDE

(222) Jozwiak, L.

(223)

(224)

(225)

(226)

THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2

Jozwi ak, L.
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0

Book of abstracts of the first Benelux-Japan Workshop on Information and
Communication Theory, Eindhoven, The Netherlands, 3-5 September 1989.
Ed. by Han Vinck.
EUT Report ~224. 1989. ISBN 90-6144-224-9

Hoei~makers, M.J.
A PO SIBILITY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL
OF A SYNCHRONOUS MACHINE WITH RECTIFIER.
EUT Report 89-E-225. 1989. ISBN 90-6144-225-7

~ahk~j' R.P. and E.M. van Veldhuizen, W.R. Rut~ersJ L.H.Th. Riet;ens
XP MENTS ON INITIAL BEHAViOUR OF CORONA eEN RATED WITH ELECTR CAL

PULSES SUPERIMPOSED ON DC BIAS.
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5

(227) Bastings, R.H.A.
tOWARD THE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM IN ANESTHESIA.
EUT Report 89-E-227. 1989. ISBN 90-6144-227-3

(228) Hekker, J.J.

(229)

~ER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE
SIMULATOR.
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1

Oostrom, J.H.M. van
INTELLIGENT ALARMS IN ANESTHESIA: An implementation.
EUT Report 89-E-229. 1989. ISBN 90-6144-229-X

(230) Winter, M.R.M.

(231)

(232)

(233)

(234)

DESIGN DF A UNIVERSAL PROTDCOL SUBSYSTEM ARCHITECTURE: Specification of
functions and services.
EUT Report 89-E-230. 1989. ISBN 90-6144-23D-3

M.F.C. and H.C. Heyker, J.J.M. Kwaspen, Th.G. van de Roer
DC TD 18 GHz CHARACTERISATION OF DOUBLE BARRIER RESONANT

TUNNELING DEVICES.
EUT Report 89-E-231. 1989. ISBN 90-6144-231-1

Sarma, A.D. and M.H.A.J. Herben
l5A1'AACQUISITION AND SIGi;~CESSING/ANALYSIS OF SCINTILLATION EVEIHS
FOR THE OLYMPUS PROPAGATION EXPERIMENT.
EUT Report 89-E-232. 1989. ISBN 90-6144-232-X

Nederstigt, J.A.
DESIGN AND IMPLEMENTATION OF A SECOND PROTOTYPE OF THE INTELLIGENT ALARM
SYSTEM IN ANESTHESIA.
EUT Report 90-E-233. 1990. ISBN 90-6144-233-8

Philipyens J E.H.J.
DESIGN NG DEBUGGING TOOLS FOR SIMPLEXVS EXPERT SYSTEMS.
EUT Report 90-E-234. 1990. ISBN 90-6144-234-6

(235) Heffel., J.J.M.
A PATIENT SIMULATOR FOR Af~ESTHESIA TRAININC: A mechanical lung model and a
physiological software model.
EUT Report 90-E-235. 1990. ISBN 90-6144-135-4

	Summary
	Table of contents
	1. Introduction
	2. Expert systems and debugging
	2.1 Exper systems: general approach
	2.2 Debugging in general
	2.3 Debugging expert systems
	3. The simplexys programming language
	3.1 The declaration section DECLS
	3.2 The initialization sections INITG/INITR
	3.3 The exitcode sections EXITG/EXITR
	3.4 The declaration section of the rules
	3.5 The process description section
	4. The simplexys toolbox
	4.1 The rule compiler
	4.2 The semantic checker
	4.3 The protocol checker
	4.4 The option generator
	4.5 The inference engine
	4.6 The explamation facility FACE
	4.7 What the debugger should do
	5. Design of the simplexys debugger
	5.1 Simulating the inferencing process
	5.2 Simplexys debugging tools
	5.3 Special considerations
	6. Ergonomics, the user-interface
	6.1 Ergonomics in general
	6.2 Visual displays
	6.3 Controls
	6.4 Special input
	6.5 Examples of debugging
	6.6 Conclusions
	7. User's manual for the debugger
	7.1 The initialization
	7.2 The main menu
	7.3 Changing options
	7.4 The debugger
	7.5 Simulation next block
	7.6 Exit the debugger
	7.7 Explain
	8. Conclusions
	References
	Enclosure 1: Possible modes of the inference engine
	Enclosure 2: Adjustments for the inference engine
	Enclosure 3: Dumpbool.pas
	Enclosure 4: The debugging procedure

