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Summary 

As a result of the increasing success in large scale 
integration techniques, rulebased expert systems have entered 
the application area of PC-systems. In connection with the 
research concerning Simplexys, a toolbox enabling the 
realization of real-time expert systems, some debugging tools 
have been developed. These debugging tools consist of a tracer, 
which makes it possible to 'trace' through the whole 
inferencing process, and an explain facility for examining the 
evaluation structure of the process. with the help of these 
tools, the users, usually knowledge engineers, can control and 
debug their rulebases or can prove the correctness and 
efficiency to experts in the domain problem-field. 
The final implementation is working and has already been used 
to examine existing Simplexys expert systems. 
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Chapter 1: Introduction 

Because of fast developments in computer techniques, Artificial 
Intelligence (AI) carne within the range of PC-systems. A 
special field within the AI-science is the design of real-time 
rulebased expert systems. Most existing expert systems can't 
manage real-time processes because it takes too much time for 
them to look up in their complex LISP-program-structures the 
knowledge they need. 
At the division of Medical Electrical Engineering of the 
Eindhoven University of Technology a real-time Expert System 
Toolbox called Simplexys is under development for several years 
now [Blom,1988]. This group is performing a study in 
cooperation with the Department of Anesthesiology of the 
University of Florida in Gainesville. 
Simplexys was mainly designed for monitoring tasks in medical 
applications, where efficiency and performance are of primary 
concern. Simplexys applications in development are an expert 
system for intelligent alarming for a anesthesia machine and a 
blood-pressure controller. The controller, which was developed 
by P. Hoogendoorn [ 1989 ] is now being tested at the 
Catharina Hospital in Einahoven. 
When testing these first real-time Simplexys expert systems, 
the need arose to examine the inferencing processes more 
closely. The knowledge engineer (or rulebase programmer) wanted 
to see how these expert systems really function in a real-time 
environment and whether he needs to add to or to correct the 
original rulebase. In other words, there was a need for some 
debugging tools to simulate the process and look inside the 
'expert system black box'. 
In this report we shall discuss what possible errors can occur 
in real-time expert systems and how and with what kind of 
debugging tools we can detect and locate them. We also shall 
describe these tools. 
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Chapter 2: Expert Systems and debugging 

2.1 Expert systems: general approach 

There are many definitions for the term 'Expert Systems' 
[Harmon,1987; Rolston,1988; Aleksander,1986], but in my opinion 
the most general and complete one is: 

'An expert system is a computer application that solves 
complicated problems that would otherwise require extensive 
human expertise. To do so, it simulates the human reasoning 
process by applying specific knowledge and inferences.' 
[Osterweil,1983]. 

To build up an expert system the expert system designer or 
knowled~e en~ineer first need6 to acquire the knowledge from 
one or more domain experts and he has to 'transport' that 
knowledge into a socalled knowled~e base. 
This process of acquiring the knowledge and building up the 
knowledge base (according to the system's knowledge 
representation) is called knowled~e en~ineerin~. If the 
specific knowledge is represented as production rules in the 
knowledge base then we call the resulting Expert System a 
rulebased Expert System. The big advantage of expert systems 
above normal conventional programs is the flexibility of thqse 
expert systems. By flexibility we mean that when the 
surrounding of the expert system is changing we only have to 
add new or subtract old rules in the rulebase. 
There exist two types of expert systems: Analysis Systems and 
Plannin~ Systems. The goal of planning systems is a search for 
the best path between the current and a specific future state 
of the process. The goal of analysis systems like the Simplexys 
expert systems, is an analysis of one specific static situation 
only, although some earlier results may need to be remembered 
to achieve this analysis. 
In this field of Artificial Intelligence some successful 
results have already been achieved, for example the medical 
expert system NEOMYCIN [Has1inE,1984], which is a new version of 
the already existing MYCIN [Shortliffe,l976]. This expert 
system can be used by doctors who try to determine what kind of 
bacterial disease a patient suffers from. By asking questions 
to the user, this expert system tries to formulate a diagnosis 
about the disease and will propose a therapy as well. Some 
general ideas about expert systems and 'debugging' were taken 
from this expert system. 

The big problem of expert systems is that we can distinguish 
several kinds of users who will use the Expert Systems in 
different ways: 
-> The Testers: They attempt to verify the validity of the 

system's behavior. 
-> The Tutors: They provide additional knowledge to the system 

or want to modify knowledge already present in the system. 
-> The Pupils: They seek to rapidly develop personal expertise 

relative to the subject domain by extracting organized, 
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distilled knowledge from the system. 
-) The customers: They apply the system's expertise to a 

specific real task. 

Depending on the kind of user the Expert System Toolbox will be 
used differently and there will be a different need of certain 
aids/tools. On the contrary, for traditional software systems 
we only recognize one kind of user i.e. the customer. 
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Figure 2.1: Simplexys Expert System Toolbox 

Figure 2.1 shows how Expert Systems are made with the Expert 
System Toolbox Simplexys. In contrast with MYCIN, Simplexys 
assumes a fixed knowledge base which means that no rules can be 
added dynamically. So rules, links and data can be stored in 
known memory locations which results in no searching during the 
inferencing process at all. Another contrast with most expert 
system toolboxes is that Simplexys can be efficient in a static 
and in a dynamic environment. 
The toolbox contains a Rule Compiler for translating the 
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rulebase into an internal representation that can easily be 
handled by the Inference Engine. This Inference Engine 
implements the necessary reasoning ability and delivers a 
computer program or expert system which is able to reason about 
its specific knowledge. The toolbox also contains some rulebase 
checkers and an Explanation Facility for explaining the rules 
of rulebases in a graphical way. 

2.2 Debugging in general 

Because there are no theories or methods for debugging expert 
systems, we will have to examine what exactly the differences 
are between 'normal' programs and expert systems. Afterwards we 
only have to adjust the debugging methods/tools of conventional 
programs for expert systems by taking these differences into 
account. 
Debugging is the process of determining and eliminating 
different errors (bugs) in a certain program. Debugging is an 
important and often underestimated part of the process of 
programming. 
Normally every programmer who is designing a program, tool or 
system, will recognize several stages in his so called software 
life cycle: 

A=>= Preliminary design 
The programmer is trying to formulate a correct definition of 
the problem. He also has to study the system and software 
possibilities and requirements. 

B=>= Detailed design 
The programmer is trying to invent and implement an algorithm 
which can solve the problem. 

C='; Compiling and Debugging 
During this developing stage the programmer will try to 
compile his program. During the compiling the programmer may 
also have to debug his program 

D=>= Testing and Debugging 
When the program is compiled correctly, the programmer is 
still not sure that his program is working satisfactorily: he 
has to test it. 

E=>= Maintenance 
Because the environment where the program is used can change 
and because some users are allowed to change the 
requirements, the programmer may have to update the program. 
To do it effectively the programmer should take care of 
program readability in earlier stages. 

The only difference in the software life cycle of expert 
systems is that it contains another stage: knowledge 
acquisition. 
When we look more carefully at the software life cycle, we 
notice that a programmer will spend most of his time on 
debugging (according to [Tassel,l974] ca 50%). During this time 
he will make heavy use of the machine he is working on. Whilst 
quality control was primarily restricted to one phase of the 
software life cycle (stage C), it is assumed today that quality 
assurance should be performed in parallel with the construction 
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and application of the software, i.e. that each intermediate 
and each final product of the production process should be 
examined immediately after its completion. The programming 
errors we will meet during each developing stage and which we 
also should detect during that same stage are: 

A=>= Errors in the problem definition because of lack in the 
understanding between the programmer and the user(s) 
(lack of complete and adequate specification). 

B=>= Errors in the design because of unsolved or overlooked 
questions of strategy and algorithm development: 

B1-> Incorrect algorithm 
The program is not doing what the user expects it would 
do 

B2-> Errors in analysis because of incorrect solving of the 
problem. 

C=>= Errors in using the language because of inadequate 
knowledge of the language: 

C1-> Semantic errors 
failure to understand how a command works. 

C2-> Syntax errors 
failure to follow the rules of the programming language 
These errors are often detected and rejected by the 
compiler. 

C3-> Execution errors 
failure to predict the possible ranges in calculations 
or failure to anticipate the ranges of the data. . 

C4-> Transcription errors or handwriting slips 
Some of these errors will be detected by the compiler 
but most of them will not. 

D=>= Errors in selecting appropriate tests 
E=>= Errors due to incorrect adaptation of the program for 

more users. 

Normally when a programmer is speaking about errors in his 
program, he actually means the errors which will be detected 
during the Compiling and Debugging stage. 

2.2.1 debugging tools 

Not every good programmer is also a good debugger. For good 
debugging a programmer not only needs a certain amount of 
knowledge about the problem-field, but he should also have the 
ability: 

to think logically 
to be creative 
to observe attentively (attention to details) 

After each development stage a programmer should use different 
debugging techniques. For example when a programmer is tracing 
Pascal code, his debugger should use variable names instead of 
memory locations and Pascal statements instead of machine 
instructions. 

At level C and D of the software life cycle, the best method to 
allocate an error in the program is to follow the "hypothesize 
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and test" algorithm: 
1-> Describe the problem 
2-> Guess where the error could be 
3-> Guess what might be going wrong because of that error 
4-> Test your guess 
5-> Refine and repeat the process until you have found the 

error 
6-> Determine the fix 
7-> Weave it in 

This debugging process will be much easier and faster if we use 
debugging tools. Debugging aids are stethoscopes necessary to 
isolate the cause and location of an error. We distinguish 
three different categories of debugging tools: 

A Snapshot tools 
They give a picture of how the program or its variables look at 
a certain point in time. 
Only two kinds of snapshot tools exist; listings (before 
execution of the program) and specific/non specific dumps 
(during the execution of the program). 

B Dynamic tools 
They show the program or its variables in operation. We 
distinguish two different kinds of dynamic tools: 
--> tracers: 

They indicate what statements are performed and in what 
order. In debugging there are two dimensions to be 
traced: space and time. With space dimension is meant the 
storage space of the program in the computer and with 
time dimension is meant the computation cycles completed 
during execution of the program. Usually the time 
dimension is the most important and longest tracer. But 
debugging aids should always allow the programmer to 
trace both dimensions. 

--> variable displays: 
While the program is running these tools show the value 
of one or more variables each time they change. 

C Interactive tools 
These tools offer the user broad powers to stop the execution 
of the program in arbitrary places and under broadly 
specifiable conditions. During such suspensions of execution, 
these systems allow the user to examine such internal status 
information as the values of variables. These systems enable 
the user to study error phenomena in minute detail, and they 
support the process of unravelling the causal threads leading 
to the first manifestation of an error which might have 
actually occurred long before. 
We distinguish three kinds of these debugging systems: Systems 
which offer the user to suspend execution (1) at any specified 
program location (the breakpoint capability), (2) when any 
specified program variable changes value (the watchpoint 
capability), or (3) after some fixed prespecified number of 
program statements have been executed (the program stepping 
capability) [Osterweil,1983]. 



11 

Because debugging is the largest program developing cost it is 
better to prevent bugs as much as possible. The best way to do 
this is to follow certain common programming rules [Brown,1973] 
like: 
-) avoid questionable coding 

Use the simplest statements and do not try new features 
until you are sure they will work. 

-) avoid dependency on defaults 
Computer manufacturers can change the defaults. 

-) never allow data dependency 
do not expect data to be in a special form but instead check 
the data at input time. 

-) always complete your logic decisions 
for example when you expect only two different values do not 
check only for one and if false assume it is the other one. 

2.2.2 debugging and testing 

Another important stage in the development stage is the Testing 
stage. A lot of programmers always mix this stage up with the 
Debugging stage, but Debugging is the part of the software 
developing process which is performed while the product is 
unstable while Testing is the final exercise carried out on the 
stable software product before releasing it. Or in other words: 
testing determines that an error exists and debugging tries to 
localize the cause of the error. Thus, there is some 
overlapping of the two stages. 

We can improve the software quality by: 
1-- reducing the number of execution errors 
2-- improving the performance of the software 
3-- improving the portability of the software 
4-- improving the adaptability of the software 
5-- improving the correctness of the software 

Beginning programmers often feel only the program needs to be 
debugged. That is, once the program works for one carefully 
selected group of data, they believe it will work for all other 
data. However we can distinguish five different levels of 
program correctness: 
1 no language syntax errors 
2 no runtime errors like arithmetic overflow or division by 

zero 
3 correct results for a typical set of valid test data 
4 correct results for a typical set of valid and invalid data 
5 correct results for any possible data both valid and invalid 

For most conventional programs it is possible to prove the 
correctness of the program for level I to 4 and it is 
impossible to prove the correctness of the program for level 5. 
Large or complex programs or tools will have already problems 
by proving the correctness for level 4. 

The first level of errors that should be detected during 
compilation of the program and not during testing are: 
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C1-- Some semantic errors like: 
-Improper use of built-in functions 

C2-- Almost all syntax errors that can occur like: 
-Incorrect statement syntax 
like incorrect variable names, incorrect use of 
operators, misspelled keywords, undeclared variables etc. 

-Incorrect termination of program sequence (missing ends) 
-Invalid expressions 
-Improperly mixed data 
-Incorrect nesting 
-Incorrect matching of arguments and parameters 

C4-- A few handwriting slips like: 
-Uninitia1ized variables 

The errors that a compiler will not detect constitute a correct 
use of the language which is not correct for the application. 
They can only be discovered by examining the output and 
following certain testing procedures. For conventional programs 
these errors are for example: 
-, Logic errors 
-, Misspelled variable names 
-, Incorrectly Initialized variables 
-, Forgetting to reset a variable 
-, Incorrect termination of program sequences 
-, Array subscripting out of bounds 
-, File and data formats unmatched 
-, Incorrect use of boolean expressions 
-, Counters too small 
-, Incorrect termination of loop 
-, Attempting to process data after end of file 
-, Using the wrong version of a program 

2.3 Debugging Expert Systems 

After having discussed the way how debuggers are used in 
'normal' programs and/or tools, we are now ready to examine why 
we need a debugging tool for expert systems and what makes them 
different from the normal conventional programming languages. 
The kind of errors that can occur in the rulebase or during 
execution of the expert system are quite similar to the ones of 
normal programs. So first of all, the expert system toolbox 
should contain compilers which check the rulebase on 
syntactical errors, some semantical errors and some execution 
errors. 
When the rulebase is compiled successfully it is still possible 
that the Expert System is not doing what it should do. We can 
distinguish several shortcomings, typical for expert systems 
only, at this stage (execution errors) [l!asling,1984]: 

a) Ignorance 
b) Stupidity 
c) Incompetence 

d) Superfluity 

a piece of knowledge is missing 
a piece of knowledge is incorrect 
current set of conceptual primitives is 

incapable of expressing a needed piece of 
knowledge 

a piece of knowledge is supplementary and 
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will never be used. 
e) formalism bug: one of the control sections has a bug or the 

set of available representations is 
inadequate. 

The process of solving these problems can be divided into two 
different phases: a phase of determining/uncovering the mistake 
in the knowledge-base called debugging phase and a phase of 
correcting the incorrect knowledge called the knowledge 
acquisition phase. 
Testing and/or debugging are the hardest tasks in developing an 
expert system [Pau,1987; Hendler,1988]. In comparison with 
procedural languages, rulebased systems are extremely hard to 
trace. Nevertheless, it would be desirable to be able to 
"reverse" the actions as if under instant replay. Unfortunately 
the tools needed for this task are not available (yet). 
On the other hand most expert system designers know already 
intuitively where the 'bug' is without detailed tracing. In 
this case the eyes of the knowledge engineer are the most 
important debugging tools. So if a programmer wants to be 
successful in debugging, he should better be a near-expert in 
the problem domain as well. 
Another big difficulty in debugging is to discover that 
problems or shortcomings still exist in the rulebase. 
Taking all these needs and problems in consideration it would 
be of great use to have the ability to look at the whole 
"inside world of action" of an expert system, and at the proper 
level. 

Before we can discuss how we have to change Simplexys or add 
some new "debugging" tools to the toolbox, we first need to 
know what the rulebase and the already existing different tools 
of Simplexys look like. We also have to examine what kind of 
errors already will be detected by these tools. 
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Chapter 3: The Simplexys programming language 

The structured rulebase built up by the knowledge engineer must 
have a special format before it can be presented to the 
Simplexys Toolbox. This rulebase contains seven sections which 
must start with the following keywords: 

1 DECLS 
2 INITG 
3 INITR 
4 EXITR 
5 EXITG 
6 RULES 
7 PROCESS 

declarations 
global initializations 
run initializations 
run exitcode 
global exit code 
the rules 
the protocol 

J--- Op'ioo., ,0,.100' 

Because the first five sections are Pascal sections most of the 
syntax errors and some of the semantic errors that can occur in 
these sections will be detected by a Pascal Compiler. 

3.1 The Declaration section DECLS 

This section is optional and contains the Pascal declarations 
of all the variables, procedures and functions that will be 
used by initializations, exit codes , TEST rules and THELSE DO's. 
The Inference Engine will include this section without any 
changes. 

3.2 The Initialization sections INITG/INITR 

These sections are optional and contain only Pascal code. The 
difference between the two sections is that the statements of 
the INITG section will be executed immediately after the system 
startup and the statements of the INITR section will be 
executed immediately at the start of each new run. 

3.3 The Exitcode sections EXITG/EXITR 

These sections are optional too and contain only Pascal code as 
well. The EXITG section will only be executed at the end of the 
last run and the EXITR section will be executed immediately 
after each run. 

3.4 The declaration section of the rules 

section 6 must contain all the descriptions and definitions of 
all the rules. Each rule consists of two to four parts: 

ad 1) rule header: 

1-- rule header 
2-- rule type 
3-- initial value 
4-- thelses 

Contains the name of the rule and an explanatory text-string. 
For example: 



15 

Diabet_patient: 'Patient is suffering from diabetes' 
ad 2) rule type: 

Depending on the type of rule, evaluation of a rule can be 
achieved in three ways: 
a) for the evaluation of the rule information is needed from 
outside the rulebase: primitive rules. 
There are four different primitive rules: 

FACT rules are assigned a certain value only at the 
beginning of the process. So they will never change value 
during the process. They can only be the value True,False 
or Possible. An example of such a FACT rule is: 

Diabet_patient: 'Patient is suffering from diabetes' 
FACT 

ASK rules ask a question (=textstring) to the user and the 
answer will be the value of these rules (y(es)=True, 
n(o)=False and ?=Possible). An example of this kind of rule 
is: 

must_Finish: 'You want to quit the process' 
ASK 

During the process we will see the message: 'Is true: You 
want to quit the process?' 
TEST/BTEST rules contain one or more valid Pascal 
statements which will assign a value (True,False or 
Possible) to these rules (default=False). An simple example 
of a TEST rule is: 

temp_too_high: 'the temperature is too high' 
BTEST temp> 40 

MEMO rules 'remember' their value and therefore can only be 
changed by a THELSES (part four of the rule) in a previous 
run. An example of a MEMO rule is: 

SETP: 'A setpoint has been defined' 
MEMO 

b) For the evaluation of the rule, values of other rules are 
needed. We call these rules EVALUATION rules. They contain 
an expression which is a combination of other rules 
(primitive or evaluation rules) and a number of operations. 
We have two different groups of operators: 

Operators with one argument: 
NOT v ::= if v = TR then FA else if v = FA then TR else v 
MUST v ::= if v = PO then FA else v 
POSS v ::= if v = PO then TR else FA 
history operators: these operators are used as follows 

RULE historyop «numeric expression» 
historyop are '=',' < ) 'f' ) , , ' ) = ' , ' <' and ' < = ' 

The resulting value is first set to the result of RULE. Then, 
if the result is TR, the RULE's history counter value is 
compared, using the history operator, to the value of the 
numeric expression. If the comparison yields true, the result 
will be TR else the result will be FA. 

Operators with two arguments: 
There are five different operators which need two arguments: 
AND, UCAND, OR, UCOR and ALT (see figure 3.1). 
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AND/ucAND OR/ucOR ALT 
u u u 

w TR FA PO w TR FA PO w TR FA PO 

TR TR FA PO TR TR TR TR TR TR FA* TR 

FA FA FA FA FA TR FA PO FA TR* FA PO 

PO PO FA PO PO TR PO PO PO TR PO PO 

AND: if u=FA then 
w is not evaluated 

OR: if u=TR then w 
is not evaluated 

* contradiction 
ALT=logically 
equivalent 
alternative 

figure 3.1: the operands AND,UCand,OR,UCor and ALT 

An example of an evaluation rule is: 
ShortDown: 'Too quick from fase 1 to 2' 
Autofase1 < (45) and trig or not dumm 

history expression 

c) Another totally different rule-type needed to describe the 
dynamics of an expert system is the STATE rule. The values of 
these rules can only be changed by a STATE transition and 
their value can only be False or True. We will discuss these 
rules in section 3.5. 

ad 3) initial value (not mandatory): 
With this section we can give the rule a value (true,false or 
possible) for the first run 

ad 4) thelses (not mandatory): 
This section allows multiple consequences from a single rule 
evaluation. There are three types of THELSES: THENs,ELSEs and 
IFPOs. THENs are used to allow consequences if the result of 
the rule evaluation is TRue. ELSEs are used to allow 
consequences if the result is FAlse and IFPOs are used to 
allow consequences if the result of the evaluation was 
POssible. 
A thelse must be followed by one of the next three 
possibilities: 
a) a value (THELSE TR/FA/PO) 

These THELSES allow multiple conclusions from just one 
evaluation. Under condition that the evaluated rule has a 
certain value, other rules will be assigned to certain 
values too. For example: "THEN TR: BIRD". 

b) a goal (THELSE GOAL) 
The argument, which must be a rule, is evaluated 
immediately. For example: "ELSE GOAL: BIRD". 

c) a Pascal section (THELSE DO) 
This kind of THELSES provides a "hook" to Pascal to 
manipulate data, to print etc. The Pascal statements are 
executed if the rule was evaluated to TR (THEN DO), FA 
(ELSE DO) or PO (IFPO DO). 
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An example of a rule containing four parts is: 
Must_finish: 'You want to quit the process' 
ASK 
INITIALLY FA 
THEN FA: Running 

3.5 The process description section 

The section 7 is mandatory and describes the dynamics of the 
process. The total analysis process is divided in a number of 
runs, during which the rule values do not change (only from 
undefined to a certain value). Each run can be divided in 
several subruns, which are evaluations of one GOAL rule. So we 
can distinguish a static environment during which the rules are 
evaluated at most once and a dynamic environment during which 
the rule values can change. 
Because the Inference Engine is designed to work within a 
static environment, the dynamic environment needs to be 
translated into a sequence of static environments (see figure 
3.2). 

static 
environment 

< dynamic environment' 
r-----.., 

run #1 t-'-

subrun 1 
subrun 2 
subrun 3 

run #2 ~, 

subrun 1 
subrun 2 

- run #3 

subrun 1 
sub run 2 
subrun 3 
subrun 4 
subrun 5 

figure 3.2: An example of a process containing several 
(sub)runs 

'--,-

What Goals will be evaluated during one run mostly depends on 
what States are active (true) in that run. In the first run at 
least one State rule is initially true. The Process section 
contains all the state transitions, which have the following 
format: 

ON Trigger FROM Fromlist TO Tolist 

A State transition causes a change in active State(s)i some 
States can become active (true) while others can become 
inactive (false).The State transition takes place if all the 
States in the Fromlist are active (true) and if the trigger 
evaluates to TRue. The process will end if no states are active 
anymore. 
One way to analyze the dynamical behaviour of Simplexys expert 
systems, is by describing the process with 'Petri Nets' 
[Reisig,1985]. 
Figure 3.3 shows us a simple example of how to build up a 
process section by drawing a graph of the process. In this 
graph every circle represents a State rule and every connection 
between two circles represents a state transition (the example 
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is a simplification of the total debugging process of section 
2.1} . 

States: 
51: 'Describe the problem' 
52: 'Guess where and what 
the error ;n the program 
is' 
53: 'Determine how to fix 
the error and weave it in' 
54: 'Testing the program' 
Triggers (for example ASK 
rules): 
Tr1 : I New guess' 
Tr2:'Satisfy;ng guess' 
Tr3:'Yrong consideration' 
Tr4:'Error not solved' 
Tr5:'Error solved' 
Tr6:'Still errors in the 
program' 
Tr7:'Program is correct' 

PROCESS 
ON TR1 FROM 51 TO S2 
ON 1r2 FROM 52 TO 53 
ON lr5 FROM 53 TO S4 
ON 1r7 FROM 54 TO * 
ON 1r6 FROM 54 TO 51 
ON 1r4 FROM 53 TO 52 
ON 1r3 FROM S2 TO 51 

figure 3.3: An example of how to 'understand' triggers and 
states 
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Chapter 4: The Simplexys Toolbox 

If we want to design debugging tools for Simplexys, we have to 
know exactly how Simplexys builds up a certain expert system. 
The Simplexys Toolbox already contains several Pascal programs 
or tools, which tend to incorporate restrictions that make them 
easy to use for certain purposes. Figure 4.1 shows us how to 
use the tools to build up a Simplexys expert system. Some tools 
already detect certain errors which we do not have to detect 
with the debugger anymore: 

a) a Rule Compiler (Ruc.pas) 
b) a Semantic Checker (Chk.pas) 
c) a Protocol Checker (Pet.pas) 
d) an Option Generator (Opt.pas) 
e) an Inference Engine (Sim.pas) 
f) an explanation facility called FACE (Face.pas + 

FaceExpl.pas) 

RULE BASE 

Expert System 

Ruses.qqq 
Rinex.qqq 
Rinfo.qqq 
Rhist.qqq 
Rtest.qqq 
Rdodo.qqq 

Options.qqq 

Runln.qqq 

Explanation 
Facility 

figure 4.1: How to build up a Simplexys expert system 

4.1 The Rule Compiler 

The Simplexys Rule Compiler translates the rulebase into an 
internal representation of six qqq-files: 
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1) Rinfo.qqq 
This file contains almost all the arrays and tables 
representing the rules and their mutual 
relationships. 

2) Rtest.qqq 
All the test sections of the several defined test rules are 
translated into one function called" FTEST". 

3) Rdodo.qqq 
The DO commands in all the Thelses-Do statements are 
converted into one procedure called "_FDOS". 

4) Rhist.qqq 
All the history sections of the used evaluation rules are 
translated into one function called "_FHIS". 

5) Rinex.qqq 
This file contains the in the rulebase programmed 
initialization sections; INITR,INITG,EXITG,EXITR,EXITG. 
These sections are represented in this file as procedures 
with the same name. 

6) Ruses.qqq 
Ruses contains the needed Turbo Pascal 'uses' libraries 
(specifically needed for programs written in Turbo Pascal). 

The Rule Compiler also checks the rulebase for some semantic 
and syntax errors and gives an appropriate error message to the 
programmer. 
The six semantic errors which can be detected in this stage 
are: 
1) STATE rules are not allowed to have the value possible 
2) At least one STATE rule must be initially true 
3) FACT,MEMO,STATE rules cannot be used as goal rules 
4) It is not allowed to THELSE FACT or STATE rules 
6) In FROM,TO list it is only allowed to specify STATE rules 

The compiler not only checks for syntax errors like mistakes in 
expressions, transition description lines,thelses etc, but also 
for errors like using more than one rule with the same name or 
internal (overflow) errors like using to many history checks. 

4.2 The Semantic Checker 

The Simplexys Semantic Checker performs several semantic checks 
on the file Rinfo.qqq and generates error messages if any 
errors are detected. 
The six semantic errors checked by this program are: 

1) Self-referencing evaluation loops: 

•••••• ->- Evaluation c-->---l Rule i 
Rule i ->- Expression L-___ ~ 

->-

figure 4.2: A self-referencing evaluation loop 

We get a conflict if we want to use a rule in its own 
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evaluation expression. 

2) Thelses loops to itself: 

Rule i -'1L--TH_E_N _T_R ~_T_HE_N_F_A--,~'-

~ 

Rule i 

figure 4.3: A rule with a THELSES loop to itself 

Conflict: If rule i evaluates to true then rule j becomes true 
and wants to set rule i to false. 

3) Conflicting Thelses: 

Two possibilities: 

Rule i -, 
Rule i -, THEN~ F' ~THEN TR THEN TR' or , THEN FA 

Rule j Rule j 

figure 4.4: An example of a conflicting THELSES 

Rule i 
Rule i 

we get a conflict if we try to set a rule to true and to false 
at the same time. 

4) Thelses to successors (semantic conflict): 

-,-
Rule j -,-

-,-
Evaluation e--, 
Expression 

THEN TR 

figure 4.5: A rule with a THELSES to a successor 

Rule j 

Rule i needs for its evaluation rule j; it will try to evaluate 
rule j. After this evaluation rule i will set rule j to true 
even if the result of the evaluation of rule j was false. 

Note: There will be no conflict if the rule is a MEMO or 
STATE rule. 

5) Thelses to predecessors (semantic conflict) 
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Rule j -,----4 THEN TR f-,-------. 
-,- Evaluation -'---1 

Rule j -,- Expression ...... -,-

figure 4.6: A rule with a THELSES from a predecessor 

Conflict: If we try to evaluate rule i, rule j needs to be 
evaluated as well. If a certain rule is evaluated, all its 
THELSES will be executed immediately. This means in this case 
that whatever the result of the evaluation of rule i was, if 
rule j became true then rule i will be set true. 

Note: There will be no conflict if the rule is a MEMO or 
STATE rule. 

6) Unconnected non STATE rules 
A warning will be generated if a certain rule will never be 
used in the process: 
---the rule is not used in any expression 
---the rule is not THELSEd by any rule 
---the rule is not a trigger rule 

4.3 The Protocol Checker 

This checker tries to find the errors in the process 
description part or protocol of the rulebase (rinfo.qqq). It 
checks the protocol on three different types of errors: 

A--Syntax errors: 
1. 'No start states'; no rules are initially true 
2. 'No end states'; no ON statement has an empty TO list 
3. 'Conflicts at states' 

Two transitions have equal From lists and the same 
trigger. 

4. 'Empty prestate' 
Each State must be in at least one To list. 

5. 'Empty poststate' 
Each State must be in at least one From list. 

B--Topology errors: 
Topological checking is performed in order to find errors in 
the way States and transitions are connected. 

6. 'Self loops' 
The From list and the To list of a On statement are not 
disjunct. 

7. 'Identical ON statements' 
Two On statements have the same From list and the same To 
list. 

8. 'Identical STATEs' 
9. 'Net part not connected to start state' 

To each State there must be a forward path from one of 
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the start States (result of the error: superfluity). 
10. 'Net part not connected to end-state' 

From each State there must exist a path to an end-State. 
C--Dynamic errors: 

If we analyze the dynamic behavior of the protocol by 
constructing all reachable contexts, we can discover several 
dynamic errors. 

11. 'Deadlock' 
There is a firing sequence resulting in a context where 
no further change of State is possible. 

12. 'Non safe state' 
A non safe state is a State that becomes true due to 
firing of a transition while that State was already true 
before firing. 

13. 'System cannot stop' 
There is no firing sequence so that only end-States are 
true. 

14.'Not all transitions can fire at least once' 
15. 'Conflicts' 

Conflict when the From lists have a non empty 
intersection. 

4.4 The Option Generator 

With the Simplexys Option Generator we can determine several 
run-time options for the Inference Engine (for example the 
choice between real-time and simulated time). 

4.5 The Inference Engine 

The Simplexys Inference Engine actually builds the expert 
system by compiling the several qqq-files and inference 
processes into one 'program'. The expert system is now ready to 
run. 

We can divide one execution of a Simplexys Expert System into 
three main parts and several small steps: 

A One-time initialization: 
l--Initialize the time 
2--Execute INITG 
3--Initialize all the rules with an 'INITIALLY'-section 
4--Determine all the FACT rule values 
5--Execute the THELSES of all ASK, TEST and EVAL rules 

with value<'UnDefined 
B Execute runs 

l--Execute the 'THELSE'-section of all FACT and MEMO rules 
2--Execute INITR 
3--Execute the THELSES of the active STATE rules 
4--Evaluate all the state transitions 
5--Update the history of the MEMO and STATE rules 
6--Execute EXITR 
7--Undefine all ASK, TEST and EVAL rules 
8--Goto B if any STATE rule is still active 

C Finish 
9--Execute EXITG 
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4.6 The explanation facility FACE 

An explanation system must be capable of explaining, to some 
significant degree, the expert system's operations to anyone 
who understands the framework for explanation and who 
understands the domain subject. There are three types of 
explanation: 

1-> Retrospective reasoning 
Trying to explain what the system already has done. 

2-> Counterfactual reasoning 
Trying to explain what the system prevented from using 
rules that would have established specified facts. 

3-> Hypothetical reasoning 
Trying to answer the question: "1:illM would happen .it .... " 

Nowadays explanation systems mostly use the explanation of type 
one. They are often designed in such a way that they can answer 
three types of questions: 

WHY is it important to determine that ....... . 
Asking WHY questions is the same as moving in the direction 
of the root or goal in the evaluation tree. 
HOW was it established that ............ . 
Asking HOW questions is the same as moving to the leaves or 
primitive rules of the evaluation tree. 
WHEN was it established that ........•... 
In contrast with the other two types of questions for 
WHEN-questions we are not moving in the evaluation tree, but 
just asking for the time or the history of that rule. 

Mostly explanation system are used for assisting in debugging, 
for testing the expert system, for learning and teaching how to 
use/make an expert system and for updating the rulebase. 

For Simplexys there already existed an explanation system 
called FACE which was developed by de Hair [lit. 2]. This 
'FACility for Explaining simplexys expert systems' tries to 
answer the questions by just displaying the graphical 
presentation of the rule concerned with that question. It uses 
colors to express the run-values of all the rules used in that 
evaluation tree. There is also the possibility to 'trace' (run 
by run) through the whole process. 
But several considerations lead to the decision not to use the 
explanation facility FACE as a part of our debugging tool: 
1 ) 
FACE does not function for more complex rulebas~s. If the 
rulebase contains Thelse-Do statements or initialization 
procedures FACE will crash. ' 
2) 
FACE uses colors to display the values of the rules in the 
rule evaluation tree. This means that a color monitor must 
always be available. 
3) 
FACE uses several smart algorithms to sort th;e rules of an 
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evaluation tree in such a way that it is easy to draw the 
tree. For debugging, however, we want to display the 
rulebase as the knowledge engineer programmed it. 
4) 
FACE just displays the result of one run. It is possible to 
trace through the whole process but you cannot recognize 
certain patterns and you can easily get 'lost' in the 
process. Especially when you have a rulebase with a lot of 
states, it takes a lot of time to find out what states are 
active and what rules were evaluated during that run. 
5) 
FACE uses the rule-names for representing the rules in their 
evaluation tree but it is possible that the knowledge 
engineer chooses very long names for his rules. This will 
make the display of the tree quite broad and it is now 
possible that the lines are longer than the predefined 
window. 
6) 
FACE also contains a simplified copy of the Inference Engine 
for simulating and tracing the process. But this means that 
if the original Inference Engine program is updated, we also 
need to alter FACE in the same way (which is the reason why 
FACE was not working correctly anymore). 

Because we did not want to use FACE as our explanation 
system we had to look for other existing explanation system. 
In the literature we found several built-in explanation 
systems for all kind of expert systems which all try to 
answer the earlier mentioned questions [~asling. 1984, 
Neches. 19841 KhoroshevskY,1985j. However it turned out that 
the lmplementation and layout of these systems depend on the 
kind of expert system to be explained and the degree of 
knowledge of the user. 

4.7 What the debugger should do 

As mentioned in section 2.3, it is possible that there are 
some errors in the rulebase which cannot be detected by any 
of the already discussed Simplexys checkers. Most of these 
errors will result in one of the shortcomings mentioned in 
the same section: 

-) Incorrect expressions in the evaluation rules 
This handwriting slip can result in a Logic error, for 
example: 
You typed in for the evaluation part of a certain rule 

ATRI AND EQV3 ALT AL60 
but you actually meant 

ATRI AND (EQV3 ALT AL60) 
result of this mistake in the rulebase: Stupidity 

-) Handwriting slips in the names of rules can cause new 
unwanted rules in the rulebase (misspelled variable
names). 
result of this mistake: Superfluity 

-) Incorrectly initialized rules or just forgotten to 
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initialize a rule 
-> wrong or no INITIALLY-section 
-> execution errors 
-> using the wrong version of the expert system 

For these errors or to detect shortcomings of the rulebase, 
we need to design debugging tools for Simplexys. As 
discussed before one of these debugging tools has to be an 
explanation system. 
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Chapter 5: Design of the Simplexys debugger 

As we already saw, a lot of errors will be detected by the 
different Simplexys checkers. The best way to debug errors that 
took place in real-time processes (=execution errors) and the 
best way to check the rulebase on some shortcomings (see 
section 2.3), is to simulate and trace the whole process again. 
Simulation gives us also the opportunity to examine the 
rulebase more carefully and to show internal variables 
(possibility to look inside the black box). The problem here is 
to design a good interface for showing the whole inside world 
of action to some understandable degree for the knowledge 
engineer. 
In many cases the process consist of many runs (if one run 
takes 5 seconds, and an operation lasts 6 hours, the number of 
runs is 4320) and is it impossible to simulate and debug the 
whole process at once. So we split up the debugging process 
into a chain of several simulations where each simulation block 
can be examined by the debugging tools (breakpoint debugger,see 
figure 5.1). 

there was an error during 
the execution 

try to allocate the error 

know where the error is 
and so we can correct the 
rulebase 

Execution of Expert 
System 

I 

Simulation of the 
process 

Examine process with 
Debugging Tools 

error not found yet 

r 

figure 5.1: The total overview of the debugging process 

So we can distinguish two different parts in the whole 
debugging process: simulating and examining the simulation with 
debugging tools. 

5.1 Simulating the inferencing process 

Before we can simulate the real-time process, we have to solve 
a number of problems. First of all, the data used during the 
process is not available anymore at the moment of simulating. 
In Simplexys there exist several ways to acquire data from 
outside: 
A) The sections INITR,INITG,EXITR,EXITG of the rulebase are 

Pascal sections and can therefore contain read(ln) or other 
input/output (IO) statements. 
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B) The RULES section: 
-1- FACT rules acquire their values before the inferencing 

process starts (they obtain their value by asking a 
question). 

-2- ASK rules also need real-time answers. 
-3- TEST rules need externally supplied data. 
-4- EVAL rules combine other rules in their expression 

It is possible that they use history expressions in 
their evaluation expression. These history expressions can 
contain Pascal variables (for example: "BOIL ) (12*temp)" 
with temp = variable of type integer). 

-5- The 'THELSE DO' section of the rules provide a 'hook' to 
Pascal and therefore can contain IO-statements. 

A solution to all these problems is to change the Inference 
Engine in such a way that it dumps the values of all the 
assigned FACT rules (two-bit value) in the beginning of the 
real-time process to a certain dumpfile. We also need to dump, 
for each run, the starttime (32 bit value) of that run and the 
results of the in that run used TEST, ASK rules and history 
expressions (two bit value). So the dumpfile will have a length 
of approximate 

(number of runs) * 
{«number of evaluated B1,B2,B3,B4,B5) + 7) div 8 + 4) bytes 

The advantage of this solution is that the simulator will now 
look almost the same as the Inference Engine with the following 
exceptions (see also enclosure 1 and 2): 

A -) the Pascal sections INITR,INITG,EXITR and EXITG are not 
executed. 

B -) the values of the ASK, TEST rules and history expressions 
are read in from the file made by the Inference 
Engine during the expert system's actual operation. 

B5-) the THELSES-DO parts of all the rules are not 
'evaluated' . 

C -) for every new run the run-time is read in. During the 
simulation it is possible that a run lasts shorter than 
it really did during the real-time process. If we would 
not dump the start-time of a run, the history of the rules 
would be incorrect during the simulation. 

* -) in order to save some memory, we will make the file 
ruses.qqq empty. For the simulator we do not need any 
special libraries (no graphics). 

So we can distinguish three different Inference Engines: 
1-) original Inference Engine or inference engine which 

generates expert systems that do not generate a dumpfile. 
It is not possible to simulate the processes of these 
expert systems. 

2-) Inference Engine which creates a dumpfile. It is possible 
to simulate the processes of expert systems generated by 
this inference engine. 

3-) Inference Engine as simulator/debugger. The Inference 
Engine is used to simulate and debug a certain process. 
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To get fast tracers, it is better to look at all the rule
values (except the FACT rule-values) of several runs around the 
problem-area and put them in memory, than simulating and 
tracing for every run alone. How big a simulation block may be, 
depends on how big the rulebase is and how much memory is 
available. The worst case is that the rulebase is so big that 
each block is just one run. 
If the programmer knows almost exactly when the mistake took 
place, he can choose the simulation block very small and 
simulate the process until that specific time. If he knows 
nothing about the error or if he just wants to examine the 
process, he will choose the simulation blocks very large in 
order to have the ability to look at many runs at the same 
time. 

5.2 Simplexys debugging tools 

Now that we know how we can simulate the process, we can try to 
find the error or just examine the different simulation blocks 
more carefully. The best method to find an error in the 
rulebase is (see also figure 5.2): 
A) 
First of all try to find out ~ the error actually took place 
in the real-time process. Processes which lasted very long,will 
be simulated in blocks. So before we can determine in what run 
the error actually took place we first have to determine which 
simulation block. The tracer should therefore not only allow 
tracing through the whole process run by run but also block by 
block. Because a Simplexys expert system is working time
dependently and because memory is limited, we will not allow 
the programmer to trace one or more blocks back in time. If we 
know ~ the error took place we can determine with the tracer 
what states were active at that moment. 
B) 
Secondly we have to examine ~ caused the error and ~ it 
took place. For these questions we need an explanation facility 
to look at the structure of the rules in question. The 
structure of the STATE rules will tell us what rules were 
evaluated first. 
If we keep on going down in the total evaluation tree of one 
run, we will finally reach the primitive rules. 
We will call this facility the tree option of the debugger. It 
is possible that after you examined the structures of some 
rules, you discover that the error took place sooner but still 
in the same block and so we need to go back to the tracer (back 
to A). 
C) 
At last we know now what caused the error and so we can update 
or correct the rulebase. 
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Rulebase I < < 
I 

< C > 

I 

~ I 
Simplexys* 

Tracer < > Tree 
~--A B----~ 

Simulator 

real-time »----_ ..... 
Expert system 

figure 5.2: The process of debugging the rulebase 

So we need a tracer and an explanation facility for our 
Simplexys 'debugger': 

5.2.1 The Tracer option 

If we examine the rUle-types more carefully then we can 
distinguish three groups of rules which only differ in the 
number of different values they can be during the process: 
A-> FACT rules: just one value (TR,FA or PO) 
B-> STATE rules: two different values (TR,FA) 
C-> ASK, EVAL, MEMO and TEST rules: four possible values 

(TR,FA,PO,UD) 
Of course each group needs a different approach for displaying 
their values: 

Ad A) Displaying FACT rules 

The FACT rules are evaluated only once in the process and they 
can have only the value True, False or POssible. So the value 
of a FACT rule can be displayed by just printing one string (' 
true',' false' or 'possible') in a rule-information-window 

(snapshot debugger). 

Ad B) Displaying STATE rules 

The STATE rules can only be FAlse or TRue and so we need only 
one character-line to display the values of the STATE rules; 
TRue; level 0 and FAlse; no level. 
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Figure 5.3 shows us an example of how to display a State rule. 

run /I 
1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 

value .. T .F .. F T F ... T T T. T .T", .... T 
STATE 1 -,-. ->,:-,' .-:::,:: ;::': .. . 

;-'-.-'-'. 

9 10 11 
L T F . 

.".,· .. ' ... • .••.. ',· .. i> .. , +P,=",=",=",=",=",=",="~ 
T T .. ',l' ...... .',l'. 

.. '.,--,', 

figure 5.3: An example of how to display a STATE rule 

It should also be possible to display ASK, EVAL, MEMO and TEST 
rules in this way (TRue;level 0, FAlse/POssible/UnDefined; no 
level), because with this method we can display more rules. 
Because STATE rules determine what other rules will be 
evaluated during the run, it would be of great use to display 
all the rule-numbers of the active STATES at each run. 

ad C) Displaying ASK. EVA!', MEMO and TEST rules 

In each run these rules can have one of the four values: TRue, 
FAlse, POssible or UnDefined. There are several possibilities 
to display the values of these rules during the process: 
A- with one character; for example T F P AND U 
B- with colors; for example green red magenta and black (FACE) 
C- with 'graphics' 
Because we want to recognize certain patterns in the process 
and because we do not want to be dependent on the kind of 
monitor, we choose method C for displaying the values of these 
rules, 

One way to display the values of these rules is using just 
three different levels: 
False;level O,Possible;level 1,True;level 2,Undefined;no level, 
But now there are still several methods left to draw such a 
graph: 

method 1:Draw one horizontal line for each level 
method 2:Draw an almost 'closed' graph by drawing vertical 

lines when the level changes. 
method 3:Same as method 2 only now when the value is undefined 

this method will remember the last level and will act 
like the UD-values do not exist. 

An example of each method is given in figure 5.4. 
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run# 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

value 

method 3 

figure 5.4: Several examples of how to display the rule-values 

The advantage of method 3 is that certain patterns are easily 
recognized (it looks more like a graph than the other two), but 
the disadvantage is that it is difficult to determine what 
value the rule has in a certain run (for example run #9:False). 
On the other side, this method remembers what the last value of 
the rule was before it became undefined, which can be useful if 
the value of run #1 is undefined and if this run is not the 
first run of the total process. 
Method 1 has the disadvantage that if we want to display 
several rules besides each other, it becomes quite hard to, 
determine what line belongs to what rule. Of course we will 
still have this problem even for method 3 if we have rules 
which are almost all the time undefined. 

It is also possible to display the rule-values in just one or 
two character-lines but the problem then is, that the 
character-set is quite limited. For example method 4 (see 
figure 5.5) is an example of displaying the rule-values in two 
levels (level 0 = FAlse + POssible and level 1 = TRue + 
POssible) . 

value 
method 4 

run # 
8 9 10 11 12 13 14 15 16 17 18 
U F P P U U T T F T T 

.. ~ ••••.....•..•...••...••..•.•. ~ •...• • •••• •· •••• ···iritl.····i •••.••• · ••• 6 
figure 5.5: Another example of how to display the rule-values 

The advantage of using this method is that we can display more 
rules on the screen but the disadvantage is that the eyes get 
fixed first at the possible-values. The conclusion is that 
method 2 is the best way to display the rule-values of ASK, 
EVAL, MEMO and TEST rules. 

Because every knowledge engineer wants to look at the process 
in a different way, we should provide a way to change the 
number of rules to display by the tracer (number of STATE rules 
(one level) and number of other rules (three levels». 
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5.2.2 The Tree option 

If we want to debug Expert systems or just verify their 
knowledge base, we also need an explanation system to provide 
the visibility of the rulebase. 
For this option we are not so much interested in what value a 
certain rule has, but more ~ it obtained that value and ~ 
the effect of the rule on other rules is. This means that we 
need an explanation facility which will use retrospective 
reasoning (section 4.6). 
All the different parts of a rule (see also section 3.4) tell 
us a little bit about the structure of that rule and how the 
rule will be used during the process: 

ad A) the rule header: 

The rule-name and the rule-text are two strings of determined 
length (in file rinfo.qqq) and they identify the rule. 
However we do not want to present a rule by its name or text, 
because these two string can be very long and they would 
require a lot of space in the tree. Therefore we will present a 
rule just by a unique number assigned to it in the file 
'rinfo.qqq' (we will reserve three characters for every rule 
because we expect that a rulebase will contain at most 999 
rules) . 

ad B) the rule-tyge: 

This part tells us ~ the rule will be used during the 
process. Every rule-type needs a different presentation: 
FACT rules obtain their value at the very beginning of the 
process and they never change during the process and so we just 
have to display that this rule is a FACT rule. 
ASK rules obtain their value from asking a question and so we 
need only to display the question somewhere to 'explain' that 
this rule is an ASK rule. Displaying the question is the same 
as showing the rUle-text string in a rule-information window. 
TEST rules obtain their value by testing external data which 
will not be available anymore at the moment of debugging. 
Because most programmers are not interested in how the test 
looks, but more in that the rule is a TEST rule, we present 
these rules by their code. If the programmer is interested in 
how the test looks, he can find the code of the appropriate 
Pascal test in the file 'rtest.qqq'. 
MEMO rules remember their values across runs and can only be 
changed by a THELSE of another rule. So for these rules the 
programmer will only be interested in when the rule was 
assigned the current value, which is the same as displaying the 
history of the rule at that moment. 
STATE rules are assigned either by their initial value or by a 
state transition. So the programmer would want to know how the 
script section looks and what state transition changed the 
value of this state. A programmer mostly designs the process 
section by drawing a protocol network (for example a petri
network) and converting this network into state transitions. So 
the best way to explain the state transitions in which a 
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certain state is involved is to draw a protocol-like graph of 
that state. 

Figure 5.6 contains not only the protocol network and the 
process section that State S1 is involved in, but also the 
protocol-like graph of that rule. 

PROCESS 
ON Tr1 FROM S1 TO 52 
ON Tr2 FROM S2 TO S3 
ON Tr4 FROM 53 TO 52 
ON Tr3 FROM 52 TO 51 

{Tr1 = 10} 
{Tr2 = 11} 
{Tr4 = 12} 
{Tr3 = 13} 

1 -?-1 D-->----1 1---3 
St Tr t=ir St 

3-?-1~ 3-4 

Tr3 Tr...1. 

figure 5.6: An example of how to display STATE transitions 

Notice that each State rule can be used in two different ways; 
In the TO list where it can become active (true) or in the FROM 
list where it can become inactive (false). Because mostly 
programmers are also interested in what triggers and what 
states are active, we will highlight all the rules in the state 
transitions which are true at that specific run. , 
EVAL rules need the values of other rules to obtain a certain 
value. The expressions of a rule can be very complex and 
difficult to oversee. The best way to explain the structure of 
these expressions to a programmer is to draw a graph like the 
explain facility FACE did [Hair,1988]. Only now we display the 
values of the used rules by just one character instead of 
giving colors to the rules (F;false, T;true, P;possible and 
U;undefined). Further, we draw the graph like the Inference 
Engine interprets it, so no smart reordering of the arcs and 
nodes (rule or expression). 
Figure 5.7 is an example of an evaluation rule and its 
evaluation tree. 

ERROR: 'There was an error in the program' 
(NOT Fin;shCompile AND (log;cError OR SyntaxError OR StructError OR TranScripError» OR RunError 
{------ 2 --------------- 3 ------------ 4 ------------- 5 ----------- 6 ---------------- 7} 

F 2 
F 3 
T 4 
U 5 
U 6 
F 7 

figure 5.7: An example of how to display an evaluation rule 

Trigger rules are not a different kind of rules (they can be 
any kind of rule), but they need a different approach for their 
graphical representation. First of all a programmer wants to 
know if the rule is a trigger rule and secondly if it is, he 
wants to know in what state transitions this rule will be used. 
We will use the same method as the one we used to display the 
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STATE rules. Figure 5.8 shows us the graph for trigger Tr4 (12) 
of the example of figure 5.6. 

St 12 St 
3 ->+>- 2 

figure 5.8: An example of how to display a trigger rule 

ad C) The INITIALLY section: 

The initial value is only important at the beginning of the 
process. So we do not need to display this information in the 
graph itself but in a rule-information-window ("initially: 
true") . 

ad D) The THELSES section: 

This section tells us what effect a rule can have on other 
rules. We distinguish two kinds of THELSES: Thelses-In and 
Thelses-Out. 
If a rule has a Thelses-Out it means that this rule assigns a 
typical value to another rule under the condition that this 
rule has a certain value. If a rule has a Thelses-In it means 
that another rule has a Thelses-Out to this rule. 
If we display the thelses in the evaluation tree of a rule, we 
can always determine during the simulation ~ certain rules 
are evaluated or ~ rules will also be evaluated during that 
run. 

ERROR: tThere was an error in the program' 

THEN FA: OkelNewRun THEN TR: Debug,Test 
{--------- 10 -- 11 ------------ 12 -- 13 ------} 

g THEN 
THEN 
THEN 
THEN 

1 

Thelses-Out rule 1 

FA 10 
FA 11 
TR 12 
TR 13 1 THEN FA----, 

11 

Thelses-In rule 11 

figure 5.9: An example of how to display the THELSES of a rule 

For example the graph of rule 'Error' (1) tells us that if this 
rule evaluates to true then rule 10 and 11 will be set false 
and rule 12 and 13 will be set true (see figure 5.9). 

Remarks: 
-A rule can only have THELSE-DO's out. 
-STATE rules cannot have Thelses-In at all and THELSE-GOAL's in 
are not possible for FACT and MEMO rules. 

-In the last version of Simplexys the Rule Compiler generates 
an array which contains all the THELSES-in except the 'THEN 
GOAL's. These kind of THELSES will therefore not be displayed 
in the evaluation tree (only in the THELSES-out section). 
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So, in general, a tree of a rule will have the format of figure 
5.10. In this figure every section is optional and depends on 
the kind of rule. 

r r 
u thelse-expressions thelse-expressions u 
1 r in out 1 
e u e 
v 1 

rule I a e 
1 n evaluation 
u r tree 
e 

figure 5.10: Schematic diagram of how to represent a rule 

As we saw already, STATE rules and rules used as triggers 
describe a total different part of the process (dynamic part) 
and therefore need a different presentation (see figure 5.11). 
Most programmers will not always be interested in how this 
section looks and so we must see the drawing of these trees as 
extra features which can be activated by stroking a special 
function key. 

Sl T1 T2 S2 Sl I=lel S2 

-- ---
'FROM' r- --- 'TO' 
states -- --- states 

-- ---
-- ---0= =0 

~ 

ON Tl FROM Sl TO rule ON rule FROM Sl TO S2 
ON T2 FROM rule TO S2 

figure 5.11: Schematic diagram of how to present trigger and 
state rules 

Remark: Because the structure of evaluation rules can be very 
complex and large, it is possible that the tree does not fit 
into the predefined window. If we still want to see the whole 
tree we need to scroll the display, and thus a Scrllock 
function. 

5.3 Special Considerations 

As discussed before, most kinds of syntax and semantic errors 
will be detected by the Rule Compiler or one of the checkers 
(Protocol Checker or Semantic Checker). But, it is possible 
that the rulebase becomes so big that it is impossible to check 
this rulebase for, for example, the semantic errors (this is 
due to current limitations of the checkers, which cannot handle 
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knowledge bases containing 200 or more rules). 
The debugger however will still function for rulebases 
consisting of up to 999 different rules, because the additional 
memory needed for the debugger can be kept small by making the 
number of runs in one simulation block smaller. with the help 
of the built-in explanation facility, it should be quite easy 
then to recognize for example the semantic errors which would 
otherwise be detected by the semantic checker. Section 4.2 
shows us the graphics of how these errors will appear in the 
evaluation trees drawn by the tree mode. 
Some of the errors detected by the Protocol Checker can be 
recognized easily by the debugger (like 'selfloop' or 'net 
parts not connected') but most of the topological and dynamic 
errors cannot be detected clearly. They mostly result in some 
kind of strange behavior of the expert system during real-time 
execution. 
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Chapter 6: Ergonomics, the user-interface 

6.1 Ergonomics in general 

Because we already discussed ~ we need to display for 
debugging, we will now discuss some ergonomic aspects of how to 
organize the total display and control of the system. 
Ergonomics seeks to maximize safety, efficiency and comfort by 
shaping the machine to the operator's capabilities. By linking 
the machine to the operator in this way a relationship is 
established where the machine presents information (displays) 
to the operator via the operator's sensory apparatus to which a 
response may be made by the operator to alter the machine's 
state (controls). The theory about ergonomics in general and 
what kind of displays and controls exist, is already examined 
by other researchers [Hoogendoorn,1989; Oborne,1987; 
Hendler,198B]. 
The design of interfaces for expert systems differs in a way 
from the design of 'normal' programs because we distinguish 
different users with different needs. 
The user, who will directly communicate with the 
simulator/debugger will probably be a knowledge engineer or 
someone who wants to know more about the Simplexys rulebases. 
We expect that these users already know the basic ideas about 
Simplexys and so we can represent the important process- . 
information in a knowledge-base-like way. 

6.2 Visual displays 

Visual displays are the most commonly used instruments for 
communicating information from the machine to the user. 
As mentioned before, the first demands of the debugger were 
that it should be possible to display all the information in 
text mode on a monochrome monitor. This implies that the 
debugger is not allowed to use graphics and/or colors to 
display the process-information '. 
The debugger is a top-down display of the world of action of an 
expert system. By this we mean that on the top of the screen we 
display all the information which is most important to the 
total process: the rule-values of the State rules (tracer); on 
the bottom of the screen we display less important information 
like evaluation trees or rule-information windows (run 
information). 
To emphasize certain information in a display without using 
graphics, we can highlight the characters (for example rule is 
true in evaluation tree) or inverse the 'colors' of the 
characters and their background (for example rule-name in 
tracer) or just use capitals (for example rule-name in rule
information window). By using one of these three possibilities 
we will not use extra space on the screen. 
Figure 6.1 shows us a simplified layout of the total screen 

text mode, on an IBM PC, does include a number of 
"graphics characters"; these can be used of course 

• 
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with its visual display windows. 

single run information window 

tracer window 

tree window 

rule information window or system comment window 

layout of the function control keys 

figure 6.1: The layout of the user interface 

Notice that the two main visual displays, the tracer and the 
tree, are placed in the middle of the screen. These two main 
displays often consist of several smaller sub-displays (for 
each rule one). 

6.2.1 Sizes of the displays 

We let the user define the sizes of the two main displays 
because the number of rules that a user wants to display on the 
screen depends not only on how large his rulebase is but also 
on what this user prefers. 
For large knowledge bases there must also be the possibility to 
define two separate virtual screens for both options (when the 
tracer is defined too large the debugger will switch to this 
mode automatically). Because rule- and run-information do not 
change extremely, the size of these (information) windows will 
be fixed during the whole debugging process. 

6.2.2 Menus 

If we let the user determine certain display options, we will 
need a multiple selection menu, where we can choose certain 
debugger options. 
Because the total debugger consists of a simulator and a 
tracer, we also need a main menu where we can choose between 
simulation, examining or just changing the display options. 
After quitting one of these options, the debugger will always 
return to this main menu. 

6.3 Controls 

Controls represent the second link in the man-machine closed 
loop system and are very much the complement of displays 
because they allow the operator to return information to the 
system environment. 
All the control keys should allow the user to communicate with 
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the machine and therefore they should be represented by single 
push buttons. For both options these function keys should have 
a similar function. This implies that some keys will have a 
meaning in one mode but no meaning in the other. 

6.3.1 Situation of the controls 

Because most of the users of the debugger will have some 
experience with the Pascal-packet 'Turbo Pascal' version 4 or 
5, the layout of the control keys looks like the ones of this 
tool. This means that we will display the active keys in a 
horizontal row on the bottom of the screen. 
The difference with Turbo Pascal is that for our two tools we 
only need to display seven different active function keys. 

6.3.2 Cursor movement keys 

All the needed cursor movements in the tracer and tree mode can 
be done with the four arrow keys '~','~','!' and '.' on the 
keyboard. Because the allowed cursor movements in both modes 
are quite limited, we will not use special computer input 
control devices like touch displays, light pens, bar-code 
scanners or mouses. Another reason not to use these devices was 
that the working space of the programmer will be quite limited 
and there will be no space left for special input devices like 
mouses. For example in the case of the blood-pressure . 
controller the knowledge engineer will also use a blood
pressure-simulator beside the debugger which will show the 
real-time blood-pressure-signals on the screen again. 

6.3.3 Feedback after a command 

After pressing one of the function keys most of these commands 
will respond by changing a part of the screen-layout. Only the 
function keys 'STATE' and 'Scrll' are commands which only put 
the tree mode in a special mode. The result of these commands 
will therefore only be noticed after displaying another rule 
evaluation tree. To show to the user that these special options 
are activated we will reverse the 'colors' of the appropriate 
control-button on the bottom of the screen. 

6.4 Special input 

For more experienced users we support special keys for making 
shortcuts in the debugging process. We can reduce the number of 
interactions by defining special keys for moving to the first 
or last run of the simulation block. 
Another helpful option can be not to display the extended rule
information window. 
Displaying all the values of all the rules on the screen is not 
desirable and not possible (the knowledge base is usually too 
large). Therefore the system asks the user to type in the rule
number of the rule he wants to examine. Every user can look up 
in the appropriate file rinfo.qqq what rule-number belongs to 
what rUle-name. 
rf the input is not the right format or is not within the 
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predefined limits, the system will generate a (soft-toned) beep 
and ask the question again. Informative feedback is given by 
showing the extended rule-information about the asked rule. 

6.5 Examples of debugging 

The best way to show how the total layout of the debugger 
looks, is by giving some screen-dump-examples of the debugger 
in operation. 

run II 23 

~
THEN 

THEN 
THEN 

133 

Tree 
GO-99 

GO-100 

GO-43 

r THEN 
I-THEN 

T133 HIST fAND -100 
F 15 

U141 -HIST 

rTHEN TR -83 
I-THEN 00 -20050 

133 HlST fAND -99 
15 

141-HlST 

TR-82 

DO -20051 
rTHEN DO -20038 

43 

figure 6.2: Debugger in the explain-mode 

Time 00:01 :55 

For this example the debugger was installed for two virtual 
screens, one for the tracer (see figure 6.3) and one for the 
explain facility called tree (figure 6.2). 
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Tracer Time: 00:01:55 
,,13';RE&ll)jl';;· 140 
1QO:SIIORTUi'S. 147 

'::::';~: ~iC:x:~ .. ::.:. ::::=: 133 
, ··.iii .,.' ... 

i,.99.;$IIORTl)()W 

ro~~:~TOSC : "Goal of Reglon 4, 5 8:~ 6" 
I~EST-rule Initially : Undefine 

F1-Chang" . i F2 ., ., .. '.,.,'. F3-Baelt . F4c(o~t . F5-tr"" ,'i'\F6~j!lti>.' . ...n';ElOit 

figure 6.3: Debugger in the tracer-mode 

6.6 Conclusions 

The final system turned out to be easy to use. The time needed 
to learn how to use the commands is very short, because almost 
all the possible commands are displayed on the bottom of the 
screen (no need to remember) and the appropriate actions 
belonging to a function key are carried out immediately after 
stroking the key (speed of performance). 
All the commands are reversible except the read-next-simulation 
block command because it is not possible to go back in time 
(because of rUle-histories). 
Depending on the kind of user some aspects of the system will 
be used more than others. The Scrllock function key probably 
will not be used very much. A programmer can avoid using this 
special option key by installing the displays of the debugging 
tools in a convenient way. 



43 

Chapter 7: User's manual for the debugger 

If an expert system is generated by the adapted SIMPLEXYS and 
executed in a real-time environment, then we can simulate the 
whole process again and examine it more carefully with the 
debugging tools. The simulator needs only the files 
rinfo.qqq,rhist.qqq and the dumpfile. Using the debugging tools 
in the simulation of a real-time process is following a 
predefined debugging process: 

1. Initialization 
2. choosing item in main menu: 

2.1. changing options 
2.2. debugging (tracing/explaining) 
2.3. simulating next block (until last block) 
2.4. exit 

Each step needs a different approach and will therefore be 
discussed separately. 

7.1 The initialization 

If we execute the simulator it will first print the header of 
the Simplexys application: 

A SIMPLEXYS EXPERT SYSTEM APPLICATION 

Copyright (C) 1987-89, Hans Blom 
Eindhoven University of Technology, Netherlands 

All rights reserved 

Simulating block of 100 runs 

At this point the simulator starts simulating the first block. 
After simulating 100 runs (default size for a simulation block) 
it will show the message how many runs it simulated and what 
the start- and finish-time of that block are. We also get the 
main menu on the screen now. 

7.2 The main menu 

The main menu consists of four possibilities (see figure 7.1). 

Menu : 

1 Change Options 
2 Run Debugger 
3 Next Block 
4 Exit 

figure 7.1: The layout of the main menu 
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Each option can be selected by just pressing the key with the 
appropriate number ('1', '2','3' or '4') or by pressing the 
appropriate function key ('F1', 'F2','F3' or 'F4') or just by 
pressing the key with the first character of the explanation
string of the action ('0', 'a', 'R'f 'r'f 'N', 'n', 'E' or 'e'). 

7.3 Changing options 

The first option of the main menu gives the possibility to 
change the start-time of the next simulation block and the 
possibility to change some display options (see figure 7.2). 

Common Options : 

1 Simulation-block from 
2 : Screen-presentation 

Tracer Options : 

00:00:00 to 00:08:25 
: tracer+tree 

3 Number of states shown by the tracer 1 
4 : Number of rules shown by the tracer 2 

Evaluation-Tree Options : 

5 : Automatic display rule-information : TRUE 

Comment : 100 runs in this simulation-block 

r
comment .. Select 

.;, .::",.-,:,-.-.-.":','.-: " ... 

figure 7.2 

option 

The change-option menu 

Each option can be chosen by just pressing the appropriate key 
('1' to '5') or function key ('F1' to 'F5'). For option 3,4 and 
5 the cursor will move to the default value and the user may 
type in the value. The computer will check if that value is 
within the predefined bounds. 
For option 1 the user has to enter a string containing 8 
characters. If he enters a shorter string, the start-time will 
not be changed. 
Option 2 is special because there are only three allowed 
values. The appropriate key will automatically 'switch' the 
value. Choosing for the option 'tree' will allow the user to 
use the debugger together with a small start-up program 
("explain.pas") as a stand alone explanation facility like FACE 
was. 
By pressing function key F7, the character 'e' or 'E' or the 
key combination Ctrl-Z will quit this mode and return to the 
main menu. If one of the options 2 to 5 is changed, then these 
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options will keep this value during the whole debugging process 
(option 1 is block-dependent). 

7.4 The debugger 

Option two of the main menu allows to examine the last 
simulated block of the process more carefully with the two 
debugging tools: tracer and tree. Depending on how the user 
defined the tracer, the layout of the two tools can look very 
different but the default one is shown in figure 7.3 (in this 
case the tracer option is installed for one State rule
representation (1) and two 'normal' rule-representation (11 and 
111) ) • 

Run , 

ST la 

TR 

PO lla 

FA 

TR 

PO llla 

FA 

D 

figure 7.3: The screen-layout of the debugging tools 

The total screen is divided into three types of independent 
windows: 
A-> Tracer or process information windows 1 to III 
B-> Single run information windows A to D 
c-> help information windows HI to H9 
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7.4.1 Tracer or process information windows 

The windows la,lla and lIla contain the graphical presentations 
of the run-values of the three chosen rules and the windows 
lb,llb and lllb are the information windows of these same 
rules. Notice that the normal rule information windows (llb and 
lllb) are larger than the State information window (lb) and so 
we can also display the history of the rule which it had at the 
first run. 

7.4.2 Single run information windows 

There are four run information windows: 
-) Window A 

A tells us which run we are examining with the tree mode. 
The information in this window is only changing when we are 
moving the cursor to the left or to the right in the tracer 
mode. 

-) Window B 
B tells us when the run actually took place. For real-time 
processes this window shows us the real-time of the run and 
for simulated processes this window shows us how many 
seconds are passed since the process began. 

-) Window C 
C tells us what State(s) are active (true) in this run_ 

-) Window 0 or the tree option window 
This window shows us the structure of one or more rules and 
highlights them if they are true at that run. Also the 
values of the leaves of the structured tree are displayed 
(T=true, F=false, p=possible, U=undefined). 

7.4.3 Help information windows 

There are nine different help information windows: 
-) Window Hl 

Hl shows us what mode is active (tracer or tree) at that 
moment. We need to display what mode we are in because for 
some rules like FACT rules only the information window H2 
is displayed and we do not know then what mode is active at 
that moment. 

-) Window H2 
H2 is a more complete information window than Ib,llb or 
lilb. It contains the rule-number, the rule-name, the rule
string, the kind of rule (FACT, ASK, TEST, MEMO, STATE) and 
the initial value. When the rule is also used as a trigger 
then this extra information is added to the information 
window ("used as trigger"). 

-) The windows H3 tIm H9 
These windows contain the action-strings belonging to the 
appropriate function keys. Some of these function keys 
contain the same string for both options: 

Fl-~A~ng~: With this function key we can display in the 
tracer option a different rule from the one in the 
window where the cursor is. In the tree option this 
function key will clear window 0 and it will display 
the structured tree of the entered new rule-number. 
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F6-Info : With this function key we can display the 
extended information of every rule where the cursor is 
pointing, in window H2. So in the tracer mode we will 
get the information of the rule displayed in the 
windows la,lla or lIla, which is a more complete rule 
information window than window Ib,llb or Illb. 
In the tree mode it is possible to move the cursor to 
the rule of which we want more information. 
If the user presses this key twice, he will be able to 
see extended information of all the rules in the 
rulebase (starts with the rule first entered in the 
tree mode). By pressing any key but the F6-key the user 
will quit this special feature and go back to the 
curE!pr.pqsition where he started this special feature. 
F7-'E:){it",0· also Ctrl-Z: With this function key we can 
leave the tracer and/or tree mode and return to the 
main menu for reading a new simulation block or to quit 
the tool. If there is no simulation block left (number 
of runs in last block is smaller than 100) we will also 
automatically quit the program. 

Function keys which differ for both options: 
Special.,TrCl.c;:~r optionK~Ys;. 

F3-Back{ and F4~Cbnt ... : It is not possible to show 100 
runs at once at the screen and so we need special keys 
to walk fast through these 100 runs. With the key F4 it 
is possible to move one half window forward (default 
value is 29 runs) and with F3 we can move the same 
number of runs back again. 
F5-Tree : With this function key we can switch to the 
tree mode: the cursor will move to window D. 

Special .. Tree.pption keys 
F2,'I'tee.. : This function key allows us to display the 
trees of the primitives of an already displayed 
structured tree. 
F3-state and F4-Scrll : These function keys can 
activate special features for the tree mode. When the 
State feature is active, all the State transitions 
which use this rule are displayed in a special way (see 
section 5.2.2). This feature can be useful when the 
user wants to have a look at the process description or 
if he wants to know what states will be active in the 
next run. When the Scrll feature is active all the 
structured trees will be displayed line by line. This 
feature can be useful if the structure of one rule is 
so large that it does not fit in any window and we 
still want to look at all its leaves. When a feature is 
active, the appropriate string will be displayed in 
reveFs"" ... (window H5 and/or H6). 
F5-',Ttac~r.: This function key allows the user to switch 
back to the tracer mode (window lla). 

7.4.4 Cursor movement keys 

With the exception of the special Tracer-keys F3 and F4, the 
cursor movement keys are not implemented in the option key
menu. 
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For the tracer mode (or when the cursor is in the window la,lla 
or llla): 

left arrow ('-'): with this key we can move back in time: 
current run:;current run-l. When the cursor reaches the 
left end of the window, all the graphs will move to the 
right. This is possible until we reached the first run of 
the simulation block (run #1). 
right arrow ('-'): with this key we can move forward in 
time: current run:;current run+1. When the cursor reaches 
the right end-of the window all the graphs will move one 
run to the left. This is possible until we reache the last 
run of the simulation block (for most of the simulation 
blocks: run #100). 
Home ('Hom.'): This key will move the cursor to the 
beginning of the window la,lla or llla. 
End (' End' ): This key will move the cursor to the end of the 
window la,lla or llla. 

For the tree mode (or when the cursor is in window D): 
Right Arrow ('-'): With this key we can move to the 
position of the rule-numbers of the THELSES-expressions-out 
of the current 'active' tree. 
Left Arrow ('oJ): with this key we can move back to the 
left side of the structured tree. 
With these two keys it is possible to get to the position 
in the screen of all the rule-numbers used in the tree. 
With function key F2 it is possible to draw a new sub-tree. 
Home ('Hom.'): This key will redraw the socalled parent 
structured tree. So together with function key F2 and the 
four arrow keys we can show all the trees of the leaves of 
the current parent tree. 

7.5 Simulating next block 

Option three of the main menu will clear the screen and try to 
simulate another block of 100 runs. The simulation will start 
at the time defined in the 'Change Options' menu (default is 
the finish-time of the last simulated block). 

7.6 Exit the debugger 

The debugger will not simulate the process to the end, but will 
quit the process by just making all the states inactive. 

7.7 Explain 

Besides examining the expert system by simulating the process, 
it is also possible just to examine the structures of the 
rulebase with the explanation facility 'tree'. To do so, there 
is developed a small program called 'explain' which includes 
the tree option of the debugger in its program. 
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Chapter 8: Conclusions 

The simulator-debugger combination can be used by all kinds of 
expert system users, but the knowledge engineers who know a 
little bit about Simplexys will have more profit from these 
facilities; users who know more about the problem-field are 
more able to optimize their knowledge-bases. The debugging 
tools can help these system-designers in doing this more 
efficiently and faster. 

After trying out the new Inference Engine with the two 
debugging tools on some small rulebases, there was a great need 
of examining the large rulebase of the blood-pressure 
controller. Although this rulebase contained many more states 
and although it was used for complex real-time processes, 
containing many links to Pascal, the new Inference Engine and 
Simulator had no problems on debugging/examining it. Lammers, 
however, used the debugger/simulator mainly for examining the 
process more carefully. He tried to find out ~ and ~ 
certain rules were evaluated during the real-time process. This 
examination of the process resulted in several modifications of 
the rulebase. 

Experts and knowledge engineers will not trust an existing 
expert system by just looking at the final decisions it takes. 
They want to know how the system came to these decisions. The 
debugger can be a tool to convince these people of the 
efficiency and correctness of the expert system. 

We have to mention here that it saves a lot of time in 
debugging if the programmer makes notes during the real-time 
process of the times when certain 'strange' decisions were 
taken (the special time-change option in the "Change option"
menu turned out to be very useful). 



50 

References 

Aleksander, I. et al. 
ROBOT TECHNOLOGY. Vol. 6: Decision and intelligence. 
London: Kogan Page, 1986. 

Blom, J.A. 
THE SIMPLEXYS EXPERT SYSTEMS TOOLBOX: Simplexys manual. 
Internal document. 
Division of Medical Electrical Engineering, Faculty of Electrical 
Engineering, Eindhoven University of Technology, June 1988. 

Boon, P.H.G. 
EFFICIENTIE EN CORRECTHEID VAN SIMPLEXYS EXPERT SYSTEMS. 
M.Sc. Thesis. Division of Medical Electrical Engineering, Faculty 
of Electrical Engineering, Eindhoven University of Technology, 1987. 

Brown, A.R. and W.A. Sa~pson 

PROGRAM DEBUGGING: The prevention and cure of program errors. 
London: Macdonald/New York: American Elsevier, 1973. 
Computer monographs, Vol. 18. 

Cassel, D. 
THE STRUCTURED ALTERNATIVE: Program design, style, and debugging. 
Reston, Virginia: Reston Publishing Co., 1983. 

Hair, P.J.A. de 
REALISATIE VAN EEN UITLEGFACILITEIT VOOR SIMPLEXYS EXPERT-SYSTEMEN. 
M.Sc. Thesis. Division of Medical Electrical Engineering, Faculty of 
Electrical Engineering, Eindhoven University of Technology, 1988. 

Hasling, D.W. et ale 
STRATEGIC EXPLANATIONS FOR A DIAGNOSTIC CONSULTATION SYSTEM. 
Into J. Han-Mach. Stud., Vol. 20, No.1 (1984), p. 3-19. Reprinted 
in: Developments in Expert Systems. Ed. by M.J. Coombs. 
London: Academic Press, 1984. Conputers and people series. P. 117-133. 

Harnon, P. and D. King 
EXPERT SYSTEMS: Artificial intelligence in business. 
Chichester: Wiley, 1985. 

Hausen, H.-L. (ed.) 
SOFTWARE VALIDATION; Inspection, testing, verification, alternatives. 
Proc. Symp., Darmstadt, 25-30 Sept. 1983. 
Amsterdam: North-Holland, 1984. 

Hendler, J.A. (ed.) 
EXPERT SYSTEr.1S: The user interface. 
Norwood, N.J.: Ablex, 1988. Human-computer interaction: a series 
of monographs, edited volumes and texts. 

Hoogendoorn, P. 
THE DESIGN OF A RULE BASED BLOOD PRESSURE CONTRO~LER. 
101. Sc. Thesis. Division of 1-1edical Electrical Engineering, 
Faculty of E:ectrical Engineering, Eindhoven University of 
Technology, 1989. 



51 

Khoroshevsky, V.F. 
ATN-BASED EXPLANATION SUBSYSTEMS: Design and implementation. 
Comput. & Artif. Inte11. (Czechoslovakia), Vol. 4(1985), p. 289-311. 

Neches, R. et al. 
ENHANCED MAINTENANCE AND EXPLANATION OF EXPERT SYSTEMS THROUGH 
EXPLICIT MODELS OF THE DEVELOPMENT. 
In: Froc. IEEE Workshop on Principles of Knowledge-Based Systems, 
Denver, Col., 3-4 Dec. 1984. New York: IEEE, 1984. P. 173-183. 
Reprinted in: Principles of Expert Systems. Ed. by A. Gupta and 
B.E. Prasad. New York: IEEE Press, 1988. IEEE Press selected 
reprint series. P. 283-293. 

Oborne, D.J. (ed.) 
ERGONOMICS AT WORK. 2nd ed. 
New York: Wiley, 1987. 

Osterweil, L. 
INTEGRATING THE TESTING, ANALYSIS AND DEBUGGING OF PROGRAMS. 
In: Software Validation: Inspection, testing, verification, alternatives. 
Proc. Symp., Darmstadt, 25-30 Sept. 1983. Ed. by H.-L. Hausen. 
Amsterdam: North-Holland, 1984. P. 73-102. 

Pau, L.F. 
PROTOTYPING, VALIDATION AND MAINTENANCE OF KNOWLEDGE BASED SYSTEMS 
SOFTWARE. 
In: Proc. 3rd Annual Expert Systems in Government Conf., Washington, 
19-23 Oct. 1987. Ed. by H.J. Antonisse. 
New York: IEEE, 1987. P. 248-253. 

Reisig, w. 
PETRI NETS: An introduction. 
Berlin: Springer, 1985. EATCS: Monographs on theoretical computer 
science, Vol. 4. 

Rolston, D.W. 
PRINCIPLES OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS DEVELOPMENT. 
New York: McGraw-Hill, 1988. 

Seviora, R.E. 
KNOWLEDGE-BASED PROGRAM DEBUGGING SYSTEMS. 
IEEE Software, Vol. 4, No. 3(May 1987), p. 20-32. 

Shortliffe, E.H. 
COMPUTER-BASED MEDICAL CONSULTATIONS: MYCIN. 
New York: American Elsevier, 1976. 
Elsevier computer science library: Artificial intelligence series, Vol. 2. 

Smith, T. 
SECRETS OF SOFTVIARE DEBUGGING. 
Blue Ridge Summit, Penn.: TAB Books, 1984. 

Tassel, D. van 
PROGRAM STYLE, DESIGN, EFFICIENCY, DEBUGGING, AND TESTING. 
Englewood Cliffs, N.J.: Prentice-Hall, 1974. 



52 

Enclosure 1: possible modes of the Inference Engine 

The Inference Engine can be used in three different modes (see 
section 5.1). To install the Inference Engine in one of these 
modes, you have to define one or two conditional compilation 
symbols 1: 

1- Inference Engine without generating a dumpfile 
no extra conditional symbols 

2- Inference Engine with generating the dumpfile 'simplex.sav' 
define conditional symbol EXAMEN 

3- Inference Engine as simulator/debugger 
define conditional symbols EXAMEN and SIMUL 

A 
Ruses.qqq 
Rinex.qqq 
Rdodo.qqq 
Rhist.qqq 
Rtest.qqq 
Rinfo.qqq 

Dumpbool.pas I 
Inference Engine 

figure 1: The adjusted Inference Engine 

A 
Ruses.qqq 

Rinfo.qqq 

Dumpboo 1 . pas I 
Inference Engine 

figure 2: The Inference Engine as Simulator 

dumpfile 

Simplex.sav 

f 
Real-time expert 

system 

dumpfile 

Simplex.sav 

U 
Debugger/Simulator 

So the Inference Engine in mode two will generate an expert 
system (see figure 1), which can be simulated by the Inference 
Engine in mode three (see figure 2). 
All the files in block A in figure 1 and 2 are generated by the 
Simplexys Rule Compiler. The files in figure 2, which are 

The procedure to do this more conveniently will be 
incorporated into the Options Builder tool. 
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represented bold, are different for both modes. 
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Enclosure 2: Adjustments for the Inference Engine 

mode 1 mode 2 mode 3 
p rocedure Old Inf. Eng. New Inf. Eng. Simulation 

in it time _timeO:=sys_ time _timeO:=sys_ time - timeO:= 
or 0 or 0 read time 

dump_time(_timeO) 

u pdate_ time time:= ....... - time: = ........ - time:= - dump_time <-time) read time -
e val rule ask : value:= ask : value:= ask:value:= - --ASKval ( ... ) ASKval ( ... ) read_ rule 

dump_rule (value) 

test : value:= test : value:= test:value:= - - read rule JTEST( ... ) JTEST( ... ) -dump_rule (value) 

applyHIST dummy: = dummy:=_FHIS( ... ) value:= 
JHIS( ... ) if dummy then read rule 

value:=TR else if value=TR 
value:=FA dummy:=true 

dump_rule(value) else 
dummy:=false 

- his _arr[] := u 

getFACTS _R[rule]:= _R[rule] := R[rule] := 
ASKval ( ... ) ASKval( ... ) read_ rule 

dump_rule (value) 

m ain infer open_dumpfile open_dumpfile 
program infer infer 

close_dumpfile close_dumpfile 
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Enclosure 3: dumpbool.pas 

Depending on whether the conditional symbol SIMUL is active or 
not, the debugger-file dumpbool.pas will look quite 
differently. 
Dumpbool.pas will be included by the Inference Engine and 
contains all the procedures and functions for writing/reading 
values to/from the dumpfile 'simplex.sav'. 
For the Inference Engine in mode three, this file will also 
include all the procedures and functions needed for the 
debugger (see table 1). 

Table I : The procedures of file dumpbool.pas 

not SIMUL 

dump_buf 
dump_time 
dump_ rule 

open_dumpfile 
close_dumpfile 

SIMUL 

debug 
read buf 
read-time 
read-rule 
find:::history 
{ counts the number of 
history-expressions in 
rhist.qqq. 

} 
open_dumpfile 
close_dumpfile 
expand 

make arr 
{ puts the result of 
the history
expressions and all 
the rule-values into 
two big trace-arrays 

} 
{ stops the process at a 
certain point for examining 
the last block 

} 
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Enclosure 4: The debugging procedure 

The file debug.pas, which will be included by dumpbool.pas, is 
actually only one procedure: procedure 'debug'. This procedure 
contains all that is needed to display and use the tracer and 
the explanation facility called tree (file debugmod.pas). 
In order to trace, we have to make some large arrays during the 
simulation: 
* for each run we need to remember the value of each rule 

(2 bits * [number of runs in one block] * [number of rules]) 
* for each run we need to remember the value of history 

expressions 
(2 bits * [number of runs in one block] * [number of 
expressions]) 

* for each run we need to remember the run-time of that run 
(long integer * [number of runs in one block]) 

* for the first run of the block, we need to remember the 
history of all the rules 

The procedure debug consists of several internal procedures: 

1. Debug 
1.1 show time 

display the time (longinteger) as __ __ 
1.2 Invers color 

Changing color of text and background 
1.3 Screenwriter 

To display all the needed menus and to determine sizes 
of different visual displays 
1.3.1 Get kind 
1.3.2 Get=init 

1.4 Check 
Check if input from user is within the predefined 
bounds 

1.5 graph1 
one-level method for displaying rule-values in tracer 

1.6 make_dyn_list 
three-level method for displaying rule-values in 
tracer 
1.6.1 drawdyn 

1.7 write inv 
writing the rule-number + shortened rule-name 

1.B write info 
system asks for new rule-number to display 

1.9 what hist 
how to display the history of a rule 

1.10 Change_color 
Inversing the colors of the control buttons on the 
screen 

* 1.11 change_option 
possibility to change the five display options for 
tracer and tree 

* 1.11.1 What time 
* 1.11.2 switch 
* 1.12 Make tree 

displaying tree structures of rules (=explain 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

1.13 

1.14 

1.15 

1.16 

facility} 
1.12.1 fin draw 
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1.12.1.1 Showiftrue 
1. 12.1. 2 Convert 
1.12.1.3 count 
1.12.1.4 HandleWindow 
1.12.1.5 trigger_list 
1.12.1.6 state list 
1.12.1.7 thelses 

1.12.1.7.1 Conv thelses 
1.12.1.8 DrawTree1 

1.12.1.8.1 Conv code 
1.12.1.8.2 Make_con 

1.12.1.9 DrawTree2 
1. 12.2 Find rule 
1.12.3 HandleMove 
conv_code 
transferring bool-values into numbers 
write time 
display new run-time and new run-number 
get_graph 
displaying the rule-values of one rule in tracer mode 
move cursor 
handling all possible key-strokes of user in tracer 
mode 
1.16.1 make init 
1.16.2 update_graph 
1.16.3 flash back 
1.16.4 continu 
1.16.5 follow 

1.17 rd data 
buIld up the whole tracer: display rules until no 
sub-display is left free in the tracer mode 
1.17.1 get_states 

The procedures/functions marked with a '*', are situated in the 
file debugmod.pas. 
The special program 'explain' contains the same 
procedures/functions only some of them are 'empty' (the ones 
referring to the tracer). 
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