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Abstract 
The paper proposes a new control scheme for non- 
linear robotic systems. The base of the scheme is an 
existing second order sliding mode controller aug- 
mented with an adaptive component. A computed- 
torque-like adaptive controller with a second order 
system type of measure of tracking accuracy is the 
source of the adaptation law. 
Extensive simulations of a nonlinear mechanical sys- 
tem, a robot with one rotational and one trans- 
lational degree-of-freedom with unmodeled actua- 
tor dynamics and parameter mismatch, confirm the 
suitability of the proposed scheme. 
In the presence of parameter errors adaptation re- 
duces the tracking error substantially without giving 
up robustness, by still guaranteeing attractiveness 
of the sliding surface. On the other hand, adapta- 
tion allows smaller feedback gains to be used, by 
that improving robustness without the cost of re- 
duced performance. 
Adaptation may improve the performance when un- 
modeled actuator dynamics is present, although to 
a lesser degree and not uniformly. The stability ro- 
bustness in this case is slightly worse. 

1. Introduction’ 
For the robust control of nonlinear systems at least 
two possibilities are known, adaptive and robust 
control. Adaptive control is aimed at reducing the 
performance degradation due to unknown or im- 
perfectly known parameters. Robust control aims 
at conquering the effects of more general model er- 
rors. Sliding mode control is especially suitable as a 
robust control methodology if the structure of the 
model errors is unknown but matched, and only an 
upper bound for their effects can be derived. It guar- 
antees robust performance in the presence of model 
errors and persistent disturbances, but at the cost 
of increased control authority. When an increase of 
the control authority is not desired, robustness can 
often be attained only by reducing nominal perfor- 
mance. 
To reduce the control action one could increase the 
model accuracy. A way to achieve this is to find more 

accurate model parameters, like they can be gener- 
ated by an adaptive controller. By merging adaptive 
and sliding mode control a controller robust against 
parameter errors, unstructured model errors, and 
persistent disturbances seems possible, without too 
much, or even any, increase in control authority. 
Several variants of sliding mode control exist. A slid- 
ing mode control with second order sliding condi- 
tion has been proposed (11 to increase the tuning 
capabilities compared with a controller based on a 
first order sliding condition. Also, an adaptive con- 
troller has been proposed [2] that uses a second or- 
der type measure of tracking accuracy for the adap- 
tation law. It s eem profitable to merge the two ap- 
proaches and by that to get better tuning capability 
and robustness than is possible with a standard first 
order sliding mode controller [3]. 
The contributions of this paper are a derivation and 
evaluation of a new control scheme, an evolution of 
two other control schemes. These schemes are pre- 
sented, and a straightforward combination thereof 
is derived. The usefulness of the newly proposed 
scheme is assessed by extensive simulations on a 
nonlinear mechanical system, a rotation translation 
robot. 
The next section discusses the standard model used 
to describe the mechanical system to be controlled. 
Is also presents the control schemes. The simula- 
tion results, discussed in Section 3, allow us to draw 
some conclusions in the last section. Finally, the Ap- 
pendix contains additional material related to the 
simulation model and controller settings, to allow 
independent verification of the results. 

2. Model and controller 
The system to be controlled is assumed to be a me- 
chanical system with n degrees-of-freedom q whose 
dynamics can be represented by the model 

~ ( q ,  e)ii + c(q, 4. + g(q.4,  e )  = f (1) 

with 6 the model parameters and f the generalized 
force generated by the actuators. The inertia ma- 
trix H is positive definite, the column C4 represents 
Coriolis and centrifugal forces while the column g 
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contains gravity and friction terms. The matrix C, if 
chosen appropriately, has the property that fi - 2C 
is skew symmeWic. Remark that by choosing this 
model structure we do not allow for joint or link 
flexibility, or for actuator or sensor dynamics. These 
effects contribute to the unmodeled dynamics. 
A SOSMC (second order sliding mode controller) for 
this model is given by [31 

fs = fi(& +KdG +Kp4) + 64 + g  
+ fi(-AS + Rs + K, s g n S )  

with K ,  large enough to guarantee attractiveness of 
the sliding surface S = 0, where the measure of 
tracking accuracy s is defined by 

S + As = 4 + Kdq + K, j: q dT. (2) 

Here fi = H ( q , 8 ) ,  etc., indicate estimates, while 
4 = q d  - q is the tracking error with qd the desired 
trajectory. 
The adaptive computed-torque-like controller pro- 
posed by Kelly [Z] is 

f k  = H ( q d  + K d q  + Kpq) + Pd + 8 + PV 
with v a filtered version of the tracking error 4 

V +AV = q + Kdq + Kpq. 

e = r Y [ v  

(3 1 

The adaptation law is 

with Yk derived from a linear parameterization of 
the control law 

f k  = yk(q,q, Gd + Kdq + Kpq, V)e. 
It is assumed that this parameterization is possible. 
For inertia parameters th is  is no strict assumption, 
but some friction models need approximations be- 
fore they can be linearly parameteiized [4,51. 
Comparison of both schemes leads to the proposal 
of the following adaptation law for the second or- 
der sliding mode control scheme (because v can be 
identified with S) . 

where now 

f s  = Ys(q,Lj,& + K d i  +Kpq - AS + 
Some remarks on these control schemes follow. 
In practice the sgn function can cause chattering 
and is therefore replaced by a smoothed variant, for 
which the sat function, defined component wise by 

e = ru;s 

+ KsSgnS)6. 

sgn(x) for 1x1 > Q, 

+- 'x  otherwise sat(x. a)  = 

is selected, although several other common variants 
exist. The width 9 of the band in which the sgn 
function is smoothed is a controller parameter to 
be selected by the designer. It should be chosen as 
small as possible to increase the 'guaranteed" per- 
formance, but still large enough to avoid chattering. 
A way to suppress chattering without giving up per- 
formance is treated in [6]. 
The controller matrices K d ,  K,, A, 52, and r are re- 
quired to be positive definite to get the desired sta- 
bility properties. In practice the actual values used 
are limited, e.g., by bandwidth considerations, to 
avoid exciting unmodeled dynamics and by that 
causing instability. The unmodeled dynamics can be 
neglected joint or link flexibility, actuator or sen- 
sor dynamics, sampled data controller implementa- 
tion, computational time delay in the controller, etc. 
See 131 for some guidelines on the practical tuning 
of the controller parameters. 
It is possible, without endangering stability, to drop 
the term -AS in f s ,  by that simplifying the con- 
trol law. This follows from an analysis of the Lya- 
punov function V used in the stability proof of the 
SOSMC. Removing the term mentioned improves its 
time derivative V .  
It proved profitable in practice to clip the time deriv- 
ative in the parameter update laws. This is even nec- 
essary whenever the initial measure of tracking ac- 
curacy is large, as happens when the initial state of 
the system is not close to the desired one. The result- 
ing large time derivative of 8, having no relation at 
all to parameter errors, leads to extreme variations 
in the estimated parameters, often in the wrong di- 
rection. To avoid too large excursions or even in- 
stability, the adaptation gain r is restricted. A small 
r leads consequently to a slow adaptation and th~s 
reduces performance considerably. Clipping 6 gets 
past these problems and allows a large r. 

3. simulations 
The system used to evaluate the controller is an RT- 
robot with two degrees-of-freedom, a rotational and 
a translational joint, both indirectly driven by a mo- 
tor and transmission unit. For a sketch of the system 
and some notation see Fig. 1. 
The model based part of the control law uses a nom- 
inal model of th~s system. An extended model, in- 
cluding motor dynamics, is used as the system to 
be controlled in the simulation. More details of these 
models and the parameter data are in the Appendix. 
To verify the hoped for qualities of the proposed 
scheme extensive simulations were done. Some of 
the ensuing results are presented. 
These results are for tracking of a circular trajectory, 
with center at x, = .S [m], yc = 0 [m], and radius 
rc = .25 Im]. One complete revolution takes 2 [SI. 
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Figure 1: Sketch of RT-robot 

The presented data uses as measure of tracking ac- 
curacy the RMS (root mean square) of the compo- 
nents of the tracking error. Before computing the 
RMS the error @ in angular direction is scaled with 
the desired state rd to avoid comparing apples and 
oranges. 
Only data for the second revolution is used to com- 
pute the RMS. This allows for settling of the parame- 
ter adaptation and avoids littering the results with 
initial transient effects caused by the discontinuous 
change in the derivative of the tracking error 4 at 
t = 0 (the desired angular velocity @Id(( ) )  f 0 while 
the initial velocity @(O) = 0). 
The following factors influencing the tracking error 
are studied 
1. adaptation gain 
2. errors in initial parameter estimates 
3. sensitivity to unmodeled dynamics 
4. simplification of the control law. 
At least two ways are open to introduce parameter 
errors. First, change the model parameters 8. Sec- 
ondly, vary the initial parameter estimates &O). In 
the frrst way the baseline performance changes with 
changes in the model parameters. The second way 
has the advantage of equal expected performance 
after convergence of the parameter estimates, be- 
cause the controlled system does not change. So in 
a graph of performance against (initial) parameter 
error a straight line is expected. Therefore parame- 
ter errors are introduced by varying &O). 
Figure 2 illustrates the influence of the first two fac- 
tors by giving a comparison between adaptive sec- 
ond order sliding mode controllers with different 
adaptation gains for several values of the initial pa- 
rameter estimates. 
The curves may be clipped because either the track- 
ing error became large, or the system went unstable. 
Without adaptation the last occurred for small ini- 
tial parameter estimates. The curves, parameterized 

RT-robot, SOSMC 
101 

M 

0 . .  . .  

50 100 150 200 l O ” 0  ’ ’ 

Initid B in % of nomind 

RT-robot, SOSMC 
101. 

’ 

loo1 
.... \ ,.7 i 

10‘0 i 50 100 150 200 

Initial B in % of nomind 

Figure 2: RMS of eacking errors for both degrees- 
of-freedom against initial parameter estimates for 
several values of the adaptation parameter y 

by the scalar adaptation parameter y ,  can be distin- 
guished by using the next legend 

I Y linetype I 
0 solid 
1 dashed 

10 dotted 
100 dash-dotted 

The following observations are made. 
0 The adaptation has not converged yet, this can be 

concluded because the curves for y > 0 are not 
flat. From other simulations over an extended pe- 
riod it is seen that the performance flattens out at 
the level obtained for correct initial parameters. 
For y < 530 this takes considerable time. 

0 With adaptation it is possible to compensate part 
of the effects of unmodeled dynamics. This fol- 
lows from the lower error around the nominal 
parameters, but it occurs only for larger adapta- 
tion gains, and especially in angular direction. 

0 Without adaptation the system is only stable if 
the initial parameter estimates are at least 50% of 
their nominal values. With adaptation the system 
is stable for all initial parameters investigated. 
Adaptation therefore improves stability robust- 
ness because the onset of instability for small 
initial parameters is shifted markedly, even for 
small y. 

0 Robust performance is increased because the 
larger the parameter errors the more relative im- 
provement the adaptive controllers bring. This 
is especially true for the angular direction, but 
could also reflect the situation for the radial di- 
rection after additional time for parameter con- 
vergence. 

While during the previous simulations the model 
parameters were fixed and the controller parame- 
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RT-robot, SOSMC lol ters, i.e., the initial parameter estimates, were var- 

ics, which have no related controller parameters, the 
simulation model parameters are changed. 
Here, the parameters of the motor dynamics were 
varied, while the initial parameter estimates were 
fixed at their nominal values. Analyzing the effects 
of unmodeled dynamics in h s  way is somewhat ar- 
tificial, but suffices to assess the robustness for pa- 
rameter errors and unmodeled dynamics. A more 
rigorous approach is to study the effects of produc- 
tion variations in motor data or the use of different 

ied, to assess the sensitivity to unmodeled dynam- - -  
E 

2 
types of motors. This was investigated also, but the 
results were not auite as illustrative as the Dresented 'qd4' 10-3' "lb[.2' l@I"'JO 

ones. Mech time constant T,,, [SI Mech time constant T,,, [SI 
Results for variation of the motor's electrical time 
constant 7 e  and mechanical time constant Tm are in 

and respectively. The nominal values of the 
time constants are indicated by vertical lines. 

Figure 4: RMS of tracking errors for both degrees-of- 
freedom against mechanical time constant for sev- 
eral values of the adaptation parameter y 

T I  5 

RT-robot, SOSMC 

/I ,. 

. . ;. . ,' __..- 
I :. 

1 9 1  1q;-., 

Elec time constant T e  [SI Elec time constant 7e [SI 

Figure 3: RMS of tracking errors for both degrees-of- 
freedom against electrical time, constant for several 
values of the adaptation parameter y 

For T~ variations, a large 7e makes the system unsta- 
ble. Adaptation, especially for large y, improves the 
performance, although not uniformly, but it does 
not improve robust stability because the onset of 
instability is already at smaller values of 7 e  if y > 0. 
The results for varying mechanical time constant 
Tm are inconclusive with respect to the profitabil- 
ity of adaptation. In the region around the nominal 
time constant adaptation is exceptionally profitable, 
which is pure coincidence. For smaller 7 m  adap- 
tation has detrimental effects, especially in radial 
direction. For larger T m  adaptation is consistently 
profitable. 

and the back-emf effect. Increasing km, so decreas- 
ing Tm, does increase the effects of the back-emf, 
making the motor dynamics more pronounced. See 
the Appendix for the relevant equations. 
Unlike the results for errors in the initial parame- 
ters, which could be interpreted straightforwardly, 
the results for unmodeled dynamics are less clear. 
It is hard to explain why there is such a difference in 
results for positive or negative variations in T~ and 
7 m  and between radial and angular direction. The 
changes in tracking errors are caused by a complex 
interplay between the nonlinear adaptation mecha- 
nism and the effects of the motor dynamics on the 
nonlinear system. An additional complication is the 
sampled data implementation of the controller with 
its associated sampling rate. A fundamental expla- 
nation seems hard to get by. 
From these results the conclusion should be that 
adaptation has it shortcomings when unmodeled 
dynamics is present. Fortunately, the sliding mode 
character of the control provides already for some 
robustness for these types of model errors. 
Finally, we evaluate the modification of the basic 
adaptive SOSMC by dropping the term -AS. Figure 5 
shows the results for initial parameter errors for 
both control schemes. Comparing the curves reveals 
that removing the indicated term improves the per- 
formance slightly and has no detrimental effects. 
The main advantage is that, without adaptation, the 
stability range of the controlled system is increased. 
This follows from the later onset of instability for 
small values of e(0 ) .  

The increase of the tracking errors with decreasing 
f m  may be counter intuitive. It is however easy to 
explain by considering the relation between the in- 
fluence of the motor constant k,, used to V W  T m ,  

Simulations for the modified control scheme with 
varying unmodeled dynamics only show insimfi- 
cant differences. It does not deserve a detailed pre- 
sentation. 
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SOSMC -, modified . . . 
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E E E 

b o -  

$ 
E 10-1: .- ; 2  
L. U 

0 - L .  
- 0  

Initid B in % of nomind 
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Figure 5: RMS of tracking errors for both degrees-of- 
freedom against initial parameter errors for y = 0 
and y = 100, original and modified control law 

4. Conclusion and recommendation 
The proposed control scheme does improve sub- 
stantially over its nonadaptive counter part. It is 
especially suitable for systems with substantial pa- 
rameter errors. Adaptation is less profitable in the 
presence of significant unmodeled dynamics, or 
even not profitable at all. 
To further assess the potential of the proposed con- 
trol scheme, experiments are a conditio sine qua 
non. Extensive evaluation and validation, on at least 
one mechanical system, is expected to be performed 
shortly. 
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Appendix 
This section contains the models and data of the 
RT-robot, see Fig. 1, used for design purposes and 
in the simulations. The equations of motion for the 
two degrees-of-freedom system are 

e l f  - (Blr - e,)@2 = F 

(O1r2 - zo2r + e3)q  + 2(o1r  - e2)t@ = T 
(4) 

where 

81 = m + ml 
1 
2 

82 = -ml 

1 
3 

e3 = J + -m12. 

The equations do easily fit in the general model (1) 
by taking 

9 =  [;I. 
It is assumed that the manipulator moves in the hor- 
izontal plane, so gravity terms are not included. 
The parameterization used is minimal and linear. 
Not all parameterizations are linear, e.g., it is not 
possible to use the length I as parameter because 
it enters nonlinearly in the differential equations. 
When using these equations of motion and parame- 
terization, the following expressions result for the 
matrices Ys and Yk used in the control laws 

” = [ r ( r h ,  i Z t @ )  -2rh9 - 2r@ h,  O 1  
hr - r e 2  (-Pz 

with 
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These expressions are used to-compute both the 
control laws according to f. = Y 8 and the parameter 
update laws 8 = rYTS or 8 = rY:v, where S and v 
follow from (2) and (3). The initial values for s and v 
were taken equal to zero. Changing these values can 
have a marked influence on the initial Wansient. 
To accommodate unmodeled dynamics the equa- 
tions of motion (4) are extended with actuator dy- 
namics for use in a simulation model. Both motors 
are assumed to be of the same type and are ac- 
counted for by the differential equation 

- R  1 k m  f = (U - f )  - - (-) 4 L i  

and by modifications of inertia parameters to in- 
clude the moments of inertia of motors and trans- 
missions. Here U is the (new) controller command 
and R, L ,  and km are constant motor parameters, 
whose meaning is clear from the usual notation. The 
parameter i is the transmission ratio. 
In the stationary state, so f = 0, and with zero ve- 
locity, the torque f applied on the system with or 
without motor dynamics is the same. When the mo- 
tor is turning, so tj * 0, but still stationary, so f = 0, 
the back-emf reduces the available torque f .  For in- 
stationary events the dynamics of the motor, partly 
determined by the electrical time constant T~ = i, 
plays a more intricate role. 
The data used in the simulations is given in Table 1 
for the basic controller data and in Table 2 for the 
basic data in the simulation model. 

Table 1: Controller data 
Parameter Value Unit 

A [:, 3 s-l 

r 
Ks 10 SI 

0.47 SI 

The controller parameter matrices, unless indicated 
otherwise, are taken diagonal with identical values. 
When appropriate, only those values are in the table. 
The adaptation gain r is a diagonal matrix of a fixed 
smcture with varying scalar gain y. 

Table 2: Simulation data 
Parameter Value Unit 

= m + m/ + 9 + m, 15.51 kg 
5 .OO 
8.85 

1.6 
70.10-3 

4.10-3 
27  * 

0.5 
0.5 

2.5 . 1 0 - 3  
8.8 . 

0.05 
0.04 

kg m 
kg m2 
Nm A-' 
R 
H 
kg m2 
kg 
kg m2 
S 

S 

m 

The data of the mechanical system does not repre- 
sent a real system. The motor data stems from the 
specifications of an Electro Craft E-540 SA motor. 
The values of m, and mq) take account of the mass 
and moment of inertia of the transmission between 
motor and link. These values are not based on real 
data. The transmission ratios ir and i, are used to fit 
the force and torque requirements of the mechani- 
cal system and its desired trajectories to the torque 
characteristics of the motor. 
For the simulations with parameter variation the 
cpntroller data for the initial estimated parameters 
O(0) was varied, based on their nominal values in 
Table 1. For the unmodeled dynamic simulations 
the simulation data for T~ and T m  were varied by 
changing the nominal values of L or km. Changing 
these values did influence only one time constant, 
not both, see Table 2. 
Clipping of 8, as mentioned in Section 2, was per- 
[ormed at the current value of 8. This implies that 
8 cannot vary faster than a first order system with 
a time constant of 1 Is]. A good value for t h i s  time 
constant depends of course on the system to be con- 
trolled. The value of 1 [SI seemed quite appropriate 
here, but was still determined ad-hoc. 
The controller implementation is a sampled data 
one with a sampling frequency of 100 [Hz]. The sim- 
ulation model's differential equations were solved 
by a third order Runge-Kutta scheme with a pre- 
cision controlled step size, synchronized with the 
sampling instances of the controller. 
The simulation program is coded in C++, using an 
object oriented package called TCE (Tools for Con- 
trol Experiments) 171. This package includes facili- 
ties for matrix and vector computations, time series 
handling, etc.. and it provides a data exchange inter- 
face with MATLAB. 
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