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In this report a mechanical equivalent of the electrical Chua's circuit as proposed 
in [I] is analysed. The idea behind this mechanical Chua is that through the gen- 
eration of a negative stiffness, a mechanical equivalent of the negative resistance in 
the electrical Chua is formed. The wide variety of dynamical behaviour that the 
relatively simple electrical Chua's circuit can generate makes the electrical Chua 
an interesting system. This wide variety of behaviour includes various types of 
bifurcations, period doubling and chaos. 
The main issue in this report is to investigate if the proposed mechanical Chua is 
able to  produce the same diverse dynamical behaviour as the electrical Chua. To do 
this the following two questions have to be answered. Is the proposed mechanical 
Chua able to produce a negative stiffness? How does the ability or inability of the 
proposed mechanical Chua to produce a negative stiffness influence its dynamical 
behaviour? 
This report is organised as follows. First the electrical Chua is analysed. The 
governing equations of the electrical Chua are derived and the equilibrium points are 
calculated. The stability of the equilibrium points is examined and some simulations 
are performed to illustrate the diverse dynamic behaviour of the electrical Chua. 
After the analysis of the electrical Chua the mechanical Chua as proposed in [l] 
is analysed. The governing equations are derived and constraints acting on these 
governing equations are formulated. The equilibrium points of the mechanical Chua 
are calculated and their stability is analysed. Finally the equivalence of the electrical 
and mechanical Chua is analysed. The nondimensional governing equations of the 
electrical and mechanical Chua are formulated and compared to determine the 
parameters of the mechanical Chua. Equivalence constraints are formulated and 
the region of equivalence is investigated. 



2 Chua's Circuit 

Chua's circuit (see figure 2.1) is one of the simplest electrical systems that pro- 
duces a wide variety of chaotic behaviour. It consists of four standard linear circuit 
components ( 2  capacitors, a resistor and a coil) and one nonlinear component (the 
piecewise linear resistor NR) .  In this chapter the governing equations of Chua's cir- 
cuit are presented. The equilibrium points of Chua's circuit are calculated and the 
influence of the linear resistance R on the equilibrium points is analysed. To illus- 
trate the typical behaviour of Chua's circuit simulations of the governing equations 
are presented. 

2.1 Governing Equations 

The governing equations of Chua's circuit are of the following form: 

In these equations vl and v2 represent the voltage difference over the capacitors 
C1 and C2 respectively. iL is the current through the coil L. The piecewise linear 
function f ( v l )  represents the V R  - iR characteristic (see figure 2.2) of the nonlinear 
resistor N R  and is defined as follows. 

In this equation G, and Gb are the slopes of the curves that characterise the non- 
linear resistor R as shown in figure 2.2. The parameters G, and Gb are negative 
and real. For the nonlinear resistor considered here the folowing relation between 
the parameters G, and Gb also holds: lGbl < IG,(. 
Because of the piecewise Iinear character of the nonlinear resistor N R  the state space 
of Chua's circuit can be divided into three separate regions for which a distinct linear 
set of governing equations holds. These regions are defined as vl  > E ,  -E < v l  < E 
and vl  5 -E. 

2.2 Equilibrium Points 

The equilibrium points of Chua's circuit are calculated by requiring that the state 
variables x = (v l  v2 iLIT are constant with respect to time. This leads to the 



Figure 2.1: The circuit diagram of 
Chua's circuit with the nonlinear re- 
sistor NR. 

following three equilibrium points. 

Figure 2.2: The piecewise linear 
vR-iR characteristic of the nonlin- 
ear resistor NR. 

Where the conductance G defined as G = 1/R is real and positive. Because of the 
piecewise linear character of the governing equations of Chua's circuit the equilib- 
rium points Z;, 2; and K; only exist if they lie in the appropriate regions of state 
space. The equilibrium point Zz only exists if it lies in the region of state space 
defined by -E < ul < E. For the equilibrium point 2; this is always true and 
therefore it always exists. The equilibrium points 2: and 2; only exist if they lie 
in the regions of state space defined by vl 2 E and ul 5 -E respectively. By com- 
bining these requirements with the equations (2.5) and (2.7) the following condition 
for the existence of the equilibrium points 5Ez and 2; can be defined. 

Making use of the signs of the parameters G, and Gb and the relation JGbJ < ]Gal 
equation (2.8) can be rewritten to the following relation between the parameters G ,  
G,  and Gb. 

-Gb < G < -G, (2.9) 

This equation is equiva!ent to the following condition on the resistance R. 

Stability Of The Equilibria 

The stability of the equilibrium points of Chua's circuit is determined by calculating 
the eigenvalues of the linearisations around these equilibrium points. The lineari- 
sations around the equilibrium points 2: and Z; are identical. As a consequence 
these linearisations have identical eigenvalues and eigenvectors and therefore pos- 
sess identical stability properties. The characteristic equations of the linearisations 



Figure 2.3: The real part of the eigen- Figure 2.4: The real part of the eigen- 
values of the linearisation of Chua's values of the linearisation of Chua's 
circuit around Zz as a function of the circuit around Zz as a function of the 
resistance R. resistance R. 

around the equilibrium points 2: and Zz are of the following form. 

A:+ + - + - Gb + G Gb + G) (Lc2 GbG ) A,, + -- - A%+ + -+ ----- ( Cl 
- 0 (2.11) 

Cl c2 c1 C2L 

Where A,, and A,, are the eigenvalues of the linearisations around ZB and 2: 
respectively. Equations (2.11) and (2.12) can be solved analytically but the resulting 
solutions are so complex that they are of little practical use. The real parts of the 
eigenvalues A,, and A,, are plotted as a function of the resistance R in the figures 
2.3 and 2.4. The electrical parameters used in calculating these eigenvalues are 
defined in table 2.1. 
Figure 2.3 shows the eigenvalues of the linearisation around the equilibrium point 
Z: as a function of R. Because the equilibrium point 2: only exists for values of 
R between R = -l/Ga = 1423 R and R = -l/Gb FZ 2315 f2 the eigenvalues shown 
in figure 2.3 are only valid for values of R between these values. Figure 2.3 shows 
that for values of R between approximately R FZ 2048 R and R = -l/Gb z 2315 R 
the equilibrium point Zz is stable. This figure also shows that for R = 1638.5 R 
two eigenvalues change sign. 
Figure 2.4 shows that the equilibrium point 2: is unstable for all values of R. One 
of the eigenvalues of the linearisation around Zz is always positive, one eigenvalue is 
always negative and the remaining eigenvalue switches sign at R = -l/Ga = 1423fl. 

2.3 Simulations 

In order to illustrate the diverse dynamical behaviour of Chua's circuit simulations 
of the dimensional governing equations are carried out. In these simulations the 
electrical parameters as defined in table 2.1 are used. The resistance R is used as a 
bifurcation parameter and is therefore variable. Figures 2.5 through 2.18 show the 
behaviour of Chua's circuit for different values of R. 
For R = 2100 R the equilibria Z: and Z; are stable but the equilibrium point 
Zz at  the origin is unstable. In figures 2.5 and 2.6 simulation data of the stable 
equilibrium point 2: is shown. 
If R is decreased to R = 2047.5 R the stable equilibria Z: and Z; become unstable 
and stable period 1 periodic orbits form around these equilibria. To determine 



Table 2.1: The parameters 
used in the simulations of the 
electrical Chua. 

the period time and the Floquet multipliers of these periodic orbits the shooting 
method is used. For the periodic orbit around Z: this leads to  a period time 
of T = 4.026 . lop4 [s] and to the Floquet multipliers yl = 0.014446 and y2,3 = 
1.00 f 1.984. 10W4i. Because Chua's circuit is an autonomous system at least one of 
the Floquet multipliers should be equal to one. The Floquet multipliers found with 
the shooting method do not fulfill this requirement because of numerical errors in 
their computation. A periodic orbit of an autonomous system is stable if all Floquet 
multipliers fulfill the following condition: (y(  < 1. For the Floquet multipliers 
found with the shooting method this requirement is not strictly satisfied because of 
numerical computation errors. Nevertheless the periodic orbits around 28 and 2; 
are stable. Simulation data of the periodic orbit around ZT is shown in figures 2.7 
and 2.8. 
By decreasing R further to R = 2020 f2 both stable period 1 periodic orbits become 
period 2 stable periodic orbits. The periodic orbit around the unstable equilibrium 
point Z$ has a period time of T = 8.141 . loW4 [s] and the following Floquet mul- 
tipliers: yl = -1.0471, yz = -2.2905. l ~ - ~  and y3 = 1.0249. Again because of 
numerical errors the Floquet multipliers do not strictly fulfill the stability condition 
while the periodic orbit is stable. Figures 2.9 and 2.10 show simulation data of the 
stable periodic orbit around 2;. 
At R = 1950 f2 the two stable periodic orbits around 2: and 2; have merged 
into one large periodic orbit. The period time of this periodic orbit is equal to  T = 
4.~56.10-~[s]  and its Floquet multipliers are equal to yl = 5.0145.10-3, y2 = 1.4551 
and ys = 0.99999. The Floquet multiplier y2 is real and larger than 1 and therefore 
the periodic orbit is unstable. Figures 2.11 and 2.12 show simulation data of the 
merged periodic orbit. If the initial state variables x,, are chosen relatively close 
to the unstable periodic orbit the chaotic double scroll Chua attractor as shown in 
figures 2.13 and 2.14 is formed. For initial state variables x,, relatively far from 
the unstable periodic orbit the behaviour of Chua's circuit is unstable i.e. solutions 
diverge. 
By further decreasing the resistance R the trajectories tend to stay near the unstable 
periodic orbit longer before falling back to the double scroll attractor (see figures 
2.15 and 2.16). For values of R below R 1785.82 f2 all possible trajectories are 
unbounded (see figures 2.17 and 2.18). This is due to a boundary crisis (i.e. the 
chaotic double scroll Chua attractor collides with the unstable periodic orbit) that 
occurs at  approximately R x 1785.82 f2 [2]. 



Figure 2.5: The phase plot of a sim- Figure 2.6: The different signals in 
ulation of Chua's circuit for R = the simulation of Chua's circuit for 
2100 f2 and x,, = (5,0,0). R = 2100 f2 and x,, = (5'0'0). 

Figure 2.7: The phase plot of Figure 2.8: The different signals 
a simulation of Chua's circuit for in the simulation of Chua's circuit 
R = 2047.5 f2 and x,, = for R = 2047.5 f2 and x,, = 
(11.9462,0.6638, -0.0064). (11.9462,0.6638, -0.0064). 

Figure 2.9: The phase plot Figure 2.10: The different signals 
of a simulation of Chua's cir- in the simulation of Chua's cir- 
cuit for R = 2020 f2 and cuit for R = 2020 f2 and x,, = 
x,, = (12.7004, -1.2805, -0.0102). (12.7004, -1.2805, -0.0102). 



Figure 2.11: The phase plot 
of a simulation of Chua's cir- 
cuit for R = 1950 L? and 
x,, = (10.9650, -4.1129, -0.0150). 

Figure 2.12: The different signals 
in the simulation of Chua's cir- 
cuit for R = 1950 L? and x,, = 
(10.9650, -4.1129, -0.0150). 

Figure 2.13: The phase plot Figure 2.14: The different signals 
of a simulation of Chua's cir- in the simulation of Chua's cir- 
cuit for R = 1950 L? and cuit for R = 1950 L? and x,, = 
x,, = (8.9867,0.4937, -0.0054). (8.9867,0.4937, -0.0054). 

0 0.002 0.004 0.006 0.008 0.01 0.012 
Time [s] 

Figure 2.15: The phase plot of a sim- Figure 2.16: The different signals in 
ulation of Chua's circuit for R = the simulation of Chua's circuit for 
1786 L? and xo = (5,0,0). R = 1786 L? and xo = (5,0,0). 





3 A Mechanical Equivalent Of 
7 .  n= Chua s b~rcui t  

In [I] mechanical equivalents of Chua's circuit are presented. In this chapter one of 
these mechanical equivalents will be analysed. First the principle behind generating 
a negative stiffness is explained. Then a linear model of the mechanical Chua is 
derived and the constraints that apply to  the mechanical Chua are formulated. 
The equilibrium points of the mechanical Chua are calculated and compared to the 
equilibrium points of the electrical Chua. 
The mechanical equivalent of Chua's circuit under consideration is shown in figure 
3.1. The mechanical Chua shown in figure 3.1 can be divided in three separate mech- 
anisms with one degree of freedom each. These mechanisms are coupled together 
through electromechanical devices. 
The main part of the first mechanism (mechanism 1) is a rotating disc of radius r 
whose center is fixed in space and whose moment of inertia is negligible. Attached 
to this disc are a damper with damping coefficient cl and a spring with stiffness 
k l .  All springs and dampers used in the mechanical Chua are assumed to be linear 

Figure 3.1: The first mechanical equivalent of Chua's circuit as presented 
in [I]. It consists of three separate mechanisms that are coupled together 
through electromechanical devices (EMD) . 

9 



and massless. The spring with stiffness k1 is also attached to the mechanism OCB 
which in turn is coupled to the rotating disc by the rigid rectangular frame CE. 
The connection between the rigid frame CE and the mechanism OCB is realised 
by a horizontal slider at point C. The point B of the mechanism OCB can only 
move in the horizontal direction and for small rotations of the disc is assumed to  
lie on a straight line together with the points 0 and A. For small rotations of the 
disc rotations of the rigid frame CE are assumed to be negligible. In effect this 
means that the vertical displacements of the points C and E are equal. In order 
for the mechanism to produce a piecewise-linear stiffness there are two springs with 
stiffness k2 positioned on either side of point D at the top of the disc. These springs 
are only activated when the point D contacts one of the springs. All the forces 
acting on the mechanism are assumed to lie in the same plane as the center of 
gravity of the disc. In practise this can be achieved by a symmetric construction of 
the mechanism. 
The second mechanism (mechanism 2) consists out of a damper with damping 
coefficient c2 and a spring with stiffness 53. This spring and damper are considered 
to be massless and connected to each other through a massless body. The third 
mechanism (mechanism 3) is a single massless damper with damping coefficient cs. 
The three mechanisms are coupled to each other through electromechanical devices 
that exert the electromechanical forces PI ,  P2, P3 and P4 on the different mecha- 
nisms. Mechanism 1 is coupled to mechanism 2 through the electromechanical force 
PI. Mechanism 2 is coupled to the mechanisms 1 and 3 through the electromechan- 
ical forces Pz and P3 respectively. Mechanism 3 is coupled to mechanism 1 through 
the electromechanical force P4. The electromechanical forces PI ,  P2, P3 and P4 are 
proportional to the displacements of the different mechanisms as indicated in figure 
3.1. The displacements XA, xn, xo, y and z are positive in the directions indicated 
in figure 3.1. 
There is an essential difference between the electrical and mechanical Chua. In the 
electrical Chua an implicit energy source is present in the form of the nonlinear 
resistor NR. In the mechanical Chua (as presented here) there is no energy source. 
As a consequence it is very unlikely that the mechanical Chua can reproduce the 
diverse dynamical behaviour of Chua's circuit. 

3.1 The Principle Behind Generating Negative Stiffness 

The main idea behind the mechanical Chua shown in figure 3.1 is that the piecewise- 
linear negative resistance in Chua's circuit can be thought of as the electrical equiv- 
alent of a piecewise-linear negative stiffness. This equivalence between the electrical 
and mechanical system is based on the nondimensional governing equations of both 
systems. When the governing equations of the electrical aad mechanical system 
are transformed to a nondimensional form the negative resistance and the negative 
stiffness produce identical terms (see appendix B). 
In the mechanical Chua shown in figure 3.1 mechanism 1 is the mechanical equiva- 
lent of the electrical governing equation (2.1) and should therefore generate a neg- 
ative stiffness. This negative stiffness is generated as follows. A counterclockwise 
rotation of the disc causes the point E and therefore the rigid frame CE connected 
to this point to move upwards. As a consequence the point B of the mechanism 
OCB moves to the right. If the mechanism OCB is constructed in such a way that 
the point B moves further to the right than the point A on the rotating disc then 
the spring with stiffness k1 is stretched. This stretching of the spring causes it to 
exert a force on the disc in the direction of motion of point A. In effect this means 
that a small counterclockwise rotation of the disc creates a force on the disc at point 



Figure 3.2: The mechanism OCB in its ini- 
tial configuration (OCB) and after a counter- 
clockwise rotation of the disc over an angle cp 
(OC'B'). 

A that tends to continue rotating the disc in the counterclockwise direction. This 
type of response is called a negative stiffness. 
The mechanism OCB is also connected to the rotating disc at  point E through the 
rigid frame CE. Because of this coupling the spring force at  point A generates a 
reaction force at point E on the disc. This reaction force at point E works in the 
opposite direction of the spring force at point A, therefore mechanism 1 can only 
produce a negative stiffness if the reaction force at point E is smaller than the spring 
force at point A. 

3.2 Derivation Of A Linear Model 

In this section a linear model of the mechanical Chua shown in figure 3.1 is derived. 
The three mechanisms that make up the mechanical Chua are modeled separately. 
The total model of the mechanical Chua is obtained by joining the three separate 
models of the individual mechanisms. 

Mechanism 1 

The first mechanism considered is the rotating disc that is connected to the mech- 
anism OCB. Because of the relatively large number of forces acting on the rotating 
disc the forces are determined separately. After the forces have been determined the 
equations governing the dynamics of the rotating disc are determined by requiring 
an equilibrium of moments that are acting on the disc. 
The force that the spring with stiffiiess Icl exerts on the rotating disc depends on 
the horizontal displacements of the points A and B. For small rotations cp around 
cp = 0 the horizontal displacement of point A can be written in the following form. 

The horizontal displacement of point B can be derived from the kinematics of the 
mechanism OCB and the rigid frame CE. A schematic drawing of the mechanism 
OCB is shown in figure 3.2. For a counterclockwise rotation of the disc over an  
angle cp the point B moves from its initial position B a t  p = 0 to the position B'. 
The horizontal displacement of the point B can be expressed as: 

zg r BB' = 2 ( O P  - OK) 

= 2 ( ~ 3  - (h  - d)2 - &V) (3.2) 



The rigid frame CE couples the vertical displacement of the point E on the disc t o  
the vertical displacement of the point C in the mechanism OCB. For small rotations 
cp of the disc rotations of the frame CE are negligible. The vertical displacement of 
the point C can be written as: 

d = rsincp (3.3) 

Substituting this relation into equation (3.2) leads to the following expression for 
the horizontal displacement of the point B: 

The above expression for XB is clearly not equal to the expression found in [I]. 
The expression found in [I] is obtained by applying a first order approximation 
to equation (3.4) around cp = 0. This leads to the following expression for the 
horizontal displacement of the point B. 

Using equations (3.1) and (3.5) and assuming that for small rotations cp the points 
0, A and B lie approximately on a straight line the spring force FA can be written 
as : 

Because of the coupling between the rotating disc and the mechanism OCB through 
the rigid frame CE a reaction force FE is exerted on the disc at point E. This reaction 
force results from the spring force FA that acts on the mechanism OCB at point B. 
For this reaction force the following relation holds (see appendix A): 

The springs with stiffness k2 are only "active" when the horizontal displacement of 
point D is larger respectively smaller than the gap XI. In other words the springs 
with stiffness k2 only exert a force on the rotating disc if XD > xl  or XD < -XI 

respectively. For small rotations cp the contact angle cp* can be defined as cp* = %. 
The spring force FD can now written as: 

The forces generated by the electromechanical actuator and the damper at point F 
can for small rotations cp be written as: 

F,, = clr@ cos cp GZ clr@ (3.10) 

Where XI is a constant of proportionality that relates the vertical displacement of 
mechanism 2 to the electromechanical force PI. 



Based on the free body diagram of the rotating disc shown in figure 3.3 the equation 
of motion of the disc can be written as: 

The terms FAr and -FEr in the equation of motion (3.11) can be combined into 
one term by making use of the expressions for FA and FE as defined by equations 
(3.6) and (3.7) respectively. 

The geometrical constant 6 is defined as: 

Combining the definition of the geometrical constant 6 with equation (3.13) shows 
that by definition the spring force FA is always smaller than the reaction force FE. 
Substituting the relations describing the different forces into equation (3.11) and 
combining the terms FAT and -FEr leads to the following second order equation 
of motion: 

The equation of motion (3.16) can be rewritten as a first order differential equation 
by neglecting the moment of inertia of the disc. This leads to the following first 
order equation of motion. 

At a first glance this first order equation of motion seems to be similar to  the 
equation of motion found in [I] but this is not the case. The definition of the 
geometrical constant 6 differs from the definition of E ased in [I] and consequently 
the equation of motion (3.17) is not identical to the equation of motion found in 

PI. 

Mechanism 2 

The free body diagram of the second mechanism that is part of the mechanical 
Chua is shown in figure 3.4. For the electromechanical forces acting on the second 
mechanism the following equations hold: 

The constants Xz and X3 are constants of proportionality that relate the displace- 
ments z and z~ to the electromechanical forces P2 and P3 respectively. For the 



Figure 3.3: The free body Figure 3.4: The free body diagrams of mech- 
diagram of the rotating disc anism 2 (left) and mechanism 3 (right). 
that is part of mechanism 1. 

forces produced by the spring with stiffness k3 and the damper with damping coef- 
ficient c2 the following relations hold. 

Neglecting the mass of the object that connects the spring to the damper the equa- 
tion of motion of mechanism 2 can be written as: 

Mechanism 3 

Mechanism 3 consists of a single massless damper with damping coefficient cs. The 
free body diagram of this damper is shown in figure 3.4. The forces acting on the 
damper can be described by the following equations. 

The constant of proportionality A4 relates the vertical displacement y to the elec- 
tromechanical force Pg. Using the above expressions for the forces acting on the 
damper the equation of motion of mechanism 2 can be written in the following form. 

3.3 Constraints On The Mechanism 

There are two types of constraints that apply to the mechanical Chua. The first 
type of constraint is based on the physical limitations of the mechanism. The second 
type of constraint results from the requirement that mechanism 1 has to produce a 
negative stiffness. 

Physical Constraints 

The physical constraints that apply to the mechanical Chua limit the ways in which 
the model parameters can be chosen because of physical limits. There are two 



physical constraints that apply to the mechanical equivalent of Chua's circuit. The 
first and most general of these constraints is the requirement that all mechanical 
parameters are real. 

The second constraint is based on geometric limitations and can be expressed as: 

Constraint equation (3.25) limits the parameter h as a function of the parameter a .  
This constraint results from the fact that it is physically impossible to choose the 
parameter h larger than the parameter a. This can be understood by examining 
figure 3.2 in which the parameters h and a are defined. 

Negative Stiffness Constraints 

To guarantee that mechanism 1 produces a negative stiffness two constraints have 
to be placed on this mechanism. The first of these constraints is needed to ensure 
that the spring with stiffness kl is stretched for a rotation p in the counterclockwise 
direction, thereby generating a negative stiffness. The second constraint is needed 
to ensure that the reaction force FE is smaller than the spring force L!A which 
guarantees that the "net spring force" is indeed a negative stiffness spring force. 
These two negative stiffness constraints can be formulated as follows. 

By substituting the relations for X A  and X B  into constraint equation (3.26) and after 
dividing the rotation p and the radius r out of equation (3.26) it can be rewritten 
in the following form. 

1 
h > 5 v % a  (3.28) 

By making use of the definition of 6 as defined by equation (3.15) constraint equation 
(3.27) can be replaced by the following constraint on the geometrical constant 6. 

This constraint equation cannot be satisfied because the geometrical constant 6 
is by definition always negative. As a consequence mechanism 1 cannot produce 
a negative stiffness. Consequently the mechanical Chua is unable to produce the 
same diverse dynamical behaviour as Chua's circuit. 

3.4 Equilibrium Points 

The equilibrium points of the mechanical Chua are determined by requiring that 
the governing equations (3.17), (3.20) and (3.22) are constant with respect to time 
(i.e. 2 = $ = 2 = 0). This leads to the following three equilibrium points. 



These equilibrium points only exists if they lie in the appropriate regions of state 
space. The equilibrium point Zk always exists because it always lies in the region 
of state space defined by -cp* < cp < p*. The equilibrium points 22 and 2; only 
exist if the following condition holds: 

Because the parameters ki, k2 2 ~ d  p* are constmt, real m d  psitive equat io~ (3.33) 
car, be transformed to the following restriction on 6. 

The geometrical constant 6 is by definition always negative (see equation (3.15)). As 
a consequence the above restriction of 6 is never satisfied and the equilibrium points 
Z& and 2; cannot exist. This result can also be interpreted in the following way. 
Because the geometrical constant 6 is by definition always negative the mechanical 
Chua is unable to produce a negative stiffness. This limits the region of electrical 
parameter space where the mechanical Chua might be equivalent to the electrical 
Chua to the region where the electrical equilibria Z: and 2; do not exist (i.e. 
R < -l/Ga). This also corresponds to the region of the electrical parameter space 
where the electrical Chua cannot produce any chaotic dynamic behaviour. This 
means that even if the mechanical Chua is equivalent to the electrical Chua the 
mechanical Chua will not be able to produce chaotic dynamical behaviour. 

Stability Of The Equilibria 

The stability of the mechanical equilibria is determined by examining the eigenval- 
ues of the linearisations around the respective equilibria. Because the mechanical 
parameters cannot be chosen in such a way that the equilibria ZL and 2; exist it 
does not make sense to calculate the eigenvalues of the linearisations around these 
equilibria. The only equilibrium point of interest is the equilibrium point ji; at  
the origin. For this equilibrium point the following characteristic equation can be 
derived froin the linearisation. 

In this equation A,, are the eigenvalues of the linearisation around the equilibrium 
point Z;. The eigenvalues calculated from equation (3.35) are only useful if they 
can be compared to the eigenvalues of the electrical Chua. To achieve this the 
equivalence conditions derived in chapter 4 are used. Based on the expressions of 
the mechanical parameters as defined by equations (4.15), (4.16) and (4.17) the 
eigenvalues of the mechanical Chua can be calculated as a function of the electrical 
resistance R. To ensure that the mechanical parameters are feasible the equivalence 
constraints (4.23) and (4.25) have to be satisfied. This means that the eigenvalues 
of the mechanical Chua that are calculated in this way are only meaningful for 
values of R satisfying R < -l/Ga. In figure 3.5 the real parts of the eigenvalues 
A,, of the mechanical Chua are shown as a function of the resistance R. Comparing 
the eigenvalues of the electrical Chua shown in figure 2.4 to the eigenvalues of the 
mechanical Chua shown in figure 3.5 shows that the eigenvalues for both systems are 
identical. This means that for R < -1/G, the stability properties of the equilibrium 
point at the origin are identical for the electrical and mechanical systems. 



Figure 3.5: The real parts of the eigenvalues 
of the linearisation of the mechanical Chua 
around the equilibrium point Kk as a function 
of the resistance R. The vertical line indicates 
the point where R = - &. 



4 Equivalence 

The equivalence between the electrical and mechanical Chua is based on the nondi- 
mensional governing equations of both systems. By requiring that the nondimen- 
sional governing equations of the mechanical Chua are identical to the nondimen- 
sional governing equations of the electrical Chua the parameters of the mechanical 
Chua can be determined. Based on these mechanical parameters the possibility 
of equivalence between the electrical and mechanical systems can be investigated. 
Comparing the mechanical parameter values required for equivalence with the fea- 
sible mechanical parameters values leads to limitations on the electrical parameters. 
Finally the region of equivalence is investigated and simulations are performed to  
show that both systems are equivalent. 

4.1 Nondimensional Governing Equations 

The nondimensional governing equations of the electrical and mechanical Chua 
are determined by scaling the dimensional state variables with the appropriate 
constants. This scaling of the dimensional state variables is straightforward for the 
electrical Chua. For the mechanical Chua the scaling constants are not chosen in 
advance but determined from the equations that arise when requiring equivalence 
between the electrical and mechanical Chua. 

Chua's Circuit 

To obtain the nondimensional governing equations of Chua's circuit the dimensional 
state variables .ul, 712, iL and t are scaled with the system parameters E, G and C2. 
This leads to the following expressions for the nondimensional state variables x, y, 
z and r. 

Substituting the equations describing the relations between the dimensional and 
nondimensional state variables in the dimensional governing equations (2.1), (2.2) 
and (2.3) leads to the following set of nondimensional electrical governing equations. 



Mechanical Chua 

The mechanical governing equations (3.17), (3.20) and (3.22) describing the mechan- 
ical Chua can be written in a nondimensional form by defining the nondimensional 
state variables @, y, 2 and r as follows. 

p =  P * F  Y = Y*Y Z = z*Z 7- = w t  (4.5) 

The parameters p * ,  y * ,  z* and w are constants of proportionality that are used t o  
scale between the dimension-?! am! the nodim-ensional state variables. Substitut- 
ing the nondimensional variables defined by the equations (4.5) into the governing 
equations (3.17), (3.20) and (3.22) leads to the following set of nondimensional 
mechanical governing equations. 

4.2 Determining The Mechanical Parameters 

The parameters of the mechanical Chua are determined by requiring that the nondi- 
mensional governing equations of the mechanical Chua are identical to the nondi- 
mensional governing equations of the electrical Chua. This is achieved by requiring 
that the "parameters" in the mechanical nondimensional governing equations are 
identical to the "parameters" in the electrical nondimensional governing equations. 
Using the nondimensional governing equations for the electrical and mechanical 
Chua as defined by equations (4.2), (4.3), (4.4) and (4.6), (4.7), (4.8) respectively 
this leads to the following relations between the electrical and mechanical parame- 
ters. 

kz  C2 G,, - G, -=-(T) C l W  Cl 

Because the number of mechanical parameters is larger than the number of equa- 
tions a unique solution for the mechanical parameters cannot be obtained from the 
above set of equations. Effectively nine of the mechanical parameters can be cho- 
sen freely. The other eight mechanical parameters are determined by the electrical 
parameters and the nine freely chosen mechanical parameters. Here the free me- 
chanical parameters are chosen so that the following expressions are obtained for 
the mechanical parameters p * ,  y * ,  z * ,  w ,  X 3 ,  X g ,  b and k3 .  



If the parameters of the mechanical Chua are chosen as defined by the above equa- 
tions then the nondimensional governing equations of the electrical and mechanical 
systems are identical. As a consequence the nondimensional state variables of both 
systems are identical. This leads to the following relations between the dimensional 
state variables of the electrical and mechanical system. 

In the above equations the variables t ,  and t ,  are the time variables of the electrical 
and mechanical system respectively 

4.3 Equivalence Constraints 

The validity of the parametrisation of the mechanical Chua proposed in the previous 
section is limited by the feasible values of the mechanical parameters 6 and k3. The 
spring stiffness ks should always be real and positive and the geometrical constant 
6 is by definition always real and negative. These two constraints can be expressed 
as: 

Using the expression for k3 as defined by equation (4.17) constraint equation (4.20) 
can written in the following form. 

All parameters in this constraint equation are real and positive with the exception 
of Ga and Gb which are real and negative. By making use of the signs of the 
parameters constraint equation (4.22) can reduced to the following expression. 

The constraint on 6 as defined by constraint equation (4.21) can be written in the 
following form by making use of the definition of 6 given by equation (4.17). 

Again the parameters in this equation are all real and positive with the exception 
of G, and Gb which are real and negative. By using the signs of the parameters 
and by making use of constraint equation (4.23) constraint equation (4.24) can be 
reduced to the following expression. 



Figure 4.1: A simulation of the elec- Figure 4.2: A simulation of the me- 
trical Chua for R = 1400 f2 and x,, = chanical Chua for R = 1400 0 and 

(LO, 0). Xmo  - - (5.0. 0,O). 

This constraint equation is equivalent to the following constraint on the electrical 
resistance R. 

Constraint equations (4.23) and (4.26) are not mutually exclusive and therefore the 
mechanical parameters can be chosen in such a way that the dynamical behaviour 
of the electrical and mechanical Chua is identical in a qualitative sense. 
Constraint equation (4.26) corresponds with the results obtained from the exis- 
tence of the mechanical equilibria. The values of electrical resistance R allowed by 
constraint equation (4.26) correspond to the values of R for which the electrical 
equilibria Z$ and 2; do not exist. 

4.4 The Region Of Equivalence 

Because the mechanical Chua is unable to produce a negative stiffness the electrical 
parameters for which the mechanical Chua is equivalent to the electrical Chua are 
limited by the constraint equations (4.23) and (4.26). If the electrical parameters 
are chosen as defined in table 2.1 this leads to the following restriction on the 
electrical resistance R. 

1 

For these values of R the electrical Chua possesses only unbounded trajectories. 
There are no periodic solutions or chaotic behaviour. For the values of R defined 
by equation (4.27) the dynamical behaviour of the mechanical Chua is identical to  
the dynamical behaviour of the electrical Chua. Therefore the dynamical behaviour 
of the mechanical Chua does not have periodic solutions or chaotic behaviour. 
The absence of periodic solutions and chaotic behaviour in the dynamics of the 
mechanical Chua is a direct consequence of the inability of the mechanical Chua 
to produce a negative stiffness. Constraint equation (4.26) exists because the geo- 
metrical constant 6 is by definition smaller than zero i.e. the mechanical Chua is 
unable to produce a negative stiffness. Figures 4.1 and 4.2 show a simulation for the 
electrical and mechanical Chua starting from equivalent initial conditions. These 
figures clearly show that the dynamical behaviour of both systems is unstable. 



5 Conclusion 

The mechanical equivalent of Chua's circuit as defined in [I] is unable to generate 
a negative stiffness. The consequence of this inability is that the mechanical Chua 
cannot produce periodic solutions or chaotic behaviour. The mechanical Chua 
is equivalent to the electrical Chua but only for electrical parameters for which 
all possible trajectories of the electrical Chua are unbounded. This makes the 
equivalence between the electrical and mechanical Chua rather pointless. Because 
all mechanical equivalents of Chua's circuit proposed in [I] are based on the same 
principle of generating a negative stiffness none of these mechanical equivalents will 
be able to reproduce the diverse dynamical behaviour of Chua's circuit. 



A The Derivation Of Tkre Reaction 

The reaction force FE originates from the mechanical coupling that is formed by 
the rigid rectangular frame CE between the point C of the mechanism OCB and 
the point E of the rotating disc. Through this mechanical coupling the spring force 
FA acting on point A of the disc is transmitted back to the point E of the disc. 
This reaction force FE can be determined by analysing the equilibrium of forces 
and moments of the mechanism OCB as described in [3]. A free body diagram of 
mechanism 1 is shown in the figures A.1 and A.2. From these figures the following 
nine equilibrium conditions for the mechanism OCB and the rigid frame CE can be 
derived: 

+ 4 
cos O1 = O 

1 1 
-a ( F z  sin 01 - Fg cos 01) + -a (FE sin O1 + F z  cos 01) 
2 2 

1 (-4.8) 
- -aFw cos O1 = 0 

4 
F w + F E = O  (A.9) 

In the equilibrium equations (A.l)-(A.9) the term FF is defined as the component 
of the force F, in the horizontal direction and the term F$ as the components of 
the force F, in the vertical direction. By solving the above equilibrium equations 
the reaction force FE and the forces in the mechanism OCB can be determined as 
a function of the spring force FA. This leads to the following relations between the 
forces acting on the mechanism OCB and the rigid frame CE and the spring force 
FA. 

F : Y  - sin O1 
- -FA- 

cos Ol 



Figure A.l: The free body diagram of the mechanism that creates negative 
stiffness. 

Figure A.2: A free body diagram of 
the rigid frame CE. 

Figure A.3: A schematic drawing of 
the mechanism OCB. 



sin 81 
FN = FA- 

cos Bl 
sin O1 

Fw = -2-FA 
cos el 

sin O1 
FE = 2-FA 

cos el 
The term can be determined from the kinematics of the mechanism OCB. 
Using figure A.3 the term c a ~  be written as: 

sinel - PC' - h - r s i n p  - - -- 
cosol OC' 

(A.15) 
a2 - (h - r sin cp)2 

Substituting the expression for the spring force FA and equation (A.15) into equa- 
tion (A.14) leads to the following expression for the reaction force FE: 

2h h - r s i n p  
F ~ = ~ ~ ~  (jylM-l) (JaZ- (h- r s inp)2  (A.16) 

This equation is clearly not equal to the definition for FE found in [I]. By taking 
the geometric factor at cp = 0 equation (A.16) can be made almost identical t o  
the expression found in (11. This leads to the following expression for the reaction 
force FE: 

2h h 
(A.17) 

The differences between the above equation and the expression for FE found in 
[l] is a constant factor of -2. This factor -2 is the reason why the analysis of the 
mechanism in [l] allows the generation of a negative stiffness while according to  the 
analysis performed in this report this is not possible. 



B The Relation Between Negative 
Resistance And Mechanical 
Stiffness 

An import aspect in the analysis of the mechanical Chua is the assumption that 
the negative stiffness created by the mechanical Chua is equivalent to the negative 
resistance in the electrical Chua. This equivalence is not immediately apparent be- 
cause in conventional systems the mechanical equivalent of an electrical resistance 
is a mechanical damper. The equivalence between the electrical and mechanical 
Chua is based on the nondimensional governing equations of both systems. The 
idea is that although there is no direct relation between negative resistance and 
negative stiffness both systems have identical nondimensional governing equations. 
To identify the relation between negative resistance and negative stiffness the nondi- 
mensional governing equations of the electrical and mechanical systems have to  be 
analysed. This analysis can be restricted to  the nondimensional governing equations 
that contain the negative resistance and negative stiffness terms. 
The dimensional governing equation (2.1) of the electrical Chua is transformed in 
a nondimensional form by applying the following scaling to the dimensional state 
variables. 

This leads to the following nondimensional governing equation for the electrical 
Chua. 

Where the nondimensional negative resistance f (x) is of the following form: 

The nondimensional governing equations of the mechanical Chua are defined by 
equations (4.6), (4.7) and (4.8). Equation (4.6) can be written into the following 
form. 

Where the function f (@) is defined as: 



If the electrical and mechanical systems are equivalent then the nondimensional 
governing equations of both systems are identical. Substituting the expressions for 
the mechanical parameters as defined by equations (4.13), (4.14) (4.15), (4.16) and 
(4.17) in the mechanical nondimensional constant 5 shows that this constant 

is identical to 2. This means that if the electrical and mechanical system are 
equivalent then the function f (3 must be the nondimensional mechanical equiva- 
lent of the nondimensional negative resistance f ( x )  Comparing the expressions for 
f (F) a d  f (3) as defined by equations (B.3) and (B.5) shows that there is indeed 
no direct relation between the negative resistance and the negative stiffness. The 
nondimensional mechanical equivalent of a nondimensional iiegative resistance is 
a combination of the stiffness kl ,  the stiffness k2, the geometrical constant 6, the 
radius r and the electromechanical constant XI. 
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