

Learning control on the H-Drive

Citation for published version (APA):
Janssens, J. (2000). Learning control on the H-Drive. (DCT rapporten; Vol. 2000.026). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ae3af506-c93e-484b-8ae8-7bb036606522

Learning Control
on the H-Drive

JJanssens
report nr.: DC2000.26

Id. Nr.: 420628

Supervisors:
Prof. Dr. Ir. M. Steinbuch
Dr. Ir. M.J.G. van de Molengraft

SUMMARY

The H-drive is a X Y table system with three linear motors. A typical movement which
this H-drive has to perform is a point-to-point movement. The goal of this project is to
minimize the error made during this movement. Many terchniques can be applied to
minimize this error. In this report learning control was used. Learning control is based
on a fundamental property of the human behavior; to learn from one's previous
mistakes. Once you have made a mistake, you learn from it. And the next time you
won't make the same mistake. Learning control emulates this behavior, by continuous
adaptation of the control signals until the system behaves as desired. An iterative
learning controller can suppress the error made in a typical pick-and-place operation
up to 250 Hz and reducing t h s error by a factor 7, as can be seen later on in this
report. On simulation level a factor of 1500 is reached. A remarkable phenomenon
that can be noticed when one looks at the difference between the learnt- and
standardfeedforward, obtained with the learning controller, is that the learnt
feedforward begins earlier with it's excitation than the setpoint itself. So one can
conclude that, for eliminating some systematical errors, the system has be excited a bit
earlier before the setpoint begins and still is a bit exciting after the setpoint has gone.

LIST OF SYMBOLS

r

u k

41'
ek

k

d

L

Q

C? K

P? G

S

H

T

Po

arf, brf, crf, drf

ameas, bmeas, cmeas, drneas

k

reference signal

feedfonvard at trial k

output at trial k

error at trial k

trial number

reproducible disturbances

learning filter

robustification filter

PID-controller

system

sensitivity function

open-loop transfer function

time

setpoint

state-space matrices for the controller

state-space matrices for the system

learning gain

TABLE OF CONTENTS

SUMMARY ... 2

LIST OF SYR/IBOLS ... 3

1 INTRODUCTION .. 5

.. 2 ITERATIVE LEARNING CONTROL 7 2.1 IHEUKY .. 7
2.2 IMPLEMENTATION .. 8
2.3 CONVERGENCE .. 10

.. 2.4 FREQUENCY DOMAIN ANALYSIS 12
.. 2.5 DESIGN OF THE LEARNING FILTER 14

... 2.6 DESIGN OF THE ROBUSTIFICATION FILTER 14

3 THE PROCEDURE ... 16

4 RESULTS ... 23
... 4.1 SIMULATION RESULTS 23

4.2 EXPERIMENTAL RESULTS ... 26
... 4.2 EXPERIMENTAL RESULTS 27

5 CONCLUSIONS .. 28

APPENDIX A .. 29
... SIMULINK CONTROL SCHEME 29

L

APPENDIX B .. 30
LEARN1NG.M ... 30

APPENDIX C .. 37
BIBLIOGRAPHY .. 37

1 INTRODUCTION
The H-drive (figure 1.1) is a XY table system with three linear motors. The
mechanism is used in Philips Advanced Component Mounters (EMT) as the basic
positioning device for pick-and-place operations of components Printed Circuit
Boards (PCB 's). It is also very similar to the long stroke actuating system of modem
wafer scanners. All three linear motors have encoder sensors and are direct drive,
electrically cornmutating motors with current control. The servo systems are
decoupled (single-axis) PID type with low-pass and two notches maximxm.
Feedfmwad siDa!s are acceleration, vel~citjr and fi-ictim feedf~mai-d. The s e r ~ s
typically have 30 Hz bandwidth and the -mechanics show resonances above 150 Hz.
Typical tracking performance is accelerations up to 80 m/s2, and errors less than 10
Pm.

Figure 1.1

A typical movement, which the H-drive has to perform, is a point-to-point movement;
the system has to be moved from one prescribed position to another within a
minimum amount of time. Mechanical systems such as the H-drive exhibit parasitic
dynamics: flexible modes of the system that are excited when the system is moved.
This results in a behavior such as in figure 1.2

Figure 1.2

From this figure, it can be seen that when the displacement has taken place, the
system oscillates in the end point B. When the accuracy constraints are strict, the time
needed for these residual vibrations to converge to an acceptable amplitude, the
settling time may be quite long. This settling time may even be longer than the step
time. Point-to-point control tries to minimize this time.

Besides performing an accurate displacement, the control system also has to be able to
track a setpoint and to cope with disturbances within a finite time span. In the past,
many successful experiments with learning control have been carried out.

This method is explicitly intended to track setpoints of finite length. The main
advantage of learning control is that it is well able to cope with model uncertainties. A
point-to-point control must guarantee a minimal error at the end of the movement.
Parasitic dynamics make this very difficult. This results in unwanted oscillations at
the end of the movement and at this time it is too late to compensate. Two important
limitations of learning control are:

It can only track a known periodic setpoint, because the error is filtered offline. So
one can't control an unknown stochastic signal, for example.
It can only suppress errors up to a certain frequency, because above a certain
frequency the robustification filter Q doesn't work anymore (see chapter 2.6).

In order to maintain zero settling error, the learning controller has to actuate the
system during the settling time. This means that, although the error is zero, the system
is not at rest when a consecutive step is made. The learning controller is still
suppressing the residual vibrations.

To obtain short cycle times, the setpoint's energy content has to stretch up to high
frequencies. Consequently, the system's high-frequent flexible modes are excited
which can be seen in the error. As mentioned, only the lower frequent components of
servo errors can be compensated by a learning controller. This frequency problem
results in longer settling times.

2 ITERATIVE LEARNING CONTROL

2.1 THEORY
Learning control is based on a fundamental property of the human behavior; to learn
from one's previous mistakes. Once you have made a mistake, you learn from it. And
the next time you won't make the same mistake. Learning control emulates this
behavior, by continuous adaptation of the control signals until the system behaves as
desired. Consider the following system. (Figure 2.1.1)

Tracking of the signal r is required. First a signal uo is generated, that is believed to be
able to generate an output similar to r. The error, 4-7, is measured. On the basis of
this error and the old feedfonvard uo the learning controller (LC) computes a new
feedfonvard u', which hopefully results in a better output $. This process can be
repeated until the error has converged to zero (or to a value specified by the user).
(The convergence criterion is explained later on). The result of this is a signal, which
is the exact response of the inverse of the plant to the given r without having to invert
the plant model. The inversion takes place iteratively, based on the input and output
signals.

The main issue in this is the concept of repeatability. The error made must be
systematic. This means that non-periodic and stochastic effects cannot be learnt,
because they are different at each trial.

2.2 IMPLEMENTATION
The learning controller is an add-on to the closed-loop control system as you can see
in figure 2.2.1.

figure 2.2.1

In this figure the following symbols occur:
Y reference signal (setpoint)
yk output
d reproducible disturbances
e error at trial k
u feedforward at trial k
ukfl feedfonvard at trial k + l
L learning filter
Q robustification filter
C PID-controller
P system

In the beginning you start with a feedfonvard uo (known as the standard feedforward).
This standard feedforward generates an output yo. The error eo is therefore r- yo, This
error can now be filtered through a learning filter L and a robustification filter Q
(these filters are discussed in detail in sections 2.5 and 2.6) according to:

in which uk+' is the new feedfonvard that has to be given to the system. This
procedure has to be repeated until the error ek has converged to its minimum value.
Ideally, the learning controller now has eliminated all periodic, reproducible

k+l- k components of the disturbance d. Perfect tracking can only be achieved when u - u .
This can only be the case when, according to (I), Q=l and ek=O. This would mean that
the disturbance d is completely reproducible.

2.3 CONVERGENCE
If r, d and xo (initial state) are the same at each trial, the error at the Mh trial can be
written as:

E~ (s) = R(s)- yk (s)

= ~ (s) - (~ (s) ~ (s) E (s) + ~ (s) - u (s) + D(s))

= s(s). (R(s) - D(s)) - P(S) s(s). uk (s)

and

Now at trial k, the learning process can be described by the following two equations:

The signal d+'(s) is injected into the system at trial k+l. The resulting error in the
k+lth trial is then given by (according to (2)):

When equation (3) is substituted in (4) the following equation forms:

Since the disturbance D(s) and the setpoint R(s) are assumed to be the same at each
trial, one can substitute (2) in (9, which yields to:

This can be generalized to:

E' (s) = Q(s)- (1 - ~ (s) . ~ (s) - s(s))I . E (s)

In this equation E0(s) is the error of the first trial. Convergence is proven when this
sum exists for k+m. This means that this equation has to result in a coinstant final
value for the error if k+m.

Since:

u .+' (s) =

Q(s). u k (s) + Q(s). L(s). E'(s) =

Q(.). uk(.)+ Q(s). L(s).(s(s).(R(s)- D(s))+ p(s) . s (s) .uk (s))=

f (uk (4)
(which means that d i l (s) is a function of Zlkjs))
the next inequality holds:

This is satisfied when

where 11 11 i is some induced norm (usually i is 2)
For a converged system u does not change over one trial. As a consequence of this
neither does the error. Now with equation (6) one can write:

E(s) = ~irn,~+,~ E,< (s) =
(1 - QG)). sG)

1 - ~ (s) . (1 - ~ (s) . ~ (s) . ~ (s)) . (N s) - ~ (4)
Which is the value of the converged error.

2.4 FREQUENCY DOMAIN ANALYSIS
Equation (6) from paragraph 2.3 can also be written in the frequency domain as:

l~(w)(l-L(w)~(w)~(w)]<l b' we(-m,m)

Since the expressions for Q, L and P are complex, this criterion states that the
complex vector Q(1-LPS) must remain within the unit circle for the learning process
to converge. This circle will be referred to as the region of convergence (ROC). First
assume Q=l. The closer the vector 11-LPSJ is to the origin, the faster convergence will
be. When however for a given frequency the inverse of the process sensitivity, which
is Lj is of poor quality, the vector will point outward the ROC. For this frequency,
convergence is not guaranteed and oscillations might occur. In figure 2.4.1 one can
see a frequency where L # (PS)-'.

If this vector, (1 -LPS), would lie within the unit cycle, no robustification filter Q was
needed. However in the case of figure 2.4.1, a robustification filter Q has to be
introduced. The effect of Q can be illustrated by writing the convergence criterion as
follows,

This implies that the vector I-LPS has to lie within a bigger cycle than the unit cycle
by choosing IQI smaller than 1. Now convergence can be guaranteed at those
I'requencies at which the inversion is of poor quality. h essence, Q increases the
diameter of the ROC from 1 to (1IQI. The effect of this is shown in figure 2.4.2

Now the following conclusions can be drawn with respect to the design of the
robustification filter Q:

For low frequencies, L approximates (PS)~' quite well, so choose Qrsl
For high frequencies, the radius of the ROC has to be made greater, so choose
Q<<1

When we take a look again on the formula for the converged error, one can see that
for low frequencies, where Q is 1, the error E(s) becomes zero. For high frequencies,
,,,I-,,, n I-,,,---
WIIGIG VGLullIC3 LCIu7 the error will coiiverge to S(s](X(s]-D(s)), which is the same
error as without learning. For intermediate frequencies, the error reduction is given by
full evaluation of this error-formula.

E(s) = lim,,, E, (s) =

With respect to this, the cut off frequency of the robustification filter Q, is known as
the 'learning bandwidth '.

2.5 DESIGN OF THE LEARNING FILTER
To achieve fast convergence as well as maximum error reduction, the learning filter L
has to approximate the inverse of the process sensitivity PS as closely as possible. The
problem is that the discretised PS has zeroes outside the unit circle. Since zeroes
become poles after inversion, this implies that the inverse of PS has poles outside the
unit cycle, which yields an unstable inverse.
To obtain a stable learning filter, the zero pole error tracking controller algorithm
(zpetcm in DIET Toolbox in Matlab) was used to split PS into an invertible and a
non-invertible part. The algorithm inverts all stable zeroes, yielding stable poles, and
cancels the phase shift induced by the unstable zeroes. The phase lag induced by the
non-invertible part is cancelied. This canceliation is a forward shift, i.e. a non-causal
operation. Since the learning process is performed offline, this non-causality forms no
problem: the filtering is done in between learning trials on data sequences that are
known beforehand. First, the causal part of the filtering is done. The phase advance is
given in number of samples (phd in 2petc.m). Therefore, shifting the filtered signal
backward in time by this number ofphd's yields the desired non-causal effect.
To check the quality of the inverted model L, a Bode plot is made of L times PS. This
should have amplitude of 1 and zero phase for all frequencies. If everything went well
this inversion is reasonable until a certain frequency. From this frequency on a
robustification filter Q is needed.

2.6 DESIGN OF THE ROBUSTIPICATION FILTER
Since the learning filter is not able to assure convergence throughout the frequency
interval of interest, a robustification filter is needed. To compare the effect of different
Q filters, several filters were examined. They are all low pass Buttenvorthfilters-type
filters with different order and frequencies. The pass band of these filters is equal to
one. Since the filtering is performed off-line, zero-phase filtering can be done with the
m-filefi1tfilt.m (see signal Toolbox in matlab 5.3). This algorithm filters the given
sequence and filters it again but backwards. Phase delay is thus cancelled exactly. In
figure 2.6.1 the vector Q(1-LPS) is plotted, together with the unit cycle. The
importance of a Q filter is clearly visible in figure 2.6.la. Here Q has been chosen to
be equal to 1. As you can see the vector completely leaves the unit cycle (compare
with figure 2.4.1). In 2.6.lb Q(1-LPS) is plotted where Q has a cut off frequency of
50Hz, which implies that all modeled flexible modes of the system lie above this
frequency. This figure shows some similarity with figure 2.4.2. The difference lies in
the fact that in figure 2.4.2 the vector 1-LPS was plotted a d the radius ~f the ROC-
cycle was enlarged with the help of Q. In figure 2.6.1, on the other hand, the vector
Q(l -LPS) is plotted against the unit cycle. But from both figures the same conclusions
can be drawn. In figure 2.6.ld Q has a cut off frequency of 500Hz, which is able to
cope with all modeled flexible modes. The learning algorithm is stable with a 500Hz
Q filter, but within a very small margin. When one doesn't work on simulation level,
but with a real machine the best Q filter to use is one where the region of convergence
lies around the circle with radius 0.5. This will be called the robustness cycle. This is
shown in figure 2.6. lc.

d
Figure 2.6.1

3 THE PROCEDURE
In this chapter a procedure for designing a correct learning and robustification filter is
presented. The sensitivity function and the controller of the system can easily be
measured. The sensitivity S is defined according to:

This can be transformed to:

Thus when one knows the sensitivity function and the controller of a certain system,
the system P(s) can be obtained. When S(s) and C(s) are measured one always
encounters measurement noise. Therefore not the entire measurement has to be taken
into account. The check the data, a look at the coherence has to be taken. Since P(s)
has to be fitted once it has been calculated, this coherence shows the lower and upper
bound for this fit. As can be seen later on, a lower bound of approximately 10 Hz and
an upper bound of approximately 1000 Hz were used. In figure 3.1 a the measured
sensitivity function and the measured controller are displayed. In figure 3.1 b the
corresponding coherent-e is plotted. As one can see, the lower bound for reliable
results for the sensitivity function lays around 20 Hz. Also an upper bound o f f 1000
Hz can be seen in the coherence plot of the sensitivity function. (The coherence of the
controller measurement was a lot better, so the sensitivity measurement is the
restricting factor).

S ensitivitv

1 o0 10' I 02 I o3 I o4
Frequency (Hz)

Coherence of the sensitivity measurement

1 o" 10' l o 2
Frequency @z)

figure 3.1 b

When one takes a look at the obtained results for the sensitivity function, it can be
concluded that with the used boundaries the result is the same as one would expect.
For low frequencies a slope of +2, but for high frequencies zero slope and magnitude
one. Also there are some resonances visible between the 100 and 300 Hz. A closer
look at the controller tells us that the controller has:

A notch at about 150 Hz
A second notch at about 250 Hz

e A low pass filter at about 500 Hz
A differentiator at about 10 Hz

When this has been done, the system P can be calculated and the following bode
diagram can be drawn (figure 3.2).

System which has to be fitted

1 oO 10' 1 02 1 o3
Frequency (Hz)

figure 3.2

One would expect a slope of -2 with some resonance peaks. Within the earlier
explained range this is true, so after fitting this would be useful data. At this time the
system P and the controller C have to be fitted for further calculations. For the fitting
the tool f7fit.m (see DIET-Toolbox in matlab) was used. This tool can easily fit
frequency response functions. The input data of this tool consist of the frequency
response data of the function one wants to fit, a frequency vector, the order of the
denominator and the order of the numerator. While using this tool one can easily place

under and upper borders. For example below frequencies of about 10-20Hz the
coherence of the sensitivity was too low. So the lower bound in the fitting lies around
15Hz. In the same way the upper bound was chosen around 500Hz. For the controller-
fit borders were used of 10Hz below and 1000Hz above. The fitting algorithm also
has the options of adding weighting factors. So important intervals can be weighted
more heavier than the simpler intervals. After fitting, C(s) (figure 3.3) and especially
P(s) (figure 3.4) become clearer.

Controller C

Frequency (Hz)

Controller C

Frequency (Hz)

Jiguve 3.3

System P

1 0" 10' 10'

Frequency (Hz)

System P

10" 10' 1 o2

Frequency (Hz)

Notice the -2 slope with some resonances peaks of P(s). Now P(s) and C(s) are
known, the open-loop PC(s) can be calculated and the bode diagram can be drawn,
which has been done in figure 3.5. As can be seen from the nyquist diagram (figure
3.6), the system is stable, with a gain margin of 4 and a phase margin of 50".

Ooen Looo PC

10" 10' 1 02 I 0'

Frequency (IIz)
Oaen LQOD PC

Frequency (Hz) - -
jigure 3.5 figure 3.6

At this moment one knows P(s), C(s) and PC(s). Since,

S (S) = and H (s) = pk) . c(4
1+ p(s).c(s) 1 + ~ (s) . c (s)

Real Axis

, H(s) and S(s) can be calculated (Figure 3.7).

Closed Loop H

10.' I o0 10' I o2 I 0' I o4
Frequency (Hi)
Closed Looa H

Frequency (Hz)

Bgure 3.7

Frequency (Hz)

16' 1 o0 10' I 0' I 0' I o4
Frequency (Hz)

As one can see the bode diagrams are as one would expect; the visible resonances, the
zero slopes (at H(s) for low frequencies and with S(s) for high frequencies), the +2
slope at S(s) for low frequencies and the -2 slope for high frequencies of H(s). In
order to calculate a learning filter L, the next step would be to calculate the process
sensitivity PS (see section 2.5). Since P(s) and S(s) are known, PS(s) can be
calculated. This bode diagram is plotted in figure 3.8. With the ZPETC algorithm
(explained in section 2.5) L(s) can be calculated. L(s) is plotted in figure 3.9. As
explained before L(s) has to be the inverse of PS(s). To check how far this calculated
L(s) is a good inverse indeed, one can look at the bode diagram of PS(s) times L(s). If
(-1 +I-- --+-fn-+ ;n~.

0 nf PC/S\ then 1 (c) times PS() has an aqjlitu& of 1 and L\>J ID L I I ~ pulluur 111 J v l S v v l A b\ /, rlsurs -
zero phase. As one can see from figure 3.10 L(s) is reasonable up to 500 Hz. From
this point on a robustification filter Q is needed (see section 2.6).

and the robustification filter Q(s) are available, so the time has come for learning on
the simulation level. A model of the control scheme was built in Simulink (see
Appendix A). In this scheme the following parameters appear:
T=time [s]
Po=setpoint [mI
State-space matrices for the controller:
arf, brf,crf,drf [-I
State-space matrices for the system:
ameas, bmeas,cmeas,dmeas [-I
This simulation procedure is also included in the used m-file 1eavning.m (see
Appendix B). In this m-file every other step, which has been done in this report, is
displayed. The iteration-loop was stopped after 10 iterations. At this point there can be
assumed that the error almost completely converged to its minimum value. The results
of this simulation will be presented in Chapter 4.

4 RESULTS

4.1 SIMULATION RESULTS
The trajectory on which learning control has to be performed was a displacement over
0.1 meters. This setpoint is obtained using the m-file setp_3c from the DIET Toolbox
in Matlab. The following parameters were used:

Displacement: 0.1 m
e Velocity: 0.5 rn l s

Acceleration: 16 d s 2
e Jerk: 750 m/s3

As was explained earlier the first feedfonvard, which was offered to the system, was
the standard feedfonvard. This feedfonvard has the value of the acceleration of the
system multiplied by the approximate mass of the system. In figure 4.1.1 one can see
the error after one simulation (thus after applying the standard feedfonvard).

Time (s)

figure 4.1.1

This error is now being filtered through the learning filter L and the robustification
filter Q. Since the learning algorithm is defined (section 2.2) according to:

uk+l (') = Q(')' (~ k (S)"(S). Ek (s))

and the error after applying the standard feedfonvard:

El (s) = Y (s) - PS(S) - U, (s)

This feedfonvard u2 causes the following error (figure 4.1.2).

10.' Error after one trial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

figure 41.2

The error after one trial is about a factor 50 times smaller than the error without
learning.
The next error is around a factor 10 smaller than the one after one trial (figure 4.1.3).

x 10% Error after two trials

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)
figure 4.1.3

After convergence (the criterion used was to stop after 10 trials) the error has become
a factor 1500 smaller than the error without learning control (figure 4.1.4).

x 10'~ Error after convergence

-2.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

As one can see the error has become very small. One can also adjust the learning
algorithm a bit by introducing a learning gain. The learning gain is the value with
which the output of the learning filter is multiplied before it goes into the
robustification filter. In the next formula 'lg' is the learning gain:

In the simulation the learning gain was chosen to be 1, but in practice it is wise totake
this value a bit smaller (i.e. 0.85). After this simulation process, the derived
feedfonvard can be compared with the standard feedfonvard . As can be seen in the
detailed figures from figure 4.1.5, the learnt feedforward starts earlier with its
excitation and also ends later

difference between learnt and standard feedforward

"""
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1

Time (s)

difference between learnt and standard feedforward

Time (s)

difference between learnt and standard feedforward difference between learnt and standard feedforward

0.288 0.29 0.292 0 294 0.296 0.298 0 3 0.302

Time (s)

figure 41.5

Time (s)

4.2 EXPERIMENTAL RESULTS
The experiment with this learning controller on the H-drive was performed by the
students M. T. Koot and S. G.M.Hendriks. The following information about this
experiment were obtained trough personal communication. Although I didn't perform
the experiments myself it seemed to me it would be interesting to show just a little bit
already. For more detailed reports about the experimental results see the reports of
Hendriks and Koot.
In the experiment the following parameters for the setpoint were used:
Displacement: 0.3 m
Velocity: 0.3 mls
Acceleration: 5 m/s2
Jerk: 500 rn/s3

In figure 4.2.1 the results of this experiment are shown. Displayed are the
first trial and the error after 10 trials. An error-decreasing factor of about
here.

Experimental Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

error at the
7 is reached

Time [s]
Jigure 4.2.1

Some remarks have to be made with respect to these results:
0 There is still a low-frequent component in the error

The time-delays in the measurements are not known precisely, so the error- and
f e e d f ~ ~ w 2 r d s i ~ z ! may not be symE~cmns
The sensitivity measurement has a low coherence beneath 10Hz but, in spite of
this, this part is also used in calculating the L-filter

5 CONCLUSIONS
An iterative learning controller can suppress the error made in a typical pick-and-
place operation up to 250 Hz and reducing this error by a factor 7, as can be seen in
this report. On simulation level a factor of 1500 is reached. This difference between
the experimental and the simulation error is a result of
the fact that the sensitivity measurement has a low coherence beneath 10Hz but, in
spite of this, this part is also used in calculating the L-filter
the fact that time-delays in the measurements are not known precisely, so the error-
and feedforwardsignal may not be synchronous
the presence of irreproducibk dist1;bmces md noise
the fact that there is always some plant uncertainty

When looking at the difference between the learnt- and standard feedforward, a
remarkable phenomenon can be noticed. The learnt feedforward begins earlier with
it's excitation than the setpoint itself. So one can conclude that, for eliminating some
systematical errors, the system has to be excited a bit earlier before the setpoint begins
and is still exciting the system after the setpoint has gone.

Some further research may be done at the following subjects to improve the
performance of learning control:
a Reconsider the feedback control method
Before learning control is applied, make sure that the servomechanism is already
tuned optimally.

Reconsider the learning controller design
Because the current ZPETC inversion isn't reliable (continuous to discrete conversion
before entering the ZPETC algorithm and the fact that it neglects unstable poles), one
may develop some better methods to come to a good learning filter.

Consider the MIMO case
Inevitable interaction between the x, y l and y2 directions will mean that the error
suppression in one direction may not suffice for the other two directions. This may be
solved by a truly multivariable learning controller.

Taking operating point dependence in account
All experiments in this report were performed in one operating point. In reality, the
plant's dynamics vary according to the position. A model should be obtained that
captures or estimates these variations, to assure convergence over the entire operating
range.

A
PPE

N
D

IX
 A

SIM

U
L

IN
K

 C
O

N
T

R
O

L
 SC

H
E

M
E

APPENDIX B
LEARN1NG.M
clear all
close all

0 2 aintroduce setpoict
[Po,V,AC,J,time-vector,T-breakpoints
,1,0) ;
T=time-vector;

,J-levels] =setp-3c (0.1,O .5,16,75O,Ts, 0.3

('position') ,xlabel ('Timeis) ' 1 ,title('Po

figure (2)
loglog(hz,abs(le6*contr)),grid,ylabel('Amplitude1~,xlabel(TFrequency
(Hz)) ,title ('Controller C ')

load Sens7-28-4vec.mat
hzmeas=SLm.fdxvec;
wmeas=hzmeas*2*pi;

figure (3)
loglog (hz, abs (2*xf er)) ,grid, ylabel ('Amplitude') ,xlabel ('Frequency
(Hz) I) , title ('Sensitivity S')

figure (4)
loglog(hz,abs(syst)) ,grid,ylabel('Amplitudel) ,xlabel('Frequency
(HZ) I) ,title('System PI)

%bodediagrams system P
load fit-plant2.mat

[Rep, Imp, Wl = nyquist (SYSP,W) ;
P = ReP + j*ImP;

figure (5)
subplot(2,1,1),
loglog (Hz,A2) ,grid, ylabei ('Amplitude') ,xlabel ('Frequency
(HZ)) ,title ('Amplitude P')

subplot (2,1,2),
semilogx (Hz, F2) ,grid, ylabel(' Phase (deg) ') ,xlabel(' Frequency
(HZ) I) , title('Phase P')

SYSC=SS (arf , -brf , cri,-drf) ;

[ReC, ImC, W] = nyquist (SYSC,W) ;
C = ReC + j*ImC;

figure (6)
subplot (2,1,1) ,
loglog (HZ,A~) ,grid,ylabel ('Amplitude1) ,xlabel('Frequency
(Hz)) ,title ('Amplitude C')

subplot (2,1,2),
semilogx(Hz, F3) ,grid, ylabel(' Phase (deg) ') ,xlabel ('Frequency
(Hz)) ,title ('Phase C')

S~SPC=series (SYSP, SYSC) ;

[RePC, ImPC, W] = nyquist (SYSPC,W) ;
PC = RePC + j*ImPC;

subplot (2,1,2),
semilogx (Hz, F4) ,grid, yiabel (Phase (deg)) ,xlabel (' ~requenc~
(Hz)) ,title ('Phase PC')

figure (8)
Axis([-:! 0.5 -2 21)
nyquist (SYSPC, (1,1000))

hold on

plot (-l,0, 'ro')

SYSS=~ eedback (1, SYSPC) ;

[ReS, ImS, W] = nyquist (SYSS,W) ;
S = ReS + j*ImS;

subplot(2,1,2),
semil=gx (HZ, f5) ,grid, ylabe1(IPhase (deg)) ,dabel (' Frequency
(HZ)) ,title('Phase S')

SYSH=£ eedback (SYSPC, 1) ;

[ReH, ImH, W] = nyquist (SYSH,W);
H = ReH + j*IrnH;

A6(: ,1) = abs(H);
F6 (: ,1) = angle (H) * (180/pi) ;

figure (10)
subplot(2,1,1),
1.oglog(~z,~6),grid,ylabel('~mplitude') ,xlabel('Frequenc~
(HZ)) ,title (IAmplitude H'

%*zmerical cleaning
[a,b,c,dl =ssdata(SYSC) ;
sysc=pck(a-eye (size (a)) ,b, c,d) ;
syscbal=Gbalr (0, sysc) ;
[al, bl, cl, dl] =unpck (syscbal) ;
SYSCnew=ss (al, bl, cl, dl) ;

[a,b,c,dl =ssdata(SYSP) ;
sysp=pck(a-eye (size (a)) ,b,c,d) ;

%bodediagrams proces sensiti~zity PS

[RePS, ImPS, W] = nyquist (SYSPS,W) ;
PS = RePS + j*ImPS;

figure (11)
subplot (2,1,1),

loglog (Hz , A 7) ,grid, ylabel ('Amplitude) , xlabel (' Frequency
(Hz)) ,title (l~mplitude PS')

subplot (2,1,2),
semilogx (Hz, F7) ,grid, ylabel (' Phase (deg) ') , xlabel (' Frequency
(Hz)) ,title ('Phase PSI)

[aL, bL, cL, dL, phdl =zpetc (aPSd, bPSd, cPSd, dPSd, 1) ;

[ReL, ImL, Wl = nyquist (SYSL, W) ;
L = ReL + j*ImL;

figure (12)
subplot(2,1,1),
loglog (Hz ,A8) ,grid, ylabel ('Amplitude ') , xlabel (Frequency
(Hz) I) , title(l~mp1itude L')

subplot(2,1,2),
semilogx(Hz, F8) ,grid, ylabel ('Phase (deg) ') ,xlabel ('~requency
(HZ)) ,title ('Phase L'

[ReLPS, ImLPS, W] = nyquist (SYSLPS, W) ;
LPS = ReLPS + j*ImLPS;

~9(:,1) = abs(LPS);
~g (: ,i) = squeeze (angle (LPS) * (l80/~i)) + ((l80/pi) * (w*~s*phd)) ;

figure (13)
subplot(2,1,1),
loglog(Hz,(A9)),grid,ylabel(~Amplitude'),xlabel('Frequency
(HZ) I) , title('Amplitude fitted LPS')

subplot(2,1,2),
semilogx (HZ, (F9)) ,grid, ylabel(' Phase (deg) ') ,xlabel(' Frequency
(HZ)) ,title ('Phase fitted LPS')

Smeas= (SLm.xcmeas (l,2) .xfer) .*2;
[mL2 ,pL2] =bode (SYSL, wmeas) ;
mL2=squeeze (mL2) ;pL2=squeeze (pL2) ;
SP=Smeas.*syst;
phaseSP= ((angle (SP)) ./pi) "180;

figure(l4)
subplot (211)
loglog(hzmeas,mL2.*abs(S~)),grid,ylabel('Amplitude'~,xlabel('~requency
(Hz)'),title('Amplitude measured LPS')

subplot (212)

semilogx(hzmeas,pL2+ ((18O/pi) * (wmeas*Ts*phd) ' +phaseSP) ,grid, ylabel ('Phase
(deg)) ,xlabel (Frequency (Hz) ') ,title (Phasekarakteristiek measured LPS I)

figure (15)
subplot(2,1,1),
loglog (HZ ,A10) ,grid, ylabel ('Amplitude') ,xlabel ('Frequency
(HZ)) ,title ('Amplitude Q')

subplot (2,1,2),
sernilogx (Hz, Fl0) ,grid, ylabel('Phase (deg) ') , xlabel('~requency
(HZ)) ,title ('Phase Q')

hold on

ccx=o.5*cx;
ccy=o.5*cy;
plot (ccx, ccy)

hold on

plot (0,0, 'rol)

hold on

%critecior;
crit=Q.^2.* (1-L.*(P./(l+P.*C)));
[crl, nl =shif tdim (crit) ;
plot(crl),title('convergence criterion for fitted LPS1),grid

hold on

ccy=o.5*cy;
plot (ccx, ccy)

hold on

hold on

s .~riterion F for measured LPS
[mP, pP1 =bode (SYSP~~W, W) ;
[me, pC1 =bode (SYSCnew, W) ;
Pl=p2r (mP,pP) ;
Cl=p2r (rnC,pC) ;
Ql=p2r (rnQ,pQ) ;
@,=squeeze (pl) ;
rn~=squeeze (rnL) ;
~=p2r (rnL,pL+ ((180/pi) * (W*Ts*phd)) ;
Ql=squeeze (Q1) ; Pl=squeeze (~ 1) ;Cl=squeeze (Cl) ;
convl= Q1.^2 . * (1 - L.*(Pl./(l+~l.*cl))) ;

[crl ,nl =shiftdim(convl) ;
plot(crl),title(tcon~ergence criterion for measured LPS1),grid

%simulation standard feedforward
%standard feedforward
f l=28*AC;
sim('forwardfl')
figure (18)
plot(T,error),grid,ylabel('~rror~),xlabel(~ime),title(~rror without
learning')

%learning gain
lg=l ;

%siml.ation first n.ew feedforward
eO=error;
LeO=dlsim(aL,bL,cL,dL, eO) ;
Leo= [Leo (phd+l:4001) ;zeros (phd,l) 1 ;
fl=filtfilt (numQ,denQ, (fl+LeO)) ;
sim (f orwardf 1 ')

%simulation second new feedforward
el=error;
~el=dlsim(aL,bL, cL,dL, el) ;
Lei= e el (phd+l:4001) ;zeros(phd,l) 1 ;
fl=filtfilt (numQ,denQ, (£l+Lel)) ;
sirn (' f orwardf 1 ')

figure (20)
plot (T, error) ,grid, ylabel ('~rror') ,xlabe i r n e) title (o r a£ ter two

trials ')

S ; , "prescribe maximum erroz

%while norm (f out, in:) > le-6

%or prescribe maximum iteraeions
for i=1:8;

cnt=cnt+l;
el=error ;
Lel=dlsim(aL,bL,cL,dL,el) ;
Lei= el (phd+l: 4001) ;zeros (phd, 1) 1 ;
fl=filtfilt (numQ,denQ, (fl+ (lgxLel))) ;
sim('forwardfll)
figure (21)
plot(T,error),grid,ylabel('Error~),xlabel(~im,title(~rror after xth
trials)
end

trials = cnt
maximum-error=norm (error, inf)

%standard and learnt feedforward
figure (2 3)
plot (T, f 1) ,grid, ylabel (' feedforward') ,xlabe m e ') title (e a r n and
standard feedforward')
hold on
plot(T,fO, 'r')

%difference between learnt feedfcrward en standard feedfcrward
figure (24)
plot(~,fi-fo) ,grid,ylabel('feedforwardr) ,~label(~Time~) ,title(ldifference
between learnt and standard feedforward1)

APPENDIX C
BIBLIOGRAPHY

Chang F.K.K. (1997). Learning Control and Setpoint Design, Application to a Wafeer
Stepper.

Gaal E.W. (1995). Tuning and settling performance of the ALERT H-drive.

	Voorblad
	Summary
	List of symbols
	Table of contents
	1. Introduction
	2. Iterative learing control
	3. The procedure
	4. Results
	5. Conclusions
	Appendices
	Appendix A
	Appendix B
	Appendix C

