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Abdract 
To aid in the Mllysis and design of nonhear control systems the No&,-oN 
prlage, an raonym f o r m p l r m ( r o l h m b w d e v e @ e d .  Thispaper 
addressestheusefulngsoftheNO~ONpuckrgeu,aselfcontrinedtoolinthe 
symbolic analysis and design of nonlinear control systems, u, a replacement 
d o r  complement for numerical tools, and as a clubdtute for a sly tical 
@pa and pencil) wak. The symbolic computation p r o m  is U& 

a solution of the problems, the algorithms used, and an investigation of the 
functionality needed. The g e n d  structure of the imp1ementation in MAPLE Of 
thealgaithmsneededtosohretheseproblemsis~tedinSeclion5,wherethe 
NO&ON Package is described. Section 6 Presents some textbook e m P k  
using the NO&ON package, for each of the problem areas. The next section 
contains a discusdon of the larger scale problem. Section 8 present% some 
conclusions and gives directions for future research. - -  

(u1 a crmputing sub- for NON~XON. 
To -the viability of this tool, w d  algorithms available for analysis and 
design are implemented in N O d k 3 ~ .  and applied to examples of textbook 
problems with published solutions and also to a larger scnle problem. The 
examples in the paper address the following symbolic computational arm 
for nonlinear dynamic systems: (1) the normal form, (2) the zero dynamics, 
0)  the input-output exaa linearizing statefeedback. (4) the state space. exact 
linearizing statefeedback. including the eearch for output functions that give 
the system a i l l  or maximal *relative degree. 'Ihe systems are not required 
to have a well deiined relative degree. 
me textbook problems show that the N O ~ C O N  package can be successfully 
used. 'Ihe larger scale problem is. however, too complex to be solved with the 
cumnt versions of NOI~CON and W. Some recommendations to improve 
the implementation and to make more auitable for use with N&ON 
are given. The conclusion is that symbolic computation is a viable approach 
for straightforward textbook problems, but not up enough to tackle 
larger problems. However, we envision substantial hture progress. 

- 

1. Inboduction 
The use of symbolic computation programs for control purposes is investi- 
gated by several "a Some control problems are handled by RE", 
~e [l]. The use of is discussed in [21 for a specific class of control 
problema Zeitz et aL. 131. use the program MACNON, based on IMACSYMA, 
to analyze obsevability and teachability. and to design observers and con- 
mllers for nonlinear sy-a Their package is mainly used for teaching, 
and there are no published results for larger scale problems. Blankemhip [4] 
also uaed Wuku to solve some control problems with his implementation 
CONDENS. but is now switching to h%umMAncA. and he provides a control 
toolbox for this platform. Some M " M A T I C A  notebooks, eg. COSXPAK, 
are developed to mimic W tool boxes, primarily with the aim to get 
a more powerful v i d z a t i a n  and a possible integration of symbolic capa- 
bilitieu, although those capabilities are not fully exploited now. The use of 
W for a e v d  control problems is reported in [51. Some problems re 
pated in this paper. eg., with solving partial differential equations, are parUy 
reaolved in 161. They deaaibe a W package. here called NOX~WON (a 
mcceasor of the ZERODYN package presented and used in 15.71). that can 
unnpute, e.&, the zero dynamics and provide solutions to exad linearization 
probha 
In the p m  paper we illustrate the use of this package by applying it to 
m e  textbook and a larger scale problem. Contrary to [7], that focusses on 
the camputation of the zao dynamics, and to [SI. that treats the state space 
a& liwarizacion problem, both with the assumption that the relative degree 
is well &lined, here a more thorough treatment and a larger scale example is 
presented, that more closely resanbles problems arising fmn practice. 
The main goals and contributions of this paper are 

a proof of the viability of symbolic canputation for problems in the 

to show the Eharaderistica of a prototype implementation for the compu- 
tation of normcll forms, the zeo dynamics, input-output and state space 
exact linerrization 
to give some examplea (also a larger scale or semi-industrial one) of the 
use of thin implementation and to document some applications 
to discuss directions for future research in symbolic computation and in 
the analysis and synthesis for nonlinear control systems 
to familiuize a lrrger audience in the control community with the use of 
symbolic campumion. 

The paper is as follows. F i  section 2 presents and makea m e  
marks on the control problems that are treated in this study. Then, Section 3 
discusses the marhematical details of the problems. Section 4 follows with 

analysis llnd design of nonlinear control systems 

2. The Control Roblemr 
From severa1 areas in nonlinear control, where. symbolic computation is likely 
to be of some profit, we discuss the computation of the normal form, the 
zero dynamics, and the input-output and state space exact lineariation. To 
be able to solve some of these problems, modifications of the system to be 
controlled arenecessary. Because, in our setup, the system itself isnot allowed 
to be changed, the only possible modifications are the judicious manipulation 
of control signals, is, signals that act on the system and can be influenced 
from the outside, and the manipulation of the information flowing out of the 
system. 'he generation of control signals will be done by a control law, where 
information of the system is used to generate the control input. 
21. Normplform 
To reveal the structure inherent in the system, but disguised by the general 
form of the mathematical model, it is necessary to uncover the sflucture. 
This structure can then be used to advantage in the analysis and design of 
control systems. It CM be revealed by transformation to standard, canonical 
or, aa we call it here, normal forms. For this purpose a change of coordinates 
is employed. The new coordinates are related to the system output and its 
derivatives. Depending on the relative degree ofthe system, Le., the number of 
times the outputs have to be differentiated before the input explicitly appears, 
the system can be decomposed in a set of series connections of integrators, 
a feedback over these sets, and, if the relative degree is less then the system 
d e r ,  a remaining part that can be made "unobservable" at the output of the 
system by feedback, the ZBY) dynamics This will be made more precise in the 
next section. 
22 Zerodynamics 
T h e m  dynamics of a nonlinear system can be characterized asthe remaining 
dynamics of the system if the output is required to be 0 for all times. It is the 
dynamics of the system an the largest unobservable submanifold that can be 
obtained by judiciously manipulating the input to the system by s control law. 
The characterization of a system by properties of its zero dynamics is of 
importance for some design goals, sg., if the zero dynamics is unstable, 
certain types of control laws are unable to stabilize the system, so these 
control laws should be avoided. 
23. Input-wtput exact linearization 
?he input-output exact linearization problem is of long standing interest in 
contro1 theory. In essence, it is the problem of modifying a nonlinear dynamic 
system such that, after the modification, it behaves like a linear one, in the 
input-output sense, Le., the goal is to get a linear (dynamical) relation between 
the new input and the output of the plant. 
In a more complete control system design, the input-output exact linearization 
is o h  only asubordinate goal, to make it possibleto use other design methods 
for attaining additional goals. 
24. State apace exact linearization 
It is also possible to consider a more ambitious goal, where the behavior 
be4ww the new input and the (transformed) state of the plant is required to 
be linear. 'Ihis exact (or state space exact) linearization problem is also of long 
-ding in- in control theay. In essence, it is the problem of modifying 
a nonlinear dynamic system such that, aftet the modification, it behaves like 
a h e a r  one, so powerful design methods for linear systems can again be 
employed. 

3. The Mathematical Formulation of the Problems 
In the presentation of the mathematics. we closely follow the WO& of 
Isidori 191. We start with a nonlinear model of a plant and assume that it 
cnn be described adequately by a set of nonlinear differential equations, a n e  
in the input U ,  and without direct feed-through from input to output 

=m + gQu, y = W) (1) 

0191-2216/93/$3.00 0 1993 IEEE 

~~~~ -~ ~ n 

276 



with &ate vector x E R", eont4intrg all necessay infomation of the pbnt, 
m p t v e d o r u  E Rn,andoutputvectory E P.Thenumberofinputs is  
U@ to the number of outputs, La, the phut is quare. lhis aclaunption is for 
amealmce only and mrLu a oimplified -on poodble PMS of the 
theory can rbo be duivai if Ihe number of inputs is huger than the number 
of ouipuk Ibvec to r  fieldf h "0th. g h u m  columru gr of moothvedor 
fiddr. m d  h is acokmn ofm rarlrr-valued moothfundom hi. 
Thenonlinear sy- (1) is said to have a vector dat ive dclpra {rl, . . . , rm) 
atx-xOif 
1. Lg,f,,Sh) = O f o r k  = 1 ,..., r j - 2 ( i , j  = 1 ,..., m)and . l lx ina  

2 rhcfolbving m xmmurixisnonaingulnr at f 
dghborhd o f f ,  

Here L,hi@) meana the ALh s u d v e  Lie derivative of the scalar functim 
hi@) in the direction of the vector fieldf, cg. &lie) = (alri@y&y@). The 
matrixA i s m c t i m e s  called the decouphgmatnx. 
Thc modification we allow is &tefdhck, la, a fe+dbrl bagd on the 
explicit knowledge of the value of the strte vector 41). The type of control 
hw uwd hae is &c@d to &atefeedback. Heam, the value of the 
input V e d a  .(I) dcpcDdi aa the #&e &I) lad a new m&wm input v& 
Nr). This dependence is of the fom 

U = aQ + P O V  (2) 

where the componcmta ai and &, are anooth functions 
For linear syaems a linear &go of di z = Tx with a nonsingular 
matrix T is u a l Q  adequate. For nonlinear sy-s it is more appropriate to 
allow for anonlinear change of coordinates 

z = (t, rl) = ow. 0) 

I is requid that the kcobian a#/& of the trrsnafmation veuor CP in, at 
least locally, i m d b l e  for CP to q d f y  as a change of coordinates, beaus 
then Q, CM be used 
When the sydem has a well detined dative &gree wecan use such a am- 
dinate trursfarmatian to transform (I), under mme involutivity condition8 for 
MIMOsyaemn, to t h e n a m a l h  

a two-way mapping. 

where 

The nonllnear dynamics obtrined when the output y = he) is restricted to 0 
by mit&k initid conditions for e. i.e., m 0. and a suhrblc oontrol v in (S), 
i.e. v - 0, is 

It b invisible U the output, .nd is called the ZCID dyflunics of the ay-. 
because the dynamics is rehted to the zaos for lineu syyatem~, and at0 
beaume it is relazed to the zero output. Wben the involulivity conditions f a  
MIMO ay-s rre not fulfilled. the zero dynamics will also depend on U. 
W e a n  now &ate our problems more formally. 
The probkm of t"ing the ay- (1) to the m d  h amounts 
to leaing up the trinstormrtion, compthg tfie i w a a ~  tmnsfmation md 

zero dynamics. Of amme, this can be done if the rdadve degree is well 
d&ed only. If there is no reWie degree we h v e  to reaorl to another method 
to derive the equations f a  the zero dynamics and to solve the input-output 
aud linearization probkm (see the following sections). 
7he zem dyasdcs problem is to obtain the dynamics of the system when the 
output y is required to be 0 f a  all 1, by a propet choice of initial slate x(0) and 
amtrol input u(l). Here we have to employ an appropriate static state-feedback 
and we proper initial conditions More specific: we are looking for the locrrLly 
maximal output m h g  submanifold, md its aesociated dynamics 
Fm systems with a well defined relative de- the zero dynamics follows 
quite easily from the normal form. F a  systems without a relative degree the 
situation is more complicated. "his problem has been treated in [9, Section 
6.11, and the solution does not require the s y m  to haven well defined relative 

Our aim is to i m p h e n t  the dution algorithm and compute the zero 
dynamicaforrealsyrtrms. 
'Ihe Inputsutput exacf linepIzaton problan: under which conditions is it 
possible to transform the system (1) to a linear one by stabfeedback (2)? 
The linearity property should be established beween the new input v and the 
output y. pormally, we are looking for a neighborhood U o f f  and a static 
arcrto-feedback such that f a  all k 2 0 and all 1 S i ,  j < m the expression 
k ~ # + ~ , h j @ )  is independent of x on U. 
For systems with a well defined relative degree, the input-output linearizing 
feedback follows quite eSeily fium h e  normal farm. For systems without a 
relatiie degree the situation is more compliceted. This has also been solved, 
see, e.g.., [9, Section 5.41. Our goal is to test the conditions under which the 
problem an be solved and to derive explicit expressions a and /3 for the 

The &ate pace exlct Z n e d ~ h n  p d h  can be dated as: under which 
moditions isitpc#sibletotMsfamthesrstem(l)toalineumdcon~~le 
one by -feedback (2) and a c h i p  of coordinated @)? The linearity 
propetty sbwld bec&&liahed be tww tbenewinput vand the tmnsfmed 
r*.ter Thispmblan haa becn solved. see, ag. [9 ] ,~1d  ow goal is toteat the 
conditions and to derive explicit equations f a  the feedback and the change of 
d i n a k a  for specific planta The solution is only valid for systems with a 
well ddned relative degree, and requires the dstenca of (synthetk) outputs 
for which the sydan haa a I tU  mla relative degree, r = n. 
When a fullordanhtive degree canna beobtained. it k sanetimeconvenient 
to Mive for a maximal relative d e p .  'Ihen the corresponding input-output 
linearizing state-feedback realizes a minimal dimension of the zeeo dynamics. 

4. The Sdutim of ihe Pmblanr 
Al. Normalforms 
An algorithm to compute the n a a l  form is inherent to the definition of the 
normal form in the previous section, md needs no further discussion. 
A symboliccomputationpmgrun should provide facilities for computing (Lie) 
derivatives, testing involutivenew, computing solutions of seta of nonlinear 
dgdmic quatiom tbr the invemc mapping, and of wle of parlid differential 
equations to transform to a simple n m a l  form. Besides, more mundane 
facilities like symbolic subaitution are needed. 

4.2 Zcrodynmia 
When the system has a well defined relative degree, the zero dynamics follows 
fran t h e n a a l  farm, by substitution of the output nutling input U* and using 
the propw that the states e. that do not belong to the zero dynamics, can be 
set to 0. 
F a  systems without a relative degree the zero dynamics can be computed 
by using the Zero ~ m l c s  AfgorMm. The way this algorithm works is 
by considering a sequence of nested nubmanifolds Mi. with Mi 3 Mi+! and 
MO = h-'(O).ic.thefitstsubmanifoldistheinverseimageofthepointy = 0. 
When m e  conditions are fulfilled this sequence convergea to the locally 
m h d  output zaoing Wbmanifold 2' in some hti@o&ood o f f  and 
then exia a mapping U* auCh t h a t f ~  = /@) + gCt)u*Q is tangent to z'. 
me pair < z * , f )  i s a m  the zero dynamics ofthe sygcn. when the mappin 
H(x) is defined in aneighbomood (I o f P  by 2' n U = {x E: U: HW) = Of 
the hput U* CYI be computed an the solution of GHQ) + L,HCx)u' = 0. F a  

derrila ofthis alprilhm. lrnd Uic conditions to be imposed to guarantee 
convmgence ofthe sequence to z', we refer to 191. 

4 - do. tl). tlm = V0. 

qxning tht sy#fzIn in theaandml p l s  and in thepcltc aslociated with the 

feedback (2). 
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fa a and P in aneighborbood o f f .  Fa fiuihs dehila of thir algorithm m 
refer to [91. 
An 8nalyais of the smctum Algorithm &ow8 that a symbolic atmpuuion 
progran A d  be abk to compute the Lie derhrrsive. perform marix-vastw 
d murix-nutrix muliplidon, check if anne eJrprdon ir epwl to 0. 
perfam rrat te8a computethekcanel of anupping, r lhaccanplwau 
are r e w e l y  atrai@fo”l Hae a h ,  the mrinpmbhn irto 6nd aohtians 
foradaofnanlinereqwtiana 
4.4.8taocprrart l i .crintk.  
’Ihecmditiom~so~gtheeactlinesriptionpmblemusgiv~.To~ 
the ml&m m a c  oanprcly, we define the a x d l e d  didbutionr 

Gi = apan(.afgj: 0 5 k 5 i, 1 5 j 5 m )  f a 0  S i S R- 1. 

Ib de4ine the adpint d. we need the Lie product 

thefe Cnirt mhtionr A&), i = 1, . . . , m, f a  the following partial differential 

(a) 

ALO r b , r i  = n, *the of in- {r l ,  ..., it} is the W i e  
-vcdor. ’ Ihem nmdions 1 em be amputed. b a d  on a conamdive 
proofoflbeoran 4.1. 
U- the fiurtianr 4, the change of coordin~ea and stabfeedback U = 
a@) + p@)v that mive the &ate  re exact linearivltion p b l e m  can be 

An “lydr of thir algaithm &owr tht a symbolic computation p r o g r r u n  
Quld be &k to compute the Lie daivltive md Lie produd, perfam matrix 
Veda mulllplicriion. compute a matrix inverse, UC. lhese computatim are 
rrtthrdy w. The mein problem io in the canputation of the functions Ai,  
wl#cpr*.l diiFaarcial equation8 have to be incegnted. We will discuss this 
in scaion 5. 

5. Solvtkn with Symbdk Computation 
SoMio118 for tbe problems dgeribed in the previous d o n ,  i.e. to compute 
1. theItmnAlfam 
2 hstcrodynamica 
3. the input-output exact linearization 
4. the alate pre exact liDariwion 

me hchded in NdCON. Fa Ppblems (1) ancl (4) the systan should have a 
well ddimd dative degrre. for (2) and (3) this is not n-. Implementa- 
tionr of algorithmr f a  Mme o h  problems, ag.. to solve partial differential 
equati008, n inchded in this package b. Ihe crtrudure of the implementa- 
tianisrtacsedinFig l. 

alurtiolu 
LUG&@) I 0, f a 0  S k S ri - 2md 0 S j 5 m. 

or”. 

figure 1: StNcture of NodCON 

-se the N&ON package is ampk documented in 1101, there is no need 
f a  @tion hac F a  8 more d b l e  accuunt, aee [6]. Hae, we only 
foau on m e  apecific problems that appeared during the implementation 
ofthe alpritlunr presented in Section 4. lheae problems p-t the major 
bocllcacEtr fa the aymbolic rolution of our d&gn problana 
hthepreviouraection wen&edthatamainproblem wastocomputesolutions 
fa sets of nonlineu equations In MASLE a facility is available to solve 
of rrmlinar equations, namely the solve function, but this facility is not 
dwayr d c i a ~ I .  We did not try to impmve thia 
h the previau. aection we a b  remarked that another main problem was 
to campute the findom 4. .nd that the integration of partial differential 
~ s m r r 6 n a l  in thiscomputation. In MAPLE ahnost no facilitiesare 
dI&k to robe putial diff-al equationa To improve this the following 
muleW.rdlorccr. 
”be Mal dilTera~tial equrtiau we have to solve are from the “completely 
m k ”  type, in otha words, baaed on Frobarius’ ’Iheorem. we know 
1&r I #ohtion f a  tbe p4.l d i f f d a l  equations exista To compute the 
roLtimr Frobmius’ lbeoran i t d f  is of no help. lhis problem was solved 
by computing the mlution8 with M algorithm baaed on a conmuctive proof 
of Fmbedur’ lbawan. ’Iheprocedure is M followa 



Ihe mlution of the p 4 . l  diffeencial equation can be condructed dnwn the 
solutions of related ads of a d i  diffeamtial cqurtiona Because IbfMU 
prwidg~e&cifitierforthistypeofprobkms,thedsolveoo"adthe 
probkm aemsmlved, Howeva.thedaolvecrwn"disnosvcypmvcrlu2 
and is o b  unable to p " t  a solution, althou& this solution is known to ex- 
ist. Therefore the dsolveproccdure was exbded m an d hoc way. tohvldk 
a krga ckss of problems, by implementing a recumive p" to mlve 
&ts of differential equations, Mrting h the "*" (amuned to be the 
imp-) equation, sub&ituting the mlution in the ranlining equations, and 
soon. Noeffort wan spend in wing to detect .(block) trianp,ubr dependency 
mdure in the set of diffe~ential equations, that would be a mare rigorous 
option. Despite this exkmion. the computation of the fundions k is o h  
U M J C C ~ ~ ,  erpecially for more complicated crydema, o N&W cannot 
finishthecanputationa'LhisputofN&~No~thenforebe~~derrd 
ssexpdmentd ItscanrunlilrelythltuMIher~boliccanputationprogrun 
wil l  improve this situation. 
For m e  otha minor pmblans, that wexe m c o u n ~  during the imphen- 
Won of the algorithms, work around8 are applied. We discuss m e  of these 
work arounds. The problw wanthat someofthedrndard W functionsin 
the linalgpackageareonly aJitableforrationdpo~miab. Thiswastoo 
limited far ow purposer w o r e ,  the r a n k  and implicitly the gausse -  
1 im and gaus s J ordprocedurea wereextended. 80 alarger c h  of problems 
could be handled. ' be  modifidon consisted simply in moving beck& 
for the type ofthe entrier of the m&ix for which the rank, Gaurs elimina- 
tion or GUM J0rd.n form &odd be canputd. and adding an a d d i t i d  all 
to the s i m p l i f y  function to amme that the dezsction of pco apremions 
wasgrrvantesd f o r . k r g e r c ~ a p r o b ~ r I h e n m , ~ o n a e x t r a n k .  
extgausselim,andextgauss~orduethaeforeerctended inrnthar 
ad hoc way. and this part of N&ON should be conSidered 8s e x p e d m d  *. 

6. Texibookprobkms 
To ilhuante the -of N ~ o N  we coasida several exampler 'Ihe fin# three 
e~ramples do have a well defined relative degree. Ihe fint example computes 
mezao6/MmicaofaSISOsydemwirhtwo~forinputandadpue'Ihe 
second example is far the zao dynamica crmputation of a MIMO ry@em 
with two inputs and two outputs. The third example is f a  the input-outpu 
exact linearization problan, again for a SISO sydem. For the fauth example 
the zero dynamia is computed with the Zero Dynamica Algorithm. For the 
61th the input-output linearizing -feedback is computed with the Slmcture 
Algorithm. 'he kat two examples are based on models that do not have a well 
defined reZative degree Both of these examplea are MIMO with two inputs 
and two outputs. All examplea are contrived on@. lhe first example is taken 
~om[11,Example12.43],andthenextfocu6om[9,Examplen7.4.1,4.8.1, 
6.1.2.5.4.1resp.1. 

&ample 6.1. The model of this system. a robot with two revolute joints, 
nee Fig. 2, M be derived with the metbod of Lagrange from the following 
expfwaions for the kine& and potentid energy 7' and b' [I 11 

2~ =ml / tB:+m2 (@f+&bI + & ) ' + ~ 1 1 2 ( b i  +&)cos&) 

-V = { ( m l +  mzh- el + m2l2 cos(& + &>I . 
lhe inputs ul and u2 are the joint toques and the outputs y~ and yz the joint 
positions. lhe &ate x of the model camenponds with the degFeee-of-freedom 
andtheirderivativesinthefolbwhgwayf=[& & & &I. 
h 

Figure 2: Robot with two revolute joints 

nK a h  is to derive the dynamica of the model when it ir conetroiipt& "e 
aretwocaaes,thetimtonewithy-~~ = 01 conetrainedtooanduz =O,the 
second one withy = yz = & CmMIUn ed to O n d  u1 = 0. A d g  to [Ill 
t h e m  dynunica arcgiven by (with a U m o d e l p u u n ~  

f2=m & = g d n q  reap. &=@/S)gr iaq .  

ThefollowinglogofaNor&"?adon howsthattheredtaof [lllcanbe 
reproduced. ~ofunctlonsarcud: normformtocanputethezaodynam- 
ics (expressed in thenew coordinrtg) and trans f o m  fathetransformation 
cothenewcoordin~and~iavaae.Ihebgiorthefirstcrse,whaey= 01. 

to 1) 

normform 
zero dynamics is 
[eta[l]dot = eta[2], eta[Z]dot = grav sin(eta[ll)l 
output nulling input is 

[ sin(eta[l]) eta[2] t cos(eta[ll) grav sln(eta[l 
transform 

transformation 
[ x[ll, x[3], XL21, X[41 I 
inverse transformation 
(x[2]=eta[ 11, x [4l=eta[2], x [ll=zeta[ll, x [3l=zeta 

lhmtheaecondcesefory=&. 
normform 

zero dynamics is 
[eta[l]dot = eta[21, eta[2]dot = 3/5 grav sin(eta 
output nulling input is [ 1/5 grav sln(eta[ll) 
transform 

transformation 

2 

[ x[21, x[41, x[ll. x[31 1 
inverse transformation 
(x[4]=zeta[2], x[3I=eta[21, x~2l=zeta[ll, x[ll=et 

Ihermlts coincide with the ones given above. 

h p k  6.2. l h e  model of the syat#n is 

The output functions do not give the model a full order relative d e p  aa 
~ b y t h e f o l l o w i n g b g o f a ~ ~ m w h e r r t h e r e l d e g  function 
ir used to compute the nktive d- 
* reldeg 
vector relative degree = [ 1, 1 I 
total relative degree = 2 
matrix Adeg = I x[31 1 1 

[ 1 0 1  
bdeg = [ X U ]  + x[ll x[41. xL21 exp(x[31) 1 

To peanit a linearizing s ta te feedbe  we have to find functions I for which 
the model hM a full ader relative degree Ihe next kg of a NOtdCON d o n  
ahowsthat this is p d b k  Ihe fundon output f unc  l a u d  to compute the 
I'sandthefunction s t a t e l i n t o c a n p u t e t h e ~ z i n g ~ f c e d ~ .  
outputfunc 

output functions lambda for full (vector) relative degree 
[ xr31, XI41 - x[21 - x[ll I 
* statelin 
the exact linearizing feedback: (U) 

[ v[l] - x[21 exp(x[31) - 2 x[31 x[21 - 2 x[31 , - x[3]v[ll - v[llexp(x[31) - v[21 + 3x[3]x[2]exp(x[3]) 
t 2 X[Zl x[31 + 2 X[31 

t 2 exp(xt31) x[31 t x[21 exp(x[31) - xi21 exp(x[31) 

- x[21 exp(xl31) xI31 - x[ll - x[21 + x[41 - x[lJ x[41 I 

'his cannot be verified a g a  published mb, because thir model is used 
in p] for other purposes. Nevertheless, due to intemal vaification in fhe 
NodCW package, the m k  ir cared. 

3 

2 4 

3 2 

2 

Erpmplc 6.3. The model of the system is 

For this model we cannot find a Anction I that gives the model a fill order 
relativedegree,beau&tbeconditiau,oflheomn4.1 areviokted.Accading 
to [A the function A@) .I XI giver themodel a r e w e  degree of 3. the hgea 
that irpossibk. The funclion output f u n c  that isnormally u d  to compute 
functions that give the model a fclll ada relative degree is ala0 abk, but 
only for S E 0  sytfana, to compute functions that will give a maximal rehtiie 
degree. l l m  f o W i g  bg of a hlrvlE d o n  bows thir 
outputfunc * 

the output function gives relative degree of [ 3 ] 
output lambda for maximal relative degree [ x[l] ] 



This mlt is in agreement with the result mentioned above. The normal form 
of this model with 1 = XI  M output y is given by 19. p. 2121 (U) 

f l  = 52 

4 = 53 
23 = v 

9 -21  +<. 
This is computed with the N o r d c ~ ~  function normf o r m .  

normform 
the normal form: (fn, gn) 

[ zeta[2], zeta[3], zeta[ll , zeta[3] t zeta[l] ] 
[ O I  
[ O I  
[ I 1  
[ O I  

2 2 

the zero dynamics: (zerodyn) [eta[lldot = 01 
the zeroing input: (uzero) [ 0 1 

This result (of the form t = f . ( z )  + g,,(z)v) does not agree with the iesult given 
h e .  The differmce is in theequstion fort3 that ShOuM b e 3  = 4 + v. 'lle 
tam 5: h.8 been inadvmtly dropped in [9]. 

Brsmpk 6.4. lhe model of the s y m  is 

This model h.8 no well dehed relative degree at XO = 0, because 

A = [.: :] 
is singular f a x 2  = 0. The zero dynamics is given in [9] by& = -x3 (ii the 
original amrdinates) and the zeroing input by 

'Ihenext edited bg of a m  session showsthat the ZBP dynamics can be 
computed by N-ON. From the fimdions supplied by NO&ON we only 
need ext normf o m  that implements the Zero Dynamics Algorithm. 

extnormform 
1st step. output zeroing submanifold: 

1st step, constraints on the neighborhood: none 
2nd step, output zeroing submanifold: 

2nd step, constraints on the neighborhood: none 
3rd step, output zeroing submanifold: 

3rd step, constraints on the neighborhood: none 
3rd step. matrix L-gE has full rank m 
the zero dynamics: (zerodyn) 
IX [1 Idot=O, x [2 1 dot=O, x [3ld0t=-x [3], x [4] dot=O, x [ 51 dot=O ) 
the zeroing input: (uzero) [ 0, - x[3] ] 
Only the non trivial equations of the zero dynamics are of importrurce. The 
results coincide with the ones given above. 

a m p k  65. The model of the s y m  is 

[x[21 = 0, x[ll= 01 

[X[21 = 0, x[ll = 0, x[41 = 01 

[x[21 = 0, X[l] = 0, x[41 = 0, x[51 = 01 

This model has no well defiaed dat ive degree, because 

A =  [: E] 
is singular for dl x. Accading to 191 the neccsmry feedback f a  input-output 
linearizatim is U = a@) + /3Qv with 

The folbwig kg of a - session. with aane edits, shows that NO*W 
can compuw the input-output linearizing statefeedback. From the functions 
appliedby N d C m  weanly need inout 1 in that implementsthe Structure 
Algdthm. 

inoutlin 
the exact linearizing feedback and linearized 
system dynamics: (U, fl, 91) 

[ V[ 11 tx [l I-x [31, VI2 I -2x [l ]x [2] -2x [l I -x [l I x [31 1 

[ x[2ltx[ll , -2x[1]x~2]-2x[11 , 0, x[l]-x[31, 
2 

XI51 tx 131 +x[llx[2l-x [2lx [31 1 
[ 0 0 1  
[ 0 1 1  
[ 1 0 1  

3 

2 3 

[ 1 0 1  
[ x[21 0 1 

the explicit feedback:(alpha, beta) 
3 

[ X[l] - X[31, - 2 X[l] XI21 - 2 x[ll - x[ll x[31 1 
[ 1  0 1  
[ O  1 1  

The computed statefeedback agrees with the redts given above. 

7. Vcbidc dmulstion pmblcrn 
This larger eale p m b h  is ddved 5om UI inverse simulation p b l e m  in 
muki-body dynamicd. In this pmbkm a vehicle is required to perfam a 
Mndardized manoeuvre. To simulate. the manoeuvre the required inputs to 
the systan must be know. Normally, the manoeuvre is such that a suitable 
selected output of the syatem can be set to 0. In mod ~ ~ 8 8  theae outputs do 
not fully detemine the beluvia of the sydan and the remaining M o m  
represenfs exactly the mdynmnics .  If this dynamica is stable, then the 
simulation is ala0 stnble, if it is -le, then additional measures are needed 
toperfmastablesimulation. 
As an example we use a simple two dimensional model of a vehicle, a M e  
moving in the horizontal plane, with W o n  and tire forces acting on the 
frame end-points. It looks like the model of a biie. because it only oonsidas 
the center line of a mota vehicle, see Fig. 3. 

Figure 3: Model of a frame moving in the horizontal plane with faces acting 
on the h e  endpoints 

The required manoeuvre is steady state tuming: the longitudinal speed of the 
center of mass M of the vehicle is wncrtant. and a point P on the axis of the 
frame should describe a circle of specified radius. The gecific problem is for 
which distances p. from P to M. the m d y n a m i c s  is stable or unstable. 
The equations of motion of the model are 

w,,, c - ~ f  sin@ + e) - F, sin e + F,, cos e 
my,,, = +Ff ws(8 + e) + F r  cos e +Ft, sin 0 

with inputs Ft, ( W o n  face) and 6 (Steering angle). The Ume degreea-of- 
freedom&,.yn.and 8,arereSpectively thecoordinatesof M and the orientation 
of the frame with respect to a fixed reference h e  cxo, 5'). indicated by 
the aqmmipt '.The steering angle 8 and the drift angles af and a, are 
given with reaped to a body fixed reference frame. The Erame has mass m and 
moment of inertia J with respect to M. The forces acting on the frame are the 
traction force. Ft, and the lateral tire faces Ff. F,. The lest two forces can 
be srpresad in the drift angle and the normal tire force F,, by the 90 called 
Msaic f m u h  

J 8 = a F f w s 6 - b F r  

W". a) = D(F.) sine Udan(Bv)) (7) 
v = (1 - E ) t  + (Em) arctan(Bt), t = a + Sh 
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At the moment, the computations cannot be perfamed for complicated sys 
tar& due to the d a e d  capability to solve sczs of nonlinear equations and 
becum the pdbilitieu to solve seta of nonlinear differential equations are 
limited, ‘Ihrrforc. the designas of c i” l  systems cannot yet routinely com- 
pute solutions f a  b problems, using tools that are based on symbolic 
computation p r o m s .  
To remedy this, we recommend to extend the capabilities of symbolic compu- 
tation prognms f a  solving large and intriute seis of nonlinear equations and 
f a  solving sets ofdiffeenti.1 equations. Another possibility is to use another 
dpiUun. cg.. for the Mte space e m  linearidon problem. that completely 
w a d s  the inteption step. 
Futureresesrch willhaveto aim at 

devising new or modifying existing algorithms (0 be mare e63cient in 

implanentingtherlgaithmsinamoreefficient way, especially with regard 

solving more wall and larger scale problems, to further guide in the 

To come back to the title of the paper. at the moment we cannot deny for 
mre the viability of this apptoech without being unjust to the developera of 
symbolic computation programs and without being shut of of a promising 
approach that M awnphnent a cambined analylical @irper and pencil) and 
numdcs approach. Both Utitudes to symbolic computation. Le, to refinii 
and to embrace are (not) viable, depending on the expectations of the near 
future, and the viability question is still open. It is hoped fa ,  and more a 
leu exp&ed, that withii this deedc the efficiency and capacity of general 
symbolic computation programs arc &M&. and that the capabilities of 
datively cheap computers will erulble the solution of the benchmark and 
larger problems at reasonable costa 

spaceandtime 

to compute memory requirements 

selection of pressing lines of reeevch 

and 

where the aup“ipt * indicateathecoo&mtes with respect to thebody fixed 
ref- h e  (Z’ , Z: ). Eqecially the functional dependency of the hta;rl 
tire forces on the de-of-ftcedom and the steering angle make this system 
quite nonbear and difficult to Maze. 
By choosing the uutputa &I 

y1 =t,,,Me+j,,,sine-vd 
y2 = csl+ p COS el2 + cvn +pain el2 - e, 

m thedid8nsCp fwm F t o M .  To mlve tbe probkm. ilra canprde the zero 

with R d  the derited radius of the C k C h  Md v d  the deihd bll#lUdind rpced. 
theerequirrdm~~cm#pondswithazaooutpltIhtouautyz dspends 

dynamics and tha~ detamie its ntability as a function of p. 
The firer pmblan encountered in computing the ZCIO dynamics is the non 
& n e  chuaaa of tbe eqlutions with fwpecl to the m g  mgk 6. To 
ov-me this problem an additional integrator M be added to the system 
and I can be ryprded u anew input. Howeva, this cumwthe system to 
have a singular decoupling ma?rix A. which makea the analysis more difRcult 
The extnormform fmdion. b ~ e d  on the Zao m m i c s  Algorithm, can 
be used but this leds to immnounlable problems in the computalion due 
to huge memory need& soolution is lo add an integrator to the other 

mgulu by rbo “dekying” the input Fe. All this dding of intssr;rtOn must 
be pafamed by hmd through madifications off and g. beuuae the Q ” i c  
Ewansion A&dtbm is not implemented. 

’on 
tothe m a l  fam with the fmction normf om. &hough fora largersym. 
B e  to the larger n u m b  of again p b h s  uiaed with the memory 
needed to @cm the oompltrtion. To simplify the jmbkm. Motha “W- 
urating” hction was wed in the magic famuk (‘7) by uaing instead 
of sin(uban(-)). Now, the tnulsfamalion, urd even a solution f a  the partial 

mat~on cannot, beuuae of UI Plifici@l limit in the WE of objects permitted by 
the softwue, puttin8 M untimely end to the computation. 
Anothe cutempf to solve the problem of non rWne input is not to a c e  the 
modelbut to simplipV it mthe input 6 appears linear in the equations. To this 
ad, themaunption that I is mallhas to be adopted. ?hen,by using a Taylor 
series expansion, they-  of equations caa be written lineer in b if the 
depcndarcy of I of t h e w  ktaltite force isdroppd. so I hould idso be 
mull rclrtive to cy. m unrdidc asamption. lhis time the tmsfomution 
to the m a l  fam M be computed, but the oonlinur yaem, needed to 
compute the inverse transform&ion. could not be solved, this time not due to 
manory c a n d t s  but due to Imit.tioas of the solve functim of MAPLE. 
conchding: several rttanps to mlve this p b l e m  were in vain due to 

hput Fe d80, Md &g ph M a new @Ut, m&ing the dCCalpkg matrix 

’Iheadditim oftwohtcgr&a pamits the use of the studad 

di-al equation LfhQ - 0. M be computed, but the invuac t M s f o r  

limitsonthemurimrlobjeurize 
limitations of the solve function 
limits of the milabk physical (or vhtual) memory. 

The lnat problem is relatively eury to mlve. but becuiae the memory require- 
ments are likely to be qxmentid or double exponential with respect to the 
problem size, this is not a dKlp way out. Ihe fiw two problems hould be 
resolved by tbe Mrrpre developas. 
All in rU, the symbolic armputcltion software yet is not mature enough to solve 
largm rrle pmbluns. and in this case we have to remt to a p u d y  numeric 
apprach to detaminc the M i  ofthe zao dynamics. 
We propole to use this @kan &I a benchmut. a ydrtick. for the viability 
of symbolic canputrtioa programs. 

8. Condudon and DiruriOn 
The computation of the namd form, of the m dynamics, of the solution 
of the input-output and the d.te lplct exact kearizalion pmblems con be 
automated by using s y e l i c  computalian, ag. by Uang the N ~ O N  pack- 
age ’Lhir meansthat it i s  much easier now tou~cantrolks b a d  on the 
linearization apprmch, that can hlly take into account the nonlinedies in 
ml systems. An enhancement of the p e r f o r m ~ ~ e  of some cantrol syatems, 
for a large set of operation conditions, can therefore be expected. 
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