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Abstract
To aid in the analysis and design of nonlinear control systems the NONSCON
package, an acronym for Nonlinear Control, has been developed. This paper
addresses the usefulness of the NONSCON package as a self dtoolinthe
symbolic analysis and design of nonlinear control systems, as a replacement
and/or complement for numerical tools, and as a substitute for analytical
(paper and pencil) work. The symbolic computation program MAPLE is used
as a computing substrate for NONSCON.
To the viability of this tool, several algorithms available for analysis and
design are implemented in NONSCON, and applied to examples of textbook
problems with published solutions and also to a larger scale problem. The
examples in the paper address the following symbolic computational areas
for nonlinear dynamic systems: (1) the normal form, (2) the zero dynamics,
(3) the input-output exact linearizing state-feedback, (4) the state space exact
linearizing state-feedback, including the search for output functions that give
the system a full or maximal order relative degree. The systems are not required
to have a well defined relative degree.
The textbook problems show that the NONSCON package can be successfully
used. The larger scale problem is, however, too complex to be solved with the
current versions of NONSCON and MAPLE. Some recommendations to improve
the implementation and to make MAPLE more suitable for use with NONSCON
are given. The conclusion is that symbolic computation is a viable approach
for straightforward textbook problems, but not grown up enough to tackle
larger problems. However, we envision substantial future progress.

1. Introduction
The use of symbolic computation programs for control purposes is investi-
gated by several researchers. Some control problems are handled by REDUCE,
see [1]. The use of MACSYMA is discussed in [2] for a specific class of control
problems. Zeitz et al, [3], use the program MACNON, based on MACSYMA,
1o analyze observability and reachability, and to design observers and con-
trollers for nonlinear systems. Their package is mainly used for teaching,
and there are no published results for larger scale problems. Blankenship [4]
also used MACSYMA to solve some control problems with his implementation
CONDENS, but is now switching to MATHEMATICA, and he provides a control
toolbox for this platform. Some MATHEMATICA notebooks, e.g., COSY.PAK,
are developed to mimic MATLAB tool boxes, primarily with the aim to get
a more powerful visualization and a possible integration of symbolic capa-
bilities, although those capabilities are not fully exploited now. The use of
MAPLE for several control problems is reported in [5]. Some problems re-
ported in this paper, e.g., with solving partial differential equations, are partly
resolved in [6]). They describe a MAPLE package, here called NONSCON (a
successor of the ZERODYN package presented and used in [S, 7]), that can
compute, e.g., the zero dynamics and provide solutions to exact linearization
problems.
In the present paper we illustrate the use of this package by applying it to
some textbook and a larger scale problem. Contrary to [7], that focusses on
the computation of the zero dynamics, and to [8), that treats the state space
exact linearization problem, both with the assumption that the relative degree
is well defined, here a more thorough treatment and a larger scale example is
presented, that more closely resembles problems arising from practice.
The main goals and contributions of this paper are
® a proof of the viability of symbolic computation for problems in the
analysis and design of nonlinear control systems
© to show the characteristics of a prototype implementation for the compu-
tation of normal forms, the zero dynamics, input-output and state space
exact linearization
® to give some examples (also a larger scale or semi-industrial one) of the
usc of this implementation and to docurnent some applications
© to discuss directions for future research in symbolic computation and in
the analysis and synthesis for nonlinear control systems
® to familiarize a larger audience in the control community with the use of
symbolic computation.
‘The paper is structured as follows. First, Section 2 presents and makes some
remarks on the control problems that are treated in this study. Then, Section 3
discusses the mathematical details of the problems. Section 4 follows with
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a solution of the problems, the algorithms used, and an investigation of the
functionality needed. The general structure of the implementation in MAPLE of
the algorithms needed to solve these problems is treated in Section 5, where the
NONSCON package is described. Section 6 presents some textbook examples,
using the NONSCON package, for each of the problem areas. The next section
contains a discussion of the larger scale problem. Section 8 presents some
conclusions and gives directions for future research.

2. The Coutrol Problems

From several areas in nonlinear control, where symbolic computation is likely
to be of some profit, we discuss the computation of the normal form, the
zero dynamics, and the input-output and state space exact linearization. To
be able to solve some of these problems, modifications of the system to be

trolled are y. B in our setup, the system itself is not allowed
to be changed, the only possible modifications are the judicious manipulation
of control signals, i.e., signals that act on the system and can be influenced
from the outside, and the manipulation of the information flowing out of the
system. The generation of control signals will be done by a control law, where
information of the system is used to generate the control input.

2.1. Normal form

To reveal the structure inherent in the system, but disguised by the general
form of the mathematical model, it is necessary to uncover the structure.
This structure can then be used to advantage in the analysis and design of
control systems. It can be revealed by transformation to standard, canonical
or, as we call it here, normal forms. For this purpose a change of coordinates
is employed. The new coordinates are related to the system output and its
derivatives. Depending on the relative degree of the system, i.e., the number of
times the outputs have to be differentiated before the input explicitly appears,
the system can be decomposed in a set of series connections of integrators,
a feedback over these sets, and, if the relative degree is less then the system
order, a remaining part that can be made “unobservable” at the output of the
system by feedback, the zero dy ics. This will be made more precise in the
next section.

2.2. Zero dynamics

The zero dynamics of a nonlinear system can be characterized asthe remaining
dynamics of the system if the output is required to be O for all times. It is the
dynamics of the system on the largest unobservable submanifold that can be
obtained by judiciously manipulating the input to the system by a control law.
The characterization of a system by properties of its zero dynamics is of
importance for some design goals, e.g., if the zero dynamics is unstable,
certain types of control laws are unable to stabilize the system, so these
control laws should be avoided.

2.3. Input-output exact linearization

The input-output exact linearization problem is of long standing interest in
control theory. In essence, it is the problem of modifying a nonlinear dynamic
system such that, after the modification, it behaves like a linear one, in the
input-output sense, i.e., the goal isto get a linear (dynamical) relation between
the new input and the output of the plant.

In a more complete control system design, the input-output exact linearization
isoften only a subordinate goal, to make it possible to use other design methods
for attaining additional goals.

2.4. State space exact linearization

It is also possible to consider a more ambitious goal, where the behavior
between the new input and the (transformed) state of the plant is required to
be linear. This exact (or state space exact) linearization problem is also of long
standing interest in control theory. In essence, it is the problem of modifying
a nonli dynamic sy such that, after the modification, it behaves like
a linear one, so powerful design methods for linear systems can again be
employed.

3. The Mathematical Formulation of the Problems

In the presentation of the h ics, we closely follow the work of
Isidori {9]. We start with a nonlinear model of a plant and assume that it
can be described adequately by a set of nonlinear differential equations, affine
in the input , and without direct feed-through from input to output

E=fx)+g0u,  y=h@) o
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with state vector x € R™, containing all necessary information of the plant,
input vector 4 € R™, and output vector y € R™. The number of inputs is
equal to the number of outputs, i.e., the plant is square. This assumption is for
convenience only and makes a simplified presentation possible. Parts of the
theory can also be derived if the number of inputs is larger than the number
of outputs. The vector field f is smooth, g has m columns g; of smooth vector
fields, and A is a column of m scalar-valued smooth functions h;.
'I‘hem:!in;nrsym(l)iunidtohuveavecm':ehﬁvedeyu{rl,...,r..}
atx=x°i
L Lylhh(x) m Ofock = 1,...,ri=2(,j=1,...,mandallxina
neighborhood of x°,
2. the following m X m matrix is nonsingular at x°

L' M@ - LyL} 'me
AR = : :
Lol ) v Lol )

Here l;h.-(x) means the k® successive Lie derivative of the scalar function
hi(x) in the direction of the vector field f, &.8., Lrhi(x) = Ok (x)/9x)f (x). The
matrix A is sometimes called the decoupling matrix.

The modification we allow is state-feedback, i.c., a feedback based on the
explicit knowledge of the value of the state vector x(f). The type of control
law used here is restricted to static state-feedback. Hence, the value of the
input vector u(f) depends on the state x(/) and a new reference input vector
w(). This dependence is of the form

u= a(x)+ pxy @

where the components o; and f; are smooth functions.

For linear systems a linear change of coordinates z = Tx with a nonsingular
matrix T is usually adequate. For nonlinear systems it is more appropriate to
allow for a nonlinear change of coordinates

z = (&, 1) = O). @

I is required that the Jacobian d®/dx of the transformation vector ® is, at
least locally, invertible for ® to qualify as a change of coordinates, because
then ® can be used as a two-way mapping.

When the system has a well defined relative degree we can use such a coor-
dinate transformation to transform (1), under some involutivity conditions for
MIMO systems, to the normal form

i = hi(x) = &
g

“oe

Eo=b@me Y o€ mu
el

fori=1,...,m @

m

fori=14+ E Fjsoeo,n

el

i = qi(€, )

ay(€, M) = Ly L™ hi(@™' €, M)
b, M = L@ €, 1)
The terms aj; are the entries of matrix A and thercfore we can compactly write
(with only equations containing the input u in 4)) '

ED = b, M)+ A,
fl = q(&, 0,

where &) are the m elements of & on the places ry, 7y + r2,...,r, With
r= Z;l 7j. Because A is nonsingular if the relative degree is well defined,
the control

fori,fj=1,...,m.

u=A"'wv-b) ®)

with the new input v is properly defined and linearizes the part of system (4)
that is visible at the output of the system

M =v

The nonlinear ics obtained when the output y = h(x) is restricted to 0
by suitable initial conditions for &, i.e., & = 0, and a suitable control v in (5),

ic,v=0,is
f=q0,m), 0O =1°.

It is invisible at the output, and is called the zero dynamics of the system,
because the dynamics is related to the zeros for linear systems, and also
because it is related to the zero output. When the involutivity conditions for
MIMO systems are not fulfilled, the zero dynamics will also depend on u.
‘We can now state our problems more formally.
The problem of transforming the system (1) to the normal form amounts
to setting up the transformation, computing the inverse transformation and
splitting the system in the standard part and in the past associated with the
zero dynamics. Of course, this can be done if the relative degree is well
defined only. If there is no relative degree we have to resort to another method
to derive the equations for the zero dynamics and to solve the input-output
exact linearization problem (see the following sections).
‘The zero dynamics problem is to obtain the dynamics of the system when the
output y is required to be O for all ¢, by a proper choice of initial state x(0) and
control input u(f). Here we have to employ an appropriate static state-feedback
and use proper initial conditions. More specific: we are looking for the locally
maximal output zeroing submanifold, and its associated dynamics.
For systems with a well defined relative degree, the zero dynamics follows
quite easily from the normal form. For systems without a relative degree the
situation is more plicated. This problem has been treated in [9, Section
6.1], and the solution does not require the system to have s well defined relative
Our aim is to implement the solution algorithm and compute the zero
dynamics for real systems.
The' input-output exact linearization problem: under which conditions is it
possible to transform the system (1) to a linear one by state-feedback (2)?
The linearity property should be established between the new input v and the
output y. Formally, we are looking for a neighborhood U of x° and a static
state-feedback such that for all k 2 Oand all 1 < i,j < m the expression
LgpyLf, s ahi@) is independent of x on U.
For systems with a well defined relative degree, the input-output linearizing
feedback follows quite easily from the normal form. For systems without a
relative degree the situation is more complicated. This has also been solved,
see, e.g., [9, Section 5.4]. Our goal is to test the conditions under which the
problem can be solved and to derive explicit expressions a and § for the
feedback (2).
‘The state space exact linearization problem can be stated as: under which
conditions i it possible to transform the system (1) to a linear and controllable
one by state-feedback (2) and a change of coordinates (3)? The linearity
property should be established betwean the new input v and the transformed
state 2. This problem has been solved, see, e.g., [9], and our goal is to test the -
conditions and to derive explicit equations for the feedback and the change of
coordinates for specific plants. The solution is only valid for systems with a
well defined relative degree, and requires the existence of (synthetic) outputs
for which the system has s full order relative degree, r = n.
When a full order relative degree cannot be obtained, it is sometime convenient
to strive for a maximal relative degree. Then the corresponding input-output
linearizing state-feedback realizes a minimal dimension of the zero dynamics.

4. The Soluti

4.1. Normal forms

An algorithm to compute the normal form is inherent to the definition of the
normal form in the previous section, and needs no further discussion.

A symbolic computation program should provide facilities for computing (Lie)
derivatives, testing involutiveness, computing solutions of sets of nonlinear
algebraic equations for the inverse mapping, and of sets of partial differential
equations to transform to a simple normal form. Besides, more mundane
facilities like symbolic substitution are needed.

4.2. Zero dynamics

When the system has a well defined relative degree, the zero dynamics follows
from the normal form, by substitution of the output nulling input «” and using
the property that the states £, that do not belong to the zero dynamics, can be
setto 0.

For systems without a relative degree the zero dynamics can be computed
by using the Zero Dynamics Algorithm. The way this algorithm works is
by considering a sequence of nested submanifolds M;, with M; = M;,y and
Mg = k71(0), i.e, the first submanifold is the inverse image of the point y = 0.
When some conditions are fulfilled this sequence converges to the locally
maximal output zeroing submanifold Z° in some néighborhood of x° and
there exists 8 mapping u” such that /*(x) = f(x) + g(Ju”(x) is tangent t0 2.
Thepair (Z°,1°) is called the zero dynamics of the system. When the mappin
H(x) is defined in a neighborhood U of ° by Z° N U = {x € U: Hx) = 0
the input u~ can be computed as the sohustion of LH(x) + L,H(x)u’ = (. For
further details of this algorithm, and the conditions to be imposed to guarantee
convergence of the sequence to Z*, we refer to [9).

of the Probl
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An analysis of the Zero Algorithm shows that a symbolic compu-
mmmuuahwpmmmmmumm
rank, the Gauss Jordan decomposition, and the determinant of a matrix. The
main problems are the computation of solutions for sets of nonlinear equa-
tions and the computation of the kemel of a matrix. The implementation of
this algorithm is still experimental, e.g., transformation to an extended normal
form is not yet possible.

4.3. Input-output exact Nnearization

For systems with a well defined relative degree the input-output exact lin-
earization follows casily from the normal form, and is in fact given by (S).
For systems without a relative degree the static state-feedback which solvesthe
input-output exact Einearization problem can be computed with the Structure
Algorithm. This algorithm uses a sequence of Toeplitz matrices

To(®) ... Tl
M) = . .
0 eee  Tolx)
where
Lyl oo LgLtm@)
Ti(x) = forOS k<2n-1.
LoLtha@) o Loplfhn@)

The conditions for existence can be expressed in rank conditions on M (x). In
the course of the Structure Algorithm the functions 1, . . . , % are computed.

With
Ny
'x)y={...
Ya(x),

we can solve

L@k = -LTE
LT@pE =-[1 0]

foramlt;]pinuwig:bmhoodofx‘.Forﬁxrmerdanihoﬁhiul;aithmwe
refer to [9).

An analysis of the Structure Algorithm shows that a symbolic computation
program should be able to compute the Lie derivative, perform matrix-vector
and matrix-matrix multiplication, check if some expression is equal to 0,
perform rank tests, compute the kernel of a mapping, etc. These computations
are relatively straightforward. Here also, the main problem is to find solutions
for sets of nonlinear equations.

4.4, State space exact lincarization

The conditions for solving the exact linearization problem are given. To state
the solution more compactly, we define the so-called distributions

Gi=span{adfg;: 0sk<i1<j<m} for0<i<n-1.
To define the adjoint ad, we need the Lie product

og;
fal= 73; - %gi.

and ad is defined recursively as ad g; = V. adf™ gi] with ad? g; = 3.
‘We now state the conditions for a solution of the state space exact linearization
problem [9, Theorem 5.2.4).

Theorem 4.1. Suppose a system
kmf@)+g0u, x€ER", u€eRrR"

with rank 2(x°) = m is given. There exists a solution for the state space exact
lincarization problem if and only if

1. G; has constant dimension near x° foreach0<i<n-~1

2. G,-1 has dimension n

3. G;isinvolutive forcach0<i<n-2.

Here, involutive means that the distribution is closed under the Lie product,
i.e.,, the dimension of the distribution G; does not when a vector field,
generated by the Lic product of each combination of two of the vector fields
in Gi, is added to the distribution.

‘When the conditions for the exact linearization problem are fulfilled, the state-
feedback and change of coordinates that realize the linearization are still to
be determined. &t can be shown that, when the given conditions are fulfilled,

there exist solutions Ai(x),i = 1, . . . ,m, for the following partial differential
equations

LyliA(x) =0, forO<k<r~2and0<j<m. O]

Ahozzlr. = n, where the set of integers {r1,...,7m} is the relative
degree vector. The m functions A; can be computed, based on a constructive
proof of Theorem 4.1.

Using the functions A;, the change of coordinates and state-feedback u =
a(x)-'-p(x)vlhu solve the state space exact linearization problem can be

An nnalyin of this algorithm shows that a symbolic computation program
should be able to compute the Lie derivative and Lie product, perform matrix
vector multiplication, compute a matrix inverse, etc. These compuuuons are

easy. The main problem is in the putation of the functions 4;,
where partial differential equations have to be integrated. We will discuss this
in Section §.

8. Solution with Symbolic Computation

Solutions for the problems described in the previous section, i.e., to compute
1. the normal form

2. the zero dynamics

3. the input-output exact linearization

4, the state space exact linearization
are included in NONSCON. For problems (1) and (4) the system should have a
well defined relative degree, for (2) and (3) this is not necessary. Implementa-
tions of algorithms for some other problems, e.g., to solve partial differential
equations, are included in this package also. The structure of the implementa-
tion is sketched in Fig. 1.

[ —"well delined relative degrec
TR BPARRAQ ™" """ N
! linearizati :
H putputfund
1 1
" 3o dynamics """ ATTmmes e M H
H N H 3 H
110 lincerization : H :
H ! reldeg H !
: ' ; !
: ' 1 : :
H ' H '
'  |transform| ! i
] : H :
’ ! '
4 ]
’ H ' '
] i ' 1
i | normtorm| ! i | statelin| !
s | | =
' decmccemeeeee f S H
[] []
13 ]
H extnormform inoutlin |1
3| Zero Dy Structy :
E Algorithm Algorithm |}
H H
lecncnccancssvwmencnccccancnenae= 4
no well defined relative degree

Figure 1: Structure of NONSCON

Because the NONSCON package is ample documented in [10], there is no need
for repetition here. For a more accessible account, see [6]. Here, we only
focus on some specific problems that appeared during the implementation
of the algorithms presented in Section 4. These problems present the major
bottlenecks for the symbolic solution of our design problems.

In the previous section we noted that a main problem was to compute solutions
for sets of nonlinear equations. In MAPLE a facility is available to solve sets
of nonlinear equations, namely the solve function, but this facility is not
always sufficient. We did not try to improve this.

In the previous section we also remarked that another main problem was
to compute the functions A;, and that the integration of partial differential
equations wasa final step in this computation. In MAPLE almost no facilitiesare
available to solve partial differential equations. To improve this the following
route was chosen.

The partial differential equations we have to solve are from the “completely
integrable” type, in other words, based on Frobenius® Theorem, we know
that a solution for the partial differential equations exists. To compute the
solutions Frobenius’ Theorem itself is of no help. This problem was solved
by computing the solutions with an algorithm based on a constructive proof
of Frobenius’ Theorem. The procedure is as follows.
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The solution of the partial differential equation can be constructed from the
solutions of related sets of ordinary differential equations. Because MAPLE
provides some facilities for this type of problems, the dso1ve command, the
problem seems solved. However, the daol ve command is not very powerful,
and is often unable to present a solution, although this solution isknown to ex-
ist. Therefore the dsolve procedure was extended in an ad hoc way, tohandle
a larger class of problems, by implementing a recursive to solve
sets of differential equations, starting from the “shortest” (assumed to be the
simplest) equation, substituting the solution in the remaining equations, and
0 on. No effort was spend in trying to detect a (block) triangular dependency
structure in the set of differential equations, that would be a more rigorous
option. Despite this extension, the computation of the functions A; is often
unsuccessful, especially for more complicated systems, so NONICON cannot
finish the computations. This part of NONSCON should therefore be considered
as experimental. It seems unlikely that another symbolic computation program
will improve this situation.

For some other minor problems, that were encountered during the implemen-
tation of the algorithms, work arounds are applied. We discuss some of these
work arounds. The problem was that some of the standard MAPLE functions in
the 1inalg package are only suitable for rational polynomials. This was too
limited for our purposes. Therefore, the rank and implicitly the gausse-
1imand gauss jord procedures were extended, so a larger class of problems
could be handled. The modification consisted simply in removing the check
for the type of the entries of the matrix for which the rank, Gauss elimina-
tion or Gauss Jordan form should be computed, and adding an additional call
to the simplify function to assure that the detection of zero expressions
was guaranteed for a larger class of problema. The new functions ext rank,
extgausselim, and extgaussjord are therefore extended in & rather
ad hoc way, and this part of NONSCON should be considered as experimental
also.

6. Textbook problems
To illustrate the use of NONICON we consider several examples. The first three
examples do have a well defined relative degree. The first example computes
the zero dynamics of a SISO system with twa cases for input and output. The
second example is for the zero dynamics computation of a MIMO system

with two inputs and two outputs. The third example is for the input-output

exact linearization problem, again for a SISO system. For the fourth example
the zero dynamics is computed with the Zero Dynamics Algorithm. For the
fifth the input-output linearizing state-feedback is computed with the Structure
Algorithm. The last two examples are based on models that do not have a well
defined relative degree. Both of these examples are MIMO with twe inputs
and two outputs. All examples are contrived ones. The first example is taken
from [11, Example 12.43], and the next four from [9, Examples 7.4.1,4.8.1,
6.1.2,5.4.1 resp.].

Example 6.1. The model of this system, a robot with two revolute joints,
see Fig. 2, can be derived with the method of Lagrange from the following
expressions for the kinetic and potential energy 7" and V [11]

27 = m 26 + my (1367 + B(8) + 627 + 2 1x(1 + 62) cos 62)

-V = g {(m1 +m))l cos 6 + mal2 cos(fy + 62)} .

The inputs ¥ and u; are the joint torques and the outputs y; and y2 the joint
positions. The state x of the model corresponds with the degrees-of-freedom
and their derivatives in the following way x” = [0, 6, & 6y).

A

m2

Figure 2: Robot with two revolute joints

The aim is to derive the dynamics of the model when it is constrained. There
are two cases, the first one with y = y; = 6; constrained to 0 and u; = 0, the
second one with y = y; = 6 constrained to 0 and &; = 0. According to [11)
the zero dynamics are given by (with all model parameters set to 1)

Jymxy k4 mgsinx resp. X mxy X3 = (3/5) gsinx;.
The following log of a NONSCON session shows that the results of [11] can be
reproduced. Two functions are used: normfoxrm to compute the zero dynam-

ics (expressed in the new coordinates) and t rans form for the transformation
to the new coordinates and its inverse. The log for the first case, where y = ;.

® normform *
zero dynamics is
[eta{l)dot = eta(2], eta([2]dot = grav sin(eta{l])]
output nulling input is
2
[ sin(eta[l]) eta{2]) + cos(eta[l]) grav sin{eta(l]) ]
¢ transform *
transformation
[ x[1}, x(3), x[2], x[4] ]
inverse transformation
{x(2]=eta[l], x[4)=eta(2], x[1l)}=zeta(l], x[3)=zeta{2]}

Then the second case fory = 0.

® normform *

zero dynamics is

[etafl]dot = eta[2], eta[2]dot = 3/5 grav sin(eta[ll])]
output nulling input is [ 1/5 grav sin(eta[1l)]) ]

® transform ®

transformation

[ x(2), x{4]), x[1], x[3] )]

inverse transformation

{x[4])=zeta[2], x[3]=eta{2], x([2]=zeta{l], x[1l)=eta(l]}}

The results coincide with the ones given above.

Example 6.2. The model of the system is

X +;;x4 xs 1
X2 1 0 X1
£= x2 453 * o of% 7r= [xz] .
Xy 4+ Xy = X4 + X1 X4 1+4x3 1

The output functions do not give the model a full order relative degree as
shown by the following log of a MAPLE session where the reldeg function
is used 1o compute the relative degree.

* reldeg *

vector relative degree = {1, 1 ]

total relative degree = 2

matrix Adeg = [ x[3] 1]
01

{ 1

bdeg = [ x[1] + x[1) x([4], x[2] exp(x[3]) )
To permit a linearizing state-feedback we have to find functions A for which
the model has a full order relative degree. The next log of a NONSCON session
shows that this is possible. The function out put func isused to compute the
A’s and the function statelin to compute the linearizing state-feedback.
* outputfunc *
output functions lambda for full (vector) relative degree
[ x(31, x{4]) - x{2} - x[1} )
* gtatelin *
the exact linearizing feedback: (u)

3
[ v[1] - x[2] exp(x([3]) - 2 x(3] x[2] - 2 x([3] ,
~ x[3]v[1] - v[1llexp(x[3]) - v[2] + 3x[3]x[2]exp(x[3])

2 4

+ 2 x[2] x[3] + 2 x[3]
3

2
+ 2 exp(x[3)) x[3] + x[2] exp(x[3]) - x[2] exp(x(3))
2

- x[2] exp(x(31) x[3] - x(1] - x{2) + x{4] - x[1]) x{4] ]
This cannot be verified against published results, because this model is used
in [9] for other purposes. Nevertheless, due to intemal verification in the
NONISCON package, the result is correct.

Example 6.3. The model of the system is

X3 + 2x7x3 2x3
]

+ |7 w
1
X +x3 0

For this model we cannot find a function A that gives the model a full order
relative degree, because the conditions of Theorem 4.1 are violated. According
to [9] the function A (x) = x; gives the model a relative degree of 3, the largest
that is possible. The function output func that is normally used to compute
functions that give the model a full order relative degree is also able, but
only for SISO sy 3, to pute functions that will give a maximal relative
degree. The following log of a MAPLE session shows this.

#® outputfunc *

the output function gives relative degree of [ 3 )

output lambda for maximal relative degree [ x[1] ]

X =

279



1

This result is in agreement with the result mentioned above. The normal form
of this model with A = x; as output y is given by [9, p. 212] as

2 =2

2 =z3

=y

‘f) =2Z1+ z§
This is computed with the NONSCON function normform.

® normform *®
the normal form: (fn, gn)

2
[ zeta[2], zeta[3], zeta(l] , zeta[3] + zeta(l] ]
0

[0]

(1]

0]
the zero dynamics: (zerodyn) [eta(l)dot = 0]
the zeroing input: (uzero) [0

This result (of the form 2 = fx(2) + ga(z)v) does not agree with the result given
above. The difference is in the equation for 23 that should be 23 = 27 + v. The
term 22 has been inadvertently dropped in [9).

Example 6.4. The model of the system is

x2 1 0

x4 x3 x %
k= xaxg| + 10 1] 4, y= [xz]

xs X5 X2

x3 1 1

This model has no well defined relative degree at x° = 0, because

1 0
t=ls 2l
is singular for x2 = 0. The zero dynamics is given in [9] by %3 = —x3 (in the
original coordinates) and the zeroing input by

- [_0 ] )

X3

The next edited log of a MAPLE session shows that the zero dynamics can be
computed by NONSCON. From the functions supplied by NONSCON we only
need ext normform that implements the Zero Dynamics Algorithm.
® extnormform ®
1st step, output zeroing submanifold:
[x[2] = 0, x[1]= 0]
1st step, constraints on the neighborhood: none
2nd step, output zeroing submanifold:
[x[2] = 0, x[1] = 0, x[4] = 0]
2nd step, constraints on the neighborhood: none
3rd step, output zeroing submanifold:
[x[2] = 0, x[1} = 0, x[4] = 0, x[5] = O]
3rd step, constraints on the neighborhood: none
3rd step, matrix L_gH has full rank m
the zero dynamics: (zerodyn)
{x[1]dot=0,x[2)dot=0,x[3]dot=-x(3],x{4]dot=0, x[5)dot=0}
the zeroing input: (uzero) { 0, - x([3]) }

Only the non trivial equations of the zero dynamics are of importance. The
results coincide with the ones given above.

Example 6.5. The model of the system is

24+n 0 0

A | P

k= |=x1+x3]| + u, =[ ]

0 1 0 7E [
15+J% x 0

This model has no well defined relative degree, because

1 0
a=[i g

is singular for all x. According to [9) the necessary feedback for input-output
linearization is u = a(x) + f(x)v with
1 0
B= [0 1] :

a= -X1 +x3
28 + 20100 +x1303 ]

The following log of a MAPLE session, with some edits, shows that Noré(.ZoN
can compute the input-output linearizing state-feedback. From the functions
supplied by NONSCON we only need i nout 1 i n that implements the Structure
Algorithm.

® inoutlin * :

the exact linearizing feedback and linearized

system dynamics: (u, fl, gl)

3
[ v{1]+x[11-x[3], v[2]—2x[1]x[§]—2x[1] -x{1]1x(3] ]
2
[ x{2)+x[1] , -2x(1]x{2]-2x{1] , O, x([1]-x(3],
2
x[5)+x[3) +x[1]x[2])-x[2]x([3)
{ o

]

0]

{ 0 1]
{1 0]
[ 1 0]
[ x(2] 01}

the explicit feedback: (alpha, beta)
3
[ x{1] - x[3]}, - 2 x(1] x[2] - 2 x(1] - x[1] x[3] ]
[1 0]
[0 1]
The computed state-feedback agrees with the results given above.

7. Vehicle simulation problem
This larger scale problem is derived from an inverse simulation problem in
multi-body dynamics. In this problem a vehicle is required to perform a
standardized manoeuvre. To simulate the manoeuvre the required inputs to
the system must be known. Normally, the manoeuvre is such that a suitable
selected output of the system can be set to 0. In most cases these outputs do
not fully determine the behavior of the sy and the remaining freed:
represents the zero-dynamics. If this dynamics is stable, then the
simulation is also stable; if it is unstable, then additional measures are needed
to perform a stable simulation.
As an example we use a simple two dimensional model of a vehicle, a frame
moving in the horizontal plane, with traction and tire forces acting on the
frame end-points. It looks like the model of a bike, because it only considers
the center line of a motor vehicle, see Fig. 3.

Figure 3: Model of a frame moving in the horizontal plane with forces acting
on the frame end-points

The required manoeuvre is steady state turning: the longitudinal speed of the
center of mass M of the vehicle is constant, and a point P on the axis of the
frame should describe a circle of specified radius. The specific problem is for
which distances p, from P to M, the zero-dynamics is stable or unstable.
The equations of motion of the model are

miy = ~F7 8in(6 + 6) ~ F, sin 6 + Fyr cos 6

mym = +Fy cos(86 + 0) + Fycos 6 + Fyr sin 0

JO = aFy cos 5 — bF,
with inputs F, (traction force) and 5 (steering angle). The three degrees-of-
freedom xm, ym, and 6, arerespectively the coordinates of M and the orientation
of the frame with respect to a fixed reference frame ,, 2,), indicated by
mes.pa‘acripto.’lhestwringlngleﬁandt.hedriﬂanglesa,mda,m
given with respect to a body fixed reference frame. The frame has mass m and
moment of inertia J with respect to M. The forces acting on the frame are the
traction force Fi, and the lateral tire forces Fy, Fy. The last two forces can
be in the drift angle and the normal tire force F, by the so called
Magic formula
F(Fy, a) = D(Fp) sin(C arctan(8v)) Q)
v=(1~E)¢ + (E/B)arctan(BE), & =a+Sh
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‘The dependency holds for both front and rear. The parametersin these formulae
have to be fitted to experimental data. The drift angles can be expressed in the
degrees-of-freedom and steering angle by

o =5— -rctm(v}ylé,), o =— nrcun(v,’,lv,',)

with

%' = RTG) + RS, 1w RTEO + K3,
and
6 -—sinf Xm a =b
R‘[.:nse comsnﬂ]' i'.?:[_], 3'"[01 1‘r"‘[o]

where the superscript ! indicates the coordinates with respect to the body fixed
reference frame (2!, €,'). Especially the functional dependency of the lateral
tire forces on the degrees-of-freedom and the steering angle make this system
quite nonlinear and difficult to analyze.

By choosing the outputs as

Y mAmcos O + Jm sin 0~ Vy
¥2 = (tm + P 008 6)° + (ym + P 8in 6)* ~ RZ,

with Rz the desired radius of the circle and V4 the desired longitudinal speed,
the required manoeuvre with a zero output. The output y2 depends
on the distance p from P to M. To solve the problem, first compute the zero
dynamics and then determine its stability as a function of p.
The first problem encountered in computing the zero dynamics is the non
affine character of the equations with respect to the steering angle 5. To
overcome this problem an additional integrator can be added to the system
and 5 can be regarded as a new input. However, this causes the system to
have a singular decoupling matrix A, which makes the analysis more difficult.
The extnormform function, based on the Zero Dynamics Algorithm, can
be used but this leads to insurmountable problems in the computation due
to huge memory needs. Another solution is to add an integrator to the other
input Fyy also, and using F;, as a new input, making the decoupling matrix
regular by also “delaying™ the input Fyr. All this adding of integrators must
be performed by hand lhmugh modifications of f and g, because the Dynamic
Extension Algorithm is not implemented.
The addition of two mlegm-pemmlthe use of the standard mafonnmon
to the normal form with the function normform.uhhwﬂl for a larger system.
Due to the larger number of states again problems arised with the memory
needed to perform the computation. To simplify the problem, another *“sat-
urating” function was used in the magic formula (7) by using /- instead
of sm(amn( )). Now, the transformation, and even a solution for the partial
differential equation Ly¢y(x) = 0, can be computed, but the inverse transfor-
mation cannot, because of an miﬂcul limit in the size of objects permitted by
the software, putting an untimely end to the computation.
Another attempt to solve the problem of non affine input is not to enhance the
model, but to simplify it so the input 5 appears linear in the equations. To this
end, the assumption that 5 is small has to be adopted. Then, by using a Taylor
series expansion, the system of equations can be written linear in & if the
dependency of 5 of the front lateral tire force is dropped, so 5 should also be
amall relative to ay, an unrealistic assumption. This time the transformation
to the normal form can be computed, but the nonli system, necded to
compute the inverse transformation, could not be solved, this time not due to
memory constraints but due to Emitations of the solve function of MAPLE.
Concluding: several attempts to solve this problem were in vain due to

® limits on the maximal object size

® limitations of the solve function

© limits of the available physical (or virtual) memory.
The last problem is relatively easy to solve, but because the memory require-
ments are likely to be exponential or double exponential with respect to the
problem size, this is not a cheap way out. The first two problems should be
resolved by the MAPLE developers.
All in all, the symbolic computation software yet is not mature enough to solve
larger scale problems, and in this case we have to resort to a purely numeric
approach to determine the stability of the zero dynamics.
‘We propose to use this problem as a benchmark, or yardstick, for the viability
of symbolic computation programs.

8. Conclusion and Discussion

The computation of the normal form, of the zero dynamics, of the solution
of the input-output and the state space exact linearization problems can be
automated by using symbolic computation, e.g, by using the NONSCON pack-
age. This means that it is much easier now to uso controllers based on the
linearization approach, that can fully take into account the nonlinearities in
real systems. An enh t of the perfor of some control systems,
for a large set of operation conditions, can therefore be expected.

At the moment, the computations cannot be performed for complicated sys-
tems, due to the restricted capability to solve sets of nonlinear equations and
because the possibilities to solve sets of nonlinear differential equations are
limited, Therefore, the designers of control systems cannot yet routinely com-
pute solutions for these problems, using tools that are based on symbolic
computation programs.
To remedy this, we recommend to extend the capabilities of symbolic compu-
tation programs for solving large and intricate sets of nonlinear equations and
for solving sets of differential equations. Another possibility is to use another
algorithm, e.g., for the state space exact linearization problem, that completely
avoids the integration step.
Future research will have to aim at
o devising new or modifying existing algorithms to be more efficient in
space and time
o implementing the algorithmsin a more efficient way, especially with regard
1o computer memory requirements
e solving more small and larger scale problems, to further guide in the
selection of pressing lines of research
To come back to the title of the paper, at the moment we cannot deny for
sure the viability of this approach without being unjust to the developers of
symbohc computation programs and without being shut of of & promising
h that can ment a combined lnMcal (paper and pencll) and
numerics approach. Both sttitudes to symb p , i.e., to
and 1o embrace are (not) viable, d ding on the exp ions of the near
future, and the viability question is still open. It is hoped for, and more or
less expected, that within this decade the efficiency and capacity of general
symbolic computation programs are enhanced, and that the capabilities of
relatively cheap computers will endble the solution of the benchmark and
larger problems at reasonable costs.
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