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A NOTE ON SLOWLY OSCILLATING FUNCTIONS |

BY -

J. KOREVAAR; T. VAN AARDENNE-EHRENFEST, |
and N. G. DE. BRUIJN : :

(Dordrecht, Whit Monday 1948) : |

1. Imtroduction and results. Let  the function L(x) be
defined for x> 1, and let it be positive, continuous and
such that. - : N

Liur) - oy ’
T - I, (x— o?), (1.1)

for every p > 0. Then L(x) is termed a 'slqwty oscillating
function. Examples of slowly oscillating functions are

log #, log log z, ....,
and combinations like k A
' (log %)* (log log x)®. -

~J. Karamata (Sece [2], and compare J. KoRrEVAAR and
F.vaN pER BLij [3)) has deduced the following representation
for slowly oscillating functions: ' :

L(x)jz Lo(x) e*pi(/zcéf—)dt)., .' : | (12)

1

where L(x) and 4(x) are continuobs functions, raind _suéh that B
L,(%) tends to a positive limit L, as z — oo, while 8(x) >0
(¥ — oo).. From (1.2) KaramaTa finally deduced the pro- -

- perties

# L(x) > o0, 5~ L{z) » 0 C ‘(1.'3)_

by e
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as %~ oo for every £> 0, and

the relation (1.1) holds uniformly on 1.4
every closed interval a < pu < b (@ > 0) ( )

Slowly oscﬂladng functions play a role as comparison
functions in asymptotic relations, such as occur for example
in TAuBERian theorems (see G. DorTscu [1] chapter 10).
Here the property (1 -4) makes it possible to pass to the limit -

under the integral sign in expressmns like
. b .

(m
f el ey

a
-

Therefore a diréct proof of (1.4) wﬂl have some value,

In section 2 we shall give a s:mple dzrect proof of (1 4)
From (1.4) we then deduce (1.2), thus obtaining a much
simpler proof of this representation than KARAMATA (see -
section 5). In section 3 we prove that (1.4) remains valid if
we replace the requirement that L(x) should be continuous
for x > 1 by the condition that L(x) be measurable on every
interval 1 € x < A. If moreover log L(x) is integrable over
every interval 1 < ¥ < A then L(x) has a representatmn '
of the form (1.2), with integrable log Lo(x) and d(x), Ly(x)
tending to a limit L; >0 as x— oo and 6(x) tending to O
(% — o). (See section 5). In section 4 we give an example to
show that the requiremer* that L(x) be continuous or measur-
able can not be entirely dropped if we want to ensure the
validity of (1.4). This example depends on the following
interesting property of the additive group G of all _real
numbers: there exists a sequence of subgroups Go, Gl, G,,

. of G such that

Gy CGCGC .o CGaC onn,
G=G0+G1+G2'L- +G+

G,,; being obtained from G, by the adJunctlon of exactly
one new element a, (# =0, 1, 2, ....). It is not difficult

to sce that each of the sets of real numbers
Gc, GI—GC’ Gz‘—fGl, csoey Gﬂ-Hl—Gﬂ’ s 00
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“formed with the above subgrou,ps must be dense everywhere
on (— oo, o0). ro
Before concluding the introduction we shall state our
problem in a slightly more convenient form. We put
log L{e?) = f(x), log o = A. - (L.5)

Then our problem is as follows. f(x) is defined for x > 0,
real, continuous, measurable or integrable, and such that

He 4 2)— (%) > 0, (5> o0), (1.6)

for every real 1. We have to prove that (1.6) holds umformiy
on every finite interval of real 1. (1.3) becomes

@))% — 0, (x> oo); (17)
and, the representation (1.2) takes the form - '
() =c(@) + [elt) dt, (1.8)
: [/} L

where ¢(x) tends to a limit ¢ as x— oo, e(x) = 0 (x> o).

2. Proof of (1.4) for continmous L(ﬂ We make the sub-
stitution (1.5). Then we must prove

Theorem 1. Let f(x) be defined for x > 0. Let f(x) be
real, continuous and such that

& + ) — j{x) > 0, (x> o0), (2.1)

for every veal A. Ther (2.1) holds uniformly on every finite

tnterval a < A < b. ’
Proof. Let ussuppose that (2.1) does not hold uniform-

ly on 2 < 4 < b. Then there exist a positive number &, a

sequence of points x,-> co and a sequence of points

2, € [a, b] such that

|10 + 20) —f(z) | > &, (n——123 TR I )

Hence, as f{x) is continuous at %, + 2, (n=1, 2, 3 o)
there exists, to every #, a closed interval I C [e, b] con-
taining 1, and such that

| fn + 2) — f(x,) E >4 for 251, T
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! ’ .
Starting- from the sequences {x,}, %,-> oo, and {I,;},
I, C [a, b], we shall construct sequences {£,}, £, > oo, and
{K,}, X, a closed sub-interval of [a, 8],
. K DKD....0K, D, (24
~ such that A. o '
' [(En 4+ ) — &) | > 3 for 2e K, (2.5)
n=1,2 3
By (2.3) we may take 51 = %, K; = I,. Let us now suppose
that &, &, ...., &, and K, D K;D ... D K, have already
been constructed such that (2.5) holds for n=1, 2, , P
We shall then construct ¢,,, and K,,,. Let X, have ]engih
8, and let the integer ¢ be defined such that gé>b—a.
Further, let A be so large that

w8 —f(x) | <e/(3g) for x > A, (2.6)

Wé now choose a &, satisfyfng the conditions (s) &,,,
belongs to the sequence {x,}, (£) £,,4 > &, (550) &4y > A —
—a -+ gd. Let &,,, = x;. For pel,, by (2.3),

HEpn + o) —HEon) | > 8. (2.7)

Let the integer r, — ¢ < r < g, be defined such that the
translation I, of I,, cons1stmg of all points 4 = pu + 74,
"~ pmel,, has a sub-interval in common with K,. For eI,

by (2.7) and (2.6) (4.4 > A —a + ¢d),

[/ pa + 8 —[Esua) | = | [(Epaa + 12 - 79) ——f(Em) l

> o+ 1) — (¢ M-l) |—

— | f(Epaa + #8) — [ p41 +° :!: d) l“"’l fEpia + F‘i d) —

—fpatpt28)|—....— :

— | tu+@F1)9 )-—f(fm + g+ 79) |

> 3e— 7| ¢/(39) > te. R X.)
Thus we may take K,,, = I, X-K,. C .
. Finally, let 4, be a point common to al’ intervals K (see

(24) Then by .(2.5)

li(6n+l)—-1(5n)!>%e. (n=1,23,....), _

where £, —> oo. This is impossible, however, because of (2.1).
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Remark. We made use of the continuity of f(x) only
to deduce (2.3) from (2.2). Now-(2.3) can be deduced from
(2.2) (for all sufficiently large #) on the weaker hypothesis
that the oscillation o(f, #) of f(x) at x =« tends to zero
as # — oo, For if off, ) - 0 we can define N so that

o(f, %n+2A,)< 3¢ whenever # >> N, But if the oscillation of .~

f(x, -+ ) at 2 = 4, is less than }e there exists an interval I,
containing 4,, where the oscillation of f(x, 4 4) is less than
3e. Hence (2.3) will be satisfied whenever # > N. We have

thus proved
Theorem 2. The conclusion of theorem | remains

valid if the requirement that f(x) be continuous is replaced by
the condition off, u) — 0 (#— oo).

3. Proof of (1.4) for measurable L(x). We make the sub-
stitution (1.5). Then we must prove

Theorem 3. Let f(x) be defined for x > 0. Let f(x)
be real, measurable on every tnterval 0 < x < A and such that

e + B — 1)) > 0, (x> o), 3)

iof every real A. Then (3.1) holds 'zzﬁiformly on every [finite .

interval a < 2 < b,

Proof. We may restrict ourselves to a proof for the
interval 0 € 2 < 1. Let us suppose that (3.1) does not hold
uniformly on 0 <2 < 1. Then there exist an >0, a
sequence {x,}, ¥, -» oo, and a sequence {2} Aa i[o, 1] such
that

N if(xn+7~)—~1‘(x)l>r. (%——123 . (82
Let V, denote the set of all 2, ——l <L 1 satisfying
(%0 + 2) — f(xa) | < Ze. (3.3)

As f(x) is measurable on [x, — 1, x, + 1], V,, is measurable,
Let its measure be a,. As # - oo, V, will tend to V, the
interval — 1 <1< 1. Hence a,-> 2 as #-—> oo (see for
example C. DE LA VALLEE PoussIN [4] p. 29). On the other

‘hand, let W, denote the set of all U, ——l L p<Ll, satxs—'

- fying
,f(xn + )'n + /‘) _"f(xn + ln) i < %8" : . (3‘4)
' 6



82

W, is also measurable, and its measure Bu— 2 (#— o0).
Let W, be the set of all points A= 4, + #, g &€ Wa. Clearly

4

the measure B, of W, must be equal to f,. If reW,, we
have by (3.4)

‘ f(xn +j A) "'j(xn + An):[ < %8 (35)
and hence by (3.2) ’ LT
| e+ A — () | > e (39

By (3.3) and (3.6) V, x W, must be empty. But V, C
[—1,13C[—1 2, W, C [An—1, A.+1cC—12] and
both a, and B, tend to 2 as 7 — ool

4, A positive function satisfying (1.1), for which (1.4) does
not hold. We make the substitution (1.5). We shall now prove

Theorem 4. There exisis a veal function flx), defined
for x > 0, which satisfies the relation '

©fr D) >0, (x> o) (4.1)
for every real &, without satisfying it uniformly on any interval
a<Ai<gb i

For the proof we need the following lemmas.
Lemma 1. Let G denote the additive group of all real
numbers. There exists a sequence of subgroups of G,

L GoC G CGyC eaer CGaC e

such that :

. G=G0+GI+G2+-..-+G”+.-n-,
G,y being obtained from G, by the adjunction of one new
element a, n=0,1,2, ... .).

Proof.l) We define a sequence {a,} n=01,2 ...)
as follows. Let {a,} (n==0,1,2, ... .) be a sequence of real
numbers s 0 with the property that with each a, it also
contains (1/m)a, (m =2, 3, ... ). ({on} may for example

. consist of all rational numbers s 0). Now let {a,} be the
{necessarily infinite) subsequence derived from {e,} by sup-
pressing all elements a, which are linear combinations
Mgty + Moy + oot Maalna (m, integers).

. 1) We express our thanks to ].pE Groor, who has suggested the proof

" and the remark given here.
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Next we define G,. Let A denote the additive group gene-
rated by ag @, @, '...., and let B denote the set A—0.
We choose for G, a maximal subgroup of G which does not
contain any element of the set B. (For the existence of such
a maximal subgroup, see-H. ZassENHAUS [5] p. 21).

(6) If g, & Gy, then 7 g, & G, whenever 7 is a rational number.
For if 7 g, did not belong to G,, there would exist a b B,
a go¢G, and an integer 7 # O such that go + m.r gy =h.
This is an easy consequence.of the maximality of G, with
respect to B. Hence g, + (mp[q) g, = b (p, ¢ integers #0)
or ggi -+ mpg,==gb, which is impossible because ¢ beD.

(5) Adjunction to Gy of the elements of B gives G. For let
g belong to the set G — Gg. By the maximality of G, with
respect to B, there exist a g, &G, and an integer m %= 0
such that g,-+mg="5, beB. Hence g= (—1l/m)g,+
-+ (1/m) b, which is an element of Gy(B) because (— 1 jm) g,
e G, (see (/) and (1fm) b e B (see the definition of the
sequence {a,}). .

(45) Go(B) = Go (ag, @, @5, ....). Hence if we define
Gpys = Gula,) for each 220, G=Gy+ G+ G+ ...
We have G, C Gy, and not G, = G, because a, does not
belong to G, (see the definition of the sequence {a.}).

Rematk. G, is isomorphic with G/A. For by (%) every
g ¢ G can be written in the form g = gy + @ (o2 Go, 2 8 A),

~and it is clear that this representation is unique. '

Lemma 2. Let (G} (=0, 1,2, ....) be a sequence
of subgroups of G satisfying the conditions of lemma 1. Then

. each of the seis of real numbers ‘

Gy Gy—Gg Go—Gyy «o-vy Gayy— Gy ---e

 must be dense everywhere on {— oo, o).

Proof. Let us first consider G, G, can not be denumer-
able, for then G also would be denumerable. Hence G, must
contain at least two linearly independent elements g, and g;.
For if for each pair of elements g,5 0 and g, 3 0of G, there
would exist a relation m g, -+ m' gy =0 (m, m' integers
# 0) all elements of G, would be rational multiples of one
element g,. . : ) BN
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Now if & and g are linearly independent, the elements
mg,+ m gy (m, m' iptngers} e G, lie dense everywhere on
(—oo, oo). -

Further, if 8o G, then g, + @, & Gpyy — G Hence the
set G,,, — Gy, is also dense everywhere on (—oo0, ©0).

Proof of thé;).rém 4, Let Hy= G, H, ¥-G”—
— Gy (# > 1), where the sets G, satisfy the conditions of
lemma 1. Let ¥ > 0. We define

1) = exp

(n=0, 1, 2, ....). We shail prove that f(x) satisfies the
conditions mentioned in theorem 4.

(¢) Let A be a fixed real number. We may assume that
4>0. Let AsHk If x¢H,, n>&, then x—l—}.sH and
hence

e ) =exp (— ) { —ep ()

o x 2 '
- = ' 4.3

<a¥i1° P( n+1)< (*3)
If xeH,, n <k, then x4+ 2eHy; if xsH, x4 AeH,

where 7 < k. Hence in both cases f(¥ -+ 1) <
exp {— (x + /(& + D} (%) < exp {—=/(k+ 1)}

e+ 3) — ) | < 2exp (—-m)

It follows from (4.3) and (4.4) that-f(x -4 ) — i(x) -0
(x — o0). .

(#) (4.1) does not hold umformly onanyintervala < 4 < b.
For by lemma 2 we can determine an x,6n, -+ 1] X Hy
and a 1, ¢&[a, 8] X H, for every n > 0. Hence if n is suffi-
ciently large, :

T ]) %f xeH, . (4.2)

(44)

#

!("u ! }'n)_" (xn) =exp {"— (xn“*‘} )/(n-{—l)}—-—-exp(—-x,), (45)

e—l

as 7 — oo, ' ‘ .
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5. The representation (1.2). We make the substitution
- (1.5), and then we prove

Theorem 5. Let f(x) be defined for x > 0. Let f( )
be real, continvous. and such that

S A= (@0, 5o, ()
for every real A. Then -{(x) can be written in the form A
fle) = ele) + ot @, (5.2)

where c(x) and &(x) are continuous functions of x, satisfying -
c(x) - ¢, g(x) = 0 (x - oo).

Proof. Bytheoreml,(5.1)holds uniformly on 0 <1 < 1.
Integrating over 0 < 2 < 1 we obtain

S+ D — @} 1> 0, (x> o),

or -
8(5) =7 1(t) & — f(x) ~ O, (x> oo). (5.3)
4 If we write ' )
z+1 .

P =/ f0) &, (5.4)
F(x) = {()Jt+/{f(t+1)—f()}df - (59
| ] Hence, putting . _
&+ 1) — f(%) = e(x), ' (5.6)

we bhave by (5.1) e(s) > 0, (v~ oc), and by (55)
F(r) = ¢ + js(t) a  (59)

' Finally, from (5.7), (5.4) and (5.3), \
16) = Fla) — 8(x) = {& — 3(x)} +of’ &(t) @, (5.8)

which is the representation (5.2).

Remark. It is easily seen that every function f(x)
of the form (5.2) satisfies (5.1) and (1.7). (1.7) can also be
easily derived from (5.1), however.
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The argument by which we proved theorem 5 can also be
used to prove

Theorem 6. Let f(x) satisfy the conditions of theovem
5, with “coniinuous” replaced by ‘‘integrable over every inter-
val (0, A)”’. Then f(x) can be written in the form (5.2), where
c(x) and e(x) ave integradle, and such that c(x) — ¢, g(x) - O
(% — o). '

Proof. Use theorem 3. :

Remark. Every function of the form (5.2) (with
integrable ¢(x) and ¢ (x)) is mtegrable and satisfies (5.1). It
also satisfies (1.7). -

{Ingekomen 29.7.48).
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