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Summary. 

Summary. 

A direct relationship between the amplitude of the R wave in lead VI of the 

electrocardiogram and the right venticular systolic pressure of the heart is suspected. 

A first attempt to determine this relationship accurately by applying a backpropagation 
ne-uïal is &scïi=e& 

... 111 



Imod. (Summary in Serbian) 

Izvod. (Summary in Serbian) 

Pretpostavlja se da postoji neposredna veza izmedju R vrha u mernoj taEci VI 

elektrokardiograma i sistolnog pritiska u desnoj komori srca. 

U ovom radu je opisan prvi poku S aj odredjivanja ove veze UZ promo i: "backpropagation" 

ziv Z: ane mre I;, e. 



Samenvatting. (Summary in Dutch). 

Samenvatting. (Summary in Dutch) 

Er schijnt een direct verband tussen de amplitude van de R piek in meetpunt VI van Ret 

elektrocardiogram en de systolische druk in de rechter kamer van het hart te bestaan. 

Een eerste poging om deze relatie met behulp van een backpropagation neuraal netwerk 
L,-,l,- .-,-*A+ L,.-,h,,,,,- 
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Introduction. 

Chapter 1: Introduction. 

Nowadays human cardiac activity can be monitored closely by recording the so-called 

electrocardiogram, which in simple terms is a plot of the electrical activationwave of 

the heart. Defects of the heart have often an influence on the appearance and shape 

of the electrocardiogram. A lot of cardiac diseases are known to affect the 

electrocardiogram in a certain way so they can be diagnosed earlier with the help of 

this non-invasive information source. 

Some cardiac defects cause a big resistance in the outflow of the blood from the right 

ventricle. This means that the pressure in the ventricle increases. It is important that 

this pressure can be measured accurately. Until now this is done by using a quite 

invasive technique; a catheter is brought into the ventricle. 

But maybe the electrocardiogram can also be helpful in this area, because in the past 

a relationship between one of the deflections of the electrocardiogram and the 

pressure in the right ventricle has been claimed several times. 

This report describes a first attempt to determine a reliable relationship with the help 

of a quite new trend in computing techniques: neurocomputing'. A parallel 

information processing structure, called neural network, is applied to try to estimate 

the pressure in the right ventricle as a function of the electrocardiogram. 

First neurocomputing and neural networks are described and an example which 

stresses the power of these new information processing systems compared to classical 

techniques is provided. In the following chapter the field of electrocardiography is 

introduced and the electrocardiogram as a diagnostic tool is further explored. 

The final chapter desribes the experimental setup that was used to try to determine 

the relationship between electrocardiogram and pressure. Unfortunately no qualitative 

conclusions could be drawn so far, but the goal of this report is more to describe a 

first survey and maybe to provide necessities for the establishment of a basis around 

which a. more successful experiment could be build up. 

Words or expressions printed in italics are explained in the glossary at page 35. 1 
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Neurocomputing. 

Chapter 2: Neurocomputing. 

5 2.1 Basics. 
Human intelligence is partly based on the initial structure and organization of the 

brain. The human brain is build up as a network of nerve cells or neurons. Figure 1 

shows a neuron that roughly consists of a nucieus, on long offshoot called axon and 

many short offshoots called dendrites. 

Trrniinal birlonr 

Figure 1 
The structure of a nerve cell. Important parts are: the axon, the 
dendrites and the nucleus (Ganong, 1981: 29). 

Each neuron receives its information in the form of electrical impulses via the 

dendrites. In the nucleus these pulses are added and if the resulting voltage exceeds a 

certain tresholdvalue it is sent via the axon. The axon transports the new pulse, 

multiplies it by a weightfactor and sends it to the next neuron. This way of 

information transmission has been the basis of an alternative to programmed 

computing and a new trend in information processing: neurocomputing. 

To solve a problem using programmed computing requires at least an algorithm, a set 

of rules or a well specified function to be able to find a solution for the problem. 

Since computers operate on a totally logical basis, software has to be virtually perfect 

if it is to work. 

Neurocomputing however Is another approach to information processing that is based 

OE iïmsfoïmatiitions and that does fiat demand algorithm oi  rde develcpment. 

Particularly in areas as pattern recognition, sensor processing and data analysis, where 

algorithms or rules are often hard to derive, this approach has already been applied 

successfully. 

9 



Neurocomputing. 

Formally, neurocomputing is the technological discipline concerned with parallel, 

distributed and adaptive information processing systems (such as neural networks) 

that develop information processing abilities in response to exposure to an infor- 

mation environment (Hecht-Nielsen, 1990: 2). In simple words this means the 

following: suppose that we want to know the value of a parameter that results from 

an unknown interaction of other parameters. when we have a stat ist idy adequate sei 

of training data (the known parameters that are supposed to be interacting) with 

solutions (the wanted parameters), then we can train a neural network with these 

data by supplying it with the correct output next to the input. The network can 

compare its output with the correct output and adapt itself if necessary. After the 

training is carried out properly, the network will be able to calculate unknown 

solutions belonging to other sets of similar data. 

9 2.2 Neural Networks. 
As mentioned before, primary information processing systems of interest in the field 

of neurocomputing are neural networks. 

The first major contribution to the development of neural networks as we know them 

today has been the invention of theperceptron'. The perceptron is a typical neural 

network structure that consists of one or more processing elements as shown in Figure 

2. Training the perceptron takes place in the following way: the input is a 

.. . 
y-  . 
t - -  

"Correct" output 
(supplied during 
Iraining) 

n 

n 

i =  O 

Figure 2 
A single element pel-ceptïoïì (Keck-NLelsen, 
1990: 4). 

x;>o 

(n+ 1)-dimensional vector X = (x,,, xl, x2, ..., 
x,), where xo , which is called the bias input, 

is permanently set to 1. In the perceptron the 

input vector X is multiplied by the weight 

vector i$ = (wo, wl, w2, ..., w,). If the 

weighted sum %wo + xlwl + ... + xnwn 2 O 

the output y' of the perceptron is 1, otherwise 

it is O. The weights which aïe stored w i t h  

the processing element are automatically 

* The perceptron: Classical neural network architecture which was invented in 1957 by Frank 
Rosenblatt who also wrote Pi-iizciples of Neurodynamics, one of the fust books on neurocomputing. 
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Neurocomputing. 

modified according to the perceptron learning law during the training process. This 

learning law adjusts the weight vector \N in accordance with the equation 

new = old +@-Y?% (2.1) 
where y’ is the output of the perceptron and y is the desired correct output. It is 

obvious that the output error (y-Y’) = O if the output is correct, but if y’ z y the 

weights have to be aitered so that the perceyîïûn will ienû m i  iû iiiake aïì cïïûï GE 

this particular X vector again. This method of learning is called supervised training, 

because for each input 2 the correct input y was also supplied during training. Next 

to this type of training two other methods are in use: graded trainin? and self- 

organization4. 

At first neural networks were implemented and applicated for research rarely. Only 

when Very Large Scale Integration (VLSI) circuits became available neurocomputing 

became an accepted practical technology. 

By definition a neural network is a parailel, distributed information processing 

structure consisting of processing elements (which can execute localized operations 

and have a local memory) placed in layers which are interconnected via unidirectional 

signal channels (so called connections). Each element can branch out into different 

connections all carrying the same output to another element in a different, or even in 

the same layer. The output signal of a processing element can be of any mathematical 

type (Hecht-Nielsen, 1990: 3). In Figure 3 a possible neural network structure is 

shown. 

For various applications different network structures with different levels of 

complexity can be used. The most commonly used neural networks are: associative 

networks, mapping networks, spatiotemporal networks, stochastic and hierarchical 

networks. Describing all these different types of networks more specific would be 

interesting but not really relevant for the purpose of this report. For an extensive 

Graded training: The network does not receive desired outputs next to data inputs, but occasionally it 
is given a “grade“ that informs the network about its overall performance since the last time it was 
graded. 

3 

In self-organization training a network is only provided with data inputs and it has to organize itself 
into a useful configuration. 

4 



Neurocomputing. 

OUTPUT PATTERN 

t t 
. . . . . . . . . . . . . . 

OUTPUT LAYER k 

HIDDEN LAYER 
(internal representaim unils) 

i 

INPUT LAYER i 

INPUT PATTERN 

Figure 3 
A possible neural network structure. All layers 
that are not connected to the periphery are 
called hidden layers (Pao, 1989: 121). 

description of all types of networks the interested reader is referred to Hecht-Nielsen, 

1990. The neural network that was used for this project which is a mapping neural 

network that operates according to the principle of backpropagation will be described 

next. 

9 2.3 The Backpropagation Neural Network. 

8 2.3.1 Architecture. 

Mapping neural networks are networks that are especially applicable for numerical 

approximation of unknown mathematical functions f : A c R" + Rm by means of 

training on examples (xl,yl), (xz,y2), ...,( xk,yk), ... where y, = f(x,). A backpropagation 

neural network is a feature-based5 mapping network. In Figure 4 its macroscopic 

architecture is shown. The n units in the first layer only accept and distribute the 

individual components x, of the input vector 2 .  Every unit in each row receives the 

output of all units of the row below. The cumulative output of the m units of the final 

row is the network's approximation y" of the correct output 7. Next to these 

feedforward connections, each unit of every hidden row receives an error feedback 

connection from every unit in the layer above it. 

A feature network implements a functional input/output relationship that is expressed in terms of a 
general, modifiable functional form (#prototype network) 
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Y; Y, 

. . .  

t 
.'. 

t t  
x,  x2 

Figure 4 
Macroscopic architecture of the backpropagation neural network. 
The input row and output row have y1 and m units; hidden rows 
have an arbitrary number of units (Hecht-Nielsen, 1990: 128) 

9 2.3.2 Operation, 

This backpropagation gives the units the information they need to be able to adjust 

their weights. The mean squared error F that occurs in the estimation of the correct 

output is obviously a function of the weight vector G (Figure 5). Training the network 

means moving this vector in a direction so that the value of F = F(W) will be smaller 

at the new value of G in the next iteration. The goal is to find the vector fG that 

yields the minimal error P in a finite number of training trials. It is important that the 

number of training cycles on one training set stays limited, because if training is 

pushed too far overtraining occurs and the network becomes too specific (Figure 6). 

system 
error E 

{w)m,n wlbca/ i'Visrarmnary Weight space coordinates 
{wi - 

Figure 5 
A one dimensionai projection of a Q dimensionai 
error surface; The error E = F as a function of the 
weightvector that has Q components (Pao: 1989, 
45.3). 

F 
Approximala perlarmawe level 01 nelwork 

Number o1 
iiamw cy& 

f 
Siop iraining here 

Figure 6 
ïraining set error vs. training test sei error; 
Overtraining occurs as the number of training 
cycles increases (Hecht-Nielseo: 1990, 117). 

The backpropagation neural network uses the generalized delta rule learning law to 

modi@ the weightvector G so that F ( w )  decreases. 

13 



Neurocomputing. 

This learning law operates in the following way: 

Let 

= If($> - y"(is;,f+) I 
be the square error made by the network on the kth testing trial (with data set 

($,yk) = (is;,f(Q)). Then the mean squared error F=F(vir) is defined to be 
n 1 II F(W) E l i m - x  Fk 

n+N n k=l  

where N is the total number of training iterations. 

The best way to minimize F is to move vir in the direction in which the decrease of F 

is maximal. Assuming that F is differentiable, this direction is given by 

hl 7aW"""- awa aF 1 -VsF(9) = - - I aF aF 
(2.4) 

where Q is the number of components of 5. 

Given an arbitrary weightvector 3, the weights have to be adjusted every iteration so 

that the weightvector moves in the above direction. The step that is taken every time 

should be small to prevent overshooting the minimum. When a minimum is reached, 

the gradient becomes zero and the weights keep their value in the subsequent 

iterations so that in fact training can be stopped. This process can be described by the 

following equation which is called the generalized delta rule learning law. 

$new - - w -+old - CY.V$(W) (2.5) 

Where CY. > O is a small constant called the learning rate. 

After the backpropagation neural network is trained according to this learning law on 

a satisfying set of training data the weights can be fixed and the network is ready for 

operation. 

Although the development of this way of numerical approximation is not yet finished 

and notwithstanding the fact that there are still some assumptions to be justified many 

good results have already been achieved in this field. 

An example of the possibilities is provided in the next section where the 

backpropagation approach is compared to the more classical method of adaptive 

filtering in a practical case. 

14 
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0 2.4 Backpropagation vs. Adaptive Filtering. 

Systems that are very complex or time varying are often hard to be described by a 

precise signal model. When such a systems are also disturbed by noise, modelling or 

recovering the undisturbed signal becomes even more difficult. A classical method to 

remove unwanted noise from a complex signal is the use of adaptive filtering5 

techniques. In adaptive noise cancelling a reference signal which contains information 

about the noise process is usually available. This means that in this field the 

backpropagation neural network could also be applied successfully. 

The practical example discussed here illustrates the power of neural networks 

compared to adaptive filters in the field of recovering interfered signals. 

An important problem in registrating and analyzing the electrocardiogram (ECG; see 

next chapter) is the cancelling of mains frequency interference. In Figure 7 is shown 

how adaptive filters are used in the field of electrocardiography to remove noise from 

the ECG signal. 

The adaptive filter only needs two 
Adaptiw noirs canwler 

To50Hz variable weights to be able to estimate 

the magnitude and phase of the noise 

signal z(t). Both of the weights should be 

applied to the reference signal, one 

directly and the other one shifted by 90". 

When the noise signal is known, the 

undisturbed signal can be retrieved by 

adding -z(t) to the recorded signal. 

Figure 7 
Adaptive fdter set-up used for removing 50-Hz 
interference in ECG recording (Goodwin and Sin, 
1984: 386). 

Although the field of adaptive filtering is very interesting, it will not be described extensively here. 
This chapter only serves as an illustration of the possibilities of backpropagation neural networks. The 
interested reader is referred to Goodwin and Sin, 1984. 

5 
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Neurocomputing. 

Mathematically the ECG signal can be looked upon as a complex and time varying 

function and it is obvious that describing this function analytically will be very 

difficult. But as mentioned before we have the wanted signal at our disposal in this 

case, so an alternative to the classical adaptive filters to remove the noise is the use 

of a backpropagation neural network. That this approach can be very successful will 

appear -~ from the foiiowing resuits of a computer-simulation. 

First both a network and a filter are trained with an arbitrary signal called the desired 

signal yl(t). A nuisance signal z(t) is added to yl(t) resulting an input signal 

x(t> = yl(t) + z(t). During training the network usesy,(t) and the adaptive filter uses 

z(t) as reference. Figure 8 shows the performance of both techniques after 5120 

iterations (with arbitrary initial weights). The upper two signals are the desired signal 

yl(t> and the noisy signal z(t). The third signal is the networks output yl'(t) and the 

fourth signal is the output of the filter yl"(t). 

DES IRED SIGNAL 

Ei0 185- s XGML 

Figure 8 
Training on given signal yl(t) which is disturbed by noise component z(t). The lower signals show the 
performance of both network and filter after 5120 iterations. 

It is obvious that the estimation y19(t) of yl(t) is much better than yl"(tj. 'When 

training is continued (Figure 9) both the network and the filter get better in 

estimating the desired signal. 

16 



Neurocomputing. 

DESIRED SIGNCIL 

Figure 9 
Performance of backpropagation network and adaptive digital filter in estimating desired signal after 
51200 iterations. 

After 51200 training iterations the networks output is reasonably satiskng, but the 

error in the output of the fiiter is still of the same size as the noise component z(t) in 

the noisy signal. Only after 512000 training trials (Figure 10) the adaptive filter 

performs as well as the backpropagation neural network. 

DESIRED SIGNAL 

Figure iû 
Equal performance after 512000 training iterations. 

17 



Neurocomputing. 

In this case training was switched off after 51200 iterations for time consumption 

reasons. After the weights are fixed, the two different noise reduction techniques are 

ready to be tested. 

During operation both network and filter receive only the noisy signal as input. In 

Figure 11 this isy,(t) + z(t) and in Figure 12 it isy,(t) + z(t). 

Figure 11 
Testing on desired signal y2(t) when training is switched of after 51200 training trials. 

DESIRED SIGNAL 

Figure 12 
Testirig desired signal y3(t) when training is switcltied of after 51200 training trials. 

From these Figures we can see that in fact only the network performs well in 

distracting noise from an unknown signal after it was trained with a similar (but not 

18 



Neurocomputing. 

equal! ) signal. The disturbance in the output of the filter is practically of the same 

size as z(t). In Figure 10 we saw that the filter has to be trained 10 times longer than 

the network to perform just as good. The result of testing after 512000 training trials 

is shown in Figure 13. 

II 
IS 

I/ 
JI 

n 
LI 

Figure 13 
Testing on desired signal yz(t) when training is switched off after 512000 training trials; 
equal performance. 

Conclusion. 

Since the purpose of this example is just to illustrate the strength of the 

backpropagation neural network a qualitative judgement about both techniques is a 

little out of place here. The fact that the network is a very powerful tool in dealing 

with problems of the same kind is the most important conclusion that can be drawn 

here. 

19 



Electrocardiography. 

Chapter 3: Electrocardiography. 

$j 3.1 Introduction. 
One of the differences between the heart and skeletonmuscles is the fact that 

activation of the heart is conducted directly from fibre to fibre. Because of this direct 

impulse-conduction the activation of the heart takes place in a very homogeneous 

way. In fact we can speak from a electrical activationwave. Via leads applied to the 

skin of the body this signal can be registered and plotted against time. The resulting 

curve is called the electrocardiogram (ECG) and shows the changes of the electrical 

field caused by activation of the heart. 

0 3.2 History. 

By the end of the eighteenth century human cardiac electrical activity was recorded 

for the first time (Figure 14). The design and application of a string galvanometer to 

record electrical activity of the heart by Willem Einthoven' was an important 

contribution to the development of electrocardiography. At present the 

electrocardiogram (ECG) is one of the most commonly used noninvasive investigation 

tools in the diagnostic armamentarium of the physician. 

s 

X O 

Q 
Figure 1 4  
The early notation for the electrocardiogram as proposed by Einthoven. 
The largest deflection, positive or negative, was termed the R wave 
(Macfarlane and Lawrie eds., 1989: 8). 

Willem Einthoven, Dutch Physician and professor at University of Leiden, the Netherlands in the 
early-nineteenth century. 

6 
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Electrocardiography. 

0 3.3 The shape of the normal ECG. 
8 3.3.1 Introduction. 

At any instant other than during the isoelectric period between ventricular 

repolarization and atrial depolarization, an electrical potential exists at every point of 

the body surface. This potential can be described as a vector with magnitude and 

direction. 

The magnitude of this vector is inversely proportional to 

the cube of the distance between the moving electrical 

dipole and the electrode lead on the body surface. This 

is also one of the reasons why multiple leads, applied on 

different places of thorax and body, are used to record 

an electrocardiogram (Figure 15). 

The electrocardiogram calculates the projection of the 

mean instantaneous vector on its lead axis by the 

electronic equivalent of vector addition. If the changing 

projections of this vector on a given lead axis are plotted 

against time, they produce the P, QRS and T waves in 

the electrocardiogram (Figure 16). 

Figure 15 
Lead placement. Electrodes 
attached to the limbs are used 
for the 'standard leads' I, II and 
111. Locations of leads VI-V, as 
indicated (Macfarlane and 
Lawrie eds., 1989: 131). 5 3.3.2 The P wave. 

Atrial activation causes the P wave on the 

electrocardiogram. Although the P wave is the first wave 

in the electrocardiogram, the cardiac activation does not 

begin in the atria but in the sinus node which has no 

expression on the surface electrocardiogram. The 

normal P wave duration is about sixty milliseconds. Figure 16 
P-Q-R-S-T-U peaks on a lead I1 
waveform (Macfarlane and 
Lawrie eds., 1989: 131) 

9 3.3.3 The QRS complex. 

The QRS complex is caused by ventricular depolarisation and is usually the tallest 

and most rapid deflection on the electrocardiogram. The first negative deflection in 

the QRS complex, which is not seen in all leads, is called a Q wave. This Q wave is 

followed by a tall positive deflection, the R wave. The normal QRS complex ends 



Electrocardìograp hy. 

with a second negative deflection, which is called the S wave. Normally the QRS 

complex takes about eighty milliseconds. 

3 3.3.4. The T wave. 

Repolarization of ventricular myocardium generates the T wave. Generally it consists 

of a shallow upstroke, followed by a more rapid downstroke. In some ieads a small U 

wave following the T wave may be visible. This U wave is thought to be due to 

ventricular Purkinje cell repolarization. 

3.4 Abnormalities in the ECG. 
Malfunctions in the body have often an influence on the appearance of the ECG. 

Abnormalities in the shape of the ECG can sometimes provide such an important 

information for the diagnosis of a disease that the use of invasive methods to get 

information might not be necessary. 

3 3.4.1 Elevated Pressure and Hypertrophy. 

Some cardiac defects can cause a big resistance in the bloodflow from the right 

chamber of the heart to the rest of the body. This means that the pressure in the 

right ventricle, which is normally around 20 - 30 mmHg., has to increase in order to 

keep the bloodflow constant. To be able to build up this elevated pressure, the right 

ventricular muscle mass has to grow unnaturally causing chamber enlargement or 

hypertrophy . 
In the diagnosis of enlargement or hypertrophy of the cardiac chambers of especially 

children7 the ECG can be very helpful. There are in fact several criteria that can 

appear in the ECG of a child. If a combination of these criteria occurs possible 

hypertrophy or eleveated pressure becomes more likely. 

5 3.4.2 Criteria. 

The indications (Anderson et al., 1987: 274-276) for right ventricular hypertrophy: 
+ The first criterion is the appearance of a QR pattern in the signal measured at 

The correlation between ECG and chamber size is much better in paediatric patients than in 
adults (Anderson et al., 1987: 272) 

22 
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the right chest lead VI where a Q wave is unusual. This implies a right 

ventricular systolic pressure (RVSP) of 70 mmHg or more at any age. 

The second criterion concerns changes in the T wave with increasing severety of 

hypertrophy (Figure 17) measured at V,. 

At the first sign of right ventricular 

hypertrophy The ECG shows a 

small R wave and a symmetrically 

inverted T wave (Figure 17A). 

With mildly increased pressure the 

T wave becomes iso-electric (flat) 

or upright (Figure 17B). When also 

+. 

A 8 C D 

the amplitude of the R wave v7 vi V? V1 

increases (Figure 17C), the 

pressure height becomes severe. If 

finally the shape of the T wave is 

asymmetrically inverted, the pressure in the right ventricle becomes critical 

(Figure 17D). 

The third criterion is the amplitude of the R wave in the ECG that is measured 

in lead V,. Elevated pressure can cause hypertrophy. 

Hypertrophy implies a bigger ventricular muscle mass which means that more 

electricity is needed for contraction. With right ventricular hypertrophy there is 

an increase in the voltage of the QRS complex in the leads that reflect the 

respective ventricle. Since the R wave im V, represents the depolarization of the 

right ventricle (see 8 3.3.3), a relationship between its amplitude and the amount 

of right ventricular hypertrophy or the RVSP is quite likely. 

In the past several formulas claiming a proportional relationship between the 

magnitude of Rv and the RVSP were devised. In the next chapter this matter 

will be explored further. 

Generally right ventricular hypertrophy is suspected if the amplitude of 

exceeds the 98th percentile for age (see Table I) and if & is 20 mmHg or more 

Figure 17 
Progression of T wave changes in lead V,with 
increasing (from A -f D) severity of right ventricular 
systolic pressure (Anderson et al., 1987: 274). 

-+ 

1 

at any age, the right ventricular systolic pressure is equal to or more than 
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systemic pressure. 

The fourth criterion is the S wave amplitude of the ECG measured in lead V,. -+ 

-+ 

If the amplitude 

right ventricular 

The appearance 

of this wave exceeds the 9Sth percentile for age (see Table l), 
hypertrophy is suspected. 

of an abnormal high RS ratio (above 98% level; see Table I) in 

iead Vl, which correlates with night ventr'icüiaï hpeïîïophy is the fifth criterion. 

A sixth indication of right ventricular hypertrophy is a RSR codex  in VI. This 

means that if an "extra" R wave occurs after the first, it might be caused by right 

ventricular hypertrophy. 

The final criterion is that of right axis deviation. Over the age of three months, 

right axis deviation correlates with right ventricular hypertrophy. 

Table I 

Summary of normal values, resulting from a statistical analysis with a number of subjects varying between 

n=100 and n=250 in every age-group (Anderson et al., 1987: 262 & 277). 

Age-group 

Less than 1 day 

1-2 days 

3-6 days 

1-3 weeks 

1-2 months 

3-5 months 

6-11 months 

1-2 years 

3-4 years 

5-7 years 

8-11 years 

17 12-15 years 

R wave in VI (mm) 

2% 1 mean I 98% 

5 I 14 I 26 

5 1 14 I 27 

10 18 

3 I 10 I 20 

0.5 I 7 I 14 

S wave in V, (mm) 

2% I mean I 98% 

O I 3.2 I 9.6 

O I 3.0 I 9.4 

O I 3.5 1 9.8 

O I 2.9 I 9.9 

O I 2.1 I 7.2 

1.2 4.0 

o 1 1.0 I 3.9 

U = undefined; the S wave may equal zero. 8 

O I 0.8 I 3.7 

RS ratio in VI II 
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Chapter 4: RVSP9 in relation to the R wave. 

5 4.1 Introduction. 
The immediate cause of this chapter and the purpose of this report is the third 

criterion of 8 3.4.2. It is obvious that we want to cure children suffering from right 

ventricular hypertrophy and the problems it brings aiong. ïhis can be done by 

removing the resistance that causes the elevated pressure (which can rise up to 

around 200 mmHg.) operative. An additional problem that occurs here is that only up 

to a certain pressure in the heart an operation is possible. So far the pressure in the 

right ventricle can only be measured accurately with a quite invasive method; a 

catheter has to be brought into the right ventricle. Besides that the development of 

the pressure as time goes on has to be watched, which means that the measurement 

has to be repeated several times. Should we be able to "reads this pressure from the 

ECG, then we would have a very simple non-invasive method at our disposal to 

determine the pressure anytime we want. 

As already mentioned, this subject has been examined before and different 

proportional relationships have been derived (Figure 18). 

In 1958 Cayler et al. found: 

RVSP = 3R, + 47 
1 

Another relation was found twenty years later, in 1978 by Liebman and Plonsey: 

1 
RVSP = 5-Rv 

(Formulas taken from Anderson et al., 1987: 275) 

These formulas show that this matter has kept people busy and that, with great 

probability, there is a relationship between the amplitude of the electrical activation 

wave of the right ventricle (R wave) in lead V, and the systolic pressure (RVSP) in 

that same ventricle. 

Nevertheless a simple proportional relation seems a little codined. The human body 

and the way our heart functions are so complex that direct proportionality sounds 

odd, at least until some uncertainties are cleared up. 

RVSP = Right Ventricular Systolic Pressure. 9 
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RVSP (mmHg) 
200 r 

RVSP in relation to the R wave. 

O 5 10 15 20 25 30 35 
Amplitude R wave (mm) 

(1): 1958 (2) :  1978 - 
40 

Figure 18 
RVSP as a funtion of the amplitude of the R wave in lead V,. The 
different relationships agree for f(R) = f(24) = 120. 

Is it allowed to neglect a possible influence of factors as the volume of the ventricle, 

the thickness of the wall, the age of the person or the presence of a cardiac defect? 

Or even worse: What about unknown factors that should be taken into account? 

Because of its specific properties, a backpropagation neural network might be the 

right tool to try to find an answer to these questions. 

If during training a neural network is fed with irrelevant data that does not correlate 

with the wanted (correct) output, it adapts itself by "cutting" the involved connections. 

This means that parameters of which the output is not a function will not affect the 

output, at least if training is carried out properly. When arbitrary factors are 

suspected to have an influence on a relationship between other variables, they should 

simply be fed to the network; they will be denied if there is no correlation. 

In the case of elevated pressure and hypertrophy there should also be enough traing 

data available because currently the systolic pressure is still measured invasively next 

to the recording of the ECG. 

These are some reasons to justify the attempt to try to find a reliable relationship 

between amplitude and pressure by using a backpropagation neural network. 
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9 4.2 Experimental Setup. 
For a start the aim was to write a computerprogram in C or Pascal that could 

simulate a backpropagation neural network with a desired architecture. This network 

should be trained using a set of approximately N = 350 ECGs together with 

corresponding RVSPs (measured invasively). 

Next to the amplitude of the R wave in lead VI, the following parameters were 

considered to be important beforehand, because a direct correlation with the RVSP 

was expected: 

-+ The age of the child; The amplitude of the R wave decreases as the age of a child 

increases. This can also be seen in Table I at page 23. 

+ The internal volume of the ventricle; An increased volume has an increased 

enclosing surface. Compared to a standard volume the contracting power (that 

correlates with the R wave amplitude) has to be bigger in order to build up the 
r i  

IF same internal pressure (since p = - 
A I$])' 

-f The thickness of the wall (which is the contracting muscle) of the ventricle; With 

increasing hypertrophy (more muscle mass) a bigger impulse is needed for a 

contraction that builds up the same pressure as with normal wall thickness. 

-+ T wave development; The level of degeneration of the T wave is considered 

important out of intuition of the doctors involved in this project. 

Given these parameters, a backpropagation neural network with six input units ( R 
wave, age, volume, wall-thickness, T wave and bias input 1) and one output unit 

(RVSP) should be implemented. 

Unfortunately at this point we ran into some organizational problems. Due to these 

problems it was not possible to set up this project in the desired way. Some severe 

restrictions had to be accepted. 
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The set of training data available consisted of 

only 96 cases of children suffering from 3 

different cardiac defects (Figure 19). In 

Appendix B an overview of the data can be 

found. Hii data, Dut age and pressure, was 

retrieved from the electrocardiogram. The 

important parameters are: Age, RVSP, R in 

VI and T in VI. 

The RVSP in Appendix B that corresponds 

with every single set of data was measured 

invasively using a catheter at the same time 

the ECG was recorded. The value of this 

pressure is needed as a reference (the so- 

called "correct output") to train the network. 

In Figure 20 this value is plotted against the 

respective values of the R wave 

Figure 19 
Total set of training data. 
Group I Ventricular Septal Defect. 
Group 11 Tetralogy of Fallot. 
Group IIL Pulmonary Artery Stenosis. 

RVSP (mmHg) 

200 

O 
O 5 10 15 20 25 30 35 

R wave amplitude (rnm) 

Dots: catheter - 
Figure 20 
The RVSP that was measured invasively 
plotted against the R wave amplitude in VI. 

Next to the shortage of data it was not possible to determine both the internal 

volume and the wall thickness of the right ventricle accurately. These two parameters 

had to be neglected. 

Since time was also running short, the development of a computerprogram in C or 

Pascal was considered to be too time consuming. To be able to do at least some 

testing, a short program in Basic was written. The resulting computerprogram can be 

found in Appendix A. 

This program simulates a simple backpropagation neural network with five input units 

and one output unit. Initial weights are arbitrary and all training data is normalised to 

1 before it is used for calculations. 
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The following parameters can be fed to the network: 

-+ R wave; the value of the amplitude in lead V, in mm. 

The values are normalised to 1 by dividing by 30 (the highest overall 

value). 

+ T wave; the shape is divided in 6 classes, corresponding with increasing 

severity of hypertrophy airid elevated pi-essüïe (see aim 9 3.4.2 üm! 

Appendix B). The different shape-classes are: 

a: upright T wave (input value = 1). 

b: flat T wave (input value = 2). 

c: bi-phasic T wave (input value = 3). 

d: inverted T wave (input value = 4). 

e: asymmetrically inverted T wave with an amplitude I 2 mm. (input 

value = 5). 

f asymmetrically inverted T wave with an amplitude > 2 mm. (input 

value = 6). 

The values are normalised to 1 by dividing by 6. 

-+ Age; The age of the children is divided in the following 5 classes: 

a: O - 0,3 years (input value = 1). 

b: 0,3 - 0,5 years (input value = 2). 

c: 0,5 - 1 years (input value = 3). 

d: 1 - 3 years (input value = 4). 

e: 3 - ... years (input value = 5). 

The values are normalised to 1 by dividing by 5. 
-+ Wall thickness; Not taken into account because no accurate values were 

available. So in fact only four input units were used. 

+ Bias input; input value = constant = 1. 

During training the network is also provided with the corresponding value of the right 

ventricular pressure in mmHg. This value is normalised to 1 by dividing by 219 (the 

highest overall value). The network needs this pressure to compare it with its own 

estimation and to determine the error it made. 

The output of the program is its estimation of the RVSP according to the ECG as if 
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the RVSP was not known. The output of the network is compared to the correct 

output every training iteration and the weights are changed according to the 

difference between the two values. 

Training the network takes place in iterations as follows: 

- t.l--.l- 

K-WAV.t!,=? 8 

T-WAVE=? 1 

AGE=? 1 

PRESSURE=? 111 

CALCULATED PRESSURE IS 59.56148 
OUTPUT NETWORK ERROR IS ER= .2348791 

In this case all input was fed to the program manually. After all data is used, the 

weights are fixed and the network should then be ready for testing. 

0 4.3 Results. 
After all available data was divided into classes, the program was executed and the 

network was trained during 96 training trials. After that the weights were fixed and 

the network was no longer provided with the llcorrectll RVSP. 

Unfortunately we had no extra testing data at our disposal. All data available had to 

be used for training the network. To make it possible to do at least some testing, the 

training data was used again, but now without corresponding RVSP, to test the 

network. The program was only provided with the R wave, the T wave and the age, 

while the error feedback (see Appendix A, lines 165-194: "Backward Pass") was 

switched off. The resulting output of the network together with the other theoretical 

relationships is shown in Figure 21. 
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u- 

RVSP (mmHg) 
200 r 

. s . 
I I I I I I I I 

-c Dots: network + (i): 1958 +l+ (2): i 978  -B- (3): catheter 

Figure 21 
The RVSP as calculated by the backpropagation neural network plotted against the amplitude of the R 
wave in lead V,. 

0 4.4 Discussion. 

Obviously the neural network is not able to predict the value of the RVSP as a 

function of the R wave accurately in this situation. Even though it is not entirely 

correct to use the training data also for testing the network, this data should be 

"known" to the network and so it should do better in estimating the correct output. 

From Figure 21 it can be seen that the regression line of the output predicts a 

declining relationship which is very strange because all relationships that were devised 

so far were increasing proportional. Next to this even impossible negative values are 

found. 

Although there seems to be no correlation at all, various reasons and problems 

around the set up of the experiment that might cause this malfunctioning can be 

appointed. 
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First of all a set of training data consisting of only 96 cases can hardly be called 

sufficient from a statistical point of view. Especially in this case because they might be 

other yet unexplored noise sources. 

Second some parameters which were expected to have an influence on the 

reiationship had to be negiected because tney couia not be measured accurately (see 

9 4.2). Now there is no way of telling whether or not the volume and wall-thickness of 

the right ventricle have affected the network's output. 

Some doubts about the accuracy concerning values of the R wave and especially the 

RVSP in Appendix B that are used as input are also justified. The error in the 

amplitude of the R wave can vary between 2 and about 5 mm. this was not taken into 

account. Looking at Figure 22, the values of the invasively measured RVSP seem to 

agree quite good with the relationships from 8 4.1, but the variation is very big and 

one might wonder if fitting these values makes any sense. 

RVSP (mmHg) 

250 i 

O 5 10 15 20 25 30 35 40 
R wave amplitude (rnm) 

Dots cofheier + (1): 1958 * (2). 1978 

Figure 22 
The values of the invasively measured RVSP plotted 
against the R wave; (1) and (2): earlier devised 
relationships. 

But also the accuracy of the measurement of the single RVSP can be questioned. In 

Appendix _ _  B at page - 40, with training set nr. 9 it can be seen that two measurements 

were made at the same time; A difference of 17 mmHg. occurred. At page 41 and 42, 

the training set 16 and 5 are printed twice because a later measurement was also 

available. In both situations the value of the latter RVSP is smaller then the first. It is 

commonly known that as time goes on and hypertrophy increases, the pressure should 
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also increase. 

Another problem is that only the ECGs of defected hearts were used, because there 

is no reason to perform an invasive measurement on a healthy heart. So no standard 

cases were available for comparison. 

Finally there might be other unknown influences that should be taken into account. 

This also concerns the regression lines in the Figures 20, 21 and 22. It is not certain 

that the wanted relationship is proportional, but linear regression was the only 

method that made it possible to compare the results. 

0 4.5 Conclusions. 
It might seem odd that this project was continued when a lot of the problems were 

known beforehand. Unfortunately it is true that no qualitative conclusions can be 

drawn because it was not yet possible to prove and determine a relationship between 

the amplitude of the R wave of the electrocardiogram in lead VI and the right 

ventricular systolic pressure. But this report partly describes just the start of a project 

which will probably be continued. Hopefully the report can serve as a basis for a 

more extensive and successful experimental setup with which the wanted relationship 

can be profoundly proved and defined so that invasive measurements might become 

superfluous in the future. 
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Glossary. 

Glossary. 
Arteria Pulmonalis Diastolic Pressure: The pressure in the arteria pulmonalis at the 
end of the relaxation-phase of the right ventricle 

ECG: Electrocardiogram. 

Generalized delta rule learning law: Learning law that reduces the error by moving 

reached (see Learning law). 
+La Trrn:mL+rTentnv :m thn A;rnnt;r \n n 4  the r r r n A ; e n t  nf t h e  arvnv i7nt;l o m;n;m.im ;o 
LIIC W C l ~ l l L V c I ~ L L J l  111 L l l L  U I I b b L l U l I  UI L i l b  & i C L U l b l l L  UI L I l b  CIIIVI UIILII U IIUIU1IIU111 IJ 

Hidden layer: Layer of a neural network that is not directly connected to the 
periphery. All layers except input/output layers are hidden. 

Learning law: Equation according to which weights are adapted during 
transformations when a neural network is trained. 

Learning rate: factor that sets the learning speed of a neural network by determining 
the step changing the weights every training iteration. 

Neural network: Information processing system that autonomously develops 
operational capabilities in adaptive response to an information environment. 

Neurocomputing: Technological discipline concerned with information processing 
based on transformations instead of algorithms or strictly specified rules. 

Perceptron: First important neural network structure consisting out of one or more 
processing elements. 

Processing element: A single unit in a neural network. 

Programmed computing: Traditional way of information processing using computers. 
Problems are solved with the help of computerprograms that are written according to 
algorithms. 

Prototype network: Network that creates a set of specific input/output examples. 
Unknown functions are compared with these figures and that provides an estimation 
of the wanted function (+ feature network). 

Right Axis Deviation: Diagnosis criterion calculated out of values of deflections in the 
electrocardiogram in different leads. 

RVH: Right ventricular hypertrophy. Unnatural growth of the muscle that surrounds 
the ventricle. 

RVSP: Right ventricular systolic pressure. The highest pressure that occurs during the 
contraction of the right ventricle 

Weights: Transformation multiplication factors. 
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Appendix A: Computerprogram. 

Appendix 19= Computerprogram. 
This section contains the computerprogram written in Basic as it was used to simulate 

the backpropagation neural network. The program implements a network with n = 5 
input units (of which one serves as refence with a constant input value of 1, the so- 

called bias input), 2n+ l = 11 hidden layer units and l output unit. 

15 DIM W(5,ll): DIM V(11): DIM Q(11): DIM IN(6):DIM F(11):DIM 

20 DIM P(11): DIM DEL(11): DIM DELV(11): DIM DLV(11): DIM 

25 

L(11) :DIM C(5,ll) :DIM G(5,ll) :DIM X(5,ll) 

DLW (5,ll) : DIM DELW (5,ll) 
A=O : B=O : ALPHA=O .8 : ETA=O .5 : IN (1) =1: IN (5) =O. 5 

29 
30 
31 
32 
34 
36 
40 
42 
44 
46 

FOR 1=1 TO 5 
FOR J=l TO 11 
W(1, J)=RND-O. 5 
REM INPUT "W ( I I J =I1 ; W ( I I J 
V (J) =RND-O .5 
NEXT J 
NEXT I 
FOR J=l TO 11 
DLV (J) =RND-O. 5 
NEXT J 

56 INPUT "IF YOU WANT TO GET WEIGHTS ON THE SCREEN - PRESS 
1";Z: IF Z=l THEN GOSUB 250 

60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 

B$=INKEY$: IF B$=llS1r THEN GOT0 500 
REM INPUT IIINPUT DATA AS FOLLOWS : 111 ;IN (1) 
INPUT "R-WAVE=" : INABS ( 2 ) 
INPUT "T-WAVE=" ; INABS ( 3 ) 
INPUT riAGE=ll ; INABS (4) 
REM INPUT "WALL THICKNESS=" ; IN (5) 
INPUT "PRESSURE=" ; INABS (6) 
IN (2) =INABS (2) /30 
IN ( 3) =INABS ( 3 ) /6 
IN(4)=INABS(4)/5 
IN( 6) =INABC (6)/219 

146 REM "FORWARD PASS - BLOCK" 
148 Z=O:OPUTl=O 
150 FOR J=l TO 11 
152 FOR 1=1 TO 5 
154 Q(J)=Z+W(I,J)*IN(I) : Z=Q(J) 
155 NEXT I 
156 REM PRINT "J=";J 
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157 REM PRINT "Q  (J) =I1 ;Q (J) 
158 F (J) =1/ (l+EXP (-Q (J) ) ) : P (J) =F (J) *V (J) : OPUTl=OPUTl+P (J) : OPUT 

=OPUT1 
159 REM PRINT "F (J) =I1 ; F (J) 
160 NEXT J 

165 REM "BACKWARD PASS - BLOCK" 
17 O ER=IN (6 ) -0PUT 
190 FOR J=l TO 11 
192 DEL(J)=F(J)*(l-F(J))*V(J)*ER:DEL(J)=ALPHA*DLV(J)+ETA*F(J)* 

ER: V(J) =V (J) +DEL(J) : DLV( J) =DELV( J) 
194 NEXT J 

200 FOR J=l TO 11 
205 FOR 1=1 TO 5 
210 DELW (I, J) =ALPHA*DLW (I, J) +ETA*IN (I) *DEL (J) : W (I, J) =W (I, J) +DE 

LW(1,J) : DLW(I,J)=DELW(I,J) 
215 NEXT I 
220 NEXT J 

224 NORM=OPUT*219 
225 PRINT IICALCULATED PRESSURE IS I1;NORM 
228 PRINT "OUTPUT NETWORK ERROR IS ER=";ER 

230 GOT0 56 

250 CLS:FOR 1=1 TO 5 
252 B=16*1-14 
254 LOCATE 1,40 
255 FOR J=l TO 11 
256 LOCATE J,B 
258 F$="###. ##I1: PRINT USING F$;W (I, J) 
270 NEXT J 
272 NEXT I 
274 FOR J=l TO 11 
276 L(J)=INT(V(J)) 
278 A$=ll###.##ll:PRINT USING A$;V(J) 
280 NEXT J 

500 END 



Appendix B: Experimental Data 

Appendix B: Enperimental Data. 

Right Ventricular Systolic Pressure. 

Shape normalised in 6 classes: 
a: upright 
b flat 
6: bi-phasic 
d inverted 

P: inverted & assymmetrical; amp1 > 2 (mm) 

10 

11 

e: hverted &; a§sj?mEetrid, m p !  s 2 (2lm) 

12 Uncalibrated Values. 

Arteria Pulmonalis Diastolic Pressure. 

l4 Lead 111 values used instead of am 
* Lead I1 values used instead of am 

u 
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Another measurement was made at the same time; RVSP = 147/0 was found! 16 

'' UV€? values used instead of a n .  

- 
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Appendix B: Experimental Daia 

Both at the age of 4 and 5 3  years pressure was measured. A year and a half after the first measurement a decrease 
of 7 mmHg was found! 
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19 Both at 11 and 12 years pressure was measured. A year after the first measurement a decrease of 34 mmHg. was 
found! 
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