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Chapter 1 

Introduction 

The Control Structure Design (CSD) method suggested in [3] will be illustrated for an active 
suspension design problem. The 6 DOF tractor-semitrailer as proposed in [5, Chapter 51 will 
serve as an example, see Fig. 1.1. For this purpose, the Matlab Control Configuration Design 
(CCD) toolbox [4] will be used: The selection of measured and manipulated variables and 
the selection of a decentralized control configuration will successively be discussed. Controller 
design and closed-loop control system evaluation will not be performed at this stage. 

Three actuators, placed between the axles and the tractor chassis and semitrailer chassis 
respectively, are proposed as candidate inputs U I ,  u2 and u3. The nine variables below are 
suggested as candidate measurements: 

o suspension deflections y1 - 93, 

o axle accelerations y4 - y6, 

o vertical accelerations of the chassis at the suspension attachments at the front and at 
the rear of the tractor y7, y8 and at the rear of the semitrailer yg. 

In order for CSD to be performed, a linear model of the system is needed. A state space 
description which is assumed to represent the main characteristics of the system, is the fol- 
lowing: 

with z the state variables, w the excitation of the system by the road, and z the variables 
to  be controlled, i.e., dynamic tire forces, suspension deflections and rotational and vertical 
accelerations of both driver and cargo. For details on the state space description, the reader 
is referred to  [5 ,  Chapter 5 and Appendix A]. 

The CSD method implemented in the CCD toolbox requires control systems to  be represented 
as in Fig. 1.2. For this reason, the relation between the inputs u and 20,  and the measurements 
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Figure 1.1: 6 DOF tractor-semitrailer model 

P : system to be controlled (plant) 
C : controller 
T : signals to be tracked 
d : disturbances 
u : manipulated variables (inputs) 
y : measured variables (outputs) 

Figure 1.2: Control system set-up for the CCD toolbox 
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y in (1.1) is rewritten as follows: 

with: 
P ( s )  = C(s1-  A)-'B, + D, 
d ( s )  = ( C ( d  - A)-'B, + D,)w(s). 

Here, the excitation by the road w is represented by disturbances d at the measured output 
y of the plant P. 

A disadvantage of the particular CSD method is the prior assumption that the selected 
measurements y are strongly related to the variables to be controlled z ,  which need not be 
the same. This difference also occurs for the truck example, since the tire deflections must be 
kept within limitations, but cannot be measured directly. Under the assumption mentioned 
above, one tries to  control z by means of controlling y. However, as will be discussed in 
Chapter 2, Input Output (IO) selection is based on robust stabilizability of the control loop 
in Fig. 1.2. As a consequence, an IO set may be selected for which the system is robustly 
stabilizable indeed, yet for which it cannot be controlled properly anymore. A criterion for 
robust performance is expected to suit better. 

Since all modes of the tractor-semitrailer are stable, the system is both stabilizable and de- 
tectable. In fact, it can even be shown that the pair (C ,A)  is always observable, whatever 
subset of outputs y is selected, while the pair (A ,  B,) is always controllable, whatever subset 
of inputs u is selected. Stabilizability and detectability are common requirements for suc- 
cessful design of output feedback controllers. For example, they are prerequisites for an Rm- 
or p-based controller design, which minimizes the oo-norm of the closed-loop transfer matrix 
between the external input w and the control error z of the system in (1.1) [l, Chapter 61. If 
additional prerequisites for well-posedness in Em- or p-based controller design are satisfied 
[i, Chapter 61, a measurement-based controller which minimizes the control errors in z can 
in principal be designed, whatever IO set is ultimately selected. 
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Chapter 2 

Input Output Selection 

The procedure for Input Output (IO) selection is summarized in [5, Section 3-91. For the sake 
of completeness, the main result will be repeated here. 

The fundamental idea for IO selection is maintenance of robust stabilizability of a control 
system under additive co-norm bounded perturbations A, see Fig. 2.1. Note that stability 
does not depend on the presence of the disturbance signal d and the tracking signal T .  The 
following theorem is proven in [3]: 

Suppose Po is a square, Finite Dimensional Linear Time Invariant (FDLTI) nominal plant. 
Under these assumptions, there exists a FDLTI controller C which 

i. stabilizes all P = Po + A with 

(a) the same number of Right Half Plane (RHP) poles as Po and 

(b) a(A)/a(Po) I ST,,  and 

2. achieves o ( S )  5 cs, os < i V w 5 ws 

Figure 2.1: Additively perturbed control system 
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only if 

where: 

o ,S’ = ( I  + P&)-’ is the nominal output sensitivity function of the closed-loop system, 

e ti = a(Po)/g(Po) is the Euclidean condition number of the nominal plant, 

o S,, is the specified, possibly frequency-dependent , relative additive uncertainty bound, 

o as and ws specify the closed-loop bandwidth of the system in terms of S .  

It is emphasized that (2.1) is only a necessary condition for robust stabilizability (provision 
1) together with a performance specification in terms of S (provision 2). Note that in the 
criterion above, which will be referred to  as “Criterion 2,’ (as it is done in the software), 
the plant P corresponds to  a square subsystem of the overall plant P*, which is possibly 
non-square and incorporates all candidate measured and manipulated variables. For the 
particular example discussed here, the overall plant P* has dimension 9 x 3,  while P is an 
m x m subsystem of P* with m 5 3 .  Candidate IO sets which do not satisfy criterion (2.1) 
are rejected. 

Note that the condition number K not only depends on the particular inputs and outputs 
under investigation, but also on their scalings. In [3], this gives rise to  the development of a 
scaling-independent quantity, which is obtained from the so-called Relative Gain Array (RGA) 
A of the nominal plant Po: A = Po. * (Pöl )T ,  with .* element-by-element multiplication. The 
motivation is however somewhat doubtful. In [ 3 ] ,  it is remarked that (‘each time the plant is 
re-scaled, the condition number will have to be re-computed and the inequality re-evaluated”, 
which is time-consuming. However, once the overall system Po* is properly scaled, scaling need 
not be performed for each individual subsystem, since the scaled subsystem PO can be obtained 
by simply selecting the corresponding rows, columns and scaling coefficients from the overall 
system Pl .  So, the introductior, of the RGA-quantity as a way to  make the IQ selection less 
burdensome due to  the need of re-scaling, seems questionable. 

By substituting the “RGA quantity” Lmax{llA(Po)lll, IIA(P0)llm} - 1 for %(PO) in (2.1), 
the modified “Criterion 1” is created. Applying this criterion instead of Criterion 2, a larger 
number of IO sets will pass, since Criterion 1 weakens the necessary condition for robust 
stability. The selection procedure is less “severe”, since 2max{IIA(Po)ll1, IIA(Po)llm} - 1 5 
.(Po). So, the IO selection may computationally be more eficient, though possibly Zess 
eflective. 

2.1 Uncertainty Description 

In order to  screen candidate IO sets by applying condition (2.1), an uncertainty bound S,, is 
needed. The criterion implies that for a specific choice of ws and os a selected subset with 
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subsvstem size I number of distinct subsvstems 

total: 

1 
2 
3 

219 

27 
108 
84 

a large condition number can only tolerate small amounts of uncertainty without sacrificing 
stability. In the examples discussed in [3], S,, is purely used as a parameter to  affect the 
number of IO sets passing the criterion. For example, if too large a number of IO sets passes 
(2.1) at a particular frequency w ,  S,, is raised and additional IO sets are eliminated. However, 
it seems better to  use a bound S,,(jw) on the expected uncertainty at each frequency. For 
example, it may be felt that there is hardly plant uncertainty at low frequencies, while there 
is a lot at intermediate and high frequencies. 

By its definition, the relative additive uncertainty description S,, depends on the particular 
IO set selected. However, deriving an uncertainty bound for each IO set individually is 
infeasible for a large number of candidates. For this reason, an upper bound which accounts 
for uncertainties for all candidate IO sets will be derived. A fact is [3, Appendix A], that 
F(P0)  5 F(P,*), and T ( A )  5 T(A*), with Po and A “subsystems” of the 9 x 3 “systems” 
P,* and A* respectively. Unfortunately, a priori nothing meaningful can be said about the 
relation between F ( A ) / F ( P o )  and T(A*)/T(P,*). Instead, S,, must be obtained by computing 
relative additive error bounds for all candidate IO sets. Note that this may be infeasible for 
a highly dimensional P,*. In Table 2.1, the number of square IO sets which can be created 
from the overall 9 x 3 system is listed. 

It is obvious that a lot of errors play a role in the system model. In practice, the difference 
between the linear model (1.1) and the real system arises from a variety of sources, e.g., 
varying weight of the cargo, nonlinear and uncertain spring and damper characteristics and 
wrong inertia parameters. In [2, Section 6.21, it is stated that the damping coefficients of 
the suspension are hardly accurate. For this reason and the impossibility t o  account for 
all uncertainties, this investigation will be restricted to  a 25% error in the three damper 
parameters simultaneously. 

The uncertainty bound is now derived in the following way. Firstly, the relative additive 
uncertainties F ( A ) / F ( P o )  are computed for all 219 candidate subsystems. It appears that the 
envelope for the magnitudes of the uncertainties for the 1 x 1 IO sets (obtained by taking at 
each frequency the maximum of the 27 relative additive uncertainty values) is greater than 
or equal t o  the envelope for the 2 x 2 IO sets, which in turn is greater than or equal to the 
one for the 3 x 3 IO sets, in the whole frequency range of interest, see Fig. 2.2. 

In the following, cs is fixed at i& (as it is always done in [ 3 ] ) ,  i.e., T ( S )  is specified to  
lie below the -3dB level for all frequencies less than ws. If the uncertainty description were 
based on the envelope for the 1 x 1 IO sets, the right hand side of (2.1) would be larger than 1 
for the whole frequency range of interest. Since the condition number of a 1 x 1 IO set equals 
one, all these candidates trivially pass the criterion and are therefore not further considered 
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Figure 2.2: Maximum relative additive uncertainties for 1 x 1 (-), 2 x 2 (--), and 3 x 3 (--) 
IO sets. 

3.50 
c 2  0.36 
WC 0.72 

Table 2.2: Parameters for relative additive uncertainty bound S,, 

in this section. As a consequence, the derivation of S,, will only be based on the envelope for 
the combined 2 x 2 and 3 x 3 IO sets. This yields a less conservative uncertainty bound than 
in the case the 1 x 1 IO sets are also accounted for. 

The bound which is used to  represent the maximum relative additive uncertainties below ws 
is depicted in Fig. 2.3. It is obtained by taking the magnitude of the transfer function 

the parameters of which are listed in Table 2.2. 

From Fig. 1.2 it can be seen that the closed-loop behavior between d and y is represented by 
the sensitivity S .  In [2, Section 3.11, it is stated that vertical accelerations in the frequency 
range between 4 and 8 Hz are highly undesirable for good driver comfort. In order to attenuate 
undesirable frequencies in d, the bandwidth ws of S is specified as 27r x 8 N 50 rad/s. 
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Figure 2.3: Maximum relative additive uncertainty for combined 2 x 2 & 3 x 3 IO sets ( O - )  

and relative additive uncertainty bound (-) 

2.2 Results 

In this section, IO selection for the tractor-semitrailer will be performed. The difference 
in strength between Criterion 1 and Criterion 2 is illustrated for three candidate IO sets: 
y1 y2 y3/u1 u2 u3, y1 y3 yq/u1 u2 u3, and y1 y3 yg /u1  u2 u3. In Fig. 2.4, the left hand side of 
(2.1) for Criterion 1 and Criterion 2 respectively, is compared with the evaluation bound 
l/(&(l - os)). Application of Criterion 1 only eliminates y1 92  y3/u1 u2 u3, while Criterion 
2 rejects all proposed IO sets. 

In Fig. 2.5, the number of IO-sets which pass one of the two criteria at a certain frequency 
is depicted. Inequality (2.1) is evaluated for 200 frequency points which are logarithmically 
divided between 0.1 rad/s and 50 rad/c (us). So, at each frequency point a subset of ((viable)’ 
IO sets is isolated from the original set of 192 IO sets. From this figure, it is concluded that by 
application of Criterion 2, a considerably larger number of non-viable IO sets is eliminated. 

In fact, IO sets are only viable it they pass the selection criterion for all frequencies below 
ws. In order t o  obtain the subset of viable IO sets, the following is done. Starting at w = 0.1, 
a particular subset of IO sets is accepted. This subset in turn is put to  the test (2.1) at the 
next discrete frequency point. In Fig. 2.6, the number of IO sets passing the criterion for 
the underlying frequencies is depicted. Continuing for increasing frequencies, the number of 
IO sets which is still accepted is non-increasing. At ws,  those IO sets remain, which pass the 
test for all frequencies of interest. For Criterion 2, they are listed in Table 2.3. 

By applying Criterion 2, the overall set of candidates has been reduced to a more “manage- 
able” subset of IO sets. The ultimate selection of an IO set could, e.g., be performed by 
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Figure 2.4: Difference between Criterion 
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Figure 2.5: Number of candidate IO sets which pass the criteria a t  a particular frequency: 
2 x 2 sets (-), 3 x 3 sets (.-) 

set number 
1 
2 
3 
4 
5 
6 

set number 
7 
8 

3 x 3 IO sets 

Table 2.3: IO sets which are accepted 
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Criterion 1 Criterion 2 

frequency [rad/s] frequency [rad/s] 

Figure 2.6: Number of candidate IO sets which pass the criteria for the underlyingfrequencies: 
2 x 2 sets (-), 3 x 3 sets ( e . )  

40 

20 

O 

2 x 2 IO sets left 

. . . . . . . . .  

3 x 3 IO sets left 

lo * 
n u 

lo-' loo lo1 lo2 10-1 loo lo1 lo2 
frequency [rad/s] frequency [rad/s] 

Figure 2.7: Number of IO sets passing Criterion 2 for the underlying frequencies applying S,, 
(-) and 2.56,, (--) 

designing controllers for each candidate, followed by an assessment of the closed-loop behav- 
ior. Alternatively, further screening could be performed, e.g., by applying different sensitivity 
specifications or a different uncertainty bound, or by studying the condition numbers of the 
accepted IO sets in more detail. 

One way to  artificially reduce the number of accepted IO sets is to use a more conservative 
uncertainty bound, see Fig. 2.7. It is evident that if the relative additive uncertainty bound 
is larger, an equal or smaller number of IO sets pass the selection criterion at each frequency. 
This could of course be predicted from inequality (2.1). For 2.56,,, the 3 x 3 IO sets are 
all eliminated, while 2 x 2 IO sets no. 1 and no. 4 (Table 2.3) are the only ones accepted. 
Another way to  eliminate more IO sets is to  raise ws. For example, by applying S,, and 
ws=100 rad/s, 2 x 2 IO sets no. 1 till 4 and 3 x 3 IO set no. 7 are the only ones still accepted. 
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The quality of the IO sets in Table 2.3 can also be assessed by comparing their condition 
numbers with the bound which it has to stay below. In Fig. 2.8, this is illustrated for the 
accepted 3 x 3 IO sets. Desirably, the condition number is small, since this will tolerate larger 
modeling errors and smaller sensitivity specifications. From Fig. 2.8 it is concluded that IO 
set no. 7 and 8 do not differ significantly; IO set no. 7 seems better for frequencies larger 
than 8 rad/s, while IO set no. 8 is slightly better for frequencies below 8 rad/s. Since the 
condition number of IO set no. 7 shows the least peaking, this one might be termed “best”. 

In Fig. 2.9, the condition numbers for the accepted 2 x 2 IO sets and the evaluation bound 
are depicted. Since the condition number of IO set no. 1 shows the least peaking, this one is 
the best with regard to its ability to  satisfy selection criterion (2.1). 

Summarizing, IO sets no. 1 and no. 7 seem to offer the best prospects for robust stability and 
nominal closed-loop sensitivity, since the evaluation bound is easiest satisfied. Note that in 
both cases it is recommended to  measure the vertical axle accelerations. Also note, that the 
measurements for each IO set in Table 2.3 are always of the same type, i e . ,  only combinations 
of either vertical axle accelerations or vertical chassis accelerations occur. A sound physical 
explanation for these two facts is lacking at the moment. 

Finally, it is emphasized once more, that in order t o  make a definitive choice for an IO set, 
it is best to  design controllers for the most “promising” accepted candidates, followed by an 
assessment of the closed-loop behavior. This is however beyond the scope of this report. 

2.3 Discussion 

In this section, the IO selection method suggested in [3]  has been illustrated for a practical 
example. In order to  apply the criterion, an uncertainty bound S,, and specifications for the 
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Figure 2.9: Condition numbers of the accepted 2 x 2 IO sets (-) and evaluation bound 
1/(L7(1- 0s)) ( O - )  
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nominal closed-loop sensitivity (us, cs) have to  be formulated. A major disadvantage of the 
method, is that these “design parameters” depend on the particular IO set under consider- 
ation, i.e., distinct IO sets may both call for a different uncertainty bound and a different 
sensitivity specification (“performance specification”). However, due to  the large number of 
candidate IO sets it is infeasible to  derive uncertainty bounds and formulate sensitivity spec- 
ifications for each candidate individually. Instead, they are formulated once and assumed to  
be representative for all candidate IO sets. 

A related drawback of the IO selection method is the following. Although a priori nothing can 
be said about the value of K ( A )  compared to  K(A*),  with A a sub-matrix of A*, the tendency 
is, that uc(A*) > %(A): computing condition numbers for 10,000 randomly generated 3 x 3 
matrices, the mean condition number was 223, while for a 2 x 2 sub-matrix the mean condition 
number was 32. This may explain the fact that the number of 3 x 3 IO sets rejected is relatively 
large compared to the number of 2 x 2 sets rejected. The 1 x 1 IO sets with condition number 
1 (smallest possible), all pass the selection criterion for the particular evaluation bound. Since 
it is noted that for lower dimensional subsystems the relative additive uncertainty a(A)/a(Po) 
tends to  be larger than for higher dimensional subsystems (see Fig. 2.2), it’s expected that 
formulating the uncertainty bound (and sensitivity specifications) for each candidate IO set 
individually yields a more effective, yet time-consuming, IQ selection method. 

Since a useful IO set can only be expected if a physically meaningful uncertainty bound is 
used, a frequency-dependent S,, has been derived for a particular choice of modeling errors. 
From the above it is clear that this bound may be conservative for particular IO sets, since 
it is designed to  account for uncertainties in all candidate 2 x 2 and 3 x 3 IO sets. It has 
been illustrated that a more conservative uncertainty bound will eliminate a larger number of 
candidates (the same can be achieved by imposing tighter performance specifications, e.g., by 
raising us). In the examples discussed in [3], no attempt is made to  derive a S,, which accounts 
for uncertainties occurring in practice. Instead, it is purely used as a design parameter to  
affect the number of IO sets that is rejected. 

It has been shown that the difference in the number of IQ sets which is rejected by Criterion 1 
and Criterion 2 respectively may be substantial. Criterion i is only useful for initial screening 
of a large number of candidates. For this reason, the motivation for the introduction of 
Criterion 1 in [3] is doubtful: in order to  obtain the subset of viable IO sets, Criterion 2 must 
be applied anyway, and moreover, there seems to  be no computational advantage of Criterion 
1 over Criterion 2. 

14 



Chapter 3 

Control Configuration Selection 

The procedure for Control Configuration (CC) selection is summarized in [5, Section 4.91. 
For the sake of completeness, the main result will be repeated here. 

The key idea behind CC selection is, that the performance degradation (in y!) of the nominal 
system in Fig. 1.2 must be restricted. In a centralized control system, each input u is deter- 
mined by feedback from all measurements y, i.e., full information exchange takes place. In a 
decentralized control system there is only a limited information flow through the controller, 
by which the performance may suffer. The following theorem is proven in [ 3 ] :  

Suppose P is a square Finite Dimensional Linear Time Invariant (FDLTI) nominal plant with 
its measurements and manipulations partitioned such that: 

p 1 [Pij] = : [h: 
~~ ... 

... p k k  p: 1 
Under these assumptions, there exists a FDLTI controller C=block diag[C11,. . . , C k k ]  which 
achieves 

only if: 
( 1 - q ) T (  V )  < dT kf w 2 9 

1 + (i - C T ) F ( V )  - 

where: 

o V = ( P  - P)P-I with = block diag[PIl,. . . , P k k ]  
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o dT is the specified maximum allowable cross-feed performance degradation 

o T = PC(1 -t PC)-I is the nominal output complementary sensitivity function 

o T = PC(1 -t PC)-’ is the nominal output complementary sensitivity function of the 
associated block diagonal system 

o aT and 9 specify the closed-loop bandwidth of the block diagonal system. 

- --I 
In the above, a[(T - T)T ] is introduced as a measure for Cross-Feed Performance Degrada- 
tion (CFPD). It represents the “difference” between T and T ,  relative to  the ideal performance 
in T. So, the closed-loop performance of P with the decentralized controller C is contrasted 
with that of the associated block diagonal system 7 with C.  If the off-diagonal blocks of P 
were not present and a decentralized controller with the same block structure were employed, 
cross-feed would not take place, and each of the subsystems Pi; could be controlled indepen- 
dently. The performance of the block diagonal system, composed of independent subsystems, 
is now considered “ideal”, which the real system’s performance should approximate. Note, 
that in case a centralized controller is used, there is no CFPD, since P = P. 

Inequality (3.1), which will be referred to  as “Criterion 2”, is a necessary condition for low 
CFPD (provision i), together with a specification for ideal performance (provision 2). Can- 
didate configurations for which the CFPD is larger than maximally allowed, i.e., larger than 
d T ,  are rejected. 

In [ 3 ] ,  the scaling-dependence of a(V) is the motivation to introduce the scaling-independent 
quantity lglmaz = rnaxil;]. It is the maximum absolute value complementary partial row 
sum of R(P), for the configuration corresponding to  P ;  !Pi is the sum of the RGA elements 
on the i-th row lying outside the diagonal block, see, e.g., [5, Section 4.91. In [ 3 ] ,  it is shown 
that a new criterion for CC selection is created if lqlmaz is substituted for O ( V ) :  

_ _  

The modified criterion (3.2) is scaling-independent and will be referred to  as “Criterion 1”. 
Since l $ l m a z  5 rj(V), it provides a weaker necessary condition for low CFPD than Criterion 
2 (3.1), by which more candidate configurations will pass. 

Note, that Criterion 1 has a computational advantage over Criterion 2: for a particular IO 
set, the RGA needs to  be calculated only once, since can simply be obtained by 
re-arranging rows and columns and imposing the corresponding configuration in the RGA 
(result from an algebraic property of the RGA, see, e.g., [5, Section 4.41). These operations 
are basically simpler than re-computing F ( V )  for each candidate configuration. So, Criterion 
1 may computationally be more ef ic ient ,  though possibly less eflectiwe. 
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Table 3.1: Number of candidate control configurations 

[Y4 Y61 %/[ui 2131 212 

Table 3.2: Accepted control configurations for IO set no. 7 

number of distinct configurations 
9 
6 

3.1 Results 

The selection of decentralized control configurations will be focussed on the 3 x 3 IO set 
y4 y5 y6/u1 u2 213, which seems to offer the best prospects for achieving robust stability. The 
selection will be performed with q = i&, i e . ,  T(T) is specified to  lie below the -3dB level 
for all frequencies w greater than 9. For this specific example, wT is fixed at 5 rad/s, in 
order to achieve robustness to  uncertainties above 9, see Fig. 2.2. Note, that is much 
smaller than ws=50 rad/s, which was used for IO selection. This implies that both S and T 
are specified to be small in the frequency range between 5 and 50 rad/s. Since S + T = I ,  it’s 
expected that a controller for which both specifications are achieved is very hard to  design. 
However, for the purpose of CSD, imposing such overly demanding design specifications seems 
justified, since it will at least eliminate those candidates which offer “no prospects at all”. 

From a 3 x 3 IO set, 15 distinct decentralized control configurations can be generated: 9 
configurations consisting of one 2 x 2 block and one 1 x 1 block (denoted {2,1}), and 6 fully 
decentralized configurations consisting of three 1 x 1 blocks (denoted {l,l,l}), see Table 3.1. 

Evaluation of the candidate control configurations will be performed in the region between 9 
and 1000 rad/s. The difference in strength between Criterion 1 and Criterion 2 is illustrated 
by Fig. 3.1, in which the number of candidate configurations which pass the underlying 
frequencies for Criterion 1 or Criterion 2, is depicted. By setting d ~ = 0 . 2 5 ,  all candidates 
pass Criterion 1, while four {2,1) and two {1,1,1} candidate configurations pass Criterion 2. 
If dT is reduced to  0.15, the number of configurations passing is equal and constant for the 
whole frequency range of interest for both Criterion 1 and Criterion 2: the configurations 
which pass the criteria are listed in Table 3.2. Note that these configurations all correspond 
to “co-located” sensors and actuators, i.e., measurement and manipulation are located “in 
the same place”. 

To make possible a better comparison of the four configurations in Table 3.2, the correspond- 
ing CFPD quantities measures will be studied in detail. In Fig. 3.2, the left hand side of (3.1) 
is plotted for the (2,l) and the { l,l,l} configurations respectively. Obviously, configuration 
[y4y5]y6/[211212] u3 (no. la) is the best, in the sense that the CFPD is smallest. For the 
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Figure 3.1: Number of configurations which pass the criteria for the underlying frequencies: 
{2,1) (-)y { 1 , 1 7 1 }  (--> 

Table 3.3: Accepted control configurations for IO set no. 8 

frequency range of interest, it is less than 7%. As a consequence, the performance with this 
configuration is expected to be only slightly worse than in case the centralized configuration 
[y4 y5 y6I/[u1 uZ u31 is used. 

If CC selection is performed for IO set no. 8 instead of no. 7, the configurations in Table 3.3 
are accepted. Note that these configurations are the same as the ones in Table 3.2 if y7, y8 
and y9 are replaced by y4, y5 and y6 respectively. Comparing CFPD for configuration no. l a  
and no. lb ,  it is concluded that the latter may be preferable, if peaking of the CFPD measure 
is the basis for quality assessment. So, performing CC selection for the bests IO set only, 
may not give the “optimal” control structure. It is illustrated, that although in Section 2.2 
IO set no. 7 is preferred over IO set no. 8, the best configuration for IO set no. 7 may be 
“worse” than the best configuration for set no. 8. It is concluded, that in order to find the 
best controller structure, IO and CC selection are better not performed independently. 

Suppose configuration no. l a  is used for design of a decentralized controller C with diagonal 
blocks Cii and (722. The associated block diagonal system is denoted p = block diag[PIl, P221, 

where PI1 corresponds with the 2 x 2 transfer function matrix relating inputs [u1 u21 to outputs 
[y4 y5], and P 2 2  corresponds with the transfer function between u3 and y6. The design of C11 
is based on Pil, while the design of C22 is based on Pzz, i.e., the controller for the active 
suspension of the tractor on the one hand and for the semitrailer on the other hand are 
designed independently. Note however, that this does not imply that if, e.g., a different type 
of semitrailer or an unloaded one is used, controller Ci1 need not be re-designed. A different 
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CFPD for the accepted configurations 
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frequency [rad/s] 
Figure 3.2: CFPD quantity for the most promising configurations in Table 3.2: no. l a  (-), 
no. 2a ( e . ) ,  no. 3a (--), no. 4a (-a) 

CFPD for the accepted configurations 

o”2u 
o.1 t 

frequency [rad/s] 
Figure 3.3: CFPD quantity €or the most promising configurations in Table 3.3: no. l b  (-), 
no. 2b ( e . ) ,  no. 3b (--), no. 4b ( - 0 )  
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semitrailer will not only cause changes in P22, but in P11 as well. Therefore, both C11 and 
C22 may have to  be re-designed. 

In practice, the situation may occur that the tractor has to  pull a semitrailer which is not 
actively suspended. Such a situation will cause problems in case the centralized configura- 
tion is used, since u1 and u2 need information on y6, which is not present. Provided the 
system remains stable if control loop ?&/u3 is out of service (“closed-loop integrity” must be 
guaranteed, see, e.g., [5, Section 4.10]), a decentralized controller based on configuration no. 
l a  seems more appropriate for practical application. Furthermore, the situation will occur 
that the tractor travels on its own. The centralized controller is expected to  fail, while the 
decentralized controller is expected to  work well, provided that it is robust to  the changes in 
Pll, which are due to  absence of the semitrailer. 

Finally, it is remarked that the ultimate selection of the controller configuration should be 
performed in the context of controller design. The candidates in Table 3.2 and Table 3.3 may 
serve as a manageable basis of configurations for which this can be performed. 

3.2 Discussion 

The CC selection method proposed in [3] has been illustrated for a 3 x 3 IO set. It is 
concluded that CC selection Criterion 2 is able to  eliminate a larger number of candidates 
than Criterion 1. Furthermore, reducing the maximally allowable CFPD dT will eliminate 
more candidates. A remaining question is, if a frequency dependent dT will improve CC 
selection. It is doubtful if the particular CC selection procedure is meaningful for frequencies 
far above wT, since performance is usually important below and just above the bandwidth. 
For this reason, it seems difficult to  formulate a physically meaningful dT .  

After the complete set of candidate configurations has been reduced to  a smaller subset of 
configurations which pass condition (3.1), more detailed studies of the associated frequency 
dependent CFPD’s can be performed to  assess the quality of the accepted configurations. 
Alternatively, the quality of the accepted configurations may be assessed by controller design 
and closed-loop control system evaluation. 
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