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Abstract

A model, describing the time dependent behaviour of a ncble gas MHD genera-
tor plasma, has been set up. With this model it is possible teo calculate
the relaxation for ionization or recombination as a response to a stepwise

temperature development, once the initial and final conditions are given.

In the model radiative transitions and a deviation from Maxwellian electron
distribution are included. Radiation wauses an enhancement of both the io-
nization relaxation time and the recombination relaxation time. A non-Max-
wellian electron distribution results in an increase of the relaxation time
for an ionizing plasma because of an underpopulation of the high energy
electrons. A decrease of the relaxation time for a recombining plasma is
caused by an overpopulation of high energy electrons. The relaxation time
is strongly dependent on the seed ratio and the temperature step.
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LIST OF SYMBOLS

Aij spontaneous emission coefficient
A{j net emission coefficient
Ali rate integral for radiative recombination
Aii' net rate integral for radiative recombination
a radius of the first Bohr orbit of hydrogen
£ reduced density value defining the characteristic time
f(se) electron energy distribution
fb(ee) electron energy distribution bulk electrons
t
£ (Ee) electron enerqgy distribution tail electrons
95 degeneracy of atomic level i
h Planck's constant
K, .
ij rate integral for electronic (de)excitation from atomic
level i to atomic level
Ki partial rate integral
KiA rate integral for electronic ionisation from atomic level i
L] .
KiA effective rate integral for electronic ionisation from ato-
mic level i
KAi rate integral for three body recombination to atomic level i
-
Kli effective rate integral for three body recombination to ato-
mic level i
Boltzmann's constant
e electron mass
Ny, Argon density
Noo Cesium density
ne(t) electron density
n, (t) population density of atomic level i
r}'le reduced electron density
% reduced population density of atomic level i




Teo" Tto

ex’ TtP

AT

Gi(Ee,AE)

cik(ee)

-1y -

Rydberg's constant
seed ratio

electron temperature (bulk)
electron temperature tail
temperature at t<o
temperature at on

temperature step at t=o
time

electron velocity

radiation escape factor of radiative transition from
atomic level i to atomic level j

radiation escape factor for radiative recombination to
atomic level i

electron energy
energy difference between atomic levels i and j
ionisation energy of atomic lewvel i

number of equivalent electrons in atomic level i

creoss section for loss of energy greater than or equal
to Ae By one incoming electron of energy €, colliding
with a bound electron in atomic level i

cross section for excitation from atomic level i to

to atomic lewvel j by one incoming electron of energy

£
e

cross section for ionisation from atomic level i by one

incoming electron of energy €q

characteristic time for relaxation



1. Introduction

In order to attain a nonequilibrium regime in noble gas MHD generator plasmas,
the populations of the excited states of the seed atoms and the electron den-
sity must be elevated above their equilibrium values corresponding to the gas
temperature by electronic collisional processes (1). Generally in relaxation
models it is assumed that the thermalization energy due to electron-glectron
collisions is much larger than the energy transfer due to elastic and non-e—
lastic collisions with heavy particles. Consequently a Maxwellian function is
assumed to describe the energy distribution of the electrons (1,2). For values
of the electron density lower than 1019 m-3 the energy loss due to excitations
to the first excited state becomes of the same order as the energy transfer
from low to high energetic electrons (3). As a result the electron energy dis-

tribution will deviate from a Maxwellian one.

In this study a noble gas Cs seeded plasma is investigated. The model includes
radiative transitions and the possibility of a deviation from the Maxwellian
electron energy distribution. The two electron group model is used to describe
the electron distribution (3,4). The different contributions of the electrons
belonging to the two groups to the non-elastic collisions are then considered.
For lonizing plasmas, where excitation to the first excited state represents
the principal energy loss, the tail of the electron distribution is considered
to be depleated(Tt < Te). For recombining plasmas, where de-excitation from
the first excited state represents the principal energy gain, the tail of the
electron distribution is considered to be overpopulated (Tt > Te).



2. Theoretical Model

2.1. Basic assumptions

In the model only Cs atoms are supposed to be excited and to be ioni-
zed while all Argon atoms are supposed to be in the ground state.
Further, it is assumed that the time required for the electron ener-
gy distribution to relax to its final condition, is short compared
with the ionizational relaxation time. Consequently the final electron
energy distribution is assumed to be established at t=o and maintained
constant in time. The initial population of excited states and elec-
tron density are obtained from the stationary solution of the model
for a given initial electron energy distribution (at t < o). When a
Maxwellian electron energy distribution is assumed and the radiative
transitions are neglected, the values of the population density and
electron density given by the stationary solution of the model are
equal to the values given by Saha relation.

2.2. Electron distribution function

The two electron group model (3,4) is used to describe the energy
distributionof the electrons. The electrons are divided in two groups:
bulk electrons with energies smaller than €49 {excitation energy of
the first excited level of the Cs atom), and tail electrons with ener-

gies higher than € Two Maxwellian distribution functions are assumed

12°
- b

to describe the two electron energy groups: f (ee) for the bulk elec-

trons with an effective temperature Te, and ft (Ee) for the tail elec-~

trons with an effective temperature Tt'

E E
fb(ee)=2[—e—-3—}"exp(-—e—>. (1)

(kT } kT

e e

[ 4 E
ft(ee)=2[ 93]"exp(--—e—), (2)

ﬂ(th) th

Here € the energy of the electrons and k is Boltzmann’s constant.



The electron distribution function defined by eq. 1,2, fulfils the nor-

malization condition with a good accuracy as is digcussed in Ref. 4.

Atomic model

An atomic model of Cesium having 10 bound states is used. Each state
is characterised by its principal quantum number and orbital momentum
(see Table 1). Energy levels higher than the 10th (7 D, Eio=3.23 ev)
are assumed to be in instantaneous Saha equilibrium with the free e-

lectrons.

The collisional processes taken into account are inelastic electron-
atom collisions viz, excitation, de-excitation, ionization and three-
body recombination. Because of the lack of experimental values of
cross sections for electron induced excitation or ionization from in-
termediate levels of the Cs-atom, the formulas derived by Gryzinski
(1965) on the basis of a semi-classical model, are used (5). Accor-
ding to Gryzifiski's theory the cross section oi(ee, Ae) for loss of
energy greater than or equal to Ae by one incoming electron of ener-

Y €, colliding with a bound electron in the i-th level, is given by

o (ee,As) = 41Ta§ (-R—)2 Ei glu,v) , {3)
Ae
where
y
_ u-1 u ,3/2 ., T v+l 2v,, 1 u-1.%

g (u,v) = =5 . () (1- = 77 f+ 37(1- o) In e+ ( — 1} 4

u utv

11

Here a_ = 5.29 x 100 "m iz the radius of the first Bohr orbit for

hydrogen, R = 13.6 eV is Rydberyg’s constant, Ei is the number of equi-
valent electrons in the i-th level, u = se/Ae and y = EiA/Ae where
Eik is the ionisation energy for the i-th level, and e = 2.7183. Exci-
tation from level i to level j is obtained when the mimimum energy

loss is larger than the excitation energy Eij but smaller than the

i1,9+1° hence
r

excitation energy of the next level, €

Oyy (gg) = 05 (egr€;4) — 0, (e rey yiy) (5)
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Similarly the cross section for ionization from level i is

o (ee) =0, (Ee’eil) ' {6)

ix
The dominating radiative processes are 65 - 6P resonance radiation and
radiative recombinatieon into the lewvels 6P and 5D. Other radiative tran-
sitions are taken into account but appear to have a negligible effect
on populations and electrondensity. Oscillatorstrengths are taken from

Fabry (6), cross-sections for radiative recombination from Norcross &

Stone (7).

Rate integrals
The rate integrals for excitation, de-excitation, lonization and recom-

bination are calculated for collisions with electrons having an energy
distribution as defined in sec. 2,1, The excitation rate integral Kij

is defined in terms of the excitation cross section-aiA by
4

K, =E?. £ ley) 0y (e) v (e) de, (7

I ey

where f (ee) is the electron distribution function and Ve is the elec-
tron velocity Ve = (2ee/me)5 where me is the electron mass. Using the

excitation cross section from the previous section eq. 7 gives

Kij a Ki (Ei,j) - Ki (Ei,j+1) . (8)

where K, (e, ,) is defined as
i i,3

) =

K (Ei,j £

v
4 f (ee) o (ee,e. ) e (ee) dee (9)

.3 .3

te 8

When the distribution function is given by egs. 1 and 2, two cases
are distinguished for the calculation of Ki (eij).

case a: eij < €1o ¢ then
€12
Ry (eg4) = { £ (£g) Oy fegreyy) v, (5,) de, +

ij



7
£ £ (Ee) oy (ee,eij)xre (ee) dee ' (10}

t
K 7 s (€ 0, (egue )V (e) de ,  (11)

(e,,) =
i iy £ i

The ionization rate integral is.

Kik = Ki (Eik) . (12)
and Ki (Eil) is expressed by egs. 10 and il where sij is replaced
by eil'

The de-excitation and recombination rates are derived from detailed

balancing as

ni *
Ky =Xy G o (13)
3
K =K. L " (14)
AL T LA 2 '
n
[~}
where
TN S (15)
n g.. xp ij e r
3 3
n 2
1, % 1 e 3/2
2 =7 Gmar) 9 P (e /KT (1e)
ne a e

Furthermore in eqs. 13 and 14, Kij and KiA are calculated for a Max-
wellian distribution function at the bulk temperature Te (i:e. in egs.
10 and 11 £° (ee) is replaced by fb (ee}. The effect of the non-Max-
wellian distribution is neglected for the de-excitation and the recom-

bination collisions as these processes are dominated by the bulk
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electrons, infact their energy threshold is zero and the thermal ener-
gy of the electrons is sufficiently small compared to the threshold
energy. In a similar way as described for exitation and icnization
processes, the rate integral for radiative recombination to atomic

level i,n is calculated from

A’

Ay = Z £ (e) o, (e) v (g) de_, (17)

Al

Time dependent continuity equations

In general the continuity equation for atoms in state 1 can be writ-

ten as
My ooy £ 9. (a,v) (18)
3-t 3t coll.rad. * i—" !

In ocur model diffusive effects are not taken into account. Then the

right hand side of eq. (18} reduces to collisional and radiative

terms:
3n an
i i B 2
Fe = S5t)coll.rad. = Pe U3EM%31 T M1 93%i T Mi¥nt "eFag

i 1 1
* neAli] + jginjAji - n, jgiAij . (19}

where charge neutrality is assumed.

Ali is the net rate integral for radiative recombination and Aig is

the net emission co&fficient that take into account the corresponding

absorption processes.
1 1

Using the radiation escape factors Bli and Bij' AAi and Aij are defi-
ned as follows:
a 1. A, B (20)
AL AL At
1
A" =a,. B (21)

13 i3 "3 f

The plasma is considered optically thin to recombination radiaton
thus Bki =z 1.

Using Holstein’s theory (8) B is calculated for the plasma con-

68-6P
sidered, yielding values in the order of 0.01. All other radiative



transitions appeared to have a negligible effect even in case of

complete radiation escape (B=1).

The assumption of Saha equilibrium for levels higher than 7D is rea-
lised by adjusting Ky and K,;- According to Bates et al. (9)
these rate integrals should then be replaced by K;i and K;i as follows:

X .+ (22)

ix = Kotk e

fal
|

(n./n2) ¥ x} (23)
i’Pe i

~
n

where n is the number of levels taken into account. The converging
character of the summation leeds to a value for Kia which is in good
1(=3.33eV}

agreement with the rate integral K,, oblained when using ¢

1A 1,n+
as the effective ionization energy. It should be noted however that

this effective ioniZation energy is used only for evaluating Kfi, and
that for all other processes involving the ioniZation energy the real

value is used.

The resulting set of stiff differential equations is numerically sol-
ved with a Curtiss-Hirschfelder method (10), while ne is simultaneous-
ly calculated from

n =n__ - %In, , (24)

in which ncs is the cesium concentration.
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Results and discussion

3.1

Conditions
The development of the electron temperature is simulated by a step

function at t = o. Further, when the influence of a non+Maxwellian
distribution is considered, the tail of the electron distribution

is assumed to have a discontinuity at enexgy €ype The behavior in
time of the electron energy distribution is given by a step function

of the bulk and tail temperatures as follows:
T =T ,T = Tq for t <o , {25.a)

Te = Tew' Tt = Ttm for t > 0o, (25.b)
The initial conditions are given by eq. 25.z2. The values of Teo and
of Tto determine the stationary solution of the model from which the
electron density n, (e) and the population density n, (o) are deri-
ved. The rate integrals in the time dependant equ2tions (eq. 19),
are calculated from the values of Tem and Ttm given by the final

conditions (eq. 25.b).

The electron density and the excited state densities are calculated
for three different sets of conditions:
1) Radiation is neglected.

The electron distribution function is Maxwellian.

- Initial conditions (t < o}: Te =T =T .

t eo

- Final conditions (t > ¢o): T =T, =T .

— e t aw

2} Radiation is taken into account.

The electron distribution function is Maxwellian.
-~ Initial conditjons T =T =17 .

e t eo
- Final conditions Te =T =T .

'
3} Radiation is taken into a:counz.
The electron distribution function is non-Maxwellian.
With regard to the electron distribution three different possi-
bilities are considered:
a. Initial conditions Te =T ,T =17 .

Final conditions Te =T =T .
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b. Initial conditions Te =T =T

Final conditions Te =T ,T =T
c. Initial conditions Te =T ,T =T
Final conditions Te =T ,T =T

When a non-Maxwellian electron distribution function is considered,

the ionizing plasma case 1s distinguished from the recombining plasma

case.

For ionizing plasmas Tt 1s assumed to be smaller than Te due to the
excitation losses (3). For recombining plasmas Tt is assumed to be
larger than Te as the de-exitations and the recombinations, as far
as. not balanced by the excitations and the icnizations, cause extra

population of the tail of the electron distribution function.

The results of the calculations are plotted for reduced values of

"\ N
the electron density n, and of the population density ng defined as:

" nk(t) - nk(o) (26)

where k = e,1,2 ..., n and n (<) stands for the stationary solution

of the model at T =T and T =T .
e ex t too

Influence of radiation and distribution function

In figure 1.2 a comparison is presented of the results of the .model
where radiations are neglected (case 1), with the results of the
model that takes radiation into account (case 2) for an ionizing
plasma subjected to a temperature ﬁfep frq? Teo = 2100K to Teao =
2300K."When radiation is neglected n, and n, reach quickly their
final values. The development becomes slower as the level becomes
higher, The electron density time dependance is similar to the time
dependance of the high levels {;e(tJ %lhi(t), i = 8,%,10). Rescnance
radiation is a loss of particles for level 2, the population ' of
which increases slower. As a consequence the whole relaxation process
becomes slower. In figure 1.B a comparison is given of the results
with the same conditions for a recombining plasma with Teo = 2300K
and Tem = 2100K. The model that includes radiation gives a larger

difference between the initial and final values of the electron den-



sity and of the population densities. As a consequence the whole re-

laxation process 1s retarded in comparison with the results given
4N

by the model which neglects radiation. Only fhe development of n2(t)

remaines appreciably fast due to rescnance radiation.

In figure 2.A a comparison of the results of the model including
radiation with and without (case 2 and 3 resp.} deviations from Max-

wellian distribution is shown- For case 2: Teo = Tto = 2100K,

T =T = 2300K. For case 3: T = 2100K, T = 2000K, T = 2300K
aw too eo to ew

and ’I’tm = 2200K. When a tail depleated electron energy distribution
is considered, the difference between initial and final densities

increases and the values of the rate integrals for excitations be-
tween levels with a large energy separation decrease. As a result
the relaxation process is retarded. The decreased valuei of K12 and
513 are followed by a further depressed development of nzct) and
n3(t) which gets closer to the development of the other population
densities and to the electron density. A comparison hetween the
results of the two models of case 2 and case 3 for a recombining

plasma are presented in figure 2.B. For the first one Te° = Tto =

2300K and Tem = Ttm = 2100K. For the second one Teo = 2300K, Tto =
2400K, Tem = 2100K, Ttw = 2200K. In the non-Maxwellian case
" ay

N
Tt > Te' As a consequerce nz,'n3 and then ne develop faster.

-The time dependance of the electron density for the cases of the
figures 1 and 2 and for the three different possibilities in which
the nen-Maxwellian case is divided, are plotted in figure 3, The
ionizing case is shown in fiqure 3.A. The recombining case is shown
in figure 3.B. Comparing the resulting ge(t) for a non-Maxwellian
initial condition and a non-Maxwellian final condition, it can be

noted that the former shows a more pronounced deviation from the

Maxwellian case.

In figure 4 the values of the characteristic time for the electron
density relaxation as a function of the seed ratio s are plotted

for different conditions. The seed ratio is defined by s = ncs/ n_ .

where n.. is the density of cesium and n _ is the density of

24 Ar

argoen. The argon density is Np, = 7 x 10 m-3, corresponding to a



gas pressure of 1 atm. at a gas temperature of 1000K. The characteris-
tic time T for the relaxation of the electron density is defined by

the following expression:

?(e (x) = £ (27)

1 _0.632.

In the ionizing plasma case (figure 4.A) f is taken as 1 - e
For decreasing seed fraction, 1 increasesg. This effect becomes more
pronounced at low seed fractions when the model includes radiation
or a non-Maxwellian distribution., For a recombining plasma two cha-
racteristic times are defined. One is connected to the early relaxa-
tion of ;e {t) and is defined by eg. 27 for £ = 0.632, The other one
is defined by eq. 27 for £ = 0.99 and accounts for the late relaxa-
tion of He {t}. The dependance on see@ ratio of the characteristic
times for early and late relaxation of a recombining plasma is shown

in figure 4.B.

The influence of the temperature step on the characteristic time is

shown in figure 5. For an ionizing plasma (figure 5.A) Te° = 2100K,

Tem = Teo + AT. In the non-Maxwellian case only the begin condition
is assumed non-Maxwellian with Teo = 2100K, 'I‘to = 2000K, while

T =T =T + AT. The characteristic time decreases for increa-
ex teo eo

sing values of AT. For a recombining plasma (figure 5.B) Teo = 2300K,

T =7 ~ AT. In the non-Maxwellian case T _ = 2300K, T = 2400K,
ex eo eo to

T =T =T - AT. The characteristic time for the early relaxation
ewx toe eo

decreases for increasing AT while the characteristic time for the late

relaxation increases for increasing AT.
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4. Conclusions

In the preceding section a comparison between relaxation processes with
and without radiation and non-Maxwellian energy distribution has been
made, Radiation causes lower densities of electrons and exc¢ited atoms
in initial-, and final state as well as enhancement of de—excitation.
Both effects result in an increase of the ionizaticn re;axation time.
The recombiqation relaxation time increases as well for the conditiens
considered because the effect of lower final values predominates the
enhanced de-excitation., The effect of radiation is more pronounced at

low seed ratio.

A non-Maxwellian final state has & smaller effect on the relaxation be-
haviour than an non-Maxwellian initial state., For an ionizing plasma

the relaxation time increageg in case of a non-Maxwellian distribution
because the depleated tail causes lower initial values. For a ¥ecombining
plasma the tail of the energy distribution is overpopulated, yielding a

shorter relaxation time,

In all cases therelaxation time 15 strongly dependant on seed ratio and

temperature step.

The effect of non-Maxwellian distribution, however, does not vary much

in the ranges considered.
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Level

ion

Energy (eV)

1i

0.00
1.42
1.80
2.30
2.7
2.80
3.01

3.03

Degeneracy

10

14

10

Table 1, Cesium atomic model with level energy €47

and corresponding degeneracy g;-
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Development in time of reduced dengities in case of a Maxwellian
distribution function, Neg = 7.241 x 1021 nrs.
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Development in time of reduced densities in case of a Maxwellian
distribution fumetion, Ny = 7.241 x 10?1 me.

Recombining plasma, Teo = Tto = 2300 K, Tgm = Ttw = 2100 K.
Case 1: No radiation ineluded. Case 2: Radiation included.
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Development in time of reduced densities, radiation included, with
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Development in time of reduced electrondenaity, Moy = 7.241 % 10
Case 1: No radiation included. Cases 2 and 3: Radiation included.

Ionizing plasma, T 0 = 2100 K, T = 2300 K.
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Case 1 and 2: Tt = Te'
Case 3a. Tto = 2000 K Ttw = 2300 K
3b, Tto = 2100 K Ttm = 2200 K
3e. Tto = 2000 K Ttw = 2200 X
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Relaxation time as a function of temperature step, Moy = 7.241 x 1021 mﬂg.

Case 1: No radiation ineluded.
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