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Abstract 

In the Banach algebra B(H) of bounded linear operators on a separable Hilbert 

space Owe investigate the continuity of the linear mapping 

<nolAlm.o> Inn> <ron I 

with respect to the uniform, the ultra-strong, the strong and the weak to-

pologies on B(H). 

AMS Classifications 47D25 47D45 
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STATEMENT OF THE PROBLEM 

Let H be a Hilbert space. Let B(H) denote the Banach algebra of bounded 

* linear operators on H. Informally the operator P : B(H) + B(H) is defined 
c 

by means of Dirac brackets in the following way 

* PcA = I_ <nOIAlmO>lnn> <ron I . 
nmn 

Here the operator A is supposed to have the matrix representation 

A = J _ <nIiIAItmD>Inn> <mIDI 
nnmm 

The problems posed by W.M. de Muynck, cf. [M], are the following: 

* (i) Show that for each A E 8(H) the operator P A is well defined and c 

belongs to B(H). 

* (ii) Investigate the continuity of the mapping P : B(H) + B(H) in the 
c 

uniform, the strong and the weak topologies of B (H) • 

MATHEMATICAL FORMULATION AND RESULTS 

<X> 

Let X be a separable Hilbert space with a fixed orthonormal basis (v) O' n n= 
00 

Let H = X e X denote the two-fold tensor product of X. Then (v e v_) - 0 n n n,n= 

is an orthonormal basis in H. 

In X define the operator P by P f = (f ,v )Xv • nm nm n m 

In H the operator P e I can be written nm 

(P e I)F = nm 

00 

I (F,v e v-)H(v ® v~) . n=O n n m 11 
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Next, let A be a bounded linear operator on H, i.e., A € B(H), and define. 

co 
the matrix (a) 0 by om n,m= 

OUr first problem is to give a mathematical meaning to the sequence 

L I 
n=O m=O 

a om 
(P ® I) • 

om 

Let Po denote the projection in X defined by POf = (f,vO)XvO' The projection 

operator I ® Po on H can be written 

QO 

t (F'Vn ® vO)H(vn ® vO' . 
n=O 

For any operator A € B(H) the operator (I 0 PO)A(1 0 PO) ~ B(H) • 

-We have II (I ~ PO)A(1 ® PO) liB (H) ~ ilAII BCH) • 

Further (I ~ PO)A(1 ® PO' maps H = X ® X into X ® <va> and also X ® <va> 

into X @ <va>. It is c:ear now that (I ® PO}A(I @ PO) can be regarded as 

a mapping from X into X. This so-called ~eductiod will be denoted by AO' 

* Finally, we are in a position to define the operator P 
c 

p* B (H) -+ B (H) 
c 

Calculation of P*A(V ® v ) shows that p* is indeed the desired operator 
c p q c 

as mentioned at the very beginning of this notice. 

* Remark. P (Q ® I) = Q ® I for all Q E B(X) . 
c 
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THEOREM 1 

* P is a bounded linear operator on B(9) and c 

* Hence P is continuous in the uniform topology of B(9). In other words c 

* * Pc E B(B(H». Finally IIPc Il B (B(H» = 1. 

PROOF 

* IIPCAII B (9) = HAO 0 1IIB(H) == IIAOIlB(X) :: II (I 0 PO)A(1 0 PO) IIB(H) :;i IIAIiB(H)' 

For the special choice A == Q 0 PO' Q E B(X), we have 

For the used properties of Hilbert norms of tensor products of Hibert spaces 

see Weidmann [W]. 

LEMMA 2 

Consider the linear mapping r : B(X) + B(O) : Q ~ Q Q I. 

r is the so-called 'amplification map'. See Dixmier [D]. 

(i) r is continuous with respect to the uniform topologies of B(X) and 

B(O) . 

(ii) r is continuous with respect to the ultra-strong (= strongest, [N]) 

topologies of B(X} and B{O) . 

(iii) r is sequentially continuous with respect to the strong topologies 

of B(X) and B(9). 

(iv~ r is sequentially continuous with respect to the weak topologies 

of B(X) and B(O). 
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PROOF: 

(i) Trivial because IIQIIB(X) ::: IIQ ® IIIB(H) 

"" 
(ii) Take a sequence (Fk}:=O c: H such that I II (Q S I)Fkll~ < "". 

k=O 

(iii) 

(iv) 

00 

I II(Q ® I)Fk"~ 
k:::O 

00 

v. with fk 
1.. • 

1. 

E: X. Then 

00 00 

= I L IIQfk II~ 
k=O k=i i 

Let (Q) 1 c:B(X). Suppose Q + 0 stronNly, i.e. for all n n= n ';:I 

0) 

f E: X, UQnfllX + O. Further let F = L fk S vk € H. We must show that 
k=O 

II(Qn @ I)FII
H 

+ O. 

From the Banch-Steinhaus theorem it follows that 

is a bounded sequence. From this and the strong convergence of Q n 

it follows that II (Qn @ I) FII H + O. 
0) 

Let (Q) 1 c: B(X}. Suppose Q + 0 weakly, i.e. for all n n= n 
00 CIO 

f,$ € xl (Q f,$)xl + O. Let F::: I 
n k=O 

We must show that I «Qn ® I)FI~)H) + O. This follows from 

00 

«Qn @ I)FI~)H = k~O (~fk'~k}X 
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OC> 

and the uniform boundedness of the sequence (Qn)n=l' in a way 

similar to (iii). [J 

THEOREM 3 

The mapping P; : E(H) + E(H) : A~ AO ® I is 

(i) continuous with respect to the uniform topology on E(H}, 

(ii) continuous with respect to the ultra-strong topology on E(H), 

(iii) sequentially continuous with respect to the strong topology on E(H), 

and 

(iv) sequentially continuous with respect to the weak topology on B(H) . 

PROOF: 

* We write P as a composition of linear mappings 
c 

p* B(H) + B(H) + B(X) + E(H) 
c 

The desired continuity of the first arrow follows from Naimark [NJ, Ch. vii. 

See also [DJ. The desired continuity of the second arrow follows because 

x + X ® <va> is a unitary bijection. 

Finally, the desired continuity of the third arrow follows from Lemma 2. [J 

Next we want to show that the property of sequential continuity in Theorem 3, 

(iii) and (iv) cannot be replaced by continuity. 

LEMMA 4 

The amplification map r E(X) + E(H) E * E 0 I is neither strongly nor 

weakly continuous. 
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PROOF: 

(i) Consider the set of operators 

"" 
Here F = r fk 0} vk is taken fixed. We have l: Ilfk"; < "" and we 

k~ k~ 

take (fk)~=O ~ X such that the span of the fk is dense in X. Now 

suppose that there exists a finite sequence (~l""'~p) ~ X and 

o > a such that the set 

is contained in SF" By taking Q = ~IT € S~ i~ where rr is the 
. .1'···' P 

projection operator onto the orthocomplement of span <~1"""~~ 

and ~ > a sufficiently large, we get a contradiction. 

(ii) Consider the set of operators 

co co 

where F = r f k @ vk and G = r gk @ vk are taken fixed. We choose 
k=O -1 ~=O 

fk ::: gk::: (k+l) Vk • Now suppose that there exist two finite sequen-

ces (~l""'~p)' (Wl,···,Wp) ~ X and 0 > a such that the set 

R h. h. < = {Q j I (Q4>. , W . ) I < <5, 1 :ii i ;ii p} 
't'1""''t' ,Wl,···,W J. l. 

< P P 

is contained in RFG • 

By taking Q ::: arr E R where ITl is the projection 
1 4>1"" I4>P/Wl/" ,Wp 

operator onto the orthocomplement of span <~1/ ••• ,4>p/W1""'Wp> and 

a > a sufficiently large, we reach a contradiction. o 
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Remarks. The strong topology on B(H) restricted to the amplification of 

B(X) is equal to the ultra-strong topology on B(X). By Dixmier [D], the 

ultra-strong topology on B(X) is strictly finer than the strong topology 

on B(X) iff X is infinite dimensional. Notice also that the ultra-strong 

and the strong topology coincide on bounded sets. 

THEOREM 5 

The reduction-amplification mapping 

* P B(H) -+ B(H) 
c 

(i) is not continuous with respect to the strong topology on B(H}. 

(ii) is not continuous with respect to the weak topology on B(H) . 

PROOF: 

(i) Consider the set LF = {BIB = Q ® I, Q E SF} C B(H) with SF as in 

Lemma 4. Suppose there exists a finite sequence (Ql""'~p) cHand 

* 

(ii) 

o > 0 such that P maps the set 
c 

into L F' We look at operators of the form A = Q ® PO' Q E B(X) . 
00 

Write ~i = ~ ~ik ® vk · Then II (Q ® POH\IIH '" IIQ4>iO ® voliH = 
k=O 

= IIQ4>iOIlX- So if the operators Q are in the set S~10~""~PO' the 

operators A = Q ® Po are in U 
<P 1 ,· .. ,<lip • 

For these special operators we have AO = Q. SO it follows from Lemma 4 

* that P does not map Um ~ , as a whole, into LF• 
c w1" •. ,wp 

Consider the set -FG = {BIB = Q ® I, Q E RFG } c B(H) with RFG 
as in 

Lemma 4. Suppose there exist finite sequences (<P 1"",<lip)' (~l""'~p) c 

* cHand IS > 0 such that P maps the set 
c 
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into EFG . Again we look at operators A of the form A = Q ® PO' Q € B (X) • 

Write '¥i = 

So if the operators Q are in the set R ,lo I 

$10""'~pO,1jJ10""'~10 
then the operator A = Q 0 Po belongs to V 

4>l,···,4>p,\jIl'···''¥p· 

For these special operators we have A = Q ® Po' 

;. 

So it follows from Lemma 4 that P does not map the set 
c 

V as a whole, into ~FG' 
<i> l' .' .. , ~ p' 'Y 1 ' ••. , \jI p' 
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