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I. Introduction

Forging technology is rather old, but it is still playing an important role in the

modern manufacturing industry. In order to effectively use the valuable materials

and energy and to reduce the dependence on experience, the mechanical engineers

have been trying to apply the theory of plasticity into the analysis of forging

processes. Forging processes are usually complicated, it is very difficult to get a

closed form solution. Until now, just a few theoretical solutions( such as by slip

line field theory) are obtained which describe tailored processes with a lot of

simplifications.

The closed form solution to a metal forming process must be statically stress

admissible and kinematic velocity admissible. Generally speaking, 18 simultaneous

partial derivative equations have to be solved. The difficulty in obtaining the exact

solution by solving so many partial derivative equations lead to three important

ways for analysing metal forming problems.

The first is the development of limit analysis method. Disregarding the

statically stress admissibility condition, an upper bound solution can be obtained.

Disregarding the kinematical velocity admissibility condition, a lower bound solution

can be obtained.

The second are the numerical methods (the Finite Difference Method and the

Finite Element Method).

The third are the experimental methods, such as the Moire method, the

photoplasticity method, and the visioplasticity method.

In this report, the author investigated a typical forging process--the
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billet height : 14 mm

billet radius : 25 mm

die inner radius 5 mm

displacement size 4mm

friction factor 1.0 --

Fig. 1. The combined pen extrusion

combined pen-extrusion (Fig. 1). First, the lower bound of forming load is derived,

which can be used to evaluate the upper bound solution; then to continue the work

of Sniekers[1]' improved the algorithm for describing a curved surface with cubic

spline interpolation method and used the new UBET package to get the forming

load.
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II. Lower bound analysis

The limit analysis is based on the calculus of variations to get the limit value

of plastic forming load. This avoids solving the complicated partial differential

equations, it is very simple to be used in the engineering problems.

For the lower bound analysis, a statically admissible stress field U jj " is

assumed, where U jj " has to meet the following conditions:

1. the equilibrium equation has to be satisfied

U·... =oIJ .J

2. satisfy the force boundary condition

Tj : the surface force

nj : the orientation cosine of the surface normal line

3. the yield criterion in plastic deformation region cannot be exceeded

.*' 2K2
Sij Sjj < =

where Sij" : the stress deviator

K : the shear strength

Then the lower bound theorem is expressed as: Among all statically

admissible stress fields, the actual one maximizes the expression:

l=f T.Vdss I I
v

Where I is the computed power supplied by the tool over surfaces over which

velocity is prescribed.
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Supposing the actual material behaves as von Mises's material and the

friction is known and acts according to the constant shear factor expression (the

von Mises friction model).

Tfric=m*K

For a lower bound solution, first a statically admissible stress field has to be

constructed. For pen extrusion, the shear stress Trz is assumed to be distributed as

a linear function in z direction (Fig. 2), in region Rn < R:5 Ro

Rn

2mK
'C =---z

rz h

Z, Ro
:"1-------------"'"

i
i
i
i
i
i

Ri

h/2

------Q1--'-'------ '-------------'-'---'---------- ---_._---- --- ._._. 8
i
j
i
L

Fig. 2. The shear stress distribution

(2.1)

The equilibrium equation for axisymmetric problems in cylindrical coordinate

system are:
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(2.2)

(2.3)

Using the Shield assumption for axisymmetric forming problems ur = U 9'

substitute equation (2.1) into (2.2), (2.3), the following expressions are obtained:

2mK
(Jr=-h-r+J;(z)

The boundary condition is at point r=Ro ' z=O, so ur=O

So in the z =0 plane, f,(z) =-(2mKRo)/h

2mK
(J =-(r-R)rho

Using the yield criterion for axisymmetric problems:

2mK mK 2 2 -2mK 2 2
[-r+J;(z)--Z -f2(r)] +3( z) =3K

h hr h

In the z =0 plane, the f2 (r) can be obtained

Iii 2mKf2(r) =-v3K--h-(Ro-r)

mK 2 {3 2mK( )
(J =-z - 3K--- R -r

Z hr h 0

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Substitute equation (2.9) into (2.7), the ur can be obtained

13~
m2z2 mK 2 13 2mK )

(J = 3K 1- +-z - 3K---(R -r
T h2 hr h 0

(2.10)

The same way, in region Rj<r<Rn, the shear stress is assumed as:

Then the following expressions can be found:

mK 2 13 2mK
(J =--z - 3K+--(2R -R -r)

Z hr h 11.0

13 ~ 1 4m
2
z

2
mK 2 13 2mK( )(J = 3K - --z - 3K+-- 2R -R-7

T h2 hr h II. 0

(2.11 )

(2.12)

(2.13)

By integration the uz, in the region Rj :::;; r < Ro' the lower bound of working

force can be found:

The average pressure can be presented as:

(2.14)
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Here Ro : the outer radius at z

Ro: the initial billet outer radius

Ri: the die inner radius

h : the instantaneous height of the workpiece.

(2.15)

Due to the principle of maximum work,the Rn should be optimized to get the

highest lower bound of load.

(2.16)

For the comparison with Sniekers's result, the constant friction factor m =1

is also used.

By substituting equation (2.16) into equation (2.15), the highest lower

bound solution is obtained. Using the boundary condition m =1 and z =h/2, the

lower bound of average pressure on the tool can be presented as:

(2.17)
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The lower bound analysis is based on the assumption of a statically stress

admissible field, a suitable velocity field which satisfy the velocity boundary

condition and the volume constancy condition cannot be found. So the geometry

of the workpiece for the successive steps cannot be obtained by lower bound

analysis. This is a big weakness of lower bound analysis. For this special statically

stress admissible field, from equation (2.17), the inner radius Ri, the outer radius

Ro (at z =h/2), the instantaneous height h are needed to obtain the lower bound

solution. For the purpose of comparison of lower bound and upper bound analysis,

the upper bound solutions of the workpiece geometry (the outer radius at z =h/2)

are used to get the lower bound solution.

Table 1 gives the highest lower bound solutions of forming load ( for this

statically admissible stress field), these results will be compared with the upper

bound results in the next section.

Table 1 The results of LBA

Ro(z =h/2) h p

stepO 25.0 14 1.533

step1 27.326 10 2.300

step2 32.836 6 5.226
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III. Upper Bound Analysis

It is very difficult to get a closed form solution including the local

parameters( strain, stress, strain rate, temperature etc) analytically for metal

forming processes as is pointed out in the introduction.Sometimes just an

engineering solution of the forming energy (load) is needed, and only a rational and

practical solution by a scientific and simple method is necessary. In the former

section, the lower bound of forming load for combined pen extrusion is obtained.

But in real production processes, an upper bound solution is necessary for choosing

forming machines scientifically. The most important task to be done is to construct

the velocity field as closely to the real deformation field as possible, so that not

only a fairly good upper bound solution for the load can be obtained, but also a

fairly accurate prediction of the workpiece geometry.

In the last two decades, the UBET (abbreviation for Upper Bound Elemental

Technique) has been widely used in the analysis of metal forming processes. Many

scholars contributed to the research of UBET, among them are Kudo[6],

Bramley[7], Kiuchi[8] etc. In the M.Sc thesis of Sniekers, he constructed elements

with admissible velocity fields including internal degrees of freedom and applied

this to combined pen-extrusion process and obtained fairly good results compared

with the original UBET.

In this section, the author improved the algorithm for describing a curved

surface with cubic spline interpolation method and used the new UBET package to

get the forming load.
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111.1 The spline interpolation

In UBET analysis, the curved surface connecting two elements should be

described accurately. There are many ways to describe a curved surface, such as

multinominal interpolation, the linear interpolation in every subinterval, the spline

interpolation. The high-degree multinominal interpolation sometimes exhibits the

large oscillations characteristic. The linear interpolation in every subinterval is not

accurate enough. The spline functions yield smooth interpolating curves in the

whole interval, give very accurate description of the curved surface.

y

o X
Xo X1 X2 Xs X4 Xs

Fig. 3 The spline interpolation

Given (n + 1) ordinal numerical points on XOY plane (xo,Yo), (Xl'Yl),

(Xn,Yn), and Xo< Xl < ...... < x n ' a function s(x) can be constructed(Fig.2}, s(x) meets

the conditions as follows:

1. s(xi) =Yi' (i =0,1 ,2, ...... n);

2. in every subinterval [Xj 'Xi + 1], s(x) is the multinominal

with 3 degree free of x;

3. s(x) is twice continuously differential on [XO,Xn].
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s(x) is called the cubic spline function or the cubic interpolation

multinominal.

The spline function can be constructed by the first derivatives at the nodal

points mit the following expressions is obtained

(3.1 )

here

h.=x.-x· 11 1 1-

The equation (3.1) is the cubic spline function expression of the first

derivative mit it is a (n-1) system of linear equations with (n + 1) unknowns (mOt m,t

To solve equation (3.1), two additional boundary conditions is needed.

Usually the boundary values of mo, mn, is not known, so the author suggests a

fairly good way should be to use the "three points Lagrange interpolation" to get

the first derivatives at the boundary.
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Si(X)=[~(Xi+1-X)2_~(Xi+1-x)31Yi
hi

2 h?

+[ h~2 (x-xl- h~3 (X-Xi)3lYi+1
r r

+hi[~(Xi+1-X)2__1_(Xi+1-X)3]mi
h.2 h.3

I r

-hi[~(X-Xi)2__1_(Xi+1-X)3]mi+1
h? hi

3

(3.2)

With mo, mn , the system of linear equation (3.1) can be solved by Gaussian

elimination algorithm to get mj' Then the spline functions Sj(x) can be expressed by

equation (3.2).

The cubic spline interpolation algorithm is written into UNIT INTERPOL.

111.2 On the outer-radius calculation

In calculating the new geometry for the new step--the outer-radius, when

the friction factor is high enough and the deformation is also large enough, there

will be the foldover phenomenon, that is the side surface material of the workpiece

folding over to contact with the upper die( Fig. 4). The solid line repersents the

Nth step and the dashed line represents the (N + 1)th step. The free surface of cd

in Nth step foldover to the upper die in the (N + 1)th step. For the example--pen

extrusion, the friction factor is chosen as m = 1 and the deformation is fairly large,
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the foldover phenomenon must be happen. This phenomenon must be handled

properly in order to get the correct new geometry.

c'- -/, - - --
C:' \

\

\ b'
..-i

b ..- \
I

O'j ~ a' R'
---+---------------------- -~---..

i / R________1_____________________________________________ :~

01 a
!

Solid line: Nth step

Dashed line: (N + 1) step

Fig. 4 The foldover phenomenon

The outer-radius is solved in Unit Solv_out.pas, a condition statement is

added in the PROCEDURE integrate velocity time for calculating the outer radius.- -

That is

int1: = billet_geometry.heightO/2-0.5*proces_data.velocity

*(proces_counter-1 + (k + 1) *timeJevel);

THEN new_point.z = int

ELSE new point.z = loop point +axi velo*proces data.delta time- - - - -

By this way, the outer radius is calculated from the suggested velocity field,

which can be used to compare with the experimental results and also for the

calculation of the lower bound solution.
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111.3 The upper bound results

Using the velocity field for pen extrusion suggested by Sniekers and UNIT

Interpol, the following upper bound results(Fig.2) is obtained. The "difference"

represent 2*(UBET-LBA)/(UBET +LBA)*%, they show the quality of the statically

admissible stress field and the kinematically admissible velocity field for pen

extrusion.

Table 2. The power consumption

LBA UBET DIFFERENCE(%)

step 0 1.533 1.564 2.00

step 1 2.300 2.430 5.50

step 2 5.226 5.460 4.38

From table 2, it can be seen that the difference between the LBA results and

the UBET results is fairly small. This shows that both the LBA results and the UBET

results are fairly good approximation to the real solution, so both the statically

admissible stress field and the kinematically admissible velocity field are fairly good

to model the pen extrusion process. Combining the lower bound analysis and the

upper bound analysis makes it very easy to check the quality of the limit analysis,

this avoids to do some experiments to verify the results. If we just try to verify the

quality of the limit analysis by doing experiments, we must be very carefully to

choose the parameters to coincide with the parameters in the limit analysis, this

is very difficult and is not necessary. So the combination of LBA and UBA is a very
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good way to verify the quality of limit analysis. Of course, it is necessary to

combine the LBA and UBA closely with the experimental observation to construct

the best kinematically admissible velocity field.

For the total power consumption, the friction power on element I counts a

large part. For example, in the first step, total power is 5.8923E + 03, the friction

power(mainly the friction power on element I) is 1.2347E +03. So inspired by the

lower bound analysis, the author thinks that the following kinematically admissible

velocity field (element I) may give more accurate results. This velocity field based

on the fact that when the constant friction factor m is zero, the material will

deform uniformly; when m = 1 (sticking friction), the radical velocity ofthe material

at the die/workpiece interface will be zero.

For a given friction factor m, the boundary condition can be expressed as:

So ur' Uz can be chosen easily to satisfy the above boundary conditions.

Further work should be done to see the quality of the new velocity field.
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VI. Discussion

The limit analysis is a useful way to analysis metal forming processes. But

there are still some problems in the limit analysis, especially in the analysis of non­

steady state processes.

The combined pen extrusion is a typical non-steady state process. This kind

of metal forming process must be discrete into several steps. For both lower bound

and upper bound analysis, the information of the last step is needed. For lower

bound analysis, just a statically admissible stress field is assumed, the velocity field

cannot be obtained, so it is impossible to continue the lower bound analysis for

next step. This is a serious weakness of the lower bound analysis. For upper bound

analysis, a kinematically admissible velocity field is assumed, it is possible to

integrate the velocity field to calculate the geometry for the next step. But for the

non-steady state large deformation processes, especially when there is a

unconstrained surface, the UBA results are sometimes unreliable. This is because,

when carrying out the calculation procedure incrementally, the accumulation of

possible errors in the predicted deformation increments may lead to considerable

deviations of the predicted current workpiece shape and tool/workpiece contact

area from reality. So it is necessary to construct the velocity field as closely to the

real velocity field as possible (especially for non-steady state processes), and

simultaneously to carry out lower bound analysis. Only when the LBA results and

the UBA results have little differences, the geometry predicted by upper bound

analysis can be considered to be reliable.

So the main task is to construct the high quality velocity field which can

model the real metal forming processes very well.
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V. Conclusion

The pen extrusion process are investigated with the lower bound analysis

and UBET. The results show that both the lower bound solution and the UBET

solution are of high quality. It is a easy and very useful way to combine the lower

bound analysis and the upper bound analysis to verify the accuracy of the limit

analysis results. A new velocity field is suggested.

There are some weaknesses in lower bound analysis and upper bound

analysis. The lower bound analysis cannot predict the geometry for the analysis of

the next step, it can just analyze a special step, so it is difficult to use it for non­

steady state process. The upper bound analysis has some unreliability for analysing

large deformation with unconstrained surfaces by incremental calculation. It is the

most important task to construct a kinematically admissible velocity field which

can model the real forming processes.

The UBET is an effective way for analysing the forming processes. The UBET

should be developed to contain the characteristics of treating material work

hardening, the curved tool boundary, the temperature change, pressure distribution

over tool surfaces and the material failure. It is also possible to combine the UBET

analysis with the metallurgy to predict the microstructure( the grain size). So a lot

of work should be done to perfect the UBET analysis.
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{*********************************************************}

{*

{*

{*

{*

{*

{*

{*

{*

{*

{*
{*

{*

{*

{*

{*
{*

{*

{*

UNIT

Purpose

Version

Date

Language

System

Programmer

Information

Telephone

:INTERPOL

:find corresponding values in an array by means of

cubic spline interpolation.

:1.00

:27 Mar. 1991

:Turbopascal 5.5 (Borland)

:Cirp-AT with EGA graphics and math coprocessor

:Wang Shunlong

:Eindhoven University of Technology

Department of Mechanical Engineering

Group Production technologie and -Automation

Laboratory of Forging Technology

:040-474158 Wang Shunlong

:040-816969 Wang Shunrong

*}

*}

*}

*}

*}

*}

*}

*}

*}

*}

*}

*}
*}

*}

*}

*}

*}

*}
{*********************************************************}

UNIT interpol;

INTERFACE

USES

BULGVAR;

TYPE

rreal_array_type = array [O ..discretel of real;

VAR

cc: rreal_array_type;

FUNCTION spline(xx: point_array_type;r: real; k: integer;



21

cc:rreal array type):real;- -

FUNCTION get z at r(xx: point array type; r :REAL): REAL;- - - --

PROCEDURE find_cross( VAR point: point_type);

IMPLEMENTATION

{**********************************************************}

FUNCTION spline(xx: point_array_type;r:real;k: integer; cc:rreaLarray_type):real;

{* * * This function constructs the cubic spline interpolation function *}

{* * * with the first order derivative for a group of points *}

VAR

i,n,j: INTEGER;

t1 ,k1 ,k2,s1 ,52: REAL;

hh,ss,bb,dd: ARRAY[O..discrete] OF REAL;

int1,int2,int3: REAL;

int4,int5,int6: REAL;

int7,mm,mmO : REAL;

BEGIN

n: = discrete;

mmO: =0;

FOR j: = 1 TO discrete DO

BEGIN

mm: = abs(xx[j] .r-xx[j-1]. r);

IF mm>mmO THEN mmO: =mm;

END;

IF mmO< =0.01 THEN spline: = xx[O].z



ELSE BEGIN

FOR i: =0 TO n DO

cc(j}: = 0;

FOR i: =1 TO n DO

hh[i]: = xx[i].r-xx[i-1 ].r;

FOR i: = 1 TO n-1 DO

BEGIN

ss(j}: = hh[i]/(hh[i] + hh[i + 1]);

bb[i]: = 1-ss[i];

cc[i]: = 3 *ss[i] * (xx[i + 1] .z-xx[i].z)/hh[i + 1];

cc(j}: = ce[i] + 3 * bb[i] * (xx[i] .z-xx[i-1 ] .z)/hh[i];

END;

k1: = xx[2].r-xx[0].r;

s1 : = -((hh[1] + k1) *xx[0].z)/(hh[1] *k1) + (k1 *xx[1 ].z)/(hh[1] *hh[2]);

s1: = s1-(hh[1]*xx[2].z)/(k1 *hh[2]);

k2: = xx[n].r-xx[n-2].r;

s2: = hh[n] *xx[n-2].z/(k2 *hh[n-1 ])-k2 *xx[n-1 ].z/(hh[n-1] *hh[n]);

s2: = 52 + (hh[n] + k2) *xx[n].z/(k2 *hh[n]);

ss[O]: = 0;

ss[n]: = 0;

ce[O]: = 2*s1;

cc[n]: = 2*52;

bb[n]: = 0;

bb[O]: = 0;

FOR i: =0 TO n DO

dd[i]: =2;

55[0]: = ss[Ol/dd[O];

cc[O]: = cc[O]/dd [0];

FOR i: =1 TO n DO

BEGIN

t1 : = dd[i]-5S[i-1] *bb[i];

22



ss[i]: = ss[i]/t1;

ee[i]: = (ce[i]-ec[i-1]) *bb[illt1;

END;

FOR i: = n-1 DOWNTO 0 DO

ec[i]: = ce[i]-ss[i] *cc[i + 1];

BEGIN

int1: =xx[k].r-r;

int2: = r-xx[k-1 ].r;

hh[k]: = xx[k].r-xx[k-1 ].r;

int3: = sqr(int1 )/sqr(hh[k]);

int4: = int1 *sqr(int1 )/(hh[k] *sqr(hh[k]));

int5: = sqr(int2)/sqr(hh[k]);

int6: = int2 *sqr(int2)/(hh[k] *sqr{hh[k]);

int7: = (3 *int3-2 *int4) *xx[k-1 ].z;

int7: = int7 + (3 *int5-2 *int6) *xx[k] .z;

int7: = int7 + (int3-int4)*hh[k]*ce[k-1];

int7:'= int7 - (int5-int6) *hh[k] *cc[k];

spline: = int7;

writeln('spline = ' ,int7);

END;

END;

END;

{*********************************************************}

FUNCTION get z at r (xx: point array type; r: REAL): real;- - - --

VAR

i: INTEGER;

23



BEGIN

IF xx[discrete].r > = xx[O].r THEN BEGIN

i: = 0;

IF r > = xx[discrete].r THEN get_z_at_r : = xx[discrete].z

ELSE IF r < xx[O].r THEN get_z_at_r : = xx[O].z

ELSE BEGIN

REPEAT

INC(i);

UNTIL ((xx[i].r > = r) and (xx[i-1].r < = r));

writeln('j = ',i);

get_z_at_r : = spline(xx, r,i,cc);

END;

END;

IF xx[discrete].r < xx[O].r THEN BEGIN

i: = 0;

IF r < = xx[discrete].r then get_z_at_r : = xx[discrete].z

ELSE IF r > xx[O].r THEN get_z_at_r : = xx[O].z

ELSE BEGIN

REPEAT

INC(i);

UNTIL ((xx[i].r < = r) and (xx[i-1].r > = r));

writeln('i = ',i);

get_z_at_r : = spline(xx, r,i,cc);

END;

END;

END;
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{*********************************************************}

FUNCTION get r at z(xx: point array type; z: REAL): REAL;-- - --

VAR



j: II\JTEGER;

contem: REAL;

BEGIN

FOR j: = 0 TO discrete DO

BEGIN

contem: = xx[j] .z;

xx[j].z: = xx[j].r;

xx[j].r: = contem;

END;

get_r_at_z: =get_z_at_r(xx,z);

FOR j: =0 TO discrete DO

BEGIN

contem: = xx[j] .z;

xx[j].z: = xx[j].r;

xx[j].r: = contem;

END;

END;
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{*********************************************************}

PROCEDURE find cross{ VAR point: point type );- -

VAR

int1, int2 : REAL;

a1, a2, b1, b2 : REAL;

: INTEGER;

BEGIN

i: = -1;

{* determinination of the closest available points of the two arrarys to *}

{* the cross points of the curves *}

REPEAT

INC(i);
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*}
*}

UNTIL (saved_discontinuity_23[i].z > = discontinuity_23[i].z);

IF i = 0 THEN BEGIN

point.r : = die_geometry.inner_radius;

point.z : = mom_height;

END

ELSE BEGIN

{* calculation cross point of two intersecting lines

{* straight line: y = a*x + b

int1 : = discontinuity_23[i].z - discontinuity_23[i-1].z;

int2 : = discontinuity_23[i].r - discontinuity_23[i-1 ].r;

a1 : = int1/int2;

b1 : = discontinuity_23[i].z - a1 *discontinuity_23[i].r;

int1 : = saved_discontinuity_23[i].z - saved_discontinuity_23[i-1 ].z;

int2 : = saved_discontinuity_23[i].r - saved_discontinuity_23[i-1].r;

a2 : = int1/int2;

b2 : = saved_discontinuity_23[i].z - a2*saved_discontinuity_23[i].r;

point.r : = (b2-b1 )/(a1-a2);

point.z : = get_z_at_r(discontinuity_23,point.r);

END;

END;

{*********************************************************}

END. {of unit}
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{*********************************************************}

PROCEDURE integrate_velocity_time2 ( radial_velocity: velocity_function;

axial_velocity : velocity_function;

time : REAL;

old_point : point_type;

VAR new_point: point_type;

VAR proces counter: integer );

{* * * This procedure integrates the velocities, with respect to time, so as *}

{* * * a result, the displacements are calculated. The foldover phenomenon *}
{* * * is treated. *}

VAR

intermed iate1

intermediate2

old time

axi velo

rad velo

: REAL;

: REAL;

: REAL;

: REAL;

: REAL;

loop_point : point_type;

point_est : ARRAY [ O..discrete ] OF point_type;

level

time level

iint,iint1,etha

j,k

: INTEGER;

: REAL;

: REAL;

: INTEGER;

old time

axi velo

BEGIN

etha : = 0.01;

: = 0;

: = time - proces_data.delta_time;

: = axial velocity (old point,old time);- - -
rad_velo : = radial_velocity ( old_point,old_time);

iint: =billet_geometry.heightO/2-0.5 *proces_data.velocity *proces_counter;



loop_point, old time +

loop_point, old time +
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IF old_point.z + axLvelo * proces_data.delta_time> iint THEN

new_point.z: = iint ELSE

new_point.z: = old_point.z +axi_velo*proces_data.delta_time;

new_point.r : = old_point.r + rad_velo * proces_data.delta_time;

point_est[j] : = new_point;

level : = 1;

time level : = proces_data.delta_time;

REPEAT

INC(j);

level : = level * 2;

time_level : = timeJevel/2;

loop_point : = old_point;

FOR k : = 0 TO (Ievel-1) DO BEGIN

axi velo : = axial_velocity

k *time_level);

rad velo : = radial_velocity

k *timeJevel);

iint1 : = O.5*billet geometry.heightO -

O.5*proces_data.velocity

*(proces_counter-1 + (k + 1) *time_level);

IF loop_point.z + axi_velo * time_level>iint1 THEN

loop_point.z: = iint1 ELSE

loop_point,z : = loop_point.z + axi_velo * timeJevel;

loop_point.r : = loop_point.r + rad_velo * timeJevel;

END;

point_est[j] : = loop_point;

IF point_est[j].r = 0 THEN intermediate1: = 0

ELSE intermediate1: = point_est[j-1 ].r/point_est[j] .r;

IF point_est[j].z = 0 THEN intermediate2 : = 1

ELSE intermediate2: = point_est[j-1 ].z/point_est[j] .z;

UNTIL ((ABS(1-intermediate1)) < = etha) and ((ABS(1-intermediate2)) < =
etha);

new_point: = point_est[j];

END;

{**********************************************************}
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PROCEDURE calculate_radius(proces_counter:integer);

VAR
r1 : TEXT;

: INTEGER;

new_point: point_type;

old_point: point_type;

BEGIN

assign(r1 ,path + 'rad' +file_count_string +' .dat');

rewrite(r1 );

FOR i : = 0 TO discrete DO BEGIN

old_point: = radius_history[i];

integrate_velocity_time2 ( radial_velocity_I,

axial_velocityJ,
mom_time,

old_point,

new_point,proces_counter);

radius_history[i] : = new_point;

writeln(r1, radius_history[i].r);

writeln(r1, radius_history[i].z);

END;

close(r1 );

END;

{**********************************************************}

hjhjhjhjhjhjhjhjh (3.3)


