
 

A time-indexed formulation for single-machine scheduling
problems : characterization of facets
Citation for published version (APA):
Akker, van den, J. M., van Hoesel, C. P. M., & Savelsbergh, M. W. P. (1997). A time-indexed formulation for
single-machine scheduling problems : characterization of facets. (Onderzoekmemorandum; Vol. 97002).
Universiteit Maastricht.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/fd166044-6e55-4eee-b5c9-3721f1643b24


~. 

A Time-Indexed Formulation for Single
Machine Scheduling Problems: 
Characterization of Facets 

J. van den Akker, C. van Hoesel, M. Savelsbergh 

RM/97/002 
http://www.rulimburg.nl/-documentlFdEWB.htm 

JEL code: 

METE~R 
~ 

Maastricht research school of Economics 
of TEchnology and ORganizations 

Universiteit Maastricht 
Faculty of Economics and Business Administration 
P.O. Box 616 
NL - 6200 MD Maastricht 

phone : ++31 433883830 
fax: ++31 43 325 8544 



A Time-Indexed Formulation for 
Single-Machine Scheduling Problems: 

Characterization of Facets 

J .M. van den Akker 
Department of Mathematics and Computing Science, 

Eindhoven University of Technology, 
P. D.Box 513, 5600 MB Eindhoven, The Netherlands 

C.P.M. van Hoesel 
Department of Mathematics, 

University of Limburg, 
P.D.Box 616, 6200 MD Maastricht, The Netherlands 

M.W.P. Savelsbergh 
School of Industrial and Systems Engineering, 

Georgia Institute of Technology, 
Atlanta, GA 30332-0205, USA 

Abstract 
We report new results for a time-indexed formulation of nonpreemptive single-machine 

scheduling problems. We give complete characterizations of all facet inducing inequalities 
with integral coefficients and right-hand side 1 or 2 for the convex hull of the monotone 
extension of the set of feasible schedules. FUrthermore, we identify conditions under which 
these facet inducing inequalities with right-hand side 1 or 2 are also facet defining for the 
convex hull of the set of feasible schedules. Our results may lead to improved cutting 
plane algorithms for single-machine scheduling problems. 

Key words: scbeduling, polyhedral methods, facet inducing inequalities. 

1 Introd uction 

Recently developed polyhedral methods have yielded substantial progress in solving many 
important NP-hard combinatorial optimization problems. Some well-known examples are 
the traveling salesman problem [Padberg and Rinaldi 1991], and large-scale 0-1 integer pro
gramming problems [Crowder, Johnson and Padberg 1983]. We refer to Hoffman and Padberg 
[1985] and Nemhauser and Wolsey [1988] for general descriptions of the approach. 

For machine scheduling problems, however, polyhedral methods have not been nearly so 
successful and relatively few papers have been written in this area. The investigation and 
development of polyhedral methods for machine scheduling problems is important because 
traditional combinatorial algorithms do not perform well on difficult problem types in this 
class. 

Balas [1985] pioneered the study of scheduling polyhedra with his work on the facial 
structure of the job shop scheduling problem. Queyranne [1993] completely characterized 
the polyhedron associated with the simple nonpreemptive single-machine scheduling prob
lem. Queyranne and Wang [1991] generalized Queyranne's results to include precedence 
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constraints. Wolsey [1989] compared different formulations for the problem with precedence 
constraints. Dyer and Wolsey [1990] examined several formulations for the single-machine 
scheduling problem with release dates, and Nemhauser and Savelsbergh [1992] developed a 
cutting plane algorithm for this problem. Sousa and Wolsey [1992] investigated a time-indexed 
formulation for several variants of the nonpreemptive single-machine scheduling problem. 
Crama and Spieksma [1993] studied the same formulation for problems in which the jobs 
have equal processing times. Lasserre and Queyranne [1992] presented a mixed integer pro- A 
gramming formulation motivated by a control theoretic view of scheduling decisions. ~ 

In this paper, we report new results for the time-indexed formulation of nonpreemptive 
single-machine scheduling problems studied by Sousa and Wolsey [1992]. They introduced 
three classes of inequalities. The first class consists of inequalities with right-hand side 1, and 
the second and third class of inequalities with right-hand side k E {2, ... ,n}. In their cutting 
plane algorithm, they used an exact separation method only for inequalities with right-hand 
side 1 and for inequalities with right-hand side 2 in the second class. They used a simple 
heuristic to identify violated inequalities in the third class. 

Their computational experiments revealed that the bounds obtained are strong compared 
to bounds obtained from other mixed integer programming formulations. 

These promising computational results stimulated us to study the inequalities with right
hand side 1 or 2 more thoroughly. We extended the convex hull of the set of feasible solutions 
by applying monotonization. We derived complete characterizations of all facet inducing 
inequalities with integral coefficients and right-hand side 1 or 2 for the extended polytope. 
We also established conditions under which the identified inequalities are also facet inducing 
for the original polytope. It appears that only some of the classes of ineqUalities used in the 
computational experiments by Sousa and Wolsey were facet inducing. Our results may hence 
lead to improved cutting plane algorithms for single-machine scheduling problems. 

For reasons of brevity, in the description of the characterizations some conditions and 
proofs are omitted; for a complete description see Van den Akker, VanHoesel and Savelsbergh 
[1993]. The development and implementation of a branch-and-cut algorithm based on the 
identified classes of facet inducing inequalities will be discussed in a sequel paper. Some 
preliminary computational results are given in this paper. 

2 Problem formulation 

The usual setting for nonpreemptive single-machine scheduling problems is as follows. A set 
J of n jobs has to be scheduled on a single machine. Each job j E J requires uninterrupted 
processing for a period of length Pj, where Pj is some positive integer. The machine can 
handle no more than one job at a time. 

The time-indexed formulation studied by Sousa and Wolsey [1992] is based on time
discretization, i.e.,' time is divided into periods, where period t starts at time t - 1 and 
ends at time t. The planning horizon is denoted by T, which means that all jobs have to be 
completed by time T. The formulation is as follows: 

n T-pj+l 

. minimize L L CjtXjt 

j=l t=l 
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subject to 

T-pj+1 

L Xjt = 1 (j = 1, ... ,n)' 
t=l 

n t 

L L Xjs S 1 (t 1, ... , T), 
j=l s=t-pj+l 

Xjt E {O, I} (j 1, ... , n; t = 1, ... , T - Pj + 1), 

where Xjt = 1 if job j is started in period t and ° otherwise. This formulation can be used to 
model several single-machine scheduling problems by an appropriate choice of the objective 
coefficients and possibly a restriction of the set of variables. For instance, if the objective is 
to minimize the weighted sum of the start times, we take coefficients Cjt = Wj(t 1), where 
Wj denotes the weight of job j; if there are release dates rj, i.e., job j becomes available at 
time rj, then we discard the variables Xjt for t = 1, ... , rj. In the sequel, we denote the set 
of feasible schedules by S. 

Many of the single-machine scheduling problems that can be modeled by the time-indexed 
formulation given above are NP-hard, and therefore the integer program given by this formu
lation is NP-hard. Crama and Spieksma [1993] prove that even when we take Pj 2 for all 
j and Cjt E {O, I} the problem is NP-hard. It is well-known that the problem of minimizing 
the weighted sum of the start times subject to release dates on the jobs, for which we will 
develop a cutting plane algorithm, is also NP-hard. 

In the above formulation, the convex hull Ps of S, the set of feasible schedules, is not full
dimensional. As it is often easier to study full-dimensional polyhedra, we study the convex 
hull Ps. of S*, where S* is the monotone extension of S. A set V ~ {O, l}n is called monotone 
if for all x, y we have that x S y and y E V implies that x E V. The monotone extension W* 
of a set W ~ {O,I}n is defined as W* = {x E {O, l}nlx S y for some yEW}. A description 
of S*, the monotone extension of the set of feasible schedules S, can be obtained by relaxing 
the equations (2) into inequalities with sense less-than-or-equal, i.e., the set S* is described 
by: 

T-pj+l 

L XjtS I (j=I, ... ,n), (1) 
t=l 

n t 

L L Xjs S 1 (t = 1, .. " T), (2) 
j=l s=t-Pj+l 

Xjt E {O, I} (j = 1, ... , n; t = 1"., T - Pj + 1) 

Observe that the set S* is the set of all feasible partial schedules, i.e., the set of feasible 
schedules in which is not all jobs have to be started. In the sequel, when we speak about a 
schedule, we mean a schedule that can be partial, Le" it does not have to contain all jobs. 
When the schedule has to contain all jobs we call it a complete schedule. It is not hard to 
show that Ps* is full-dimensional. In the sequel, we consider the polytope Ps* unless we state 
otherwise. 
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Note that the collection of facet inducing inequalities for the polytope Ps. associated 
with the set of partial schedules includes the collection of facet inducing inequalities for the 
polytope Ps associated with the set of complete schedules. 

Montone 0-1 polytopes, i.e., polytopes that are the convex hull of a monotone subset of 
{O, l}n, have been studied by Hammer, Johnson, and Peled [1985]. They proved the following 
lemma. 

Lemma 1 Let P be a monotone polytope. A facet inducing inequality ax ~ b for P with 
integral coefficients aj and integral right-hand side b has either b > 0 and coefficients aj in 
{O, 1, ... ,b} or is a positive scalar multiple of -Xj ~ 0 for some j. 

Corollary 1 A facet inducing inequality ax ~ b for Ps* with integral coefficients ajs and 
integral right-hand side b has either b > 0 and coefficients ajs in {O, 1, ... ,b} or is a positive 
scalar multiple of -x js ~ 0 for some (j, s) with 1 ~ s ~ T - Pj + 1. 

Observe that the above corollary implies that the inequalities Xjs ~ 0 are the only facet 
inducing inequalities with right-hand side O. 

Before we present our analysis of the structure of facet inducing inequalities with right
hand side 1 or 2, we introduce some notation and definitions. 

The index-set of variables with nonzero coefficients in an inequality is denoted by V. The 
set of variables with nonzero coefficients in an inequality associated with job j defines a set 
of time periods Vi = {s I (j, s) E V}. If job j is started in period s E Vi, then we say that job 
j is started in V. With each set Vi we associate two values 

lj = min{sls - Pj + 1 E Vi} 
and 

Uj = max{sls E Vi}. 
For convenience, let lj = 00 and Uj = -00 if Vi = 0. Note that if Vi =1= 0, then lj is 
the first period in which job j can be finished if it is started in V, and that Uj is the last 
period in which job j can be started in V. Furthermore, let 1 = min{ljlj E {I, ... , n}} and 
u max { Uj!j E {I, "', n}}. 

We define an interval [tt, t2] as the set of periods {t1 + 1, tl + 2, ... ,t2}, i.e., the set of 
periods between time t1 and time t2. If t1 ~ t2, then [t1' t2J = 0. 

For presentational convenience, we use x(S) to denote L(j,s)ES Xjs' As a consequence of 
the Lemma 1, valid inequalities with right-hand side 1 will be denoted by x(V) ~ 1 and valid 
inequalities with right-hand side 2 will be denoted by x(Vl)+2x(V2) $ 2, where V = V 1 UV2 
and VI n V 2 = 0. Furthermore, we define Vj2 = {s ! (j, s) E V2}. 

In the sequel, we shall often represent inequalities by diagrams. A diagram contains a 
line for each job. The blocks on the line associated with job j indicate the time periods s 
for which Xjs occurs in the inequality. For example, an inequality of the form (2) can be 
represented by the following diagram: 
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t t 
1 

t 
2 

t Pn' t 
n I I 

3 Facet inducing inequalities with right-hand side 1 

The purpose of this section is twofold. First, we present new results that extend and com
plement the work of .Sousa and Wolsey [1992J. Second, we familiarize the reader with our 
approach in deriving complete characterizations of classes of facet inducing inequalities. 

Establishing complete characterizations of facet inducing inequalities proceeds in two 
phases. First, we derive necessary conditions in the form of various structural properties. 
Second, we show that these nece~sary conditions on the structure of facet inducing inequali
ties are also sufficient. Finally, we give conditions on the horizon T under which the presented 
sufficient conditions are also sufficient for an inequality to be facet inducing for the original 
polytope Ps. 

A valid inequality x(V) S 1 is called maximal if there does not exist a valid inequality 
x(W) S 1 with V ¥ W. The following lemma gives a general necessary condition and is 
frequently used in the proofs of structural properties. 

Lemma 2 A facet inducing inequality x(V) S 1 is maximal. 0 

Property 1 If x(V) S 1 is facet inducing, then the sets Vj areintervaZs, i.e., Vj = [ij-pj, Uj]. 

Proof. Let j E {l, ... , n} and <!ssume Vj =1= 0. By definition lj - Pj + 1 is the smallest s 
such that s E Vj and Uj is the largest such value. Consider any s with lj - Pj + 1 < S < Uj 

and let job j be started in period s, i.e., Xjs = l. 
Suppose (i, t) E V is such that Xit = Xjs = 1 defines a feasible schedule. If t < s, i.e., job 

i is started before job j, then the schedule that we obtain by postponing the start of job j 
until period Uj is also feasible. This schedule does not satisfy x(V) S 1, which contradicts 
the validity of the inequality. Hence no job can be started in V before job j. Similarly, we 
obtain a contradiction if t > s, which implies that no job can be started in V after job j. 

We conclude that choosing Xjs = 1 prohibits any job from starting in V. Because of the 
maximality of x(V) S 1, we must have (j, s) E V. 0 

Property 2 Let x(V) S 1 be facet inducing. 
(a) Assume 1 = II S I2 = min{ljlj E {2, ... , n}}. Then VI = [I- Pl,l2J and Vj = [Ij - Pj, IJ for 
alij E {2, ... ,n}. 
(b) Assume U = Ul 2:: U2 = max{ujlj E {2, ... ,n}}. Then VI = [U2-PI,U] and Vj = [u-Pj,Uj] 
for all j E {2, ... ,n}. 
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Proof. (a) Let x(V) :::; 1 be facet inducing with I = II :::; 12 = min{lj I j E {2, ... , n}}. 
Observe that Property 1 implies that VI is an interval and that by definition its lower bound 
equals I - Pl. We now show that the upper bound is equal to 12. Since X2.l2-P2+1 = 1 and 
XIs = 1 defines a feasible schedule for any s > l2' we have that only one of these variables 
can occur in x{V) :::; 1; as by definition (2, l2 - P2 + 1) E V, it follows that the upper bound 
of VI is at most l2. Now, let XIs = 1 for some s E [l- Pl,h]. Reasoning as in the proof of 
Property 1 we can show that since I - Pl + 1 E VI it follows that no job can be started in V 
after job 1. As s :::; l2 = min {I j Ii E {2, ... , n}}, it is impossible to start any job in V before 
job 1. From the maximality of x(V) :::; 1 we conclude that Vi = [l-Pl,h]. Similar arguments 
can be applied to show that lrj = [lj - Pj, l] for all j E {2, ... , n}. 

The proof of (b) is similar to that of (a). 0 

Observe that by Property 2(a) a facet inducing inequality x(V) :::; 1 with I = II necessarily 
has Ul = u. Consequently, Property 2(a) and 2(b) can be combined to give the following 
theorem. 

Theorem 1 A facet inducing inequality x(V) :::; 1 has the following structure: 

VI = [l 
lrj=[u (j E {2, ... ,n}), 

where l = II :::; UI = U. 0 

(3) 

This theorem says that a facet inducing inequality with right-hand side 1 can be represented 
by the following diagram: 

1 

j E {2, ... ,n} 

Note that if I = u, the inequalities with structure (3) coincide with the inequalities (2); if 
lrj = 0 for all j E {2, ... , n}, l = PI, and U = T - PI + 1, then the inequalities with structure 
(3) coincide with the inequalities (1). 

Example 1 Let n = 3, PI = 3, P2 = 4 and P3 = 5. The inequality with structure (3), 
l = h = 6 and U = UI = 7 is given by the following diagram: 

1 

2 

3 

2 3 456 7 

~ ~I 

I~ 
51. 

Note that the fractional solution XI4 = XI7 = X33 = ~ violates this inequality. 
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The following theorem shows that the given necessary conditions are also sufficient. The proof 
of this theorem uses the concept of a counterexample. If x(V) :5 1 is facet inducing, then 
since x(V) :5 1 is maximal, for any (j, s) ~ V there must be a feasible schedule such that 
Xjs 1 and x(V) = 1. Such a schedule is called a counterexample for (j, s). 

Theorem 2 A valid inequality x(V) :5 1 with structure (3) that is maximal is facet inducing 
for ps •. 0 

Proof. Let x(V) :5 1 be a valid inequality with structure (3) that is maximal, and let 
F {x E Ps*lx{V) = 1}. We show that dim(F) = dim(Ps.) 1 by exhibiting dim(Ps.)-1 
linearly independent directions in F, where a direction is a vector d = x - y with x, y E F. 
For notational convenience, a direction will be specified by its nonzero components. We give 
two sets of directions: unit vectors djs = 1 for all (j, s) ~ V, and a set of IVI - 1 linearly 
independent directions dj}sl = 1, djz s2 = -1 with (iI, 81), (h, S2) E V. Together these give 
dim(Ps') - 1 linearly independent directions. 

If (j, s) tf. V, then since x(V) :5 1 is maximal there exists a counterexample for (j, s), say, 
defined by Xjs = Xi'sl = 1. Clearly, this schedule is an element of F and, furthermore, the 
schedule Yj's' = 1 also is an element of F. We find that d = x Y yields the direction djs 1. 

We determine the set of IVI - 1 directions dj1s1 = 1, diz 82 = -1 with (jt, sd, (h, 82) E V 
in such a way that the undirected graph G whose vertices are the elements of V whose edges 
are given by the pairs {(11, 81), (j2, S2)} corresponding to the determined directions form a 
spanning tree. It is easy to see that this implies that the determined directions are linearly 
independent. Note that any unit vector Xjs = 1 with (j, s) E V is an element of F. Now we 
easily obtain the following directions. We have directions dIs = 1, dl,s+! = -1 for s, 8+ 1 E VI, 

Le., s = 1 - PI + 1, ... , u 1. In the same way, we have directions djs = 1, dj,s+! -1 for 
j E {2, ... ,n}, s,s + 1 E Vj, i.e., s = u - Pi + 1, ... ,l-1. Finally, we have directions 
dll-P1+1 = l,dj,u-pj+! = for j E {2, ... , n} with Vj ::j: 0. It is easy to see that these direc
tions determine a spanning tree, and we hence have determined IVI - 1 linearly independent 
directions: 0 

The class of inequalities with structure (3) was already identified by Sousa and Wolsey 
[1992J. They have shown that if the planning horizon T is large enough these inequalities are 
also facet inducing for Ps*. Let Pmax = max{pjlj E {I, ... , n}}. 

Theorem 3 If T ~ Ej=l Pj + 3pmax, then a valid inequality x(V) ~ 1 with structure (3) that 
is maximal is facet inducing for Ps. 0 

It is not hard to show that a valid inequality x(V) ~ 1 with structure (3) is maximal if and 
only if either Vj i- 0 for some j E {2, ... , n}, or x(V) :5 1 coincides with one of the inequalities 
(1), i.e., 1 = PI and u T PI + 1. Hence inequalities (1) and (2) are facet inducing for Ps*. 

Note that an inequality with structure (3) is determined by one job, which w.l.o.g. is 
called job 1 and two time periods I and u. Since the maximality condition stating that 
Vj =1= f/J for some j E {2, ... , n} implies that u - Pmax ~ I, it follows that the number of 
facet inducing inequalities with structure (3) that does not coincide with an inequality (1) is 
bounded by nTpmax, and hence the total number of facet inducing inequalities with structure 
(3) is bounded by nTPmax + n, and hence is polynomial in the size of the formulation. 
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4 Facet inducing inequalities with right-hand side 2 

In the previous section, we have derived a complete characterization of all facet inducing 
inequalities with right-hand side 1. We now derive a similar characterization of all facet in
ducing inequalities with right-hand side 2. 

First, we study the structure of valid inequalities with right-hand side 2 and coefficients 0, 
1, and 2. Consider a valid inequality x(Vl) + 2x(V2) ::;; 2. Clearly, at most two jobs can be 
started in V. Let j E {I, ... , n} and S E V;. It is easy to see that, if job j is started in period 
s, at least one of the following three statements is true. 

(i) It is impossible to start any job in V before job j, and at most one job can be 
started in V after job j. 

(ii) There exists a job i with i =f:. j such that job i can be started in V before as well as 
after job j and any job / with / =f:. j, i cannot be started in V. 

(iii) At most one job can be started in V before job j, and it is impossible to start any 
job in V after job j. 

Therefore, we can write V = LUMUU, where L ~ V is the set of variables for which statement 
(i) holds, M ~ V is the set of variables for which statement (ii) holds, and U ~ V is the set 
of variables for which statement (iii) holds. Analogously, we can write V; = Lj U Mj U Uj. 
Note that each of the sets L j , Mjl and Uj may be empty. 

If job j is started in a period in Vi j then it is impossible to start any job in V before or 
after job j. It follows that Vi ~ Lj n Uj for all j and hence V2 ~ L n U. It is not hard to 
see that if Lj =f:. 0 and Uj =f:. 0, then the minimum of Lj is less than or equal to the minimum 
of Uj, and the maximum of Lj is less than or equal to the maximum of Uj . By definition 
Lj n Mj = (/) and Mj n Uj = 0. The set Mj consists of periods between the maximum of Lj 
and the minimum of Uj and hence Mj must be empty if Lj n Uj =f:. 0. By definition of the 
sets Land U, x(L) ::;; 1 and x(U) :S. 1 are valid inequalities. 

We conclude that a valid inequality x(Vl) + 2x(V2) ::;; 2 can be represented by a collection 
of sets Lj, Mjl and Uj. To derive necessary conditions on the structure of facet inducing 
inequalities with right-hand side 2, we study this LMU-structure more closely. 

A valid inequality x(Vl) + 2x(V2) ::;; 2 is called nondecomposable if it cannot be written as the 
sum of two valid inequalities x(W) ::;; 1 and x(W') ::;; 1. A valid inequality X(Vl) + 2x(V2) ::;; 2 
is called maximal if there does not exist a valid inequality x(Wl) + 2X(W2) :S. 2 with V ~ W, 
V 2 ~ W 2 , where at least one of the subsets is a proper subset The following lemma yields a 
general necessary condition and will be frequently used to prove structural properties. 

Lemma 3 A facet inducing inequality x(Vl) + 2x(V2) :S. 2 is non decomposable and maximal. 
o 

The remaining part of the analysis of the LMU-structure proceeds in two phases. In the 
first phase, we derive conditions on the structure of the sets Land U by considering them 
separately from the other sets. The structural properties thus derived reveal that we have to 
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distinguish three situations when we consider the overall LMU-structure, based on how the 
sets Land U can be joined. In the second phase, we investigate each of these three situations 
and derive conditions on the structure of the set M. 

Property 3 If x(V!) + 2X(V2) ::; 2 is facet inducing, then the sets Lj, Mj, and Uj are 
intervals. 

Proof. Let j E {I, ... , n} and assume Lj 'I- 0. By definition Ij -Pj + 1 is the smallest s such 
that s E Lj. Let SI denote the largest such value. Consider any s with lj - Pj + 1 < s < SI 

and let job j be started in period s, i.e., Xjs = 1. 
Reasoning as in the proof of Property 1, we can show that from SI E Lj it follows that 

no job can be started in V before job j. Suppose (il, td, (i2' t2) E V with s < tl and s < t2 
are such that Xjs = Xiltl = Xi2t2 = 1 defines a feasible schedule. Then the schedule obtained 
by starting job j in period Ij - Pj + 1 instead of in period s is also feasible, which contradicts 
lj - Pj + 1 E Lj. Hence at most one job can be started in V after job j. 

We conclude that if Xjs = 1, then no job can be started in V before job j and at most 
one job can be started in V after job j. This means that if we choose Xjs = 1, then 
x(V!) + 2x(V2) ::; 1. Because of the maximality of x(VI) + 2x(V2) ::; 2, we must have 
(j, s) E V. Consequently, s E Lj and we have that Lj is an interval. Analogously, the sets 
Mj and Uj are intervals. 0 

Consider a facet inducing inequality x(Vi) + 2x(V2) ::; 2. We have seen that V2 ~ L n U. 
Observe that if job j is started in Lj n Uj , then it is impossible to start any job in V before 
or after job j. Since x(Vl) + 2x(V2) ::; 2 is maximal, this implies Vj2 = Lj n Uj for all j, Le., 
V2 = LnU. . 

Property 4 Let x(VI) + 2x(V2) ::; 2 be facet inducing. 
(a) Assume 1 = h ::; l2 ::; min{lj I j E {3, ... ,n}}. Then Ll = [I - PI, 12] and Lj = [lj - Pj, I] 
for all j E {2, ... ,n}. Furthermore, there exists a j E {2, ... ,n} such that L j 'I- 0. 
(b) Assume u = Ul ~ U2 ~ max{uj I j E {3, ... ,n}}. Then UI = [U2 - p!,u] and Uj = 
[u - Pj, Uj] for all j E {2, ... ,n}. Furthermore, there exists a j E {2, ... ,n} such that Uj 'I- 0. 

Proof. (a) Let xCVi) + 2x(V2) ::; 2 be facet inducing with I = h ::; 12 ::; min{lj I j E 
{3, ... , n} }. Note that by definition I - PI + 1 E VI' Since the earliest possible completion 
time of a job started in V is 1, we must have I - PI + 1 ELI. Reasoning as in the proof of 
Property 2, we find that Ll is an interval with lower bound equal to I - Pl and with upper 
bound at most equal to l2. Now, let XIs = 1 for some s E [1 - PI, 12]. As in the proof of 
Property 3, we can show that from 1 - PI + 1 E Ll , it follows that at most one job can 
be started in V after job 1. Since s ::; 12 , it is impossible to start any job in V before job 
1. Because of the maximality of x(V!) + 2x(V2) ::; 2, we conclude that SELl and hence 
Ll [I - PI, l2]' Similar arguments can be applied to show that Lj = [lj - Pj, l] for all 
jE{2, ... ,n}. 

Now suppose Lj = 0 for all j E {2, ... ,n}. We show that in this case x(VI) + 2x(V2) ::; 2 
can be written as the sum of two valid inequalities with right-hand side I, which contradicts 
the fact that x(VI)+2x(V2) ::; 2 is facet inducing. Define W = {(l,s) Is E LlnUI}U{{j,S) I 
j E {2, ... , n}, s E Vj} and W' = {(I, s) Is E Vi}. We first show that '2:/J=2 2.sEYj Xjs ::; 1 
is a valid inequality. For all j E {2, ... ,n} we have, since by assumption L j = 0, Ij - Pj ~ I, 
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Le., s > 1 for all s E Vj. Consequently, if Xj}Sl = XjzS2 = 1 defines a feasible schedule such 
that Ej=2 ESEVj Xjs 2, then XI,I-Pi+1 = Xj}Si = XjzS2 = 1 also defines a feasible schedule, 
which contradicts the validity of x(VI) + 2x(V2) :::; 2. Hence Ej=2 ESEVj Xjs :::; 1 is a valid 
inequality and it easily follows that x(W) :::; 1 is also valid. Clearly, x(W') :::; 1 is a valid 
inequality and x(W) + x(W') = x(Vl) + 2x(V2). We conclude that x(VI) + 2x(V2) :::; 2 is 
not facet inducing. Hence Lj ::f 0 for some i E {2, ... , n}. 

The proof of (b) is similar to that of (a). 0 

As the proof of theorem (2), many of the proofs of the properties and theorems presented in 
this section use the concept of a counterexample. If x(VI) + 2x{V2) :::; 2 is facet inducing, 
then, since x(VI) + 2x(V2) :::; 2 is maximal, for any (i, s) f/:. V there must exist a feasible 
schedule such that Xjs = 1 and x(VI )+2x(V2) = 2. Such a schedule is called a counterexample 
for (j, s). 

Property 5 Let x(vl) + 2x(V2) :::; 2 be facet inducing. 
(a) Assume 1 h:::; 12 :::; 1*, where [* = min{lj liE {3, ... , n}}. Then for all i E {3, ... , n} 
such that Lj ::f 0 we have Ij = 1* and for all i E {3, ... , n} such that Lj = (/) we have 
1* - Pj ~ 1, i.e., Lj = [1* pj,l] for all i E {3, ... ,n}. 
(b) Assume U Ul ~ U2 ~ u*, where u* = max{uj I j E {3, ... , n}}. Then for all i E 
{3, ... , n} such that Uj ::f (/) we have Uj = u* and for all j E {3, ... ,n} such that Uj = (/) we 
have u*:::; U Pj, i.e., Uj = [u-Pj,u*] for allj E {3, ... ,n}. 

Proof. (a) Let x(Vl) + 2x(V2) :5 2 be facet inducing with I 11:::; l2 :::; l*. By definition of 
l* and Property 4, Lj ~ [l* - Pj, l] for all i E {3, ... , n}. We assume w.Lo.g. 1* = 13. Suppose 
that Lj ::f [l* - Pj, I] for some j E {4, ... , n}, say L4 ::f (1* P4, l]. Clearly, if 1* - P4 ~ 1, then 
L4 (/) and hence L4 = [1* - P4, I]. Consequently 1* - P4 < I and 14 > 1*, i.e., l* - P4 + 1 f/:. V4. 
Since x(Vl) + 2x(V2') :::; 2 is maximal, there is a counterexample for (4,1* - P4 + 1). Let 
X4,1'-P4+1 Xjlsl = XjzS2 = 1 define such a counterexample. Since 1* - P4 + 1 :::; 1, the jobs 
jl and h are started after job 4. Clearly one of the jobs 1,2 and 3 does not occur in {h,j2}' 
Suppose job 3 does not occur. It is now easy to see that X3,l'-pa+1 = Xjl s 1 = Xj2 s2 = 1 is a 
feasible schedule, which contradicts the validity of x(Vl) + 2x(V2) :::; 2. If job 1 or job 2 does 
not occur in {it, h} we obtain a contradiction in the same way. 

The proof of (b) is similar to that of (a). 0 

Properties 4 and 5 say that if x(Vl) + 2x(V2) :::; 2 is facet inducing and we assume 1 = 11 :5 
l2 :::; 1*, then the set L can be represented by the following diagram: 

1- PI 12 
1 I I 

h-P2 I 

2 I I 

jE{3, ... ,n} 1*01 

Similarly, if we assume U = Ul ~ U2 ~ u*, then the set U can be represented by the following 
diagram: 
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u 

1 

U P2 

2 

j E {3, ... , n} 
U-Pi 

I 
U* 

Observe that a facet inducing inequality with right-hand side 2 has at most three types of 
intervals Lj, each characterized by the definition of the first period of the interval, and at 
most three types of intervals Uj, each characterized by the definition of the last period of the 
interval. Stated slightly differently, with the exception of two jobs the intervals Lj have the 
same structure for all jobs. Similarly, the intervals Uj have the same structure for all but two 
jobs. It turns out that, when we study the overall LMU-structure, it suffices to consider three 
situations, based on the jobs with the deviant intervals Lj and Uj: 

(la) I = h < l2 ~ 1* and U = Ul > U2 2:: u*, where 1* = mill{lj I j E {3, ... ,n}} and 
u* = max{uj I j E {3, ... ,n}}; 

(lb) 1 = lr < 12 ~ l*, U = U1 > u3 2:: u*, and lj > l2 or Uj < U3 for all j E {2, ... ,n}, 
where 1* = min{lj I j E {3, ... ,n}} and u* max{uj I j E {2, 4, ... , n}}j 

(2) l = it and U = U2. 

Before we investigate each of the three situations, we prove a property that applies to case 1. 

Property 6 If x(Vl) + 2x(V2) ~ 2 is facet inducing with 1 = h < l2 = min{lj I j E 
{2, ... , n}} and U = Ul > Ui = max{uj I j E {2, ... ,n}}, then 12 < Ui· 

Proof. Suppose that 12 2:: Ui. We show that x(Vl )+2x(V2) ~ 2 can be written as the sum of 
two valid inequalities with right-hand side 1, which contradicts the fact that x(V1 )+2x(V2) ~ 
2 is facet inducing. Let W = {(I, s) I s E L1 nUl} U {(i, s) liE {2, ... , n}, S E Yj} and 
WI = {(l,s) Is E VI} U {(j,s) liE {2, ... ,n}, S E LjnUj}. Clearlyx(W)+x(WI) = 
x(VI) + 2x(V2) and x(W') ~ 1 is a valid inequality. From Yj ~ [Ij - Pj, Uj] ~ [12 - Pj, Ui] for 
all j E {2, ... , n} and 12 2:: Ui, it easily follows that 'Ej'=2 'EsEYj Xjs ~ 1 is a valid inequality 
and hence x(W) ~ 1 is also valid. 0 

4.1 Case CIa) 

Observe that the conditions on 1j and Uj and Properties 4 and 5 completely determine the 
sets Land U. Therefore, all that remains to be investigated is the structure of the set M. 

Property 7 If X(Vl) + 2x(V2) ~ 2 is facet inducing with l = II < 12 ~ 1* and U = Ul > 
U2 2:: u*, then Ml = [u* - PI, l*] n [12, u2 - pil, M2 = [u* - Pz, 1*] n [l, U - P2] n [iz - P2, U2] and 
Mj = [U2 - Pj,l2] n [l,u pj] for j E {3, ... ,n}. 
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Proof. Let X(Vl) + 2x(V2) ~ 2 be facet inducing with 1 = 11 < 12 ~ [* and u = UI > U2 ~ 
u*. We derive the structure of the set M from that of Land U. 

If job 1 is started in M1, then, since l2 ~ 1* and U2 ~ u*, it is possible to start job 2 
in V before as well as after job 1, which implies that Ml ~ [l2, U2 - PI]. Furthermore, it is 
impossible to start any job j E {3, ... , n} in V and hence Ml ~ [u* -Ph l*]. We conclude that 
Ml ~ [u* - Ph 1*] n [12, U2 - PI]' If job 1 is started in period S E [u* - PI, 1*] n [12, U2 - PI], then, 
since s E [12, u2 -pd, [12,U2 -PI] c [I-pI, u], and L2nU2 = [u-P2,l], job 2 cannot be started 
in L2nU2. Since x(Vl) +2x(V2) ~ 2 is maximal, it follows that Ml = [u* -PI, l*]n[l2' U2 -PI]' 

By definition M2 ~ [12 - P2, U2]' If job 2 is started in M2, then, since I = It and U = Ub 
it should be possible to start job 1 in V before as well as after job 2, which implies that 
M2 ~ [I, U - P2]. Furthermore, it is impossible to start any job j E {3, ... , n} in V and hence 
M2 ~ [u* - P2, 1*]. We conclude that M2 ~ [u* P2,1*] n [l, u - P2] n [12 - P2, U2]. If job 2 
is started in period s E [u* p2,1*] n [I, u - P2] n [12 - P2, U2], then, since s E [12 - P2, U2] 
and Ll nUl = [U2 Pl,12], job 1 cannot be started in Ll nUl. Since X{Vl} + 2x(V2) ~ 2 is 
maximal, it follows that M2 = [u* - P2, 1*] n [1, u - P2] n [12 P2, U2]. 

Let j E {3, ... ,n}. If job j is started in Mj, then it is possible to start job I in V before 
as well as after job j, which implies that Mj ~ [l,u Pj]. Furthermore, it is impossible to 
start any job j' E {2, 3, ... ,n} \ {j} in V and hence Mj ~ [U2 - Pj, l2]' We conclude that 
Mj ~ [U2 -Pj, l2] n [I, U-pj]. If job j is started in period S E [U2 -Pj! 12]n[l, U-Pj], then, since 
s E [U2 - Pj, [2], Ll n U1 [U2 PI, 12j, and, by Property 6, 12 < U2, job 1 cannot be started in 
Ll n U1. Since x(Vl) + 2x(V2) ~ 2 is maximal, it follows that Mj [U2 - Pj, 12] n [1, U - Pj]. 

Observe that by definition Mk ~ [lk - Pk, Uk] for all k E {I, ... , n} and that for all but 
k = 2 this condition is dominated by other conditions. 0 

Properties 4, 5 and 7 completely determine the LMU-structure of a facet inducing inequality 
x(V1) + 2x(V2) ~ 2 with I h < 12 ~ l* and U = U1 > U2 ~ u*. However, in order to 
emphasize the inherent structure of the intervals Mj, we prefer to use a different representation 
of the set M. It is easy to show that, if x(V1) + 2x(V2) ~ 2 is facet inducing with 1 = h < 
12 ~ 1* and U = Ul > U2 ~ u*, then for all j E {3, ... ,n} we have [U2 - pj,l] ~ Lj and 
[u - pj,l21 ~ Uj. We can use this observation to show that Properties 4, 5 and 7 can be 
combined to give the following theorem. 

Theorem 4 A facet inducing inequality X(Vl) + 2x(V2) ~ 2 with [ = It < l2 :5 l* and 
u = Ul > U2 ~ u* has the following LMU-structure: 

L1 = [1- Pt,l2], Ml = [u* - Pb1*] \ (Ll U Ud, 
L2 = [l2 - P2, 1], #2 = [max { u*, h} - P2, min{l*, U2}] \ (L2 U U2), 
Lj = [l* - Pj, ll, Mj = [U2 - Pj, 12] \ (Lj U Uj), 

U1 = [U2 - PI, u], ' 
U2 = [u - P2, U2l, 
Uj=[U-Pj,u*] (jE{3, ... ,n}), 

where [U2 pj,l] ~ Lj and [u pj,l2] ~ Uj for allj E {3, ... ,n}. 0 

(4) 

This theorem says that a facet inducing inequality X(Vl) + 2x(V2) ~ 2 with 1 II < l2 ~ l* 
and U = Ul > U2 ~ u* can be represented by the following diagram: 
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1- PI u* - PI 1* u 
1 

1 

r----' 
1 

I I L ____ .J 

12 - P2 1 max { u*, 12} - P2 min{l*, U2} u - P2 U2 

L...-I _---'I ~ ~ ~ ~ ~ ~ ~ J I,........=.~--,I ::; 2. 2 

j E {3, ... , n} 
1* - P . 1 U2 - Pj 

D r-, 
I I 

L - t2 
u- Pi 

1 

u* 

L M U 

Example 2 Let n = 4, PI = 3, P2 = 5, P3 = 6, and P4 = 9. The inequality with LMU
structure (4) and 1 = h = 7, 12 = 9, 1* = 12, u* = 14, U2 = 16 and u = Ul = 19 is given by 
the following diagram: 

1 

2 

3 

4 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 I I 2 

I 

L 

I~ 
r-, 
I I 
L_.J 

L M 

r-, 
I I 
I I 1'--'-' 

~~--~-~ 

U 

1 
2 ::; 2. 

Note that the fractional solution X15 = Xl,19 = X2,10 = X2,16 = X4,4~ violates this inequality. 
It is easy to check that this solution satisfies all inequalities with structure (3). 

The following theorem shows that the given necessary conditions are also suffucient. 

Theorem 5 A valid inequality x(Vl) + 2x(V2) ~ 2 with 1 = 11 < lz ~ [* and u = Ul > U2 ~ 
u* and LMU-structure (4) that is nondecomposable and maximal is facet inducing for Ps*. 

Proof. Let x(Vl) + 2x(V2) ~ 2 be a valid inequality with 1 = h < 12 ~ [* and u = 
Ul > U2 2:: u* and LMU-stucture (4) that is nondecomposable and maximal, and let F = 
{x E Ps*lx(Vl ) + 2x(V2) = 2}. As in the proof of Theorem 2 we show that dim(F) = 
dim(Ps*) - 1 by exhibiting dim(Ps*) - 1 linearly independent directions in F. We give three 
sets of directions: unit vectors djs = 1 for all (j,s) ~ V, djs = l,d1,I-Pl+1 = d2u2 = -1 for all 
(j,s) E V 2, and a set of 1V1-1V21-1Iinearly independent directions djrsl = l,dh,s2 =.,..1 
with (jl, SI), (j2, S2) E V\ V 2. Together these give dim(Ps* )-1 linearly independent directions 
in F. 

If (j,s) ~ V, then, since x(Vl) + 2x(V2) ~ 2 is maximal, there is a counterexample for 
(j, s), say, defined by Xjs = Xi!sl = Xh S 2 = 1. Clearly this schedule is an element of F. Note 
that the schedule Yjlsl = Yh S 2 = 1 also is an element of F and hence d = x - Y yields the 
direction djs = 1. 

Note that for (j, s) E V 2 the schedule defined by Xjs = 1 is an element of F. Since [ < [2 

and, by Property 6, 12 < U2, we have that Yl,I-PI+1 = Y2U2 = 1 defines a feasible schedule. 
This schedule also is an element of F and hence djs = 1, dl ,l-PI +1 = d2u2 = -1 is a direction 
in F for all (j,s) E V 2. 

We determine the 1V1-1V21-1 directions djisl = l,dh s2 = -1 with (jl,st},(h,S2) E 
V \ V 2 in such a way that the undirected graph G whose vertices are the elements of V \ V2 
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and whose edges are given by the pairs {(jl,sd, (h,S2)) corresponding to the determined 
directions is a spanning tree. This implies that the determined directions are linearly inde
pendent. 

Observe that dilsl = 1,dj2sz = -1 with (jl,sd,(h,S2) E V\ V 2 is a direction in F if 
there exists an index (i, t) E V \ V 2 such that XjlSl = Xu = 1 and Yh S2 = Yit = 1 both define 
feasible schedules. In this case, we say that djlSl = 1,dhs2 = -1 is a direction by (i,t). 

First, we determine directions that correspond to edges in G within the sets {(j, s) I s E 
(L j U Mj) \ Uj} and {(j,8) 18 E Uj \ Lj}. For 8 -1,8 ELI \ Ul , dl,s-cl = -l,dls = 1 is a 
direction by (2, U2). If Ml i= 0, then d1b = -1, dIm = 1 is a direction by (2, U2), where m 
is the minimum of M}, and for 8 - 1,8 E MI, d1,s-1 = -1,d1s = 1 is a direction by (2,U2). 
FUrthermore, for 8 1,8 E U1 \ L 1 , d1,s-1 = -1,dIs = 1 is a direction by (2,12 - P2 + 1). 
Now, let j E {2, ... ,n}. For s 1,8 E Lj \ Uj, dj,s-l = -1,djs = 1 is a direction by (l,u). 
If Mj i= 0, then djl -1,djm 1 is a direction by (l,u), where m is the minimum of 
Mj, and for 8 - 1,8 E Mj, dj,s-l = -1, djs = 1 is a direction by (1, u). Furthermore, for 
8 - 1,8 E Uj \ Lj, dj,s-1 1, djs = 1 is a direction by (1, I - PI + 1). 

Second, we determine directions that correspond to edges in G between sets {(j, 8) I 8 E 
(Lj U M j ) \ Uj } belonging to different jobs and between sets {(j, 8) I 8 E Uj \ Lj} belonging to 
different jobs. We define W {(1,8) 18 E L l nUIJU{(j, 8) I j E {2, ... ,n}, S E Vj} and W' = 
{{1,8) I 8 E Vj}u{(j, 8) I j E {2, ... , n}, 8 E LjnUj}. Clearly x(W)+X(W') = x(Vl )+2x(V2) 
and x(W') ::; 1 is a valid inequality. Since x(Vl) + 2x(V2) ::; 2 is nondecomposable, there must 
be a feasible schedule such that x(W) = 2, i.e., Ej=2 ESE\-} Xjs = 2. Let Xjllil Xh S2 = 1 
with 81 < 82 define such a schedule. It is easy to see that we may assume SI = lil - Pil + 1 
and 82 = ujz. Since 1 = it, Vl,l-PI +l Yjzuh = 1 also defines a feasible schedule and it follows 
that dI,I-PI+l = -1, dJI,liI-Ph +l 1 is a direction by (h, 82). In the same way, since u Ul, 
VJ'l I· -p' +1 = Ylu = 1 defines a feasible schedule and it follows that dIu = -1, dJ·2u · 1 , 11 11 32 

is a direction by (ii, 81). For j E {2, ... , n} \ {jt} such that L j U Mj i= 0, djl,ljl-Ph +l 

-1, dj,lj_pj+l = 1 is a direction by (1, u). Furthermore, for j E {2,,,., n} \ {h} such that 
Uj i= 0, dhuh = -1,djuj = 1 is a direction by (l,l- PI + 1). 

Finally, we determine a direction that corresponds to an edge in G between L U M and 
U. Since x(Vl) + 2x(V2) ::; 2 is nondecomposable and x(U) ::; 1 is a valid inequality, there 
exists a feasible schedule with x(L) + x(M) = 2. Let Xjlsl = XjzS2 = 1 define such a schedule. 
Since it = l, we may assume w.l.o.g. iI = L Since 82 E L12 U M12 , V12 S 2 = Viu = 1 also is a 
feasible schedule. It follows that disl dIu 1 is a direction by (h, S2). 

It is easy to see that the determined directions form a spanning tree of G and we hence 
,have determined IVI -1V21 - 1 linearly independent directions.O 

The following theorem shows that the sufficient conditions given by the previous theorem 
are also sufficient for the original polytope if the planning horizon T is large enough. 

Theorem 6 If T 2: Ej=lPj + 5pmax, then a valid inequality X(Vl) + 2x(V2) ::; 2 with 
1 = II < l2 ::; l* and U = Ul > U2 2: U* and LMU-structure (4) that is nondecomposable and 
maximal is facet inducing for Ps. 

Proof. The proof is an extension of the proof of the previous theorem. Let F = {x E 

Pslx(V1
) + 2x(V2) = 2}. Sousa and Wolsey [1992] showed that if T 2: Ej=l Pj + Pmax, then 

dim(Ps) = Ej=l(T - Pj + 1) - n, i.e., dim(Ps} dim(Ps.) - n. We show that dim(F) = 
dim(Ps) - 1 by exhibiting dim(Ps*) n 1 linearly independent directions in F. i.e., the 
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number of directions that we determine is n smaller than the number of directions in the 
previous proof. 

Again, we give three sets of directions. The first set consists of directions djs = 1, djsCi) = 
with (j, s) rf: V, s t= s(j), where for each j we have that s(j) is choosen such that 

(j, s(j)) rf: V. The first set corresponds to the first set in the previous proof; it however 
contains one fewer direction for each job and hence n fewer directions. The second and 
third set coincide with the second and third set in the previous proof in the sense that the 
directions have the same value for the entries corresponding to variables in the inequality. 
Since the directions in the first set have zero entries for all variables in the inequality, linear 
independence of the directions follows in the same way as in the previous proof. 

Let j E {I, ... , n}. It is not hard to see that the horizon T is so large that there exists a 
time period s(j) such that for any feasible schedule Xjlsl = Xh S2 = 1 with x(Vl) + 2x(V2) = 2 
and j rf: {h,h} the schedule = Xh S2 = XjsCi) = 1 is also feasible. In most cases s(j) 
can be set equal to 1 or T Pj + 1. Now, let s t= s(j) be such that (j, s) rf: V. Since 
x(Vl) + 2x(V2) ::; 2 is maximal, there is a counterexample for (j, s), say defined by Xjs = 
XjlSl = Xj2s2 = 1. We show that, since T ~ ~j=lPj +5Pmax, this schedule can be extended to 
a complete schedule in which the machine is idle in the periods s(j), s(j) + 1, ... ,s(j) +Pj-l. 
It is not hard to see that if a schedule that contains just one job, is extended to a complete 
schedule by scheduling the other jobs as early as possible, then the resulting schedule has at 
most Pmax periods of idle time between the jobs. Similarly, a schedule with k jobs can be 
extended to a complete schedule with at most kPmax periods of idle time between the jobs. 
In this case, we have to extend a schedule with three jobs and a given interval of idle time. 
As the length of this interval is at most Pmax, it can be viewed as a virtual job. It now follows 
that we can extend the schedule to a complete schedule with at most 5pmax periods of idle 
time between the jobs, where 4pmax is caused by three jobs plus one virtual job, and an extra 
Pmax is caused by the fact that the virtual job consists of idle time. We conclude that, since 
T ~ ~j=l Pj + 5pmax, there is a complete schedule x* with xjs = xjlsl = xj2s2 = 1 in which 
the machine is idle in the periods s(j), s(j) + 1, ... , s(j) + Pj - 1. Clearly, the schedule y* 
obtained from x* by starting job j in period s(j) instead of period s is also feasible. Now, 
x* y* yields the direction djs = 1, djsCi) = -1. 

The directions in the second and the third set are determined like in the previous proof. 
For the construction of the directions we start with the same schedules as in the previous 
proof. Using similar arguments as in the above paragraph, it follows that the lower bound on 
the horizon T ensures that each of these schedules can be extended to a complete schedule. 
As we obtain our directions by taking the differences of these complete schedules, these di
rections may contain some nonzero entries corresponding to variables outside the inequality. 0 

Let x(Vl) + 2x(V2) ::; 2 be a valid inequality with I 11 < 12 ::; 1* and U = Ul > U2 ~ u* and 
LMU-structure (4). We can show that x(Vl) + 2x(V2) ::; 2 is nondecomposable if and only 
if M j t= (/1 for some j E {I, ... , n}, and [* < U2 or 12 < u*. Observe that a;(Vl) + 2x(V2) ::; 2 
is maximal if and only if none of the intervals Lj, Mj, and Uj can be extended. It is not 
hard to show that the intervals Mj with j E {I, 3, ... ,n} cannot be extended. Necessary 
and sufficient conditions for x(Vl) + 2x(V2) :5 2 to be maximal can hence be derived by 
determining conditions under which the other intervals cannot be extended. For reasons of 
brevity, these conditions are omitted. 

An inequality with structure (4) is determined by two jobs that w.l.o.g. are called job 1 and 
2 and six time periods l, l2, l* 1 u*, U2 and u. Recall that if the inequality is nondecomposable, 
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then we have l* < U2 or l2 < u*. It is easy to see that l* < U2 implies that U2 =f:. 0 and Lj =f:. 0 
for some j E {3, ... , n}, which implies that U2 > u - Pmax and l* < l + Pmax. Analogously, 
l2 < u * implies that lz < 1+ Pmax and u * > u - Pmax. Since we also have lz ~ l* and U2 ;::: u*, it 
is not hard to see that the number of facet inducing inequalities with structure (4) is bounded 
by 2n2T3p~ax' and is hence polynomial in the size of the formulation. 

4.2 Case (lb) 

As in case (la), the conditions on lj and Uj and Properties 4 and 5 completely determine 
the sets Land U. From these properties we can easily derive that if l2 = l* and U3 = u*, 
then Li =f:. 0 and Ui =f:. 0 for i such that Pi = max{pj I j E {2, ... , n}}. But then Ii = 12 and 
Ui = U3 and we are in case (la). We conclude that h < 1* or U3 > u*. All that remains to be 
investigated is the structure of the set M. 

Property 8 If x(Vl) + 2X(V2) ~ 2 is facet inducing with I = II < l2 ~ 1*, U = Ul > U3 ;::: u*, 
and Ij > l2 or Uj < U3 for all j E {2, ... ,n}, then Ml = 0, M2 = [U3 - P2,1*] n [l,u - P2] n 
[12 - P2, u*], M3 = [u* - P3, lz] n [l, u - P3] n [l* - P3, U3], and Mj = [U3 - Ph l2] n [I, u - Pj] for 
j E {4, ... , n}. 0 

The proof of this property is analogous to the proof of Property 7. Properties 4, 5, and 
8 determine the LMU-structure of a facet inducing inequality X(Vl) + 2x(V2) ~ 2 with 
l II < l2 ::; l*, u = Ul > U3 ~ u*, and lj > lz or Uj < U3 for all j E {2,.",n}. As 
in case (la), we prefer to use a different representation of the set M, in order to emphasize 
the inherent structure of the intervals M j . It turns out that a facet inducing inequality 
x(Vl) + 2x(V2) ~ 2 with I = h < lz ~ l*, U Ul > Ua ;::: u*, and lj < l2 or Uj < Ua for all 
j E {2, ... , n} has the following property, which restricts the class of inequalities determined 
by Properties 4, 5, and 8 and leads to a simpler form of the intervals Mj. 

Property 9 If x(Vl) + 2x(V2) ~ 2 is facet inducing with I = h < lz ~ l*, U = UI > Ua ;::: u*, 
and lj > 12 or Uj < Ua for all j E {2, ... ,n}, then 1* ~ u*. 

Proof. Let x(Vl) + 2x(V2) ::; 2 be facet inducing with I = II < l2 ~ 1*, U = Ul > Ua 2:: u*, 
and lj > 12 or Uj < U3 for all j E {2, ... ,n}. To be able to prove that 1* ::; u*, we first 
show that [ua - p2,min{l*,u3}] ~ V2 and [max{u*,l2} - pa,l2] ~ Vs. It is easy to see that if 
job 2 is started in [U3 - P2, min {[* , U3}] then, it is impossible to start any job j E {3, ... , n} 
in V and job 1 cannot be started in Ll nUl' Since X(Vl) + 2x(V2) ::; 2 is maximal, it 
follows that [ua - P2,min{l*,u3}] ~ V2. Analogously, [max{u*,l2} - P3,l2] ~ Va. Since, by 
assumption, lj > lz or Uj < U3 for all j E {2, _ .. , n}, we have la > l2 and U2 < Ua. From 
[U3 P2, min{l*, U3}] ~ V2 and U2 < U3, we conclude that l* < U3. Analogously, U* > l2-
From l* < Ua and U* > h, it follows that l* < U* if l2 = l* or Ua = u*. We still have to show 
that l* ~ u* if l2 < l* and U3 > u*. 

Suppose lz < l* and U3 > u*. We show that [u Pj, 1*] ~ Uj for all j E {2, 4, _ .. ,n}. Let 
j E {2, 4, .. _, n} and let job j be started in [u - Pj, l*]. Clearly, any job i E {3, ... , n} \ {j} 
cannot be started before job j. If job 2 is started before job j, then, since M2 ~ [ua-pj, l*] and 
l* < U3, job 2 is not started in M2 and job 2 is hence started in L2. It is now easy to see that at 
most one job can be started in V before job j. Since L1 nUl = [ua -PI, h] and 12 < l* < U3, job 
1 cannot be started in L1 nUl' Because of the maximality of x(Vl) + 2x(V2) ~ 2, we conclude 
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that [u - Pi!' l*] ~ Uj. Observe that from l2 < u* and Property 8 follows that Uj i= 0 for some 
j E {2, 4, ... ,n} or M2 f= 0. If Uj f= 0 for some j E {2,4, ... ,n}, then, since [u - pj,l*] ~ Uj, 
l* ::; u*. If M2 i= 0, then since, by Property 8, M2 = [U3 - P2, l*] n [l, u - P2] n [l2 - P2, u*], we 
must have U3 -P2 < l*. It is easy to see that if job 2 is started in [U3-P2, l*]n[l, U-P2], then job 
1 is the only job that can be started before as well as after job 2 and job 1 cannot be started 
in Ll n U1 . Since x(Vl) + 2x(V2) ::; 2 is maximal, this implies M2 = [U3 - P2, l*] n [l, u - P2] 
and we conclude that l* ::; u*. 0 

It is not hard to see that Properties 4, 5, 8, and 9 can be combined to give the following 
theorem. 

Theorem 7 A facet inducing inequality x(Vl) + 2x(V2) ::; 2 with 1 = II < l2 ::; l*, u = Ul > 
U3 2: u*, and lj > l2 or Uj < U3 for all j E {2, ... ,n} has the following LMU-structure: 

Ll = [l - PI, l2], Ml = 0, U1 = [U3 - PI, u], 
L2 = [l2 - P2, l], M2 = [U3 - P2, l*] \ (L2 U U2), U2 = [u - P2, u*], 
L3 = [l* - P3, l], M3 = [u* - P3, l2] \ (L3 U U3), U3 = [u - P3, U3], 
Lj=[l*-pj,l], Mj=[U3-Pj,l2]\(Lj UUj), Uj=[u-Pj,u*] (jE{4, ... ,n}), 

where l* ::; u*. 0 

This theorem says that a facet inducing inequality x(Vl) + 2x(V2) ::; 2 with 1 = II < l2 ::; l*, 
u = Ul > U3 2: u*, and lj > l2 or Uj < U3 for all j E {2, ... , n} can be represented by the 
following diagram: 

l- PI l2 U3 -PI U 

1 I I I 
l2 - P2 l u3 - P2 l* U-P2 u* 

I I 
r------, 

I 2 , , L ______ .J 

l* - P3 l u* - P3 l2 U-P3 u3 :::; 2. 

D r----' I I 3 , , 
L ____ .J 

l* - Pi l U3 - P- l2 u -Pi u* 

I I 
r _J, 

I j E {4, ... , n} , , 
L_.J 

L M U 

Example 3 Let n = 4, PI = 3, P2 = 5, P3 = 6, and P4 = 9. The inequality with LMU
structure (5) and 1 = lr = 5, l2 = 7, l* = 9, u* = 12, U3 = 13 and u = Ul = 16 is given by the 
following diagram: 

1 

2 

3 

4 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 
4' r-, , , 

L_.J 

~ 1 ~ 2' 
...--;-...---r----r-+--+ - -: - ~ ;-' ----,r--r-+--+-+-=-.l , 
L......::.--'-----'----'-_.l....--I.. __ , __ ..L...-...J....---L_L..-...1...---l 

L M U 
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Note that the fractional solution Xl,l6 = X37 = X3,13 = Xu = ! and X14 = 1 violates this 
inequality. It is easy to check that this solution satisfies all inequalities with structure (3). 

The following theorem shows that the given necessary conditions are also sufficient. 

Theorem 8 A valid inequality x(Vl) + 2x(V2) ~ 2 with 1 = It < l2 ~ l*, u = Ul > U3 2::: u*, 
and Ij > 12 or Uj < U3 for all j E {2, ... , n} and LMU-structure (5) that is non decomposable 
and maximal is facet inducing for Ps*. 0 

The proof of this theorem is similar to that of Theorem 5. In the same way as in case (la), the 
proof can be extended to prove that the sufficient conditions given by the previous theorem 
are also sufficient for the original polytope if the horizon T is large enough. 

Theorem 9 If T 2::: 2:,']=1 Pj + 5pmax, then a valid inequality x(Vl) + 2x(V2) :s; 2 with 
I h < h :s; [*, U = Ul > U3 2::: u*, and lj > l2 or Uj < U3 for all j E {2, ... , n} and 
LMU-structure (5) that is nondecomposable and maximal is facet inducing for Ps. 0 

Furthermore, we can show that a valid inequality x(Vl) + 2x(V2) ~ 2 with 1 = h < 12 ~ 1*, 
U Ul > U3 2::: u*, and Ij > l2 or Uj < U3 for all j E {2, ... , n} and LMU-structure (5) is 
nondecomposable if and only if M j i= 0 for some j E {2, ... , n}. Necessary and sufficient 
conditions for such an inequality to be maximal can be derived as in case (la). 

An inequality with structure (5) is determined by three jobs and six time periods. By 
definition of case (lb) we have l2 < U3. It is easy to see that this implies that L2 i= 0 and 
U3 i= 0, and it follows that 12 < 1+ Pmax and U3 > U - Pmax. We find that the number of facet 
inducing with sructure (5) is bounded by n3T4p~ax' and hence is also polynomial in the size 
of the formulation. 

Remark. It may seem more natural to define case (la) as I = h < h < 1* and U = Ul > 
U2 > u*, and case (1 b) as 1 = it < 12 ~ 1* and U = Ul > U3 2::: u*. Since under this definition 
Property 9 does not hold, we prefer the given one. 

4.3 Case (2) 

Observe that in this case the conditions on lj and Uj and Properties 4 and 5 do not completely 
determine the sets Land U. It turns out to be beneficial to introduce a notion slightly different 
from that ofl* and u* , namely l' = min{ lj I j E {3, ... ,n}} and u' = max{ Uj I j E {3, ... ,n}}. 
Note that it is possible that 12 > [' or Ul < u' , i.e., I' and u' do not necessarily coincide with 
1* and U* as defined in Property 5. We can however prove the following property in a way 
analogous to Property 5. 

Property 10 Let X(V1) + 2x(V2) ~ 2 be facet inducing with 1 = It and U = U2. 
(a) For all j E {3, ... ,n} such that Lj i= 0, we have Ij = l' and for all j E {3, ... ,n} such 
that Lj = 0, we have l' - Pi ~ I, i. e., Lj [[' - Pj, 11 for all j E {3, ... , n}. 
(b) For all j E {3, ... ,n} such that Uj i= 0, we have Uj = u' and for all j E {3, ... ,n} such 
that Uj = 0, we have u' ~ U Pj: 1:.e., Uj [u - Pj,u'] for all j E {3, ... ,n}. 0 

We next investigate the structure of the set M. 
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Property 11 If X(Vl) + 2X(V2) ~ 2 is facet inducing with l = II and u = U2, then Ml = 
[u' -Pl,l'] n[min{12' I'}, u-pd n [I-PI, Ul], M2 = [u' -P2, l']n [l, max{uI, u'} -P2] n [12 -P2, u], 
and M j = '" for j E {3, ... ,n}. 0 

As in case (1 b), the proof of this property is analogous to that of Property .7. Properties 4, 
10 and 11 completely determine the LMU-structure of a facet inducing inequality x(Vl) + 
2x(V2) ~ 2 with I = II and 71, = 71,2. As in the previous two cases, we prefer to use a different 
representation of the set M, in order to emphasize the inherent structure of the intervals Mj. 
It is easy to show that if x(Vl) + 2x(V2) ~ 2 is facet inducing with 1 = hand u = U2, then 
[l' - P2, I] ~ L2 and [u PI, uf

] ~ UI· It is now not hard to see that Properties 4, 10, and 11 
can be combined to give the following theorem. 

Theorem 10 A facet inducing inequality x(Vl) + 2x(V2) ~ 2 with I = hand u = 71,2 has the 
following LMU-structure: 

L1 = [l - PI, min{l2' if}], 
L2 = [l2 P2, lJ, 
Lj = [If -pj,l], 

Ul = [71, - PI,UI], 
U2 = [max{Ul,U'} - P2,U], 
Uj=[u Pj,u' ] (jE{3, ... ,n}), 

where [If - P2, I] ~ L2 and [7J, - PI, 71,'] ~ UI . 0 

(6) 

This theorem says that a facet inducing inequality x(Vl) + 2x(V2) ~ 2 with l = it and u = 71,2 
can be represented by the following diagram: . 

1 

l PI min{12' I'} 71,' PI min{l', UI} u - PI Ul '-1 ...!.....:;.-----o'-::.;I [ ~ ~ ~ ~ J '--:-=--""1 
maxi u', l2} - P2 [' max{uI, u'} - P2 U r------, 

I I I.. ______ .J 
1 1 ::; 2. 2 

u' 

jE{3, ... ,n} 

L M U 

Example 4 Let n 
structure (6) and 1 
following diagram: 

4, PI = 3, P2 = 5, P3 
h = 6, 12 = 6, [* = 9, u* 

6, and P4 = 9. The inequality with LMU-
11, Ul = 6, and U2 = U = 14 is given by the 

1 

2 

3 

4 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 r-" ~ , , 
3 , , 3 

I I 
-'--'-1 
_~ __ ' :3 ~ 

1 
:3 

I ~ I I 2 I 
L M u 
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Note that (4,6) E LnU, i.e., X46 has coefficient 2. The fractional solution X14 = X29 = X2,14 = 
X34 = X4l = i and Xl,14 = ~ violates this inequality. It is easy to check that this solution 
satisfies all inequalities with structure (3). 

The following theorem shows that the given necessary conditions are also sufficient. 

Theorem 11 A valid inequality x(Vl) + 2x(V2) :::; 2 with l = II and u = U2 and LMU
structure (6) that is nondecomposable and maximal is facet inducing for Ps*. 

Proof. The proof proceeds along the same lines as that of Theorem 5. The first and second 
set of directions can be determined as in the proof of Theorem 5. We consider the third 
set of directions, i.e., we determine the IVI - 1V21 - 1 directions djlsl = 1, dh s2 = -1 with 
(jl, Sl), (j2, S2) E V \ V 2 in such a way that the undirected graph G whose vertices are the 
elements of V \ V 2 and whose edges are given by the pairs {(jl,Sr), (h,S2)} corresponding 
to the determined directions is a spanning tree. 

First, we determine directions that correspond to edges in G within the sets {(j, s) I s E 
(Lj U M j ) \ Uj} and {(j, s) 18 E Uj \ L j }. For s -l,s ELI \ Ul , dl,s-l = -l,dls = 1 is a 
direction by (2, u). If Ml =1= 0, then d1,min{l2,l'} = -1, dIm = 1 is a direction by (2, u), where m 
is the minimum of M 1 , and for 8 -1, sEMI, dl,s-l = -1, dIs = 1 also is a direction by (2, u). 
Let s - 1, s E Ul \ L 1• Note that s - 1 > min{12' l'}. If l2 :::; l', then dl,s-l = -1, dIs = 1 
is a direction by (2, 12 - P2 + 1). If 12 > I', then dl,s-l = -1, dIs = 1 is a direction by 
(j, I' - Pj + 1), where j E {3, ... , n} is such that lj = l'. In the same way we find that for 
8 - 1, s E L2 \ U2, d2,s-1 = -1, d2s = 1 is a direction by (1, ur) if Ul 2: u' , and by (j, u' ) if 
Ul < u' , where j E {3, ... , n} is such that Uj = u' . Observe that if job 2 is started in M2, 
then job 1 is the only job that can be started before or after job 2. We find that if L2 =1= 0 
and M2 =1= 0, then d2l = -1,d2m = 1 is a direction by (l,Ul), where m is the minimum of 
M2. For 8 - 1,8 E M2, d2,s-1 = -1,d2s = 1 also is a direction by (l,ur). Furthermore, for 
8 -1, 8 E U2 \ L2, d2,s-1 = -1, d2s= 1 is a direction by (1, l- PI + 1). Now, let j E {3, ... , n}. 
Note that Mj = 0. Clearly, for 8 - 1,8 E L j \ Uj, dj,s-l = -1, djs = 1 is a direction by (2, u) 
and for 8 -1,8 E Uj \ Lj , dj,s-l = -l,djs = 1 is a direction by (l,l- PI + 1). 

Second, we determine directions that correspond to edges in G between the sets {(j, s) I 
8 E (Lj U Mj) \ Uj} belonging to different jobs and between sets {(j, s) I 8 E Uj \ Lj} 
belonging to different jobs. It is easy to see that for j E {3, ... , n} such that Lj =1= 0, 
dl,l-Pl+l = -l,dl'_pj+l = 1 is a direction by (2,u). For j E {3, ... ,n} such that Uj =1= 0, 
d2u = -1, dju' = 1 is a direction by (1, I - PI + 1). We still have to determine a direction 
that corresponds to an edge in G between {(2,8) 18 E (L2 U M2) \ U2} and one of the sets 
{(j, 8) I 8 E (Lj U Mj) \ Uj} with j E {I, 3, ... , n}, and a direction that corresponds to an edge 
in G between {(I, s) 18 E Ul \Lr} and one of the sets {(j,8) I 8 E Uj \Lj} withj E {2, ... , n}. 
Observe that, since x(Vl)+2x(V2) :::; 2 is nondecomposable, we must have (L2UM2)\U2 =1= 0. 
We define W = {(1,8) 18 E Vr} U {(2,8) 18 E L2 n U2} U {(j,8) I j E {3, ... ,n}, 8 E Lj} 
and W' = {(1,8) 18 E Ll n Ur} U {(2,8) 18 E V2} U {(j,8) I j E {3, ... ,n}, 8 E Uj}. Note 
that x(W) + X(W') = x(Vl) + 2x(V2). Since x(Vl) + 2x(V2) :::; 2 is nondecomposable, there 
exists a feasible schedule such that x(W) = 2, or there exists a feasible schedule such that 
X(W') = 2. Suppose that there exists a feasible schedule such that x(W) = 2. It is easy to 
see that in such a schedule some job j E {3, ... , n} is started in Lj, say job jl, and that job 1 
is started after job j. It easily follows that Xjl,l'-Ph+1 = XlUl = 1 defines a feasible schedule. 
If L2 =1= 0, then, since [I' - P2, l] ~ L2, we have 12 :::; l'. It follows that Y2h-P2+1 = YlUl = 1 
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defines a feasible schedule. If job 2 is started in M2, then job 1 can be started after job 2. 
Hence, if M2 =1= 0, then Y2.l2-P2+ 1 = YIUI = 1 also defines a feasible schedule. We conclude 
that d2h-P2+l = -l,djl ,l'-Ph+l = 1 is a direction by (l,ut). As Xil,l'-Ph+l = XIUI = 1 
defines a feasible schedule, Yil,l'-Ph +1 = Y2u clearly also defines a feasible schedule. We find 
that d1uI = -1,d2u = 1 is a direction by (jl,l' - Pil + 1). 

Suppose that there is a feasible schedule such that x(W') = 2. It is now not hard to see 
that X2,l2-P2+1 = Xju' = 1 is a feasible schedule for some job i E {3, ... , n} such that Uj =1= 0, 
say for job il. Similarly to the previous case, we find that d2h-P2+l = 1, dI,l-PI +1 = -1 is a 
direction by (jl, u') and that djl,u' = 1, d1uI = -1 is a direction by (2,12 - P2 + 1). 

Finally, we determine a direction that corresponds to an edge in G between L U M and 
U. Since x(Vl) + 2x(V2) ~ 2 is nondecomposable and x(U) ~ 1 is a valid inequality, there is 
a feasible schedule such that x(L) + x(M) = 2. It is easy to see that in such a schedule job 1 
and job 2 are started in L U M. Let XISI = X2S2 = 1 be such a schedule. Since 81 ELI U M I, 
Yis l = Y2u = 1 also is a feasible schedule. It follows that d2s2 = 1, d2u = -1 is a direction by 
(1, sr). 

It is easy to see that the determined directions form a spanning tree of G and we have 
hence determined IVI - 1V21 - 1 linearly independent directions. 0 

In the same way as in case (la), we can extend the proof of the above theorem to show 
that if the time horizon is large enough, then the given sufficient conditions are also sufficient 
for the original polytope. 

Theorem 12 If T 2: 2:/l=1 Pj + 5pmax then, a valid inequality x(VI) +2x(V2) ~ 2 with I = lr 
and u = U2 and LMU-structuTe (6) that is nondecomposable and maximal is facet inducing 
for Ps· 

We can prove that a valid inequality x(Vl) + 2x(V2) ~ 2 with I = lr and u = U2 and LMU
structure (6) is nondecomposable if and only if MI =1= 0 or M2 =1= 0, and l' < UI or l2 < u'. 
Necessary and sufficient conditions for such an inequality to be maximal can be derived as in 
the previous two cases. 

As an inequality with structure (4), an inquality with structure (6) is determined by two 
jobs and six time periods. Analogously to case (la), we can show that the number of facet 
inducing inequalities with structure (6) is bounded 2n2T4p~ax, where the T4 instead of T3 
stems from the fact that we do not necessarily have 12 ~ I' and UI 2: u'. The number of facet 
inducing ineqalities is clearly polynomial in the size of the formulation. 

5 Preliminary computational results 

To obtain insight in the effectiveness of the classes of facet inducing inequalities discussed 
above, we have developed separation algorithms that identify violated inequalities in these 
classes, and we have embedded these separation algorithms in MINTO. 

MINTO, a Mixed INTeger Optimizer [Nemhauser, Savelsbergh, and Sigismondi 1994] is a 
software system that solves mixed-integer linear programs by a branch-and-bound algorithm 
with linear ~elaxations. It also provides automatic constraint classification, preprocessing, 
primal heuristics and constraint generation. Moreover, the user can enrich the basic algorithm 
by providing a variety of specialized application functions that can customize MINTO to 
achieve maximum efficiency for a problem class. 
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The performance of the resulting algorithm has been tested on the NP-hard single
machine scheduling problem of minimizing the weighted sum of the completion times subject 
to release dates. For the instances that were tested by Sousa and Wolsey [1992], the algo
rithm found the optimal value without branching, as their algorithm did. We report results 
for 20 randomly generated instances with 30 jobs and uniformly distributed parameters, with 
processing times in [1,5], weights in [1,10], and release dates in [O,! LPj]. 

Table 1 shows the value of the initial linear program (ZLP), the value of the linear program 
after cuts with right-hand side 1 have been added (Zip), the value of the linear program 
after cuts with right-hand side 1 and 2 have been added (Zip), and the value ofthe optimal 
solution (ZIP). The results indicate that both classes of inequalities are effective in reducing 
the integrality gap. 

Table 1: Preliminary computational results. 

ZLP Zip Zip ZIP 
1 6710.75 6724 6726 6727 
2 6490.63 6518 6532 6533 
3 5876.5 5887.5 5897 5897 
4 5537 5537 5537.5 5540 
5 5157.33 5165 5166.66 5185 
6 4996 4996 4996 4996 
7 4559.5 4589.33 4592.33 4620 
8 5837 5837 5837 5837 
9 5590 5590 5590 5590 
10 5477 5477 5477 5477 
11 5964.83 5974.83 5986 5986 
12 6951 6951 6951 6951 
13 5411.2 5423 5424.5 5434 
14 4022.1 4029.33 4030.33 4044 
15 4634 4636 4636 4636 
16 4573.75 4582.125 4585.33 4597 
17 6241.5 6266.5 6267.5 6279 
18 4558.05 4593.52 4599 4606 
19 5814 5829.8 5830 5830 
20 4517.7 4536 4545.25 4558 

Because of the encouraging computational results, we have started to develop and imple
ment a full-blown branch-and-cut algorithm. We are investigating primal heuristics, branching 
strategies, and row management schemes. This branch-and-cut algorithm will be described 
in a subsequent paper, which will also include a discussion of the separation algorithms and 
a presentation of various computational experiments. 
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6 Related research 

As mentioned in the introduction, Sousa and Wolsey [1992] and Crama and Spieksma [1993] 
have also studied the time-indexed formulation of single machine scheduling problems. In 
this section, we briefly indicate the relation between their research and our research. 

Sousa and Wolsey present three classes of valid inequalities. The first class consists of 
inequalities with right-hand side 1, and the second and third class consist of inequalities with 
right-hand side k E {2, ... ,n - I}. Each class of inequalities is derived by considering a set 
of jobs and a certain time period. The right-hand side of the resulting inequality is equal to 
the cardinality of the considered set of jobs. 

They show that the inequalities in the first class, which is exactly the class of inequalities 
with structure (3), are all facet inducing. In Section 3, we have complemented this result 
by showing that all facet inducing inequalities with right-hand side 1 are in this class. With 
respect to the other two classes of valid inequalities we make the following observations. Any 
inequality in the second class that has right-hand side 2 can be lifted to an inequality with 
LMU-structure (4) if Pkl i= Pk2' and to an inequality with LMU-structure (6) if Pkl = Pk2' 

where {kl' k2 } is the set of jobs considered. Any inequality in the third class that has right
hand side 2 can be written as the sum of two valid inequalities with right-hand side 1. For 
either of the two classes, Sousa and Wolsey give an example of a fractional solution that 
violates one of the inequalities in the class and for which they claim that it does not violate 
any valid inequality with right-hand side 1. We found that in both cases the latter claim is 
false. 

Cmma and Spieksma investigate the special case of equal processing times. They com
pletely characterize all facet inducing inequalities with right-hand side 1 and present two 
other classes of facet inducing inequalities with right-hand side k E {2, ... ,n - 1}. 

Our characterization of all facet inducing inequalties with right-hand side 1 was found 
independently and generalizes their result. The inequalities in their second class that have 
right-hand side 2 are' special cases of the inequalities with LMU-structure (6), and the in
equalities in their third class that have right-hand side 2 are special cases of the inequalities 
with LMU-structure (4). In addition to the facet inducing inequalities reported in their pa
per, they have identified other classes of facet inducing inequalities with right-hand side 2 
[Spieksma 1991]. 
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