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Chapter 1 

Introduction. 

Many mechanical systems, e.g. uncontrolled mechanisms, manipulators and vehicles, can be 
modelled as multibody systems, composed of rigid or flexible bodies, coupled by connection 
elements. The inertia of the bodies can not be neglected while the connection elements are 
supposed to  be massless. These elements account for the interactions between the bodies 
in the system and between these bodies and the environment. Connection elements can be 
material or immaterial. Well known examples of material elements are prismatic, revolute and 
spherical joints and spring-damper assemblies in the suspension of road vehicles. Immaterial 
elements represent interactions "on distance", e.g. due to gravitation or magnetic fields. 

An important function of most connection elements is to restrict the relative motion of 
the connected bodies. Restrictions of this type are called kinematical constraints. Often the 
mathematical formulation of the kinematical constraints for one connection is straightfor- 
ward, at least for technical connections. However, it can be quite complicated to analyse the 
consequences of all kinematical constraints in a system of connected (rigid) bodies, especially 
if the system does not have a tree structure. In fact this is the main subject in the area of 
kinematics of multibody systems. 

Each connection element will exert forces (used in a generalized sense, i.e. denoting both 
forces and moments) on the connected bodies. These forces can be constraint forces, required 
to maintain the kinematical constraints of the connection. Besides, the element can exert 
forces that are related to energy storage or energy dissipation in the element. This will be the 
case, e.g. if the element deforms elastically or if damping occurs in the joints. Furthermore, 
the element can exert prescribed forces, for instance if actuators are build in in the joints. 
Connection elements are discussed in some detail in Chapter 3. 

The laws of Newton and Eder relate the forces on each of the bodies, exerted by the 
connections, to  the linear acceleration of the center of mass and to the angular acceleration of 
that body. These laws and the relevant kinematical quantities (position, orientation, velocity 
and acceleration) for an isolated body are considered in Chapter 2. 

An essential characteristic of multibody systems is that each body can experience large 
rotations. These rotations can be characterized by, for instance, Cardan angles. For large 
rotations the common assumption from linear dynamics (cos(cp) m 1 and sin(cp) m cp, where cp 
is a Cardan angle) is not acceptable. This gives rise to geometrical nonilinearities and implies 
that the laws of Newton and Eder in general result in highly nonlinear equations. 
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The derivation of the equations of motion for a system with more than one rigid body 
and fairly arbitrary connections is discussed in Chapter4. Two approaches are sketched. In 
the first approach each body is isolated from the other bodies and from the environment, all 
possible forces in the connections with those bodies and with the environment are introduced 
and the laws of Newton and Eder are applied. This approach is hampered by the fact that 
all constraint forces appear as unknown quantities in the obtained equations and that the 
elimination of these unknowns may be quite laborious. In the second approach, based on the 
formalism of Lagrange, these unknowns do not show up. Central quantities in this approach 
%pe elie kinetic energy and the virtual work oÎ al forces, except the constraint forces. As so03 
as these abstract quantities are determined as a function of the (derivative of the) degrees of 
fieedom the rest of the derivation is very systematic and straightforward. 

The final set of equations for the analysis of the dynamical behaviour of multibody systems 
consists of a set of second order differential equations plus a set of algebraic or first order 
differential equations, that represent the so-called remaining kinematical constraints. The 
unknowns in this set are the degrees of freedom and the constraint forces, that  are required 
to maintain the remaining constraints. In the literature on the analysis of multibody systems 
many algorithms can be found to  solve these equations numerically: analytical solution is 
hardly ever possible because the number of equations is large and, more important, because 
the equations are EgMy nodhear. h thk report no attentid is given to  solution procedures. 
More information on this subject can be found in the theoretical and the user manuals of 
general purpose programs like DADS and ADAMS and in the (mathematical) literature on 
the solution of set of differential-algebraic equations. 

A trend in the design of modern mechanical systems is towards light weight constructions. 
Deformations of the parts of these systems becomes increasingly important and it is not 
realistic to model them parts as rigid bodies. Much research is going on to find feasible 
models for deformable parts and to  analyse multibody systems with flexible bodies. It is not 
possible to discuss this subject in this report. An introduction can be found in "Dynamics of 
Multibody Systems" by A. Shabana, John Wiley&Sons, New York, 1989, ISBN 0-471-61494-7. 
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Chapter 2 

Dynamics of one rigid body. 

2.1 Introduction. 

In this chapter some aspects of the dynamics of a rigid body are considered. First, the position, 
velocity and acceleration vector of an arbitrary material point of the body are introduced. 
Next, the relevant kinematical quantities of a rigid body, seen as a set of material points, are 
discussed. This results, for instance, in the introduction of the angular velocity vector and the 
angular variation vector. After that the equations of motion for a rigid body are considered. 
Finally, attention is given to the kinetic energy of a rigid body. 

2.2 Position, velocity and acceleration. 

The considered body B is seen as a set of material points. This set is invariant since i3 consists 
of the same material points for all t 2 to .  Each material point is identified by a unique label 
6, where ( is a column of material coordinates. Let S be the invariant set of labels of all 
material points in B. The material point with label ( E S is denoted by I'((). 

Let Z ( ( , t )  be the current position vector of P(() with respect to a fixe> origin O. It is 
assumed that the function Z = $((,i) is differentiable at least twice with respect to  t. Then 
the material ratel exists and is equal to the velocity V( ( , t )  of P((): I 

Furthermore, a([,t) - exists and is equal to the acceleration Ü ( 5 , t )  of I'((): I 

a'(& t> = %(l, t )  = 3$, $1 (2.2) 

Often it is advantageous to consider the current position vector Z((, .. t )  of P({) as the sum 
of a vector Zo((), - representing the position of P(() - in a reference configuration (e.g. the 

'Let the function Q = Q($,t)  be differentiable with respect to t .  Then the partial derivative with respect to 
t is cded the material rate 6 of Q: 
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Figure 2.1: Position and orientation of a rigid body. 

configuration at time t o ) ,  plus a displacement C(6, t )  of P(6) e with respect to  this reference: 

Z ( { , t )  = Zo({) -t u({,t); q , t )  = ?%{,i); q , t >  = u'(f,t) 

2.3 Kinematics of a rigid body. 

B is a rigid body if the distance between any two material points of 8 is independent of 
t. This is possible only if the transformation from the reference configuration to the current 
configuration consists of a translation as a rigid body and a rotation as a rigid body. For a 
rigid body B the position vector Z(6,t) of P([) - can be written as 

4{,t) = Z M ( t )  t R{, t ) ;  a({,t)  = R(t) 0 R { , t o )  (2.3) 
where 5 ~ ( t )  is the position vector at time t of an arbitrary point M, that is fixed to  B. This 
local origin of B can be a material point of B but that is not necessary. For the moment 
it is sufficient that M is moving along with B. The displacement "( t )  = z ~ ( t )  - Z M ( ~ ~ )  
of M with respect to the reference configuration is called the rigid body translation of B 
with respect to the reference configuration2. The vector b([ , t )  in Eq.(2.3) is the relative 
position vector of P([) - with respect to the local origin M :  

b(z, t> = q, t )  - (2.4) 

RT(t) o R(t) = I; det (R( t ) )  = +1 (2.5) 

Finally, the quantity R(t) in Eq. (2.3) is a rotation tensor, so 

2This definition of the rigid body translation is not unique since the local origin M may be any point that 
is fixed with respect to B. Often M is chosen in the centre of mass of B. 
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for all t 2 to.  This tensor characterizes the rotation of 13 and is called the rigid body 
rotation tensor of B with respect to the reference configuration. 

Let F(t)  be an orthonormal vector basis with origin in M and moving along with B. Then 
-(i) is related to the corresponding basis $( to )  in the reference configuration by 

gT(t)  = R(t) O - ( t o )  

These bases can be used to represent vectors and tensors quantities in matrix form. As an 
example the relative position vector c([, t )  is considered. This vector can be written as 

q{, t )  = P ( t )  b({, t )  = R(t) 0 - ( t o )  O({, t )  

This vector is also equal to R(t) o b({, to) = R(t) o gT(to) o([ , to) .  Hence, k(t,t) = o ( t , t o )  
and therefore the matrix representation of the relative position vector with respect to the 
moving basis c(t) does not depend on t. For this reason this vector is called body fixed3 
with respect to B. 

The velocity i?([, t )  of P([) - follows by differentiation of Eq. (2.3) with respect to t. This yields 

G ( { , t )  = k({,t) = GM(t)  4- $({,i); &f(t) = &(t); i({,t) = R ( t )  o b(E, t o )  

where v ~ ( t )  is the velocity of M .  Because RT(t) o R(t) = I the relative velocity c([,t) -, of 
P({) with respect to M can be written as 

i({, t )  = R(t) o R*(t) o R(t) o b(s, t o )  = R(t) o RT(t) o b([, t )  

The tensor R(t)  o RT(t) is skew-symmetrical, so there exists a vector G(t), the axial vector 
of R(t )  o RT(t), such that 

R(t )  o RT(t) o Z= G(t) * c', V Z 

Kence, b([,t) = G(t)  * :([,i) and G ( [ , t )  can be written as 

G({,  t )  = GM(t )  t G(t)  * b({, t )  (2.6) 

The vector G(t) is called the rotation velocity vector or angular velocity vector. 

The acceleration a([, t )  of P([) follows by differentiation of Eq. (2.6), yielding 

a({, t )  = a&) + G(t)  * [ q t )  * 6((, t)] + 3(t) * i?({, t);  a&) = &(t) (2.7) 

where Z M ( t )  is the acceleration of the local origin M on B. 

Another kinematical quantity of interest is the variation 6 Z ( [ , t )  of the position vector of 

3This concept can be generahed: any vector or tensor, whose matrix representation with respect to the 
moving basis a(t)  is independent oft, is called body fixed with respect to B. 
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P(() if the position of B (i.e. ZM(~)) and the orientation of B (i .e.  R(t)) are varied. Only 
infinitesimal variations are considered. Variation of ZM(~)  and R(t) results in 

SZ({, t )  = S Z M ( ~ )  t Sa'(<, t); Sa'({, t )  = SR(t) o a'([, t o )  = SR(t) o RT(t) o a'([, t )  

where SR(t) o RT(t) is skew-symmetrical. Hence, there exists a vector ó?(t), the angular 
variation vector, such that 

SR(t) o RT(t) o Z= S?(t) * c', V C 

and SZ((:t) can be written as 
I 

SS([, t )  = SZ&f(t) t S?(t) * b((, t )  (2.8) 

2.4 The equations of motion. 

Each change of the motion of i? is caused by interactions between B and the environment. 
The basic assumption in the dynamics of a rigid body is that the effect of these interactions 
can be taken into account by the resulting force F' on the body and the resulting moment & 
with respect to  an inertial point, i.e. a point in space with constant absolute velocity. Here 
the fixed origin O from the preceding sections is chosen as the reference point. To emphasize 
this choice the resulting moment is denoted by I&. 

Basic notions in the dynamics of a rigid body are the momentum $ and the moment of 
momentum L' with respect to a reference point. As usual, the reference point for the moment 
of momentum will be the same as for the resulting moment of the interactions. To emphasize 
this choice, the moment of momentum is denoted by &J. 

Let p ( ( )  be the specific mass in P(() of B4. The momentum $(t) of B is defined by .. 

P( t )  = J, P(gv'((5, t )dB (2.9) 

and with the earlier given relation for the velocity v'((,t) this yields 

(2.10) 

where m is the total mass of B. 
Until now the choice of the local origin M on B is completely free as long as M is fixed 

with respect to  B. This freedom is used to simplify the relation for $(i). For that purpose 
M is chosen such that 

JgP@a'({,t)dB = 0 * &(t) = J P(g4f,WB (2.11) 
m t 3  

This point is the center of mass of B. It can be shown that this point is fìxed with respect 
to B. However, it can be located outside B, so it is not always a material point of B. With 
this choice for M the relation for $(t) reduces to 

$(t) = mv'.(t) (2.12) 

'The specific mass in a rigid body can depend on the position in the body, i.e. on [, but not on t .  
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(2.13) 

The moment of momentum Lo(t) with respect to 8 is defined by 

Zo(t) = J q, t )  * P ( f > q ,  t)dB 

iO(t) = J P ( f ) q ,  t )dB * t J P ( { > q ,  t> * [W * b({, t)ldB 

U 

and with the earlier given relation for $([,i) this yields - 

U U 

With M in the center of mass the first term is equal to m Z ~ ( t )  * ij"(t) = " ~ ( t )  * p'(t). 
Besides, with Z(t, t )  = i ? ~ ( t )  -+ b(t, t )  it follows that 

fo ( t )  = * p'(t) + J P(f)b({,  t )  * W )  * b(f7 t)ldB 
t3 

and with ZI * (Z.2 * Z3) = (G o Z3)Z2 - (Z1 o &)& = { ( E l  o &)I - 6&) o Z.2 also that 

Zo($) = j ? ~ ( t )  * f i t )  t Zjg(t); Z M ( ~ )  = J M ( ~ )  0 W ( t )  (2.14) 

i ~ ( t )  is the moment of momentum with respect to M .  The tensor J M ( ~ )  is called the inertia 
tensor with respect to M .  This inertia tensor is defined by 

JM(t) = / U P(f)[{g($,t)o b({,t))I- c(f,t)b(f,t)]dB 

and with b([,t) = R(t) o b((,to) it is readily seen that 

J M ( ~ )  = R(t) O JMO O RT(t) 

where the constant, symmetrical and positive definite tensor JMO is defined by 

P({)[{b({,  t o )  0 b(f, h))I - b({, tû)b((y h ) ] d B  JMO(t) = 

(2.15) 

(2.16) 

(2.17) 

The laws of Newton and Euler state that the derivative of the momentum $(t) and of the 
moment of momentum lo( t )  with respect to the fixed origin 8 are related to  the resulting 
force #(i) of the interactions with the environment and to the resulting moment A&(t) of 
those interactions with respect to  0 by 

>(t) = F(t); Qt) = AZ&) (2.18) 

Substitution of the earlier derived results for p'(t) and Zo(t) yields5 

9 = ~ Ü M ;  $0 = 2~ * 9-t Z M ;  = O W +  JM 0 3  

Further elaboration of the term JM o O results in 

J, o G = R O J~~ ORT o G + R o J~~ O RT O W  = 

'For brevity of notation the dependence of time t is not mentioned expiicitly anymore. 
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and because (R o RT) o W = W * W = Ö it is seen that 

J M  O U = w * (JM O U )  

Hence, for a rigid body the laws of Newton and Eder can be written as 
+ F = mäM; & - ZM * = w * (JM O W )  JM 03 

The vector 
center of mass M. This leads to  the final form of the equations of motion 

- ZM * f is equal to the moment i @ ~  of the interactions with respect to the 

+ .  F = 5 = m ä M ;  @M = ZM = 5 * (JM O 3) t JM O & (2.19) 

The first term in the last equation is quadratic in the angular velocity W. It represents the 
so-called centrifugal and gyroscopic effects. 

As can be seen from this result, the law of Euler also holds if the resulting moment of 
the interactions and the moment of momentum are determined with respect to the center of 
mass instead of an inertial point. In general this law is not valid if an arbitrary non-inertial 
point is chosen to determine the resulting moment and the moment of momentum! 

The equations of motion can be written in a slightly different form as 
-L 

F - m Ü M  = Ö; it?, -O’* (JM O W )  - JM 03 = Ö 

A n  alternative formulation for these equations is given by the requirement that 

(F- d ~ )  0 y+ [ n ? ~  - W * (JM O 2) - JM O & ]  O z= O (2.20) 

must hold for each y and Z. This is the principle of weighted residuals: @ - mÜM and 
i @ ~  - W * (JM o W )  - JM o 3 are seen as residuals on the equations of motion and and Z 
as weighting factors for these residuals. The principle states that the weighted sum of the 
residuals must be zero for all weighting factors. 

This mathematical formulation can be given a physical interpretation by considering as 
a variation SZM of the position vector of the center of mass and Za, the angular variation 
vector 62, which is a measure for the variation of the rotation of 8. The scalar relation then 
can be written as 

f o  6 5 ~  i- 2~ o 68 = mÜM o &?M i- {W * (JM o W )  -+ JM oh} o 63 = O (2.21) 

where f o 6 2 ~  is the work of the resulting force f if the position vector of the center of mass 
experiences a variation 6 3 ~ .  Besides, i @ ~  o 62 is the work of the resulting moment A?M if 
the rotation of i3 experiences a variation 63. Hence, the left hand side of Ea. (2.21) is equal 
to the work of the interactions if the position and orientation of I3 are varied. Usually this 
work is called the virtual work of those interactions. 

The alternative formulation with the given interpretation for the weighting functions is 
called the principle of d’A!embert OF the prirnciple of virtual work. It plays a major 
role in procedures to determine approximate solutions of the equations of motion. 
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2.6 The kinetic energy T. 
The kinetic energy T( t )  plays an important role in some energy principles to derive the 
equations of motion for multibody systems. This energy is defined by 

(2.22) 
1 

T(t)  = - 2 J, P(f)$(f, t )  0 q, t)dB 

Substitution of $([,t) = $ ~ ( t )  + G(t) * b([,t) yields after some calculations that 

i 

The second term on the right hand side disappears since M is in the center of mass. Besides, 
according to  Eq. (2.16), the integral in the last term is equal to the inertia tensor J M ( ~ )  of B 
with respect to  M. Hence, the kinetic energy is given by 

1 
(2.23) 

The term f m i ? ~ ( t )  o $ ~ ( t )  is the kinetic energy if the mass of B is concentrated in the center 
of mass. This term, the kinetic energy due to the translation of B, is often called the kinetic 
energy of the center of mass. The term f G(t) o J'(t) o G(t) is the kinetic energy due to  the 
rotation of B. This term is commonly called the kinetic energy around the center of mass. In 
this terminology the total kinetic energy of a rigid body is said to be the sum of the kinetic 
energy of the center of mass and the kinetic energy around this center. 

1 T(t)  = Sm$'(t) O $ ~ ( t )  + TG(t)  O J.(t) O G(t) 

I 
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Chapter 3 

Connection elements. 

3.1 Introduction. 

Each mechanical interaction bc.,ween two or more bodies in a multibody syEvaml can be 
modeled in terms of kinematical, dynamical and external quantities. Examples of kinematical 
quantities are the position vectors of the centers of gravity and the rotation tensors of the 
interacting bodies. Dynamical quantities are, for instance, the forces and torques between 
these bodies. External quantities or inputs are prescribed displacements, prescribed electrical 
currents to  actuators, etc. 

Two bodies Bi and Bj ,  that interact directly upon each other, are called contiguous. An 
interaction or coupling can occur via a material element, e.g. a bar, a hinge or a spring, or 
can be immaterial, e.g. via a magnetic field. It is assumed that all interactions between two 
contiguous bodies can be combined in one connection element between those bodies. The 
description of the interactions then boils down to the characterization of the behaviour of 
that element. Furthermore, it is assumed that the connection elements are massless, i e .  that 
the momentum and the moment of momentum of these elements are negligible compared to 
the momentum and the moment of momentum of the (rigid) bodies in the system. 

Each connection element will represent the interactions between exactly two bodies. If 
more than two bodies interact directly it is often (but not always!) possible to take the 
interactions into account by the introduction of a connection element between any pair of those 
bodies. It turns out that this restriction is not very severe for mechanisms and mechanical 
manipulators. 

It is assumed that the behaviour of each connection element can be described in terms of 
kinematical, dynamical and external quantities in a finite number of points of that element, 
the so-called nodal points or points of attachment. Let ne be the number of points of 
attachment of element e. Then ne 2 2 because there will be at least one point of attachment 
on each of the connected bodies. Mostly ne = 2 but sometimes it is necessary or advantageous 
to introduce more than one point of attachment on one or both bodies. This is the case, for 
instance, if the bodies are coupled by a four bar mechanism. 

'The fixed world is considered as one of the bodies of the system. This makes it possible to consider the 
interactions with the environment as interactions between bodies of the system. 
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Often the function (or one of the functions) of a connection element between two bodies Bi 
and Bi is to restrict the possible motions of one of these bodies, say Bi, with respect to the 
other, Bi. A restriction of this type is called a kinematical constraint. To formulate the 
constraints in a mathematical form it is noted that a free, rigid body Bk ( I C  = i , j ) ,  moving in 
the three-dimensional space E ,  has s ix  degrees of freedom, i.e. that s i x  quantities are required 
to specify the position of each material point of Bk. A possible choice for these quantities are 
the Cartesian coordinates of the center of mass Mk of Bk plus the three Cardan angles in the 
column @, which characterize the rotation tensor Rk of Bk. 

It tu& out that each kinematicd constsaint of a connection betweeo Bi and Bi caa be 
represented by an implicit relation in the columns z i  and c p i  - of Bi, the columns and (pi 
of Bi and, eventuaiiy, time derivatives of these quantities. More specific, it turns out that 
kinematical constraints for a connection between Bi and Bi can always be formulated in terms 
of the relative position vector Z= dj - di (from the center of mass Mi of Bi to the center of 
mass M i  of Bi) and of the relative rotation tensor C (which transforms the local basis on 
Bi into the local basis gj on Bi) or, as an often attractive alternative, in terms of the matrix 
representations c and c of Zand C in the local basis 2. 

One of the main topics in the theory of multibody systems is the formulation of the 
kinematical constraints, that are induced by the connections in the system and the analysis 
of the consequences of these constrahts for the degrees of freedom of the bodies in the system. 
This is discussed in some detail in the following section, where first some attention is given 
to the kinematics of one rigid body and to the description of the relative motion of one rigid 
body with respect to another. After that, kinematical constraints are introduced in a more 
formal manner and notions like relative velocity, kinematically admissable variations etc. are 
discussed. 

Another topic in the theory of multibody systems is the description of the forces and 
moments that can be exerted by a connection on the connected bodies. Some remarks on 
this subject are put forward in the last section, where also the notion of the virtual work 
of these forces and moments for kinematically admissable variations is introduced. Besides, 
some attention is given to external quantities, i.e. to inputs to the system. 

It is noted in advance that there is no aim at generality in the following sections. Only 
some aspects of interactions between contiguous bodies are highlighted and some aids and 
appliances to take these interactions into account in modeling a system of interacting (rigid) 
bodies are given. 

- 

3.2 Kinematical aspects. 

3.2.1 

Let 2' be the position vector of the center of mass Mk of Bk and let Rk be the rotation 
tensor of Bk, i.e. the tensor that transforms the fixed or inertial, orthonormal vector basis 
into the local, orthonormal vector basis Ck, that is fixed to Bk: 

Kinematics of one rigid body. 

I 

i 

, 
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The elements of the matrixrepresentations zk of Z k  and Rk of Rk with respect to  the 
inertial basis follow from 

zk = e o  Zk; Rk = CO Rk O fT ( 3 4  

- Rk is an orthonormal matrix, so &k(&k)T = L, and the nine entries of ak can be written as 
functions of three independent variables (for instance Eder or Cadan  angles) or as functions 
of four variables (for instance Eder parameters) that have to satisfy one constraint condition2. 
Here only Cardan angles are considered. For Bj these angles are denoted by epi, cp!j and cpk 
and seen as the csrnpomizts of the columa jok. Then &' = &(yk) where (see the ayipendk 
on vectors and tensors) 

I c2c3 c l 5 3  t Sls2c3  8153 - C152c3 

-Cg53 CIC3 - 515253 SIC3 + C15253 ; cs = cos(cp,); ss = sin(cps) (3.3) 
52 -51 C2 c1 c2 

The three elements of g k  plus the three Cardan angles in cpk completely determine the position 
and orientation of Bk with respect to the k e d  basis c. They are called the attitude coordinates 
gk of Bk: 

The vector basis ek is fixed with respect to the moving body Bk and will therefore depend 
on time t. The time derivative follows from 

(?')>' = Rk O (ef)T = Rk O (Rk)T O (Ck)' 
where Rk o (Rk)T is skew-symmetrical. The axial vector of this tensor is the angular (or 
rotational) velocity G of Bk. With this vector it is seen that 

(3.5) 

(3.6) 

L k T -  - k  - k T  ( e  1 - w  * ( e  1 
The representation qk of G k  in the fixed basis effollows from 

g k = g o G k ;  gk=W k k  p 
where Wk is given by (see, for instance, the appendix on vectors and tensors or the earlier 
mentioned book of Wittenburg) 

Wk = m y " ;  W(y) = [ 0 c: , si = sin(cpi), c; = cos ($4) (3.7) 
o 51 tClC2 

The (translational) velocity i j k  of B k ,  i .e.  the velocity of the center of mass A l k ,  is given by 

(3.8) ,ìyk - $ k  - -T k. - e  U ,  = g k  - 
2More information on this subject can be found in the appendix on vectors and tensors or in Dynamics of 

Systems of Rigid Bodies" by J. Wittenburg (B.G. Teubner, Stuttgart, 1977, ISBN 3-519-12337-7). 
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Finally, the angular variation vector &Rk, which characterizes the variation of the orien- 
tation of Bk if the Cardan angles in cpk are varied, can be determined from 

(3.9) 6Zk = (e l )  T k  67J ; 67p = p 6 y  k 

Let P be a material point of Bk and let b be the vector from Mk to P. Then bis fixed with 
respect to Bk, i.e. the elements of the representation b = Zk o bof bin the moving basis 
are constant. Hence, the time derivative h of b md the YZ&~~QE /;b of V fm imiatiais ~f the 
orientation of Bk are given by 

- 9 -  + +  

(3.10) 

(3.11) 

- ;k T b = (g ) b = G k  * (@)Tb = G k  * b 

6b= s(g -k ) T = 6 Z k  * (p)q = 6 Z k  * b 

3.2.2 

Let Bi and Bj be contiguous bodies. The orientation of Bj with respect to Bi can be described 
with the relative rotation tensor C, which transforms the local basis 9 on Mi into the 
local basis @ on Bj: 

Relative motion of contiguous bodies. 

= co (cy ;  c = (e  -+j ) T 62 ' (3.12) 

From (cj)T = Rj o and = Ri o it is easily seen that3 

Rj = C O Ri (3.13) 

The representation c of C with respect to the moving basis 9 follows from 

- c = e"' o c o ( c y  = o (3.14) 

Hence, the representation &j of Rj with respect to the fixed basis s c a n  be determined from 

- Rj = 60 Rj O (e)* = CO C O Ri O = PO (?)TC = RiC 
- C is an orthonormal matrix, so the elements of c can be written as functions of three Cardan 
angles $1, $2 and $3, i.e. 

c=R(*) ;  $= Ml $2 $3IT (3.15) 

Therefore, with = R(yJ), 2 = &(yi) and c = &($), it is seen that 

&(y7 = &(yi)&(?$ (3.16) 

This matrix equation is equivalent to a set of three independent algebraic equations for the 
Cardan angles cpj of Bi. It can be used to determine (pl if ?,ú (the Cardan angles of the 
connection element) and <pi - (the Cardan angles of Si) are given. 

- - 

3Usually the relative position vector and the relative rotation tensor of 83 with respect to 8' are denoted 
by Ei' (or Z3') and C'j (or di.). For the sake of readability the upper indices are omitted here. 

I 
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The position of Bj  with respect to Bi can be described with the relative position vector Z 
fiom the center of mass M i  of Bi to the center of mass M j  of Bi: 

zj = zi + (3.17) 

With the matrix representation c of Z with respect to the moving basis f i  of Bi, i.e. with 

c = - 0 C ' ,  (3.18) 

the matrix representation g j  of i!j with respect to the j z e d  basis can be written as 

Z j  = gi + = + &(pi)c (3.19) 

This equation relates the coordinates g j  of the center of mass of Bj to the coordinates gi and 
cpi of Bi and to  the elements of the column of the connection element. As noted earlier, the 
Cardan angles are determined by the Cardan angles cpi of Bi and the Cardan angles $ of 
the connection.-Often the elements of c and $ are c d e i  the coordinates of the conneckon 
element. 

To relate the angular velocity Gj of Bj to the angular velocity G i  of Bi and to  (derivatives 
of) $ it is noted that ( c j ) T  = C o (di)* = (?)TC and therefore 

(&T = w j  * ($y = w i  * ( p ) T  + = w i  * ($y + ($")*(@)C 
With C = o (efj)* and &' = -(c&)T it is readily seen that 

w j  = 3; + wTei (3.20) 

where WTer is the axial vector of the skew-symmetrical tensor It is the relative 
angular velocity vector of Bj with respect to Bi as measured by an observer, which is k e d  
to Bi. It is noted emphatically that Orel is defined, using the matrix representation c of C 
with respect to the basis efi that is fixed to Bi. Therefore, this vector is not related directly 
to the skew-symmetrical tensor C o CT. However, it can be shown that 

@,ei = E($)$ (3.21) 

The absolute velocity Ü j  of M j  is equal to V i  + 2, where 2follows from Z= (efi)Tc: 
-i T (3.22) 

The vector VTei is the relative velocity of Bj with respect to p. It is the velocity of the 
center of mass of Bj as measured by an observer, located in the center of mass of Bi and 
moving along with Bi. 

-# 2= + ($')'e = w i  * C+ Grei; vrei = (e ) e 

For the absolute velocity üj of the center of mass of Bj it is now seen that 

(3.23) 
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or, written in terms of matrix representations with respect to the inertial basis, that 

g j  = g' +& + g' * (Big) (3.24) 

Apart from the position, the orientation and the translational and angular velocity of Bj also 
the variation of the position and the orientation of Bj in terms of the variation of the position 
and of the orientation of Bi and the variation of quantities of the connection element play a 
sole in f ~ t h e ~  asdyses,  he variation of ~j = ~ ( 3 )  c m  he characterized by the aagdar 
variation vector 6i? j , 

i7?j * 2u = 6Rj O (Ri)T O W; 6?j = c T 6 ~ j ;  i7~j = TV($)&$ (3.25) 

In a simular way as for the angular velocity 3j it can be shown that the angular variation 
vector 6?j is given by 

6 ~ '  = 69'" + 6nTel; 6nTe[ = ( e  -.i T &Ezel; 6ETel = w(~>s$ (3.26) 

where 6$ is a variation of the Cardan angles $ of the connection element. Furthermore, for 
the variation 6Zj of the position vector of Mjit can be shown that 

(3.27) 6Zj = 65' + SCy,l+ 6?' * c'; 6ëT,l = ( e  -i ) T 6c 

where 6c is a variation of the matrix representation of ë with respect to p. 

3.2.3 Kinematical constraints. 

From the given analysis it follows that the motion of Bj with respect to Bi can be characterized 
completely in terms of the relative position vector Zand the relative rotation tensor C or, 
alternatively, in terms of the elements of aad $. 

Usually the connection element between Bi &d Bj restricts the motion of Bj with respect 
to Bi or, put in a more mathematical form, enforces one or more constraint relations in 
the elements of and $ and, eventually, their time derivatives. A relation of this type is a 
kinematical constraint. For technical connection elements only c, 11, and sometimes their 
first derivative occur in the kinematical constraints. firthermore, if derivatives occur then 
the constraints always are linear in those derivatives. 

Kinematical constraints can be inequalities. A simple example is given by a connection 
dement in the form of an inextensible string of length 1 between the centers of mass of the 
contiguous bodies. The constraint then takes the form IICII 5 1. 

Although inequality constraints are of great importance they are not discussed here in 
more detail. In the sequel only constraints of the form 

L k ,  $ , 4 E  t K&, $ 9  t)$ + h(c, $ 3  t )  = o, (3.28) 

are considered. If a constraint explicitly depends on time t then that constraint is rheonomic, 
otherwise it is scleronomic. 
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Constraints of the given form can be integrable. For these so-called holonomic constraints 
there exists a function k(c,  $, - t )  = 0, such that 

&Ce, $9 t )  = &(e, $ 9  t)E t K&, $, - -  t h(c, $7 t )  = 0, (3.29) 

Holonomic constraints can always be written in the form of Eq. (3.28), where &(e, $, - t ) ,  
K+(c,$,t) and h(c ,$ , t )  - then represent the derivatives of k = k ( ~ , $ , t )  - with respect to c, $ 
and t. 

Non-integrable constraints of the form of Eq. (3.28) are called non-holonomic and can not 
be formulated in terms of and $ only. Examples OF systems with non-hoionomic constraints 
are mechanisms on castors. Although non-holonomic constraints often occur in models for 
technical systems only holonomic constraints are considered in the sequel4. 

Let Sc and 6$ be variations of and $. These variations are called kinematically admiss- 
able if they satisfy the condition 

- 

L ( c 9  $9 t>Sc + K& $ 9  W$ = 0 (3.30) 

For holonomic constraints this has a simple interpretation: 6s and S$ are kinematically 
admissable if g and $ as well as g + 6~ and $ + S$ satisfy the constraint;, i.e. if 

k ( c , $ J )  = 0 A &(e t SC,$ t s ? p >  = 0 (3.31) 

Further elaboration yields the given condition for kinematically admissable variations. 

Holonomic constraints b(c,$,t) = 0 are (implicit) equations in and $. Let n (n < 6 )  be 
the number of holonomic constraints. It is assumed that they are independent for all relevant 
values of c,  + and t. Then, using b(c,$,t) = 0, n elements of and $ can be written as 
functions of the other elements of and 4. An attractive alternative is to-introduce a column 
q with 6 - n elements and to determine functions = c(q,t) and $ = $(-,i) such that 
&(q, t ) ,  $(q, t) ,  t )  = 0 for all relevant q and t. For the pos$ion vector Zj and the rotation 
tensor Rio: body this results in 

- 

(3.32) zj = zi+c'; z= (e  +i ) T c; = c(g,t) 

Rj = C O Ri; C = (@)Tcgi; c= &($); $ = $(-,t) (3.33) 

The elements of q are c d e d  the generalied coordinates of the connection. 
This given result for Rj can be reformulated in terms of the Cardan angles cpi of Bi and 

lp' of Bi and the vaxiables g of the connection. With &i = gc, &j = &(cp'), -@ = &(yi) 
and c = &($) it follows that 

B(f-9 = B(yi)B($); 11 = $(f , t )  (3.34) 

'More information on non-holonomic constraints can be found, e.g., in the earlier mentioned book of J. 
Wittenburg or in 'Dynamics of Multibody Systems" by A.A. Shabana (John Wiley & Sons, Inc., New York, 
1989, ISBN 0-471-61494-7). 
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According to the previous section, the velocity V j  and the angular velocity W-j are related to 
and W j  by 

where VTer and WTel are functions of the generalized coordinates q - and the generalized velocities 

Her- c+ = c+( y, t )  and 1-4 = i ]  (Q, t )  are the derivatives of c = c(q, t )  
respect to  q. - * 

(3.36) 

(3.37) 

Simular relations hold for the variations 6Zj and 6?j. They are related to the corresponding 
variations of Bi by 

where 6ëTel and 6ZTel are linear functions of the variation 6q of q: - -  
-i T 

sc',ei = (e ) SCTel;  6cTel = Cq($,t)JQ (3.39) 

As a simple example the hinged bodies Bi and Bi in Fig. 3.1 are considered. Only motions 
in the plane of this figure are possible. The fixed basis gand  the local bases -i and gj are 
chosen, such that ë., ëi and ë{ are perpendicular to the plane of Fig. 3.1. The requirement 
that all motions out of the plane of Fig. 3.1 are suppressed can be represented in mathematical 
form by C o "8 = Si. Hence, the rotation of Bi with respect to @ is a rotation around the 
carrier of ëi, so the Cardan angles $1 and $2 are zero and Cardan angle $3 is equal to the 
angle B between the carriers of ëi and ëi, i.e. 

1 co@) -sin@) O 

O O 1 

To relate W j  to W i  and (derivatives) of ,L3 it is noted that 

-i T -i T 
W j  = G i  t WTez; Grer = ( e  ) +?,el = ( e  ) E($)$ 

WTel = jë. 

Substitution of i] - = [O O BIT in Eq. (3.7) yields E($) - = 21 and therefore 
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Figure 3.1: Bi and B j ,  connected by a revolute EbinSe. 

The second kinematical condition of this connection follows from the requirement that 
the center A of the hinge, seen as a point of B j ,  must coincide with A, seen as a point of Bi7 
i.e. that di + ä = Z j  + b. Hence, 

-2 T -0 

Z j = d i + g  C=ü-b;  c = ? o C = g - e f i o ( g  ) & = g - C &  

The vector ä from M i  to A is ñxed with respect to Bi, so the representation g of Ü in the 
basis ci is constant. Simularly, the vector b from M j  to A is ñxed with respect to  Bj and 
the representation 0 in the basis c j  is constant. This means that the representation g of the 
relative position vector Zin the basis is completely determined by the angle ,û. Hence, this 
connection allows one relative motion of Bj  with respect to Bi and the column q has only one 
component, q = [Pl. 

The velocity Ü j  of M j  follows by differentiation of dj = Zi + Zand C= Ü - b. Because ü 
is fixed to  Bi and bis fixed to Bj their time derivatives satisfy 

-. a;= Gi * a ;  b = G j  * b =  ( G i t  Grel) * b =  (Gi tp,) * b 
and therefore the velocity of M j  follows from 

C= ä - b = W i  * C+ Vrei; 
. . . +  -. -. 

V j  = V i  + c'; Vrei = -Grel rl< b = -j ë3 * b 

As a second example the system in Fig.3.2 is considered. The rigid bodies Bi and Bj are 
connected by a rigid rod of length t. The hinges between the rod and the bodies are kinemat- 
ically ideal (no play). ûnly motions in the plane of Fig. 3.2 are allowed. The vector 5 from 
Mi to the point of attachment Al of the rod on Bi is k e d  to Bi. A simular remark holds 

9 

I 



~ - - - - - ___. - - -- l_-l_ll_ll_-______"___^ 

Figure 3.2: Bi and B j ,  connected by a hinged, rigid rod. 

for the vector Efiom M j  to  the point of attachment A2 of the rod on Bi:  this vector is fixed 
to B j .  As in the first example, the inertial basis s a n d  the local bases @ and Cj are chosen, 
such that ë3, i?; and ë< are perpendicular to the plane of Fig.3.2. 

The kinematical constraints for this system are holonomic and scleronomic and follow 
from the conditions that there is no motion out of the plane of Fig. 3.2 and that the length 
of the rod is constant and equal to e. The first condition is given in mathematical form by 

c o ë; = e; 
As in the first example, this implies that the rotation of Bj with respect to  Bi must be a 
rotation around the axis perpendicular to the plane of Fig. 3.2, so again the Cardan angles $1 
and $2 are zero and Cardan angle $3 is the angle /3 between the carriers of ëi and ëi. This 
results in the same rotation matrix c and the same rotation tensor C as in the first example. 

To give a mathematical formulation for the second constraint it is noted that the relative 
position vector Cis given by Z= Ü t  h'- b, where h is the vector from Al to A2 along the axis 
of the rod. Then this is constraint can be written as 

IlhII = e  ¢$ IIC- at bll = e  
and to satisfy it the angle cy between the carriers of h and ëi is introduced. Then 

h = ie Z= cos(cy)ëi t sin(cy)ëS; C=  ü t i ~ -  b 
and Ilhll = e is satisfied for all values of cy. 

In this example two quantities (a and ,O) are required the describe the position and 
orientation of Bj with respect to Bi. Therefore, the number of elements of q is two and q can 
be defined by 



The rotation tensor Rj of Bi follows from Rj = C o Ri where C is the relative rotation 
tensor from the first example. Hence, the relation between G j ,  G i  and ,û again is given by 

G' = zi + Grel; Grel= jë3 

The position vector Z j  of M j  follows from 

= zi + c'; Z= ü+ h - b; h = 16 Ë= cos(a)ëi + sin(a)ëa 

Differentiation yields a, relation for the velocity 11;j of .Wi with k= ~3 i * E+ a ë3 *  it is seeo 
that 

-b . -  
v'j = v'i + w'i * (a+ eq + be e3 * e- G j  * b = + di * z+ ë3 * (b1.Z- p b )  

If required a relation for can be determined from v'j = Gi + Gi * I?+ .Urel. This yields 
.- 

Grel = ë3 * (bee- B b )  

Finally, relations for the variations 8Zj and &?i as functions of 83', and 6q - are given. 
It follows that 

Often it is not feasible to determine generalized coordinates q and functions c = c(q, t )  and 
= $(g,t)  such that all holonomic constraints are satisfiedfor all values of q. Tien it is 

common practice to introduce coordinates q, such that as many constraints as possible are 
taken into account with = c(q, t )  and $ = $(q,t). The remaining constraints then take the 
form 

- 
.. e -  

&rem(g, i) = O 
and can be seen as (implicit) relations for q. - The elements of q - are called the generalized 
coordinates of the connection. 

As an example the system in Fig.3.3 is considered. The rods between Bi and Bj are rigid 
and the hinges are ideal (no play). Only motions in the plane of Fig. 3.3 are allowed, again 
resulting in the constraint Coëi = ë!. The fact that the rods are rigid leads to the constraints 
Ilh1II = e1 and ~~&~~ = &. These constraints, i.e. C o ëi = ëi, llh1ll = .ti and Ilh2ll = l 2 ,  

can be taken into account by the introduction of the new coordinates s1 al,  s 2  a 2  and 
s3 E ,û (see Fig. 3.3). Then 

-b 

1 CO@) -sin@) O 

O 1 
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Figure 3.3: Bi aud Bi, wouvctes! by tiva h g e d ,  rigid rcds. 

However, in this example there is another kinematical constraint: at each moment the position 
vector Zi + ü1 + hl - b1 + bz of the point of attachment Aq, seen as a point of Bi,  must be 
equal to the position vector Zi + üz + hz of Aq, seen as the end of rod 2, i.e. 

+ - b  a, + hl - bi = a, + hz - bz 

This constraint results in two highly nonlinear equations in al, a2 and B. It is not feasible to 
use these equations to determine two of these quantities, say a1 and a2, as a function of the 
third, B. As a consequence the column g has three elements 41 = al, 42 3 a2 and 43 p, 
which have to satisfy two constraint equations. 

- 

3.2.4 Dynamical quantities. 

Characterization of the connection between Bi and Bj requires a description of the forces and 
torques that can be exerted by that connection on Bi and Bi.  The basic idea is to  remove the 
connection and to replace it by the forces and moments it exerts on the connected bodies. 

Let 2' be the force and @& (k = i , j )  be the moment with respect to Mk, exerted by 
the connection on Bk. The third law of Newton ("act2on=-reaction") states that Bk exerts a 
force -Fk and a moment -@& on the connection element. Because this element is massless 
the equations of motion degenerate to the equilibrium equations 

+ = 0; @.& + + c* @ j  = 0 (3.41) 

The virtual work 6A of the forces and moments on the connection element is given by 
4 .  

6 ~ =  ~ ~ ~ o ~ , - i _ ~ j o ~ ~ j _ ~ ~ o ~ ~ ~ - ~ ~ o ~ ~ j  (3.42) 
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With 6Zj = 6Zi + 6Zi * Z+ 6ZTel, 6 R j  = 6s' + 6KTel and the equilibrium equations this can 
be written as 

6A = -#j O 6ëTel - M j  O 6KTel (3.43) 

As discussed in the previous section it is possible to eliminate all or some of the holonomic 
constraints: introduce a set q of generalized coordinates and determine functions c = c(-, t)  
and $ = $(-,i) such that tiose constraints are satisfied for all values of q. The variations 
SZ,.,l and then are linear combinations5 of 6q: ,. 

= ( e  -i ) T 6s; 6s = c+6- 

With these results for 6ZTel and 6ZTei the virtual work 6A can be written as 

6A = 6qTr (3.44) 

where the column &' of connection forces is defined by 

(3.45) 

Hardly any general rule can be given for the forces and torques, that can be exerted by a 
connection element: they strongly depend on the connection at hand. For that reason only 
some examples are given. 

The first example is the connection of Fig.3.1, i.e. a hinge between Bi and B j .  Suppose 
that Bj is driven by an actuator in this hinge. Let A? = rë3 be the moment, that is exerted 
by this actuator on B j .  The hinge can also transmit a force between Bi and B j .  Let F be the 
force that is exerted in the hinge on Bj .  According to the third law of Newton, the actuator 
also exerts a moment -a on l? and Bj exerts a force -F on Bi. Hence, the resulting force 

on Bi ,  the resulting moment it& on Bi with respect to Mi, the resulting force F j  on Bj  

and the resulting moment dL on Bj with respect to M j  are given by 
-. -.. -. Pi = -F;  M b  = -Te3 - ä * F ;  E ; j  = +F; ML = +re3 + b* E; 

where ü and b are the vectors from Mi, respectively M j  to the hinge. 
The virtual work 6A of these forces and moments can easily be determined, yielding 

where /3 is the rotation of Bj with respect to Bi.  Hence, the contribution of the force F, 
transmitted in the hinge between Bi and B j ,  is equal to zero. This force is required to 
maintain the kinematical constraint of this connection and is called the constraint force 
of the connection. The fundamental theorem of Lagrange mechanics states that constraint 
forces never contribute to the virtual work if the variations of the position and orientation of 

5As in the previous section c+ = c+(g,t) and -4 = qú (g,t)  are the derivatives of c = c(o , t )  and $ = $(g,t)  * 
with respect to q. 
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the connected bodies are kinematically admissable. 

As a second example the system of Fig.3.2 is considered again. In each of the hinges an 
actuator is build in. Let I& = ~1ë3 be the moment, exerted on the rod by the actuator in Al 

and let = 79’3 be the moment, exerted on Bj  by the actuator in AZ.  Then, by the third 
law of Newton, there is a moment 

Apart from these moments also forces can be exerted by the rod on Bi and Bj and, as 
a coseepnence o€ the t ~ s d  law o€ Newton, by these boaes OB the sod. Let fi be the forcej 
exerted in Al by Bi on the rod and let $2 be the force, exerted in A2 by Bj on the rod. Then 
the equilibrium equations of the connection element are given by 

in Al on @ and a moment -a2 in A2 on the rod. 

- b - b +  

F1 + F2 = O ;  ~1ë3 - ~2ë3 + h * F 2  = Ö 

where h = tb i s  the vector from Al to A Z .  

the corresponding quantities for Bj follow from 
The resulting force fi on Bi, the resulting moment A& on Bi with respect to Mi and 

-6 4 

pi  = -F1; A& = - ä *  Fi 

The virtual work 6A of the forces and moments on the connection element follows from 

+ 6sj o @ j  + 6nj o M j  6~ = 6zi o $ i  + 6ni o 

With 6Zj = Mi + 6ü + Sh - 6b = 6Si + 6ni * ä i- Sh - 6n-j * b this relation can be simplified. 
After some elementary calculations it is seen that 

S A  = F2 O [ - ~ h  + mi * Z] + r2ë3 o ( s n j  - 6 n i )  

From the previous section it is known that 6h - 6Zi * h = Sa ë’ * h and 6i i j  - 6gi = 6Pë3 
and therefore 

6A = T ~ S C Y  -t 726P 

It is seen again that the constraint forces $1 and $2, required to maintain the kinematical 
constraints of this connection, do not contribute to the virtual work. 

As a final example the system of Fig. 3.3 is considered. The motion of Bj with respect to Bi 
is controlled by an actuator in Al between rod 1 and Bi. The moment of this actuator on 
the rod is given by A? = rë3. Bi exerts a force $1 on rod 1 and a force $3 on rod 2 while f3j 
exerts a force F2 on rod 1 and a force $4 on rod 2. According to the third law of Newton rod 
1 exerts a moment -A? and a force -p .  on Bi and a force -@2 on B j .  Besides, rod 2 exerts 
a force -$3 on Bi and a force -F4 on B j .  

The rods are massless, so the resulting forces and moments on each of the rods have to 
cancel. This yields the equilibrium equations for the connection: 

F1 + $2 = 0; re3 -/- hl * $2 = ö; F3 + F 4  = ö; h2 * $4 = ö 
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where hl and 6 2  are the vectors along the rods. 
The resulting force F i  and resulting moment A?& with respect to Mi, exerted by the 

connection on Bi ,  and the resulting force F j  and resulting moment i@& with respect to M i ,  
exerted by the connection on B j ,  are given by 

To arrive at a relation for the virtual work 6A it is noted that 6i i j  and SZj satisfy 

û?j = ûii' + û ~ ë 3 ;  6 ~ j  = 62'" + 67ii * ü1+ 6 ~ '  * hi + 6alë3 * hi - 63' * bi 
Substitution in 6A = P i  o 
calculation, that 

+ F j  o 621 + A? i o 6?' + A ? j  o â i i j  yields, after a fairly prolix 

6A = + F4 O (Sf* - 6s) 
where f i s  the position vector of the center of hinge A4, seen as a point of body B i ,  and J* 
is the position vector of this center, seen as the end point of rod 2: 

As stated in the previous section the constraint f = f *  is not taken into account in the 
definition of the generalized coordinates q1 al, q2 3 cy2 and 43 E B of the connection, so 
it is not required a priori that Sf = 6g* and a term 3 4  o (Sf* - Sf), representing the virtual 
work of the constraint force in hinge A4, shows up in the relation for 6A. However, it is seen 
6A = d a l  as soon as the constraint = g* is also taken into account: the variations 6q then 
must satisfy 6g* = 6J. 

The connection elements in all examples discussed until now can not store or dissipate energy. 
However, often connections do not or not only restrict the relative motion of the connected 
bodies but also store or dissipate energy. Again hardly any general rules for modelling con- 
nections of this type can be given since the variety in possible connections is too large. For 
that reason only some simple examples are given. 

., 

In the first example again the system of Fig.3.1 is considered but now it is assumed that 
damping occurs in the hinge. This damping is modelled by a linear, viscous damper (damp- 
ing coefficient b ) ,  parallel to the actuator. Because the angular velocity of Bi with respect to 
Bi is equal to ,b this damping results in a moment -b,bë3 on Bj and, according to the third 
law of Newton, a moment +b,bë3 on Bi. Hence, in the hinge a resulting moment ( T  - b,b)ë3 is 
exerted on Bj  and a resulting moment -(T - b&3 on Bi. All results of the previous section 
for the system in Fig. 3.1 remain valid if T is replaced by T - bb.  This means, for instance, 
that the virtual work SA for this system with viscous damping is given by 

6A = (T - b,b)6P 
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Figure 3.4: Bì and B j ,  connected by a spring and a damper. 

In a final example the system in Fig. 3.2 is considered again but now the actuator is removed 
and the rigid rod is replaced by a parallel assembly of a linear, elastic spring (stiffness I C ,  
unstressed length 40) and a linear, viscous damper (damping coefficient b j .  The kinematical 
constraint in this case follows from the requirement that the connected bodies only move in 
the plane of Fig.3.2 and can be taken into account with the angle /3 between the Si and ëi. 
The distance 1 between Al to  A2 is not constant now but follows from 

e = Ilhll; h = zj + 6 -  (.i + ä) 

The connection can only transmit forces along its a x i s ,  i.e. along the carrier of h. Hence, the 
force p2, that is exerted in A2 on the spring-damper assembly by B j ,  must be a vector in the 
direction of the unit vector Ëalong this axis,  i.e. 

-b 1- F 2 = F e  Ë = - h  e 
Here F is the sum of the force in the spring and the force in the damper, i.e. 

F = k ( 1 -  10) + b e  

Equilibrium of the massless connection requires that the force Fl, exerted in Al by Bi on the 
connection, is equal to -172, so 

$1 = -22 = - F e  F = k ( l  - l o )  + b e 
Since the connection can not transmit torques the moments in Al and A2 are zero. This 
means that the resulting force pi and the resulting moment M i  with respect t o  Mi, exerted 
on Bi by the connection, and the resulting force p j  and the resulting moment dj with 
respect to M i ,  exerted on Bj by the connection, are given by 

-. -. p i  = - F l =  + F e  M i  = -a * F1= + F a  * 3 
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The relation for the virtual work 6A of the system with this connection is quite different 
Com the relation for the system with a connection in the form of a hinged rigid rod. The 
reason is that the rigid rod results in the constraint Ilhll = 1 = constant and therefore 
restricts the motion of Bj with respect to Bi: the position vector Z j  of M j  has to satisfy 
Z j  = Zi  + Ü+ í!E- b, where í! is constant and E'= cos(a)ëi + sin(a)ëa. Hence, í! is not a 
degree of freedom for the connection with the rigid rod: for that connection only a and ,û are 
degrees of freedom. However, for the connection with the spring and the damper also í! is a 
degree of freedom. This has consequences for the virtual work. After some straight-forward 
calculations it is seeE that 

1 6A = F61= [h(1-  40) + = 6[sh((e - + bi61 
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Chapter 4 

Equations of motion for multibody 
svsterns. U 

4.1 Intrsductiom. 

An essential assumption in the "classical" theory €or multibody systems is that the system can 
be divided in rigid parts with mass, the rigid bodies, and parts without mass, the connections. 
All parts with mass must be rigid and all flexible parts must be massless. This assumption is 
very restrictive. It excludes, for instance, flexible manipulators but is nevertheless adopted in 
this chapter. Unless stated otherwise it is assumed that the bodies move in three-dimensional 
Euclidian space E. 

The equations of motion of a multibody system relate dynamical quantities (resulting 
forces and moments on the rigid bodies) to kinematical quantities (linear and angular accel- 
eration). The derivation of these equations requires a specification of the relevant dynamical 
and kinematical quantities. In the next section first kinematical quantities are considered. 
Attention is focussed on the attitude coordinates of the bodies, on kinematical constraints 
and on the introduction of generalized coordinates to take these constraints into account. As 
soon as the attitude coordinates are written as functions of the generalized coordinates the 
linear and angular velocity and acceleration of all bodies can be determined by differentiation. 

Two different approaches can be distinguished to arrive at the equations of motion for a 
multibody system. The first approach is based on the laws of Newton and Eder,  the second 
on some energy principle. Examples of these approaches are given in the last sections of this 
chapter. There also some results of general validity for the final set of equations of motion 
for multibody systems are presented. 

It is noted that the discussion in this chapter is fairly ad hoc: much of the theory is not 
presented in a general context but only sketched and illustrated for some simple examples. 

4.2 Kinematics of multibody systems. 

Let q, be the number of rigid bodies in the considered system. These bodies are numbered 
from 1 to nb. The body with number i is denoted by Bi. In Bi (i = 1,2, .  - - , nb) an orthonormal 
vector basis ei, the local basis, with origin in the center of mass Mi of Bi is defined. This 
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basis is k e d  with respect to Bi,  i.e. ëi, ëi and ëi are moving along with Bi. 
The environment of the system, the fixed world, is denoted by Bo. It is used as the 

reference for the motion of the bodies in the system. The orthonormal vector basis Zo, that 
is fixed with respect to Bo, is called the fixed or global basis. For simplicity it is denoted 
by efinstead of eo. 

The position and orientation of Bi ( i  = 1,2, a ,  nb) is determined completely by the 
position vector $ Com the origin U of the global basis to Mi and by the rotation tensor Ri, 
which maps the global basis zon the local basis c, i.e. 

In practice it is very clumsy to describe the orientation of Bi with a rotation tensor, because 
this tensor has to satisfy the orthogonality condition (Ri)T o Ri = I. As a consequence, the 
matrix representation & of this tensor, 

- Ri = efo Ri o (a)= e Ri = (-$)T&i g, 
has to satisfy the condition (&)TB = I and the entries of & can be written as functions 
of three independent quantities, e.g. Euler or Cardan angles1. Only Cardan angles are 
considered here. For Bi they are denoted by (pi, (Piz and (pi and are seen as the elements of 
a column pi. Then the relation between E’ and pi is given by - 

1 - [ ‘1; c 1 s 3 ~ s l S 2 c 3  sls3-clS2c3 

-c2s3 c1c3 - slS2s3 SIC3 + clS2s3 - Ri = &(yi); &(Y) - 
-s1 c2 c1 c2 

where c, = cos(cp,) and s, = sin(cp,). The Cardan angles cpi determine the rotation matrix 
- R’ and also the rotation tensor Ri = @‘)Tg c. Therefore, the position and orientation of Bi 
can be described with Zà and cpi - or with the attitude coordinates gi of Bi: 

where gi is the matrix representation of Zi with respect to the global vector basis g, i.e. 

Z L ( g ) T g i  g”ef0Z’ 

The total number of attitude coordinates for nb rigid bodies in three-dimensional space E 
is equal to nz = 6.nb. These coordinates are the elements a column g E Rn2, 

The connections between the bodies and between the bodies and the k e d  world can induce 
‘See, for instance, the appendix on vectors and tensors or “Dynamics of Systems of Rigid Bodiek by J. 

Wittenburg (B.G. Teubner, Stuttgart, 1977, ISBN 3-519-12337-7). 

2 



kinematical constraints on the possible motions of the bodies. Only holonomic constraints 
are considered here. They are discussed in some detail in the previous chapter. 

Let nt be the number of independent kinematical constraints, given by 

Then nt attitude coordinates can be eliminated and written as functions of the other nf = 
n, - nt coordinates. An alternative is to introduce a set 9 of nf degrees of freedom and to 
write the attitude coordinates as functions of g, i.e. g = g ( g , t ) ,  ,. such that the constraints are 
satisfied for aJl g and t: 

& t ( g ( g , t ) , t )  = g, vg E Rnf,  V t  E R 

As argued in the previous chapter it is not always feasible nor advantageous to try to find 
a set g and functions g = &,t), such that all constraints are satisfied for all values of g. In 
that case the set & ( g , t )  = 0 can, eventually after renumbering, be partitioned in 

where b , ( g ,  i) = 0 represents the nt - n, constraints that are taken into account in the choice 
of the new coordinates while br(g,t) = 0 represents the n, constraints that are left out of 
consideration in this choice. To emphasize that these new coordinates are not based on all 
constraints they are called generalied coordinates instead of degrees of freedom and the 
column with these coordinates as elements is denoted by q instead of g. Then - 

z = do, t); k e k ( $  t),  t )  = 0, E R"'I, E 

where nq is the number of elements of q: 

nq = 6.nb - (nt - n,) = nz + n, - nt 

The remaining constraints br(g, t )  = 0 can be rewritten in terms of q and t ,  resulting in 

Important topics in a discussion on the kinematics of multibody systems are 

1. formulation of the kinematical constraints 

2. choice of the generalized coordinates q, based on all or part of the kinematical constraints 

3. determination of the relation between the attitude coordinates g on the one side and q 

- 
- 

and t on the other hand 

4. formulation of eventual remaining constraints in terms of q and t - 
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In general, none of these topics will cause essential problems for technical systems: technical 
connections like prismatic, revolute or spherical joints are fairly easy to characterize, as was 
shown in the examples in the previous chapter. This means that the choice of the generalized 
coordinates usually is straightforward. It turns out that, as a rule, the determination of the 
relation between 2, q and t is merely a problem of correct book-keeping. Also the last item 
mentioned above generally does not give rise to large difficulties since a formulation of the 
kinematical constraints in terms of g and t usually is fairly simple and reformulation in terms 
of q and t is merely a book-keeping problem. 

From z = ~ ( q ,  t )  the attitude coordinates gi of Bi (i = 1,2,. e ,  nb) can be extracted. Written 
in terms of i& partitions, ie. in terms of the Cartesian coordinates %i of Mi and the Cardan 
angles cp', this results in - 

For the position vector 2i of Mi and the rotation tensor Ri of Bi it is seen that 

Differentiation of these relations with respect to t yields relations for the velocity Vi of M i  

where the matrix functions 
li = zi(q, i), respectively <pi - = yi(!, t )  with respect to q while = t.&.t(y, t )  and qkaTt = 
gkaTt(y,t) represent the derivative of si = g i ( q , t ) ,  respectively cpi = yi(y,t) with respect to 
t. With these results V i  and W i  can be written as2 

= xi(o,t) and -i = @ ( g , t )  represent 

m .  

where 
given by 

depends on <pi only. Because the elements of cpi are Cardan angles this matrix is 

1 -I 0 sin(cp1) cos( 91) cos( p2) 

1 0  sin(cp2) 
wi = E($); E(-) - O cos(cp1) - sin(cp1) cos('p2) 

t is seen that 

the derivative of 

'Further information on this subject can be found in, e.g., the appendix on vectors and tensors and in the 
earlier mentioned book of Wittenburg 



Relations for the acceleration of M i  and for the angular acceleration of Bi can be found be 
differentiation of these relations for V i  and w' '. This straightforward process results in fairly 
bulky equations, that are not given here. 

Analogous to  the results for V i  and Gi also relations for the variation Ei of the position 
vector of Mi and for the angular variation Sai of @ can be derived. This results in 

SZi = (ef)TSgi; 6-i = Z.(Q,t)6Q 

69 i = (g)T Ti; 6-i = Ei Spi; S(pi = gi (Q, t)6g 

The generalized coordinates q must satisfy the remaining constraints kTem(q,t) = 0. Vari- 
ations of q, such that both iTem(g,t)  = 0 and kTem(y + Sq,t) = 0 are satisfied, are called 
kinematically admissable. If the derivative of k,,, = iTem(g,t) with respect to q is de- 
noted by K = K(Q, t) ,  i.e. if 

k T e m  (g + 60, t )  = kTem(g, t )  + K(Q, t )6$  

K(g,t)6q = 0 

€or all infinitesimal 6q, then Sq is kinematically admissable if 

Kinematically admissable variations play an important role if the equations of motion of the 
multibody system are derived, using an energy principle. 

To illustrate the previous description of the kinematics of a multibody system the simple 
crank-shaft mechanism of Fig.3.1 is considered. The bodies B1 and B2 are rigid and all 
motions of B1 and B2 out of the plane of this figure are suppressed. The revolute joints (hinges) 
Al and A2 allow relative rotations only. The combination of a revolute and a prismatic joint 
A3 permits both a rotation of B2 with respect to the fixed world and a translation in horizontal 
direction. The center of mass M1 of B1 is located on the line from Al to A2 on a distance c1 
from A1 and the center of mass M 2  of B2 is located on the line from A2 to A3 on a distance 
cg from A Z .  

The global basis vectors ë1 and ë3 are horizontal, respectively perpendicular to the plane 
of Fig.3.1. The origin S is on the line between Al and A3 at a distance a1 from Al. The 
local basis vector ëi on @ (i = 1,2) is perpendicular to the plane of Fig.3.1. Furthermore, 
the local basis vector ëi on B1 is directed from Al to A2 and the local basis vector ë: on B2 
is directed from A2 to A. 

Because Bi (i = 1,2) can only rotate in the plane of Fig. 3.1 the Cardan angles (p: and (pi 
of Bi are zero and the orientation of Bi can be characterized by the angle (pi E ,f3; between 
the carriers of global basis vector ë1 and the local basis vector ëi: 
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Figure 4.1: Crank-shaft mechanism. 
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Two Cartesian coordinates are required to describe the position of Mi (i  = 1,2) since the 
coordinate of M i  in &-direction is equal to zero, i.e. Si  o ë3 = O. 

The hinge Al suppresses displacements of B1 in Al with respect to the fixed world: the 
position vector of Al, seen as a point of B1, must be equal to ü1 = -që-. Therefore, the 
position vector Z1 of M1 can be written as 

3' = -qël+ c1e -1 = -që1 -t c1 cos(Bi)ël t c1 sin(&)ë2) 

and it is seen that Z1 is determined completely by pl. The hinge in A2 suppresses all relative 
clispiacements of B' and B2 in this point: the position vector of A2, seen as a point of 
B1, must be equal to the position vector of AZ, seen as a point of B2. This means that 
S1 + (11 - c1)ë; = S2 - c2ëS and therefore 

I = -a1ë1 te,ë; t c2ë; 

With the earlier given relations for Z1, ëi and ë: it follows that Z2 is determined completely 

The kinematical constraint, induced by the connection A3, is that the vertical coordinate 
by Pi and B2.  

of AB, seen as a point of B2, must be zero, i.e. that 

-27 - 
ë2 o t (e2 - c2)e1j - 11 sin(P1) + 1 2  sin@) = û 

It is possible to solve ,4 from this nonlinear relation as a function of BI. Then Z1, S2, y1 
and (p2 are functions of ,& only and ,û1 can be considered as the only degree of freedom of this 
system, i.e. g = [Bi]. However, the resulting functions for Si, S2 and (p2 ,. are highly nonlinear 
and very cumbersome to handle. For that reason it is attractive to introduce two generalized 
coordinates q1 E /31 and q2 = ,&, i.e. 

and accept that these coordinates have to satisfy the remaining constraint 

11 sin(,&) t l 2  sin(P2) = 11 sin(q1) t 1 2  sin(q2) = O 

The angular velocity W i  and the angular variation 6R' (i = 1,2) are given by 
. .  

W' = pie3 = q;ë3; 6Ri  = 6P;ë3 = 6Qië3 

Finally, the velocity V i  of M i  (i = 1,2) can be determined by differentiation of the given 
relations for the position vectors Zo Mi. This yields 

V1 = c1ë: = c,W1 * ë; = C&ë3 * ë; = clpie; = ClQ& 

If required the linear and angular accelerations can be found by differentiation of these rela- 
tions for Vi, g2, W i  and G2. 

7 



4.3 Dynamics of multibody systems. 

4.3.1 Introduction. 

The theory of multibody dynamics focusses on the derivation and solution of the equations of 
motion in terms of (derivatives) of the generalized coordinates. Two quite different approaches 
to arrive at these equations can be distinguished. The first approach is based on an imaginary 
experiment in which all connections in the system are removed and replaced by the forces and 
moments they exert on the bodies. After that, the laws of Newton and Eder  are applied to 
each of the "isolated" bodies to arrive at a set of equations of motion for the original system. 
In this set the constraint forces and moments, i.e. the forces and moments to maintain the 
kinematical constraints, play an important role. Their elimination usually is very laborious. 
This is an important drawback of this otherwise very generally applicable approach. 

The second approach is based on some energy principle, for instance the principle of virtual 
work or the principle of d'Alembert. Energy principles offer a basis for some very powerful 
(approximation) methods like the finite element method. 

For dynamical, mechanical systems there are many specialized energy principles that can 
facilitate the derivation of the equations of motion. Examples are the principle of Hamilton, 
the principle of Jourdan and the principle of Lagrange. The last mentioned principle is of 
special importance. It results in the so-called equations of Lagrange. The application of these 
equations is the subject of the last subsection. No attention is given here to the backgrounds 
of these equations since these can be found in, for instance, "Dynamics of Multibody Systems" 
by A. Shabana (John Wiley & Sons, New York, 1989, ISBN 0471-61494-7) or in any advanced 
text-book on dynamics of mechanical systems. 

4.3.2 

A connection between two bodies (or between a body and the environment) can exert forces 
and moments on the connected bodies. These forces and moments can be distinguished in 

Application of the laws of Newton and Euler. 

o constraint forces and moments, required to maintain the kinematical constraints. There 
is one constraint force or moment for each kinematical constraint, so there will be nt 
constraint forces or moments. 

o other forces and moments, e.g. due to actuators in the connections, due t o  the gravita- 
tion field or due to dissipation or storage of energy in connection element. This is the 
case if the connection consists of springs, dampers, flexible beams, etc. 

The third law of Newton ("action=-reaction") states that, if a connection exerts a force 
and moment on a body, then that body exerts an equal but opposite force and moment on 
the connection. Because the connection elements are assumed to be massless the resulting 
forces and moments on each of these elements have to cancel, i.e. each element has to be in 
equilibrium. 

The momentum p'i of @ (i = 1,2, ., nb) and the moment of momentum x i  of Bi with 
respect to M i  are related to the velocity iii of Mi and to the angular velocity W i  of Bi by 

8 



where mi is the mass of Bi and Ji is the inertia tensor of Bi with respect to Mi. As discussed 
in the previous section, iii and Gi can be written as functions of nq generalized coordinates 
Q and their first derivative r j ,  the generalized velocities. Both V i  and G i  are linear in r j ,  so pi 
A d  Zi are also linear in 4.- 

The second law of Nekton states that the derivative of the momentum pi is equal to the 
resulting force Fi on Bi (i = 1 , 2 , . . - , n b ) .  Furthermore, the law of Eder (in fact a special 
form of the second law of Newton for rotating rigid bodies) states that the derivative of the 
moment of momentum l i  with respect to the center of mass of Bi is equal t o  the resulting 
moment i on 6' with respet to this eertber of mass. Application of these laws results in 

where J i o W i  = Oi*(J1 02;)  (see the chapter on the dynamics of one rigid body). Therefore, 
the equations of motion for Bi (i = 1,2, - * a ,  na) can be written as 

-b .  . .  
F a  =miv t ;  Q i =  Jio$i++Wi*(JioGi) (4.4) 

and because both V i  and G i  are linear in the generalized velocities r j  it follows that the right 
hand sides of these equations are linear in S. 

For motions in three dimensional space these equations of motion for B1, B2, m.., B"b 

represent a set of 6.nb second order differential equations. The unknown quantities in these 
equations are nt constraint forces and moments and nq generalized coordinates. The number 
of generalized coordinates is given by nq = 6.nb - (R - n,), where n, is the number of the 
remaining constraints kTm(q, t )  = 0. Hence, the number of unknowns nt t nq = 6.nb + n, is 
equal to the number of equations (6.nb second order differential equations and n, remaining 
constraints) . 

., 

- 

., 

As an example again the system of Fig. 3.1 is considered. It is assumed that the global basis 
vector ë3 is an eigenvector of the inertia tensors J1 of B1 and J2 of B2. The corresponding 
eigenvalues are denoted by J1 and J2, i.e. 

J1 O 453 = J1 ë3; J2 O ë3 = J2 ë3 

An actuator in the revolute joint Al can exert a moment T ë3 on B1 and, as a consequence of 
n action=-reaction", also a moment -T ë3 on the fixed world. The gravitation field results in 
vertical forces -mlgë2 in M1 and -m2gë2 in M2. Furthermore there is an external, horizontal 
force -Fë- in A3 on B2. The constraint forces in the revolute joints A1 and A2, required 
to suppress relative displacements of the connected bodies, are given by the force f 1  in Al 
on B1, the force I3 in A2 on B2 and ( "action=-reactionB!) a force -f" in Al on the ñxed 
world and a force - f l 2  in AZ on B1. Finally, there is a constraint force in the connection A3. 

Here only the vertical displacement of B2 is suppressed and therefore the constraint force is 
a vertical force Në2 on @ and a vertical force -N& on the ñxed world. 

The other forces on B1 and B2 are caused by damping in the connections. For simplicity 
only linear, viscous damping is considered. The rotational damper in the hinge Al (damper 
coefficient bl) exerts a moment -b&& on B1 while the rotational damper in the hinge A2 

(damper coefficient b2) exerts a moment -b2(,& - ,&)& on B2 and ("action=-reaction") a 
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Figure 4.2: Forces and moments on the "isolated" bodies. 
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moment +b2(/32 - Pl)ë3 on B1. The linear damper in A3 (damper coefficient b3) results in a 
force -b32A3ë-1 on B2, where kA3 is the horizontal velocity of AB. Because 

= -alël t elei + ZA3 = ZA3 O = -a1 t e1 co@1) t e2 cOs(B2) 

this velocity is given by 

= -41 41 sin(P1) - 1 2  /32 s in(~2)  

$1 mi $1 = F1- m1gë2 - F2 

Application of the laws of Newton and Edes to B1 and B2 sesdts in 
+ - 

where Vi,  W l ,  ü2, W and the local basis vectors ëi, ëi on B1 and ëi, 22 on B2 follow from 

vi &l. , 2 - =  -1 -aië1 -/- clei; G' = b1ë3 

The constraint forces and $2 can be solved easily and eliminated. Then, using J10ë3 = Jië3 

and J 2  o ë3 = J2ë3, finally two second order differential equations for /31 and /32 are found. 
These equations are very bulky and are not given here. However, the unknown constraint 
force N in the connection A3 shows up in these equations and to arrive at a complete set the 
differential equations must be supplemented with the remaining constraint 

4.3.3 

The formalism of Lagrange offers a very systematic approach to find the equations of motion 
for mechanical systems. The derivation of this formalism from the laws of Newton and Euler 
is omitted here but can be found in any advanced text-book on the dynamics of mechanical 
systems. 

Central notions in this approach are the kinetic energy of the system and the virtual work, 
done by the forces3 in and on the system. First attention is given to the kinetic energy and 
the virtual work. After that the formalism of Lagrange is given and applied in an example. 

Application of the equations of Lagrange. 

'In this subsection the word "forces" will be used in a generalized sense and will denote both forces and 
moments. 
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The kinetic energy of body Bi ,  denoted by Ti, is given by (see, for instance, the chapter 
on the dynamics of one rigid body) 

where the velocity Vi of the center of mass Mi and the angular velocity cbii of Bi are linear 
functions of the generalized velocities 4 and, in general, nonlinear functions of the generalized 
coordinates q. - As a consequence, Ti is a quadratic form in the generalized velocities, i.e. 

Ti = PqTM 2 -  --o * (44 

where Mi is the mass matrix of Bi. The entries of this matrix of dimension (nq * nq) can 
depend on q but not on 4. 

An eventual skew-symmetrical part of & does not contribute to Ti. Therefore it may be 
assumed, without any restriction, that M .  is symmetrical. Furthermore, mi # O and Ji is a 
positive definite tensor, so Ti > O if Ü i  # O or W i  # Ö. Hence, & is at least semi-positive 
definit e4 : 

- - 

-- 
M; =A&; 2 o; &. = %*(o) (4.7) 

The total kinetic energy T of the system is the sum of the kinetic energies T I ,  Tz, - , Tnb 
of the individual bodies, i.e. 

where is the total or system mass matrix. Of course, M is symmetrical and its entries 
can be functions of q but not of 4. Besides, M i s  at least semi-positive definite. Since each 
q # 0 results for at least one body, say body Bi, in a velocity V i  # Ö or W i  # Ö and therefore 
in a kinetic energy Ti > O it is seen that T > O for each q # 0. Hence, the total mass matrix 
- M is positive definite, so 

- 

- M = M T ;  M >  O; M = M ( q )  (4.9) 

The forces in the system can be divided in external forces (for instance due to gravitation or 
due to an actuator between a body and the environment), internal forces (for instance due to 
actuators between bodies, or due to  friction and damping in the connections) and constraint 
forces. The constraint forces can be split in so-called remaining constraint forces, required to 
maintain remaining constraints and constraint forces, required to  maintain constraints that 
are already taken into account in the choice of the generalized coordinates. The fundamental 
law of Lagrange mechanics (in fact a special version of the law of ”action=-reaction”) states 
that the virtual work, done by the constraint forces of the last kind, is equal to  zero for all 
variations Sq of the generalized coordinates. Furthermore, this law states that the virtual work 
of the rema&ng constraint forces is equal to zero for all kinematically admissable variations, 

‘It can not be concluded that g. is positive definite because there may exist columns q # 9 for which 
8’ = Ö and also w’ i = Ö and therefore Ti = O. 

12 



i.e. for all variations 6q of q, such that K6q = 0, where K = K(9,t) is the derivative of 
k,, = kTm(9,t)  with respect to q. The virtual work JA, of the remaining constraint forces 
for a variation 6q is proportional to Sq and can be written as 

I 

- 
SAT = (k)TQ, 

8, = K T ( g , t ) A  (4.10) 

The earlier mentioned fundamental law of Lagrange mechanics implies that 6A, = O for all 
kinematically admissable 6q, i.e. if K 6 q  - = 0. Hence, the nq elements of Q, can be written as 

where 

constraint forces). Then 6A is proportional to 6q and can be written as 

is a column with only n, elements. 
Let 6A be the work, done by all internal and external forces (i.e. by all forces except the 

6A = (6q)TQ (4.11) 

The elements of Q are called the generalized forces. They can be considered as the relevant 
resultants of the internal and external forces. 

- -  

The total virtual work SAt of all forces is the sum of 6A, and 6A, i.e. 

6 4  = (6#Qtr Qt = Q -k $2, = Q +KTX (4.12) 

The heart of the formalism of Lagrange is given by the so-called equations of Lagrange. These 
equations relate partial derivatives of the kinetic energy with the generalized forces: 

(4.13) 

The left hand side of this equation, the so-called inertia term, deserves further attention. 
From T = !$Af+ and the fact that the entries of Af can depend on q but not on 4 it follows 
that 

- - 

For brevity a matrix G of dimension nq * nq is introduced, such that column i of G is equal 
to the partial derivative of Mq with respect to qi 

Then it is readily seen that5 

(4.15) 

'This result does not mem that & = G because both & and G depend on q. 
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and that the inertia term can be written as 

Substitution in the equations of Lagrange yields (Ma)& t (&)k - $(cT$)k = &t& for k = 
1,2, - - ., nq or, written in matrix form 

1 
2- - xi+& - -GTq = Qt = Q +KTA 

Because &e = Gq it follows that &q = i&$ t iQ. This leads to  the final form of the 
equations of motion as derived with the Lagrange formalism: 

(4.16) 

The mass matrix M is symmetrical and positive definite and therefore special procedures 
can be used if these differential equations have to be solved numerically. Another remarkable 
property of these equations concerns the matrix c. It is readily seen that c - is equal 
to a@-@) and therefore is skew-symmetrical. This property is of eminent importance, for 
instance for stability proofs of computed torque and adaptive controllers. 

The equations of motion form a set of nq second order difierential equations for na gen- 
eralized coordinates and n, constraint quantities & To arrive at a complete set of equations 
the equations of motion must be completed with the n, remaining constraints, i.e. with 

To illustrate the Lagrangian approach to derive the equations of motion again the crank-shaft 
mechanism of the previous subsection is considered. With the results of that subsection it is 
easily seen that 

L 

Substitution in the relation T = Ti + 2’2 for the total kinetic energy T yields 

With this symmetrical and positive 
and c can easily be determined: 

definite mass matrix as the starting point the matrices G 

The work &A,. of by the remaining constraint force N in the connection A3 follows from 

&A, (&#-,. = 6 2 ~ 3  û (N&) 
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and indeed Q, = KTJ because in this example the remaining constraint is given by 11 sin(/?l)+ 
1 2  sin(B2) = O and therefore K = [11 cos(B1) 1 2  cos(p2)]. Furthermore, has only one element 
and that element can be interpreted as the normal force N ,  required to maintain the remaining 
constraint. The virtual work SA of the internal and external forces is given by 

6A E (6q)'Q .,.. = [T - bl& + b2(fi2 - ,&)]bpi - mlgZ2 O SZ1+ 

- b2(& - jl)Sp2 + m2gë2 0 6Z2 - (F + b3iA3)ël 0 82A3 

or, written in matrix form, by 

SA = (Sq)TQ - -  
where the column Q - of generalized forces is defined by 

The final set of equations for the unknown generalized coordinates q1 and 42 = ,& and 
the unknown remaining constraint force N therefore is given by two second order differential 
equations (the equations of motion) plus one algebraic equation (the remaining constraint): 

4.3.4 Some concluding remarks. 

The discussion in this chapter concerned the derivation of analytical expressions for the equa- 
tions of motion for a multibody system with massless connections and rigid bodies. Two 
approaches are sketched. The approach, based on isolation of each of the rigid bodies and ap- 
plication of the laws of Newton and Eder, is very generdy applicable. However, elimination 
of the constraint forces from the obtained equations often is very laborious. The approach, 
based on the equations of Lagrange, requires the introduction of abstract notions like the 
kinetic energy and the virtual work. However, as soon as the quantities are determined as 
functions of the generalized coordinates the rest of the derivation is very systematic and can 
be done by hand or by a symbolic manipulation program, like MATHEMATICA,  M A P L E  
or REDUCE. 

For simulation purposes often software packages like DADS or ADAMS are used. In 
these packages the generalized coordinates are calculated by numerical integration of the 
equations of motion. Several methods are developed to obtain these equations. It is not 
possible to discuss any o€ these methods here. For more in€ormation the reader is re€erred to 
the theoretical manuals and the user manuals of these software packages. 
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Appendix A 

Vectors and tensors. 

h this appendix some essentials of the calculus of vectors and tensors are mentioned. First 
vectors, operations on vectors, matrix representation of vectors and vector functions are 
considered. Next a simular treatment of tensors is given. Finally, the last section gives a 
more detailed discussion on a special kind of tensors, the so-called rotation tensors. 

It is noted in advance that the words "vector" and "column" have a completely different 
meaning: as usual, the word "column" is just an abbreviation for "matrix with one column". 

For more information on the use of vectors and tensors in multibody dynamics see, for 
instance, Wittenburgl. 

A.l  Vectors. 

A. l . l  

A vector a' in the three dimensional Euclidian space & is characterized by its direction, sense 
and length and can be seen as an arrow from a point O to a point A. The line through O 
and A is the carrier of Ü. The length of Ü, denoted by 11Ü11, is the distance between O and 
A and the direction of Ü is the direction of the carrier of Ü. Two vectors are parallel if their 
carriers are parallel. 

A vector with length O is a null vector, denoted by 6. A vector with length 1 is a unit 
vector. Often used symbols for unit vectors are e', f i  and ñ. 

Vectors in the Euclidian space. 

A.1.2 Some operations on vectors. 

Let ü and E' be two non-parallel vectors with the same origin O. The carriers of ü and Z 
span a plane in E. The sum ü -+ Z of Ü and Cis a vector in this plane, determined by the 
parallelogram-rule as depicted in Fig. A.1. The operation "sum of two vectors" is both 
commutative and associative, i.e. for all ü, Zand í3 holds 

"Dynamics of Systems of Rigid Bodies" by J. Wittenburg, B.G Teubner, Stuttgart, 1977, ISBN 3-519- 
12337-7 
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u 
- -  _ _ _  ~ .__. . - - --- 

Figure A.l: Sum ü+ Cof two vectors á and C 

The algebraic product of Ü with a real number o is a vector aü with the same direction as 
ü, length Ilaüll = lalllüll and the same (opposite) sense as üif a is positive (negative). Each 
vector ü is the algebraic product of its length and a unit vector ëwith the same direction and 
sense as ü: 

The scalar product or inproduct Üoc'of Üand c'is the product of Ilüll, IlCll and cos(q5(ü,C)), 
where 4(ü, ë) is the smallest angle between ü and c', i.e. 

ü o  C= 11á11 IlZll. cos(q5(Ü, Z)); $(a, C) E [O, R) 
For all Ü, Zand v' and al l  real numbers Q! and B holds 

If ü o Z= O then ü and Care said to be orthogonal or perpendicular. 

The vector product of ü and ë is a vector, denoted by ü * C and given by 

ü* C= Ilüll IlCll sin(+(Ü, C)) Z(ü, C) (A.7) 

where 5(Ü, Z) is the unit vector, orthogonal to both Ü and Zand such that Ü, Z and S(ü, C) 
form a right hand system. The length l]Ü* CII of Ü* Cis equal to the area of the parallelogram, 
spanned by ü and C(see Fig. A.1). 

The triple product of Ü, Zand Gis a scalar, denoted by Ü o  C* v'and given by 

ü o C * v ' =  ( ü * , 3 o V =  Ilü(( IlCllsin(~(a,C))von(ü,C) ( A 4  
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The absolute value I ü o  C* v' I of this triple product is equal to the volume V of the paral- 
lelopipedum, spanned by ü, C and 5, where ü o C* i7 = +V if Ü, C and v' form a right hand 
system and ü o Z* v' = -V otherwise. 

Another operation involving three vectors is the combined vector product ü* (a* Z). This 
product is a vector, given by 

i?* (a* C) = (Go q ü -  (Go Ü)C (A.9) 

and therefore v' * (ü * C) is a linear combination of ü and Z. 

The dyadic product or dyad of Ü and Cis a linear map of & in E ,  denoted by ÜZ The image 
of v'under this map is a vector, denoted by (ÜC) o v' and given by 

(ÜZ) o ü = (Co G)ü (A.lO) 

Hence, the dyad ÜCmaps v' on a vector in the direction of ü. 

The sum of two dyads Ü1C1 and Ü2Cz is a linear map &Z1+ ü&, defined by 

(a&) o v'+ (ü2C2) o v' = (ü& -t a&) o 5 (A.11) 

for all v'. In a simular way other operations on dyadic products can be introduced. For 
instance, the product ((&Cl) o (Ü2C2)) of Ü1Z1 and Ü2Z2 is defined by 

((a&) o (Ü2Z2)) o v' = (ÜlZl) o ((Ü2C2) 0 v'} = &(Cl 0 ü2)(C2 0 v') (A.12) 

for each v' and it is easily seen that 

(ÜlCl) o (ü2C2) = (C1 o Ü2)(ülC2) (A.13) 

Many operations on vectors can be written in terms of dyadic products. As an example the 
product v'* (a* E)  is considered. From 

v'* (ü* C) = ( G o  C)ü- (Go ü)C= (ÜZ- Z a )  o G (A.14) 

it is seen that v'* (Ü * E) is the image of v' under the linear map (ÜC- Ca) .  

Three vectors ü, C and v' are linear independent if aü + yC+ uv' = Ö implies that a = y = 
u = O. This is the case if and only if these vectors are not co-planar, i.e. if the volume of 
the parallelopipedum, spanned by these vectors, is unequal O. Hence, ü, C and v' are linear 
independent if and only if ü o  (Z* v') # O. 

Each set {ü, Z, v'} of three linearly independent vectors Z, Zand v' is a vector basis in &, 
This basis is orthonormal of Ü, Zand G are orthogonal unit vectors, 
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A. 1.3 Matrixrepresentation. 

Let {ë', ë2,  ë3) be CLIL orthonormal basis in E. Then each vector ü can be written as a linear 
combination of the basis vectors, i.e. 

3 

ü = C ( a & )  (A.15) 

where ui = ü e'; (i = 1,2,3) is the component of Ü in the direction of e';. These components 
are the e!eu;ents of a c~l~ii ì ì i ì  8, the ìxìâtrk represetìtatioii of Z witli ïespect to the basis 

i=l 

{ël, ë2, ë33): 

g = [u1 u2 u3]T = [ël o ü ë2 o ü ë3 o q T  (A.16) 

The representation 9 of Ü is not a characteristic of Ü since g changes if another basis is used. 
The use of vectors instead of their matrix representations is especially advantageous if more 
than one vector basis has to be used. This is often the case in multibody dynamics. 

For compactness of notation it is quite attractive to adopt the bookkeeping system of Wit- 
tenburg. Usually, the elements of a matrix or column are integer, real or complex numbers. 
Wiitenburg generaéized this concept. In his approach the elements of a matrix or column 
can, for instance, be vectors or numbers. As an example, the basis vectors ë1, ë 2  and ë3 can 
be seen as the elements of a column 

(A.17) 

The usual rules for matrix operations, like sum and product, apply (see the book of Witten- 
burg). This implies that Eq.(A.15) for Ü and Eq(A.16) for g can be written in a very compact 
form as 

(A.18) 

Substitution of g = g o  ü in ü = e T g  yields ü = cT#'o ü, where l e i s  just a very short notation 
for a sum of dyads: 

A.1.4 

Let G : 'R + & be a vector function of 'R in & and let g = c o  G be the matrix representation 
of i7 with respect to a constant vector basis = [ël ë2 &IT in E 2. Then the function v' is 

Vectors as a function of one variable. 

21n the sequel a vector basis {ë', ë2, &} wil l  be denoted by e = [& & &IT, i.e. by the column with the 
basis vectors as elements. 



continuous if the functions q, 02 and v3, be .  the elements of the matrix representation g, are 
continuous. The vector function is differentiable if each of the elements of g is differentiable. 
The derivative of Gis denoted by or 8' or by kif the independent variable is time t. It is 
easily seen that 

(a.')' = a'$ + av" 

(5 o ij )' = v" o ij + G o ij' 

(a* c y  = 5' * .w + v"* ,ur 

(Gij)' = 5'5 + Gij' 

(A.19) 

(A.20) 

(R.21) 

(A.22) 

for differentiable scalar functions a an- different-,,Ad vector functions G and W. Other rela- 
tions, for instance for triple product and sum of vector functions, can easily be derived. 

If the length 11G(z)11 of V(z)  is constant for all z in the neighbourhood of 20 E R then 

G(U(E0) o q z o )  = o (A.23) 

and it is seen that $(zo) and the derivative $'(ZO) are orthogonal. 

A.2 Second order tensors. 

A.2.1 

A second order tensor (for short: a tensor) A is a linear map of & in &. The image of ü 
under the map A is denoted by A - Ü and is called the dot product or inproduct of A and 
Ü. Since A is linear the inproduct A o (aü + yc') will satisfy 

Tensors as a linear map. 

A o ( a ü t  yZ) = a(A o Ü) +7(A o Z) (A.24) 

for all ü and Zand aJl real numbers a and 7. 

the null vector, i.e. 
The unit tensor I maps each vector on itself and the null tensor O maps each vector on 

Ioü=,-; o o ü = ö  (A.25) 

The dyad ÜZis an example of a second order tensor because ü c  operating on G E €, results 
in the vector (Zo G)ü E & and the map, specified by ÜZ, is linear. For this reason the dyadic 
product of two vectors is often called the tensor product of those vectors. 

A.2.2 Some operations on tensors. 

The sum of two tensors A and B is a tensor, denoted by A + B and such that 

(A + B) o Ü = A o Ü + B o a' (A.26) 

for each ü. Fiom this definition it follows that 

A +  B = B + A; (A+ B) t C = A +  (Bt C) (A.27) 
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Let a=  [ël ë 2  &IT be an orthonormal vector basis in E.  Then each ü E E can be written as 
a linear combination of ël, ë2 and ë3, i.e. 

ä = (ël o ä)& + (ë2 0 ü)ë2 + (e3 0 q.3 = (ë1ë1 + ë2ë2 + ë3ë3) o ü (A.28) 

Since ä = I o ä it is seen that the unit tensor I can be written as the sum of three dyads: 

I = ë1ë1 + ë2ë2 + ë3ë3 = efTef (A.29) 

The algebraic product of a tensor A and a real number Q is a tensor, denoted by QA and 
such that 

(aA) O a’ = a(A o Ü) (A.30) 

for each ü. 

The product of two tensors A and B is a tensor, denoted by A o B and such that 

(A o B) o Ü = A o (B o ü) (A.31) 

for each ü. Hence, A o 1 = A and A o O = O. Furthermore, 

a ( A o B ) = ( a A ) o B = A o ( a B )  (6.32) 

A o (B o C) = (A o B) o C = A o  B o C (A.33) 

for all A, B and C and all real numbers a. In general A o B is not equal to  B o A! 

The transpose of a tensor A is a tensor, denoted by AT and such that 

zo (A O ü) = Ü O  ( A ~  O c)  (A.34) 

for each ü and ë. Each tensor has a unique transpose and 

(AT)= = A; (A O B)T = BT O AT; (QA + pB)T = aAT + BBT (A.35) 

for each A and B and all real numbers Q and /3. 

The adjoint of a tensor A is a tensor, denoted by Aa and such that 

Aa o ( Ü * q  = (AoÜ)*(AoC‘) (A.36) 

for each ä and Z. Without prove it is noted that each tensor has a unique adjoint. 

The Euclidian norm of a tensor A is a non-negative real number, denoted by IlAll and 
determined by 

(A.37) 
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Other definitions of the norm are possible, but will not be considered here. Without proof it 
is noted that 

IlAll 2 0; IIAll = 0 * A = 0; l l 4 l  =I I IlAll (A.38) 

llA 0 Bll i lPll 11BlI; (A.39) 

for all A and B and all real numbers a. The last relation is called the triangular or Schwartz 
inequality. 

llA + Bll i. IlAll + IlBIl 

A.2.3 Regularity, symmetry, orthogonality etc. 

A tensor A is called regular, invertible or non-singular if A o Ü = Ö is satisfied only for 
the trivial solution Ü = Ö. If A o Ü = 0’ has a solution if # Ö then A is singular. For each 
regular tensor A there exists a tensor B, such that A o B = I. This tensor, the inverse of A, 
is denoted by A-l. If the inverse exists then (A‘”’’ = A. Furthermore, for regular tensors 
A and E) the product A o B is regular and 

(A O B)-l = B-’ O A-’ (A.40) 

If A or B is singular then A o B is also singular. 

A tensor A is symmetrical if A = AT. If A = -AT then A is skew-symmetrical and 
Ü o (A o Z) = O for each Ü. Because A = ;(A i- AT) i- +(A - AT) each tensor A is the 
sum of a symmetrical tensor +(A i- AT) and a skew-symmetrical tensor +(A - AT). This 
decomposition is unique. 

A tensor A is orthogonal if 

(A o ü) o (A o b) = üo b 
-b 

(A.41) 

for all Ü and b. Hence, A is orthogonal if and only if AT o A = I. Each orthogonal tensor A 
is regular and the inverse A-l is equal to the transpose AT. 

A tensor A is positive definite, respectively semi- positive definite if Ü o  (A o ü) > O, 
respectively a’ o (A o ü) 2 O for each Ü # Ö. In a simular way negative definite and semi- 
negative definite tensors can be defined: A is negative definite, respectively semi- negative 
definite if Ü o  (A o Ü) < O, respectively Z o  (A o Z) 5 O for each Ü # Ö. 

A.2.4 Invariants. 

Let Ü1, ü2 and Ü3 be linear independent vectors, so a = Ü1 o (Ü2 * ü3) # O. Furthermore, let 
& be defined by 

-b 

pi = A O Üi, i = 1,2,3 

The scalars J1(A), &(A) and &(A), defined by 

(A.42) 
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J3(A) = a o ($2 * p3) (A.44) 

depend on A but not on Ü1, i22 or Ü3. Hence, &(A), &(A) and J3(A) are invariants of A. 
The first invariant Jl(A) is the trace of A, denoted by tr(A), the third invariant &(A) 
is the determinant of A, denoted by det(A): 

tr(A) = Jl(A); det(A) = &(A) (-4.45) 

With an orthonormal, right hand vector basis -= [ël ë2 ë3IT it is easily seen that 

3 
J1(A) = tr(A) = O (A O g) }  

i=l 
(A.46) 

From the definition of the invariants a number of properties can be derived. Some of 
them, valid for all A and B and all real numbers Q and B, are 

tr(1) = 3; Ja(I) = 3; det(I) = i (A.47) 

tr(AT) = tr(A); tr(aA + BB) = ~ t r ( A )  4- Btr(B) (A.48) 

&(AT) = &(A); J2(aA) = a2J2(A> (A.49) 

det(AT) = det(A); det(aA)= a3det(A); det(A o B) = det(A)det(B) (A.50) 

Besides, it can be shown that for all ü and c'will hold 

tr(A)Ü * E'= AT o (Ü * 4 t Ü * (A o c3 f (A o Ü) * Z (A.51) 

J2(A)Ü* E'= (A0  Ü) * (A O 9 + A T  O [Ü* (A0 

det(A)Ü* E'= AT o [(A o Ü) * (A o c3] = AT o A" o (ü* 9 

+ (A O ü) * (A.52) 

(A.53) 

From the last equation it is seen that the determinant, the transpose and the adjoint of a 
tensor A are related by 

AT o A" = A" o AT = det(A)I (A.54) 

Further elaboration on the above results yields the Cayley-Hamilton lemma, i.e. 

A3 - tr(A)A2 + J2(A)A - det(A)I = O (A.55) 

If det(A) # O then (A o Ü) * (A o C) # 0' for all Ü *  E'#  Ö. This is possible if and only 
if A o ü # Ö for each ü # Ö and therefore if and only if A is a regular tensor. Hence, A is 
regular if and only if det(A) # O. 

1 
i 
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A.2.5 Eigenvalues and eigenvectors. 

A vector ñ # Ö is an eigenvector of A if ñ and A o ñ have the same direction, i.e. if 

A o ñ = X ñ  (A.56) 

where X is a real or complex number. The length and sense of ñ are not determined by 
this requirement: if ñ is an eigenvector of A then añ (with real or complex a) is also an 
eigenvector of A. 

From A o ñ = Xñ it is seen t h ~ t  (A - XI> o z = 6 2nd t ~ s  vector eqüatiirsri has a non-triviid 
solution ñ # 6 if and only if A - XI is singular, i.e. if and only if 

det(A - XI) = O (A.57) 

With the definition of the determinant this characteristic equation can be written as 

[(A - XI) O Ül] O [(A - XI) O Ü2] * [(A - XI) O &] = O (A.58) 

where ü1, ü2 and ü3 axe linear independent vectors. Elaboration results in a polynomial in X 
with the invariants of A as coefficients: 

A3 - tr(A)X2 + J2(A)X - det(A) = O (A.59) 

The three solutions for X are the eigenvalues of A. Since the coefficients of this equation 
are real eventual complex eigenvalues come in conjugate pairs: if a i- j,d (with real cy and p) 
is an eigenvalue then a - j,û is also an eigenvalue. Hence, the number of complex eigenvalues 
is even and each second order tensor has at least one real eigenvalue. 

Let XI, X2 and A3 the eigenvalues of A. Because they are the roots of the characteristic 
equation this equation can be written as 

(A.60) - - X2)(X - X3) = o 
Comparison with the earlier given characteristic equation yields relations between the eigen- 
values and the invariants of a tensor: 

det(A) &(A) = XiX2X3 (A.63) 

If A is singular, i.e. if det(A) = O, at least one of the eigenvalues of A is equal to  O. All 
eigenvalues of a regular tensor are unequal to O. 
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A.2.6 Symmetrical tensors. 

The eigenvalues XI, and A3 of a symmetrical tensor A = AT are real. Besides, each 
symmetrical tensor has three real, linear independent eigenvectors ñ1, ñz and ñ3. 

The eigenvectors are orthogonal if the eigenvalues are different. The proof is simple: if A 
is symmetrical then ñj o (A o ñi) - ñi o (A o Zj) = (Xi - Xj)ñj o ñi = O. Therefore, ñi o Zj = O, 
i.e. ñi and ñi are orthogonal, if Xi # Xj. If Xi = Xj (i # j) then ñi and ñj span a plane in & 
and any two orthogonal vectors in this plane can be taken as the eigenvectors, corresponding 
to the eigenvalue Xi = Xi. Hence, for a symmetrical tensor it is d w a p  possible to choase the 
eigenvectors ñl, ñz and ñ3 such that they are orthogonal, form a right hand system and have 
unit length, i.e. such that 3 = [ñl ñ2 ñ3IT is an orthonormal, right hand vector basis in E.  
With this basis and using A o ñi = Xi& (i = 1,2,3) and I = ST$ it is seen that 

3 

where A is a diagonal matrix with the eigenvalues as the main diagonal elements: 

XI o o 

(A.64) 

(A.65) 

This representation of A in terms of eigenvalues and eigenvectors is called the spectral or 
normal representation of A. 

UA = AT is regular, i.e. if det(A) = X1X2X3 # O, then the inverse A-' can be determined 
easily if the spectral representation of A is given. It can be shown that 

3 

(A.66) 

Hence, the eigenvectors of A and A'l are the same but the eigenvalues of A-' are the 
reciprocal of the eigenvalues of A. 

-T -1- 1 , -  A-' = Q Q = C(-TQ~~) 
+l Xi 

A. 2.7 S kew-symmetrical tensors. 

Let A be a skew-symmetrical tensor, i.e. A = -AT. Then Ü o  (A o Ü) = O for each ä. Let 
ñ be a real eigenvector3 of A and let X be the associated eigenvalue, i.e. A o ñ = Xñ. From 
X ñ  o ñ = ñ o (A o Z) = O it then follows that X = O and therefore that det (A)  = O since 
det(A) is the product of the eigenvalues. Hence, each skew-symmetrical tensor is singular. 
Furthermore, from the definition of the invariants Jl(A) = tr(A) and &(A) it is seen that 
tr(A) = O and Jz(A) > O if A = -AT. Therefore, the characteristic equation is given by 

X[X2 + Jz(A)] = O (A.67) 

so two of the eigenvalues of a skew-symmetrical tensor are purely imaginairy. 

unit vector, orthogonal to ñ. The vectors {ñ, ë' and n'* 
Let Z be the unit eigenvector, corresponding to the real eigenvalue X = O, and let ë'be a 

then form an orthonormal basis in 

3As stated earlier each second order tensor has at least one real eigenvector and corresponding real 
eigenvalue. 
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E and each vector ü and its image A o ü can be written as a linear combination of 5, ë and 
ñ * ë. With this representation of â and A o ü it can be shown that 

A O Ü = [(5 * e3 O (A O e33 * Ü (A.68) 

does not depend on ë as long as ë is a unit vector orthogonal to  5. and that (5 * ë) o (A o 
Hence there exists a vector O(A), the axial vector of A = -AT, such that 

A o Ü = W(A) * Ü 

for each Z. Using any right hand, orthonormal basis e= [ë' ë2 &IT it can be 

3 1 
2 

= - C[ë. * (A O c)] 
i=l 

or, written in terms of matrixrepresentations, as 

ë3 O (A O ë'2) 

G(A) = STg(A); g = 
ëz O (A O ë'i) 

8.2.5 Matrixrepresenkation of tensors. 

(A.69) 

shown that 

(A.70) 

(A.71) 

Let c= [ël ë- &IT be an orthonormal basis in E and let g be the matrix representation of a 
vector ü with respect to this basis, i.e = c o  ü and ü = eTg. The matrix representation ; of 
the image i? = A o Ü then follows from 

= ZO 5 = CO A O ST% = 4% 

where the (3*3) matrix A, the matrix representation of A with respect to the chosen basis, 
is given by 

- A = ~ O A O Z ~  (A.72) 

The individual entries A ,  (i, j = 1,2,3) of this matrix can be determined from A, = YoAoë'. 
With cTij'= I it can easily be shown that 

3 3  

(A.73) 

This is the so-called dyadic representation of A. It is noted that, in general, the matrix 
representation of A will change if another basis is chosen, i.e. that the matrix A is not a 
characteristic of the tensor A. 

A.2.9 Tensors as a function of one variable t. 

Let A be a function of the independent variable z E R and let a' be a constant vector. Then 
the tensor function A is continuous if the vector function A o Ü is continuous for each ü. 
Finthermore, this tensor function is differentiable if A o Ü is a differentiable vector function 
for each â. 
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If A is a differentiable tensor function then there exists another tensor function, the 
derivative A' of A, such that 

A'oä= (Aoä)' (A.74) 

For the derivative of tensor functions simular relations hold as for the derivatives of scalar 
functions. For example, 

(A o B)' = A' o B + A o B' (A.75) 

AU tensor Îunctions used in the sequel are assumed to be differentiable. 
Let A(z) be regular for all z E R. From A(z) o A-l(z) = I it then follows that 

(A'l)' = -A'l o A' o A-' (A.76) 

If A(%) is orthogonal, i.e. if A($) o AT(.) = I for all z E R, it is seen that 

A' O AT = -A O (A*)' = -A O (A')* = -(A' O AT)* (A.77) 

Hence, A' o AT is skew-symmetrical and there exists a vector (3, the axial vector of A' o AT, 
such that 

A' o AT o ä = (3 + ä (A.78) 

for each ä. 

those invariants. Some elementary calculations result in 
Relations for the derivatives of the invariants of a tensor follow from the definitions of 

(~T(A))'= tr(A') (A.79) 

(J2(A))' = tr(A)tr(A') - tr(A o A') 

(det(A))' = ~ T ( ( A ' ) ~  o A") 

(A.80) 

(A.81) 

If A is regular then, using the definition of the adjoint A", it is seen that 

(det(A))' = det(A)tr(A-' o A') (A.82) 

A.3 Rotation tensors. 

A.3.1 Introduction. 

Let R be an orthogonal tensor, i.e. RT o R = I and det(R)det(RT) = de t2 (R)  = 1. Orthog- 
onal tensors R with det(R) = +1 are called rotation tensors. They play a very important 
role in, for instance, multibody dynamics4 since the current orientation of a moving rigid 
body can be described with tensors of this kind. 

Rotation tensors R and their matrix representations & with respect to an orthonormal 
vector basis have some special properties. One of these properties is that the nine entries of 

40rthogond tensors R with det (R)  = -1 are called reflection tensors. They are not considered here since 
they do not occur in multibody dynamics. 
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- R can be written as functions of three independent variables or as functions of four variables, 
that have to  satisfy one constraint condition. 

In the next section first some general remarks on rotation tensors and their matrix rep- 
resentations are put forward. After that Euler parameters are discussed as one of the possi- 
bilities to write a rotation tensor as a function of four variables. Finally attention is focussed 
on Cardan angles. These angles (or simdar alternatives like Eder angles) can be used if the 
rotation tensor has to be written as a function of three independent variables. Attention is 
given to the time derivative of rotation tensors and to the rotation velocity vector that is 
associated with this derivative. 

A.3.2 

Many possibilities are known to describe the current orientation of a moving rigid body B, 
Common in most of them is the introduction of a ñxed basis k and a moving basis c, that is 
rigidly connected to B. Only orthonormal, right hand bases are considered, so 

Rotation tensors: tsome general remarks. 

The current orientation of B can be described by the time dependent tensor R(t) that maps 
the ñxed basis 3 on the moving basis c(t): 

-(i) = R(t) O e f T  (A.83) 

Since 8 and E' are orthonormal, right hand vector bases R(t) must be a rotation tensor, so 

R ( t ) o  RT(t) = RT(t )o  R(t) = I; det (R( t ) )  = 1 (A.84) 

Differentiation of gT(t)  = R(t) o cT with respect to t results in 

p ( t )  = R(t) o p = R(t) o RT(t) o t T ( t )  

where R(t)  o RT(t) is skew-symmetrical, as can be seen by differentiation of Eq.(A.84): 

R ( t ) o  RT(t)+ R(t)o RT(t)  = R(t) O RT(t)+ { R ( t ) o  RT(t)}T = O 

Hence, there exists a vector G(t), the rotation velocity vector, such that 

R(t)  o RT(t) o ë= W ( t )  * E' (A.85) 

for each c'. Therefore, the time derivative of the moving basis can be written as5 

$ T = W ' * g T  (A.86) 

The matrix representation & of R with respect to the k e d  basis kfoilows from 

- R = Z o R o Z T  (A.87) 

i 

, 

51t would be clean to write R(t), g( t )  etc. instead of R, $etc. Because this complicates the notation too 
much the dependence on t is not mentioned explicitly in the sequel unless it is required to avoid confusion. 
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and using Eq.(A.84) it is seen that 

-- R R ~  = R ~ R = ~  (A.88) 

This represents a set of nine scalar equations. Due to the symmetry of ERT only six of these 
equations are independent, so the nine entries of & have to satisfy six constraints. Because 
it is very inconvenient to work with nine quantities six constraints it is common practice 
to write the entries of & as functions of just three independent quantities (PI, 972 and (p3 
or as functions of four quantities qo, q1, q2 and q3 that have to  satisfy one constraint. In 
Xieraiure various chokes for <PI: 92 and (p3 and Îor qe7 ~i~ p2 and g3 are given. Here ~ o l y  
Euler parameters and Cardan angles are discussed in some detail. Other possibilities can be 
found in, for instance, the book of Wittenburg. 

-- 

A.3.3 Euler parameters. 

With R o (RT - I) = I - R it is seen that det(R)det(R - I) = -det(R - I) and because 
det(R) = 1 also det(R - I) = O. From the definition of the eigenvalues it follows that X = 1 
is an eigenvalue of R. Let 5 be such that 

ROZ=% Z o Z = 1  (A.89) 

Then Z is an eigenvector of R and since ñ = R' o R o Z = R'; o ñ also of RT. The carrier of 
ñ is cded  the helical axis of R. 

Let ë be a unit vector perpendicular to the helical axis,  i.e. 

ë o ë = l ;  ë o ñ = o  (A.90) 

The vector Z*ëthen is a unit vector perpendicular to ñ and ë, so {Z, ë, ñ*Z) is an orthonormal 
vector basis. Hence, the image R o ëof ëcan be written as 

Ro ë= I o  (Ro ë) = Z(Zo Roe) + ,-(ZORO + (Z*  ë)[(Z* ë) O R O  ë] 

and, using Z o  Ro ë= (RT o 5) o ë= Z o  ë= O, also as 

Roë=aë'+,ûZ*c a=ëoRoe ' ;  B=(Z*,3OROë 

A simular treatment of R o (Z * ë) results in 

R o (3 * ë) = yë+ YZ * e'; y = ë o  R O (Z * e); Y = (Z * ë) 0 R O (5 * ë) 

The factors a, B, 7 and Y have to satisfy some constraints that follow from the requirement 
that R o ëand  R o (Z * ,3 are orthogonal unit vectors and that det(R) = 1: 

(R o ë) o (R o ë) = ë o  ë = 1 

(R o ë) o [R o (Z * ë)] = ë o  (Z * ë) = O 

* a 2 + p = 1  

* ay+Bv=O 
{R o (5 * ë)} o {R o (5 * ë)} = (Z * ë) o (Z * ë) = 1 

det(R) = (R o ñ ) o [(R o ë) * {R o (Z * e)}] = 1 

=+ y2 -t v2 = 1 

= 1 + av - 
The solution is given by a = Y = cos(cp) and ,û = -y = sin(cp) and therefore 

R o ë= cos(p)ë+ sin(cp)i? * ë; R o (Z * I?) = - sin(cp)ë+ cos(cp)Z * Z 
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/- 
Figure A.2: Geometrical interpretation of R o C 

These results can be used to determine the image R o Cof an arbitrary vector c‘. With 

R O C= ñ(ñ O R o i?) t ë(ëo R O C) + (ñ * e)[( ñ * ë‘) O R o E‘] 

this yields after some calculations 

R o C= ññ o C+ cos(cp)(I - nil) o Zt sin(cp)ñ * C (A.91) 

The component (ñ o C)ñ of Zin the direction of ñ, i.e. the component of C along the helical 
axis, remains unchanged while the component C- (ñ o Z)ñ = -ñ * (ñ * C) of Zperpendicular 
to the helical axis experiences a rotation cp in the plane perpendicular to that axis. Hence, 
the effect of R on any vector Cis a rotation cp of that vector around the helical axis. This 
geometrical interpretation is depicted in the following figure. 

From the preceding analysis it can be concluded that each rotation tensor R can be written 
as a function of the unit vector ñ along the helical axis and a rotation cp around that axis. In 
a more formal notation this can be written as 

R=R(ñ,cp) ,  ñ o ñ = l  (A.92) 

The matrixrepresentation R of R with respect to  the fixed basis c can be determined from 
- R = g o  (R o cT) and Eq.(A.91). The result is not very interesting and is omitted here. 

For a given rotation tensor R the vector ñ must be determined from 

R o ñ = ñ  A ñ o ñ = l  
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To determine cp it is noted that the first invariant of R, i .e.  tr(R), is equal to 

h(R) = Jl(R) = 1 + 2  COS(^) 

and, as can be seen from Eq.(A.91) that 

sin(y) = (ñ * ë) o (R o ë) 

for each unit vector ëperpendicular to  ñ. These equations completely determine cp if ñ is 
given and if only values of cp in the interval [0,27r) are accepted. 

The given analysis only proves that for every rotation tensor R there exist at  least one unit 
vector ñ and one angle cp such that (A.91) holds for each vector Z. It is easily seen that neither 
ñ nor cp are unique: if (A.91) is satisfied for a given ñ and cp it is also satisfied if ñ and sin(cp) 
are replaced by -ñ and -sin(cp) or, equivalently, if ñ and cp are replaced by -S and cp f 7 r .  It 
turns out that ñ and cp may be replaced by ñ* and cp* as long as 

An important aspect of the representation Eq.(A.91) oÎ R concerns the question whether or 
not this representation is unique. For an investigation all eigenvalues of R are considered. 
They follow from the characteristic equation 

A3 - tr(R)X2 + J2(R)X - det(R) = O, 

where tr(R) = 1 + 2 cos(cp), det (R)  = 1 and J2(R) is the second invariant of R. With the 
definition of this invariant it can easily be shown that 

J2(R) = tr(R) = 1 + 2  COS(^^) 

The characteristic equation therefore becomes (A - i)[X2 - 2X cos(cp) + i] = O or, after a minor 
recasting , 

(A - i ) [ (~  - COS((P)}~ + sin2(cp)] = O 

If cp # 2kn (integer k) then two of the eigenvalues are complex and the eigenvalue X = 1 
and the direction of the associated eigenvector ñ are unique. However, if cp = 2kn then all 
eigenvalues are equal to 1 and R = I. In this case there is no rotation at all and each vector is 
an eigenvector of R. This can cause problems in general purpose computer programs. That 
is the main reason to use the quantities ?and QO, defined by 

(A.93) 
1 1 
2 

and not ñ and cp as parameters to characterize R. In terms of ii and QO the representation 
(A.91) of R can be written as 

< = sin( -cp)% qo = cos( 

R O Z= [ 2 f l +  (2g; - 1)I] O C+ 2go77* Z (A.94) 
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The components of ij' with respect to the ñxed basis 5 are denoted by q1, q2 and 43, i.e. 
qi = T o  el. = sin(cp/2)ño el. for i = 1,2,3. Together with qo they are seen as the elements of a 
column q, i.e. - 

(A.95) 

The rompone~tts of q are called Eder parameters. They comp:eiely determine the ma- 
trixrepresentation &of R with respect to the basis <. However, if the components of & are 
considered as functions of these parameters it must be realized that they are not independent, 
so 

The rotation velocity vector G can be determined by differentiation of Eq.(A.91). With 
Z = R o Zand constant Z this results in 

After a fairly prolix derivation this finally yields 

G = +ñ + [i - cos(cpp>lñ* ñ + sin(cp)ñ (A.97) 

or, written in terms of i f=  sin(cp/2)Z and qo = cos(cp/2), 

G = -240?7+ 2?7* ++ 2q03 (A.98) 

A.3.4 Cardan angles. 

In the previous section the rotation tensor R is written as a function of four parameters, being 
the angle cp and the components of the eigenvector ñ, where ñ has to satisfy the constraint 
ñ o ñ = 1. It is possible to avoid the constraint if R is written as a function of three suitable 
chosen elements 91, cp2 and 9 3  of a column cp. Often used choices for these elements are Euler 
angles and Bryant or Cardan angles. Then the total rotation is seen as the result of three 
subsequent rotations around specified axes. The differences arise from the choice of the axes 
for these partial rotations. 

Here only Cardan angles are considered. Then the total rotation from the fixed basis d to 
the moving basis c, is the result of 

1. a rotation cp1 around the carrier of ël. This transforms ginto f' = [ëi ël, 

2. a rotation cp2 around the carrier of e;. This transforms f' into e* = [ëy ëa ë;lT 
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3. a rotation p3 around the carrier of ëg. This transforms e* into 

Each of these partial rotations can be described with the results of the previous section. This 
results in 

(e')T = R(ë1, Cpl) 0 (elT 

@*IT = R(G(P2) 0 (e ) 

gT = që;, $03) r) ( e  

-t T 

-r* T 

or, in more detail for the individual basis vectors, in 

ëi = R(ë1, pi)  o e'i = [i - cos(p1)]ë1(ë1 o 5 )  -i- cos(p1)G i- sin(p1)ël * 6 

ët = R(ëi ,  9 2 )  o ë{ = [i - cos(p2)]ëi(ë; o ë{) t cos('p2)ë: t sin(p2)ëi * ë: 
6 = R(ë&p3) o ëy = [i - cos('p3)]ë:(ë: o ëy) + cos('p3)ë; + sin('p3)ë$ * ë; 

These results can also be written in matrix form as 

O [ s  :jl .p:l 
-[I: 1 :2] 

(#''IT = e'TBl(cpl); Rl(cp1) = e o  R(ë1,cpi) 0 (e)T = 

-r/ T (#'*IT = (e ) R2(92); RZ(92) = e" 0 R(ë;,92) 0 (e'')T - O 1 O 

-* T zT = (e ) h((P3); &((P3) = c* 0 R(G(P3) 0 

where c; = cos(pi) and si = sin(pi) for i = 1,2 and 3. 
Of course it is also possible to relate cdirectly to g. This finally yields 

Z T = R o f T = ( g T R ( y ) ;  & = # ' o R o C T  



With & = G * 6 this yields a relation for G in terms of cp and Cp: 

where the column G is defined by 

(A.100) 

An important problem when using Cardan angles is that it is not always possible to determine 
(p for a given W .  Let g = z o  G be the matrix representation of w' with respect t o  the basis g. 
Then the earlier derived vector equation for W ,  

can be transformed into three algebraic equations for Cp: - 
-. - T -  q = e f o w = g o -  'p=vve - 

where the matrix W i s  given by 

(A. 101) 

- W is singular if det(W) = c 2  = cos(cp2) = O, i.e. if 9 2  = 7r/2 t klr (integer k ) .  Then 
it is not possible to solve Cp - from g = E+. - This can cause problems in general purpose 
programs for the analysis of multibody systems and, as a consequence, Cardan angles are 
hardly ever used in those programs. Because simular problems occur with other sets of three 
independent parameters nearly all general purpose programs use Euler parameters or a variant 
like Rodrigues parameters. 
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