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MEASUREMENT ERROR INFLUENCE ON HELICAL AXIS ACCURACY IN THE
DESCRIPTION OF 3-D, FINITE JOINT MOVEMENT IN BIOMECHANICS

H.J. Woltring, R. Huiskes, and A. de Lange
Laboratory for Experimental Orthopaedics
University of Nijmegen
Postbus 9101, 6500 HB NIJMEGEN
The Netherlands

The recent availability of a number of stereometric technologies such as ultra-
sonic digitization, cinephotogrammetry, Rontgenphotogrammetry, and electrogoniome-
try has fostered a considerable amount of research in 3-D kinematics of biomecha-
nical joint movement. Particularly the helical (or screw-) axis concept for repre-
senting finite, spatial, rigid-body movement has acquired increased popularity.
The purpose of this paper is to evaluate the accuracy of the helical axis parame-
ters (position and direction, rotation angle and shift) if these are derived from
experimentally determined, stereometric data. For this purpose, a statistical mo-
del is presented, following the work by Panjabi et al. (1982) which demonstrated
a high sensitivity of the centroid to measurement errors in the planar case. The
present analysis generalizes their results to spatial movements; it demonstrates
that position and direction of the helical axis are highly error-prone, and that
the landmark distribution should preferably surround the helical axis.

We assume a rigid body (a bone) applied with a right-handed, cartesian coordi-
nate system Ey, to undergo a finite displacement from a position 1 to a position
2 (see Fig. 1*. The bone has a given distribution of landmarks with known coordi-
nates X in Ey (k=1...m>3), at least 3 of which should be non-collinear for
determinacy to obtain. The landmarks' centre of gravity coincides with the origin
of E,, and its position in the global (fixed) coordinate system E, is denoted by
d; (=1,2). The attitude of Ey with respect to E, is described by the rotation
matrix R;. The experimental procedure implies the determination of each landmark
position yj, in the global system E,. For errorfree y;, and x,, the d; and R; can
subsequently be determined from the model

Yo T4 * R (=125 k=1...m23) (1)

using a technique such as described by Spoor & Veldpaus (1980). The helical axis
representing the displacement (gl—*EZ’ Rl-*Rz) is characterized in E, (see Fig. 2)
by a unit direction vector n and by the position vector s of some poin% on the heli-
cal axis; the rotation angle about the axis is denoted by 6, and the shift along
the axis by t. Following Spoor & Veldpaus (1980), n and 6 can be derived from
sin6-5(n) = %(R-R'), with R#R,R;, n'n=1, 0<6< ™ rad (2)
and S(a) a skew-symmetric matrix uniquely defined by the property S(a)sb2axb for
arbitrary a and b, and x denoting the vector product operator (NB: ' denotes trans-
position). Contrary to Spoor & Veldpaus (1980), s is chosen to be the projection
onto the helical axis of the midpoint p on the differential translation d between
d; and d,. It appears that s -p is the shortest line between d and the helical
axis, so s is presumably minimally sensitive to measurement errors, for all points
on the helical axis. From the condition n'(s-p)=0, s and t now follow as
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s P + {Ztan(%e)}_l'ﬂxﬂ’ t = E'g. 3

where
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P 1 (4)
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The observed landmark coordinates Yi{k are modelled as subject to measurement er-
rors n;, (i.e., 12L<=Zik+3ik)’ and the nj, are modelled as zero-mean ( 'unbiased'),
uncorrelated, and 1sotropic, with covariance matrix o2I. The question is now how

these errors propagate in statistically optimal estimates ii and ﬁi for d; andRy,
respectively, and subsequently in the helical axis parameters.

The effect on d; is denoted by an additive term Ad., and the effect on R; may
be modelled by means of a rotation matrix R(A¢;) which premultiplies the true mat-
rix R:. For reasonably small errors n;y, the errors A_gi and A¢. will be unbiased:
E(Agi}'_'g and E(Ap,;) ®0. To a first orser approximation, A¢; may be viewed as a
vector describing small rotations about the axes of E,. Using a minimum variance
(Markov) estimator, the covariance matrices for Ad; and A$; may be shown to be

= 2/ » =2 m ' o1 = ' r}]=1
ZAQi = 0%m I, ZAQ,-_ o (zk=1{Ri(5k§k I Ekik)Ri} (3)

For the present noise model, the algorithm of Spoor & Veldpaus (1980) is suitable,
but some form of iterative adjustment may be required if the noise distribution is
anisotropic. For certain landmark distributions, the rotation error covariance ma-
trix in (5) assumes diagonal form, with equal diagonal elements. A case in point
is the situation that the landmarks are at the vertices of a regular polyhedron;
it is contended without proof that the rotation error covariance matrix for such
a landmark distribution becomes

ZM’J’. = 0%(p%m) *I, with p? = r-§-°r2 (6)

and where r is the radius of the sphere circumscribing ‘the polyhedron, e.g., a py-
ramid (m=4), a cube (m=6), etc. For more general distributions meeting (6), p is
the effective landmark distribution radius.

The variances and covariance matrices of the helical parameter estimates follow
from (5-6), and from the partial derivatives of 0, t, n, and s to the Ad; and Ap;.
Defining X as the angle between n and d, this yields after some matrix calculus

o5 = 207 (mp?), I = 0j+{2sin(56)}"2+(I-nn") (1
ci = 20%m+(1+ {cos(%6)} 2. (s -p)/pl?) (8)
Zﬁ = Xo¥mel + 202/m-{Ztan(%e)}—z'(l-gg') +

0% (mp?) + (2{25in(%68) 12+ (siny) "2+ (s - p)'(s -p)(1-4dY4a'da) +
5{ cos(%6)}7%+(s - p)(s-p)') (9)

For small rotation angles |8 <1 rad, (3) and (7-9) may be simplified by repla-

cing the circular functions with their small-angle approximations. Apparently, the
measurement errors have a profound effect on most of the helical parameters if 6 is
small. Other things being equal, the helical errors are minimal if the landmarks'

centre of gravity is on the helical axis, but even then, some of them may be inor-
dinately large. For [6| <1 rad and ,§'P_| =0, (7-9) result in

0g = v2/m o/p, o, 2 VIr(Z) = 20/(p6vm) (10)
o, = /2/m o, o, ° /Tr(z;5 = 2g/(8/m) - I+ Ay ﬁSS\‘ﬁ‘h' (11)

As clarified in the Figures 3 and 4, 0, denotes the direction error standard devi-
ation of n, and Oy the mean standard ~deviation of 8. Taking typical values in
wrist ROntgenphotogrammetry as an example, one might choose 0 =50 Hm, m=4, p=5
mn, t=|d|=0mm, and 6=0.1rad=5.79. This results in Oy =0.410, 0,=5.7°, o=
35Um, and 0g=0.5mm. If ,5'2, > lp sinx|, the errors af?ecting t and s are much
higher. Thus, p and vm/o should be sufficiently large, and the landmark distribu-
tion should be sufficiently close to. the helical axis. Furthermore, the large er-
rors incurred for small 6 demonstrate the limited utility of the finite helical
axis as an approximate sample for the instantaneous helical axis.
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Position 2

Position 1

Figure 1. Global (fixed) coordinate system E, in which a rigid
body with attached coordinate system E; moves from position 1
to position 2. The body has a given landmark distribution with
known coordinates in Ey, and true coordinates ¥ik in El’ with
i=1,2, k=1...m>3. © Due to measurement errors njk, only ob-
served coordinates y{, are available. See text for definition

of other symbols.

Figure 2. Helical axis in the finite
displacement case. By virtue of the
vector-product nature of (3), s-p
is normal to both n and d. By con-
sequence, s - p is the shortest dis-
tance vector interconnecting d and
the helical axis. See text for the
definition of other symbols.
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Figure 3. Angular uncertainty in the
direction vector n. The errors in n .
are constrained to the normal plane
of n. For small errors, the direc-
tion uncertainty angle @, has mean
value zero, and standard—deviation
O, as defined in (10).
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Figure 4,
the given

1)2'=

) Example: d = (0,d,0)'

n = (0,0,1)"

8 p = (0,0,0)"

= '

s-p d s (s,0,0)
Covariance contributions in I 2 X +Zg1q* ZiIR’ for

assumptions on noise and landmark diStribuFions

50%m 1, spatially isotropic, due to errors in
p ek +d).

20%m +{2tan(%0)}" %+ (1 -nn'), isotropic in the
normal plane of n, due to errors in g_egz-gl.

o7 (p*m) « ( 2{Zsin(%6)}'2(sinx)-2'(§-g)'(g-p_)'(l -dd'/d'd)
+ %{cos(%6)}"2+(s - p)+(s-p)'), anisotropic in
the normal plane of d, due'to errors in the rotation matrix

a 1
R R2R1 .

For sufficiently small measurement errors, the errors in s are zero-mean,
with mean standard deviation 0y averaged over all directions as defined
in (11). For the 'optimal' case s=p, Ls{r=0, and the errors in s for
small 0 are mainly located in the normal plane of n, since Tr(Zslg) >

Tr(z.S_lR

) if |8] 1. -
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